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SUMMARY

Machine-learning-based materials property prediction models have emerged as a promising approach for

new materials discovery, among which the graph neural networks (GNNs) have shown the best performance

due to their capability to learn high-level features from crystal structures. However, existing GNNmodels suf-

fer from their lack of scalability, high hyperparameter tuning complexity, and constrained performance due to

over-smoothing. We propose a scalable global graph attention neural network model DeeperGATGNN with

differentiable group normalization (DGN) and skip connections for high-performance materials property pre-

diction. Our systematic benchmark studies show that our model achieves the state-of-the-art prediction re-

sults on five out of six datasets, outperforming five existing GNNmodels by up to 10%. Our model is also the

most scalable one in terms of graph convolution layers, which allows us to train very deep networks (e.g., >30

layers) without significant performance degradation. Our implementation is available at https://github.com/

usccolumbia/deeperGATGNN.

INTRODUCTION

Out of the almost infinite chemical design space, the largest inor-

ganic crystal materials database (ICSD)2 contains only 250,000

crystal materials up to July 13, 2021. To push the boundary of ex-

isting materials properties, modern artificial intelligence (AI) and

machine learning (ML) techniques are now laying the ground for

discovering novel materials for ultra-long-life batteries for cell

phones and electric vehicles, highly efficient solar panels,

room temperature superconductors, etc.3–9 One of the most

promising approaches for exploring the vast materials design

space is the deep learning (DL) based generative design para-

digm. In this approach, existing materials are fed to a neural

network based deep generative model, which learns the atomic

assembling rules to form stable crystal structures and uses these

rules to generate chemically valid hypothetical structures4,7,9 or

compositions.8 While these candidate materials can be gener-

ated quickly in millions, a fast and accurate materials property

THE BIGGER PICTURE Modern deep-learning-based generative models have made it possible to compu-

tationally design millions of hypothetical materials. However, fast and accurate materials property predic-

tion models are needed to conduct large-scale screening of these candidates for new materials discovery.

Graph neural networks (GNNs) have emerged as the most competitive models for materials property pre-

diction, with their performance and scalability, however, still being constrained by the over-smoothing

issue. We present DeeperGATGNN, a global attention-based GNN with differentiable group normalization

and residual connection to achieve not only state-of-the-art performance for five out of six datasets but

also high scalability. Our technique allows us to build very deep GNNs without significant performance

degradation as other GNNs do. Our models can be generally used to build scalable GNNs for any applica-

tion domain, especially where large deep learning models are needed.

Development/Pre-production:Data science output has been

rolled out/validated across multiple domains/problems
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prediction model is needed to screen the most promising ones

for further slow property characterization either by first principle

density functional theory (DFT) ormolecular dynamic (MD) calcu-

lations or via experiments. After all these, exotic materials in un-

charted design space may be found. In the overall pipeline, fast

and accurate prediction models are critically needed for diverse

materials properties, such as formation energy, band gap, sur-

face adsorption energy, ion and thermal conductivity, etc.

Indeed, ML models for materials properties have emerged as

one of the most promising approaches for materials discovery

due to their high prediction accuracy and speed compared

with the first-principles calculations.10 Both composition and

structure-based ML models can successfully predict materials

properties, whose performance, however, is strongly dependent

on theML algorithm selection, the features, and the available da-

tasets’ quality and amount. Among these two types of screening

models, the composition-basedMLmodels11,12 have the advan-

tages of speed and capability to screen large-scale hypothetical

compositions generated by generative DL models.8 However,

almost all materials properties are strongly dependent on the

materials structures, so the structure-basedmaterials prediction

models tend to have much higher prediction accuracy,13–15

which can be used to screen known materials structure reposi-

tories such as the ICSD2 or the Materials Project Database,16

or hypothetical crystal materials with structures created bymod-

ern generative DL models.9,17 Structural information of crystal

materials can be represented using several methods,18 including

structure graph, Coulomb matrix,19 Voronoi tessellation,10

diffraction fingerprint, or voxel grids.20However, due to the scar-

city of structure data and property labels, it remains an unsolved

problem to achieve highly accurate materials property predic-

tions from structures.

Currently, there are two major categories of ML approaches

for structure-based materials property prediction based on their

descriptors or features used: (1) the heuristic feature-based

models,21–23 of which the features are designed based on exist-

ing physicochemical knowledge; (2) learned feature-based

models, of which the descriptors are learned by DL algo-

rithms.13,14,24 While the heuristic feature-based ML models

have demonstrated some successes in a variety of applications,

such as formation energy prediction21 and ion conductivity

screening,25 large-scale benchmark studies have shown that

the representation learning based deep graph neural network

(GNN) models have achieved much better performance in mate-

rials property prediction, which highlights the importance of

developing more advanced DL models for materials property

prediction.1,26

Since 2018, a variety of GNNs have been proposed to improve

the prediction performance, such as SchNet,24 CGCNN,13

MEGNet,14 MPNN,27 iCGCNN,28 and GATGNN.29 Each of these

architectures has utilized the graph representation as input along

with slightly different additional information, convolution opera-

tors, and neural network architectures.13,14,24 However, a recent

large-scale benchmark study over five different datasets of vary-

ing sizes1 has shown that, while the performance of the existing

GNNmodels is in generalmuchbetter than thoseof non-GNNap-

proaches, the best four GNN models’ performances tend to be

saturated without significant difference between one another.

For example, for the bulk crystal formation energy prediction

problem, the mean absolute error (MAE) range is 0.046 eV/atom

Figure 1. An overview of the DeeperGATGNN architecture

An initial graph-encodedmaterial (on the left in blue) is used as input. Then several AGAT layers (with 64 neurons), followed by DGN are applied. A skip connection

is added from the output of the l-th AGAT layer to the output of the ðl + 1Þ-th AGAT layer (after applying DGN). This completes the deep node feature extraction

process. Next, a global attention layer is applied where the node feature vectors are concatenated with the composition encoded vector. After feeding to two fully

connected layers, this yields a context vector containing the weight relating to each node’s location. The context vector is multiplied with the node feature vectors

and then a global pooling of the node feature vectors is applied. The node features are then passed through one to two hidden layers before finally producing the

output property via another fully connected layer.
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(MPNN) and 0.05 eV/atom (SchNet). Also, there is no dominant

winner among these four GNN models. After close investigation,

we find that the optimized architectures of these models have

only one to nine graph convolution (GC) layers, which is in sharp

contrast to other fields of ML applications, such as computer

vision and natural language processing, etc. In computer vision,

ResNet30 and DenseNet31 with up to 1,000 layers have been

trained. In natural language modeling, the smallest GPT-3 model

(125M parameters) has 12 attention layers and the largest GPT-3

model (175B parameters) uses 96 attention layers.32Considering

that, in the materials property prediction problem, the number of

element types and their sophisticated interactions are bothmuch

more complex than the pixels and their neighboring patterns, we

believe very deep networks are needed to achieve significantly

better results than the current state-of-the-art (SOTA) results as

reported in the most recent benchmark study.1

Recently, Jha et al.33 applied the residual skip-connection idea

to vector input-based materials property prediction. Their experi-

ments showed that, when the dataset size is more than 15,000,

their individual residual networks architecture outperforms both

the plain multi-layer perceptron networks and the stacked

residual network. For composition datasets with only 234,299

samples, their 48-layer IRNet beat their 17-layer IRNet, which out-

performedall otherMLandplain neural networkmodels.However,

no studies have been shown on GNNs, which can better capture

how the structural features affect their properties. Another study

by Yang et al.34 applied a deep convolution network with residual

skip connections for crystal plasticity prediction with good perfor-

mance. However, their models are still limited to vector represen-

tations instead of graph representations. To our knowledge, there

is no study on whether deeper GNNs can significantly push the

frontier or SOTA performance in materials property prediction.

In this work, we propose DeeperGATGNN, a very deep graph

attention neural network model for large-scale materials property

prediction using differentiable group normalization (DGN) and

skip-connections. Our architecture allows training very deep in

terms of GC layers. Our model also has a useful characteristic—

no tedious and expensive hyperparameter tuning is needed,

only a sufficient number of GC layers needs to be set. We also

apply our scaling strategy (DGN and skip-connections) to

the other four GNNs and achieve significant performance

improvements on some datasets for most of the models. We call

these models DeeperCGCNN, DeeperMEGNet, DeeperMPNN,

andDeeperSchNet. Our contribution in this paper canbe summa-

rized as follows:

d We address the main challenge and bottleneck of GNN for

materials property prediction and propose a novel global

attention-based GNN architecture that uses an efficient

technique (DGN + skip-connections) for increasing the net-

works’ depth to overcome the barrier. The simplicity of our

model with almost hassle-free hyperparameter tuning and

high scalability makes it ideal for large-scale materials prop-

erty prediction.

d We evaluate our DeeperGATGNN model on six public

benchmark datasets and show that our model achieves

SOTA results on five out of six datasets with significant

performance improvements, with MAE errors reduction

up to 10% over previous SOTA results.

d Empirically, we show that our model is the most scalable

one among all existing GNN models for materials property

prediction despite having a very low number of training pa-

rameters compared with those of other models.

d We demonstrate that our deeper GNN enabling strategy

for materials property prediction can also be applied to

the other four GNNs to achieve improved performance

on several benchmark datasets.

RESULTS

Architecture description

DeeperGATGNN is based on our previously proposed

GATGNN29 model. In GATGNN, we developed a GNN that

uses two graph soft-attention variants to learn inorganic mole-

cules properties.35–37 The first type of soft-attention consists of

additive multi-head attention (four or eight) applied to the one-

hop neighbors of each atom. These attention layers are named

augmented graph attention (AGAT) layers because we augment

the node feature vectors with the features from their connecting

edge. These AGAT layers are only used to extract the locally

dependent features between neighboring atoms. Afterward,

upon extracting the local features, GATGNN then uses a unique

soft-attention at the end to transform neighborhood-dependent

information to a global context (concerning all other atoms in

the crystal). The local soft-attention ai;j between a node i and a

neighbor j can be represented as the following equation:

ai;j =

expðai;jÞ
P

k˛Ni
expðai;kÞ

: (Equation 1)

In Equation 1,Ni represents the neighborhood of node i and ai;j
is the parameterized weight coefficient between nodes i and j,

which represents the importance of node j to node i. The global

attention: gi, which is applied right before the global pooling, cal-

culates each node’s overall importance. It can be described as

the following equation:

gi =

ðxi k EÞ,W
P

xc ˛Xðxc k EÞ,W
: (Equation 2)

In Equation 2, x˛RF represents a learned embedding, E is a

compositional vector of the crystal, W˛R
13ðF + jEjÞ is a

Table 1. Details of the six benchmark datasets used in this work

Dataset Unit Source

No. of

elements

No. of

samples

Bulk Materials

Formation Energy

eV/atom Materials

Project16
87 36,839

Alloy Surface

Adsorption Energy

eV CatHub
38

42 37,334

Pt-cluster Total

Energy

eV the

literature39
1 19,801

2D Materials

Work Function

eV C2DB40 60 3,814

MOF Band Gap eV QMOF26 78 18,321

Bulk Materials

Band Gap

eV Materials

Project16
87 36,837
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parameterized matrix, and xc is the learned embedding of any

atom c within the crystal. By using the combination of three to

five of these local soft-attentions and one global soft-attention,

GATGNN was able to match SOTA of inorganic materials prop-

erties prediction for most of the properties (except formation en-

ergy) at the time and also provide interpretable results in terms of

each atom’s contribution. Nevertheless, the over-smoothing

issue—a general challenge that prevents using more than a

few layers in GNNs—also affects GATGNN. GATGNN model’s

performance begins to considerably decrease by adding eight

or more GC layers. With the expectation that a deeper model

should be able to extract even more of these inter-atomic-

dependent features, we aim to overcome this over-smoothing

limitation so that our model can more effectively extract the

physics-dependent features of crystals. So, we devised

DeeperGATGNN (later we show that it can go very deep in terms

of GC layers), which uses additive skip-connections between

these attention layers that extract the local features and further

improve the learning by including DGN layers.

The overall DeeperGATGNN architecture is shown in Figure 1.

It consists of several AGAT layers, followed by DGN operators

and skip connections between each of these layers, which are

followed by a global attention layer and a global pooling layer.

Finally, a few fully connected hidden layers are added before

one fully connected layer to produce the predicted output.

Dataset description

We evaluate our model’s performance and other baselines us-

ing six datasets, including five benchmark datasets used in a

previous evaluation study.1 The first five datasets are all for for-

mation/surface energy predictions of nanocluster materials (Pt-

cluster), alloy surface, bulk materials, 2D materials, and MOF

materials. In addition, we include a band gap dataset for the

same bulk materials set. The datasets’ details are shown in Ta-

ble 1. Total samples and total elements range from 3,814 to

37,334 and 1 to 87, respectively, reflecting the datasets’ diver-

sity and the challenge in predicting corresponding materials

properties.

Model comparison

To fairly and objectively evaluate and compare our model’s per-

formance with other SOTA models, it is critical to ensure all

models are trained on the same datasets with appropriate

training and optimal hyperparameters and using the same

cross-validation method. An excellent benchmark study by

Fung et al.1 implemented seven different prediction models

(including four GNN models) and a dummy baseline model in

the same code base and evaluated their performance on the

same set of five datasets using large-scale computationally

expensive hyperparameter tuning (limited to 200 epochs due

to the computational burden) to identify eight optimal parame-

ters for all models on different datasets. To compare, we re-im-

plemented our model in their code framework and use a single

parameter setting (with 10, 15, 20, 25, and 30 GC layers) for all

datasets (see Note S1). All the models are trained with 2,500

epochs. The results are shown in Table 2, in which the results

for SchNet, MPNN, CGCNN, and MEGNet are all from the previ-

ous benchmark study.1

We found from the benchmark study1 that, for different data-

sets, there are different winner models with different hyperpara-

meter settings except that MEGNet does not win on any of the

six datasets. Our previous GATGNN achieved better results on

the bulk crystal formation energy prediction problem than the

other four models. However, our DeeperGATGNN with 20 GC

layers beat all the previous best results. We further tried 25

and 30 GC layers, which led to further improvements for the

2D Materials dataset and the band gap problem. The last row

of Table 2 summarizes the performance improvement percent-

ages ranging from 5.34% (for band gap prediction) to a signifi-

cant 34.97% (for bulk crystal formation energy prediction), all

achieved with a single hyperparameter setting (except GC

layers) across six different datasets. Compared with our

Table 2. Five-fold cross-validation performance comparison of DeeperGATGNN (with 10, 15, 20, 25, and 30 GC layers) versus other

SOTA GNN models for different materials property prediction problems

ML models GC layers

Bulk crystals

(Eform) Alloy surfaces MOFs 2D materials Pt clusters

Band gap

(bulk)

SchNet misc. 0.05 0.063 0.228a 0.214 0.151a 0.2817

MPNN misc. 0.046 0.058a 0.245 0.204a 0.182 0.2649

CGCNN misc. 0.049 0.060 0.233 0.208 0.205 0.2598a

MEGNet misc. 0.048 0.069 0.253 0.224 0.180 0.2659

GATGNN 5 0.0454a 0.0806 0.2422 0.2075 0.2825 0.2734

DeeperGATGNN 10 0.0302 0.0502 0.2238 0.1916 0.1298 0.2624

DeeperGATGNN 15 0.0296 0.0416 0.2178 0.2139 0.1363 0.2559

DeeperGATGNN 20 0.0297 0.0409 0.2158 0.1775 0.1321 0.2550

DeeperGATGNN 25 0.0306 0.0411 0.2169 0.1718 0.1413 0.2457

DeeperGATGNN 30 0.0304 0.0427 0.2178 0.1730 0.1522 0.2459

% of improvements

over previous best

34.97 29.55 5.34 15.76 14.03 5.42

% of improvements

over GATGNN

34.97 49.32 10.07 17.16 54.04 10.13

aThe previous SOTA results.
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previous GATGNN model, by addressing the over-smoothing

issue using DGN and skip connections, our DeeperGATGNN

models achieve from 10.07% to 54.04% reduction in the MAE

prediction errors across the six materials prediction problems.

Next, we investigated if the number of epochs had made the

difference in performance. So, we plotted the training/validation

errors over the training process for all the six GNNmodels; two of

them are shown in Figure 2 and others are shown in Figure S2.

We noticed that, with the current hyperparameter setting (espe-

cially the learning rate scheduling), almost all models stagnate at

around 500 rather than the 200 epochs that were used in the pre-

vious benchmark study.1 The new results of all the models with

500 epochs and our model’s best results are summarized in

Table 3.

We found that all models’ optimal performances have been

significantly improved by increasing the training epochs to 500

(see Note S3 for more details). However, our DeeperGATGNN

model achieves the best results over five out of six datasets,

with performance improvements from 0.05% to 10.29%. Since

training such large-scale GNNs is very computationally intensive

(somemodels take 2–7 days to train), finding optimal hyperpara-

meters with large epochs is infeasible. In this case, our

DeeperGATGNN’s easy hyperparameter setting is a very attrac-

tive feature combined with its outstanding SOTA performance.

We further checked whether increasing the number of GC

layers can improve existing GNN models’ performance. We

found that it does not help (see Figure 7). Increasing the GC

layers moderately deteriorates SchNet’s and GATGNN’s perfor-

mance and also of CGCNN’s and MEGNet’s performance to a

lower degree.

As most existing message-passing-based GNNmodels suffer

from the over-smoothing issue, we checked if DGN and skip

connections can help improve other GNN models so that they

can also benefit from deeper GC layers. To verify this, we

increased the GC layers to 10 for all the models as evaluated

in the benchmark study, replaced their original weight normaliza-

tion method with DGN and added the skip connections, and

trained the models using their optimal hyperparameters except

that we used 500 epochs. Then we calculated the performance

changes after these modifications. The results are shown in Fig-

ure 3. For the SchNet model, the DeeperSchNet achieves a 19%

reduction in MAE error for the Bulk Materials Formation Energy

dataset, while getting worse results for all other datasets. For

the Pt clusters, its performance dropped by 29.5%. For the

MPNNmodel, all enhancedmodels achieve much worse results,

ranging from�14.2% to�47.7%, demonstrating its lack of scal-

ability. For CGCNN, surprisingly for all datasets except the Pt

clusters, its results became worse. However, for the Pt clusters,

the DeeperCGCNN reduces the MAE error of CGCNN by almost

43% from 0.30 to 0.17 eV. MEGNet and GATGNN are the only

two models that get performance boosting from adding DGN

and skip connections.

To further explain why the existing GNN models benefit little

from the DGN and skip-connections in most cases, we plotted

the number of parameters for these models and their deeper

versions as shown in Figure 4. We found that, for MPNN and

DeeperMPNN, the parameter number increases very rapidly,

reaching more than 8 million when the number of GC layers

reaches 8. With limited training samples, it causes some

serious problems. The second most parameter-rich models

are MEGNet and DeeperMEGNet, both have almost 6 million

parameters when the number of GC layers approximate 30,

which leads to their collapsed performance (see Figure 7).

The CGCNN and SchNet models along with their variants

are more parameter parsimonious, but adding more layers

does not improve the results except for some special data-

sets. Our GATGNN and DeeperGATGNN are the most parsi-

monious models. Even with 50 GC layers, the number of

parameters is under 1.8 million compared with MEGNet’s

and DeeperMEGNet’s more than 9 million parameters, which

Figure 2. Training/validation error plots of MEGNet and DeeperGATGNN

(A–B) Training/validation errors of (A) MEGNet and (B) DeeperGATGNN on the 2D Materials dataset. All models become stagnant after 500 epochs. So our

DeeperGATGNN models trained with 2,500 epochs should have similar performance when trained with 500 epochs.
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may partially explain why DeeperGATGNN can improve the

base model significantly.

We also plotted the scatterplots of the predicted surface

energies versus the true values for the Alloy Surface dataset

(see Figure S1), over which the DeeperGATGNN achieved the

best performance, with an MAE score of 0.041 eV. We can see

that the plot in Figure S1F has the smallest deviation from the

diagonal lines with a more narrow distribution of the points.

Parameter study

Weconducteddifferentparameter studiesofourDeeperGATGNN

model using 10GC layers and 500 epochs. The Pt-cluster dataset

is used here for this purpose. We calculated the results using

5-fold cross-validation as is done in the previous subsection.

First, we experimented with how the dropout rate affects the

prediction performance. The best result we achieved on this da-

taset in the SOTAperformance study is 0.1298 eV (MAE) using 10

GC layers and no dropout. Several experiments with varying

dropout rates are run and the results are shown in Figure 5A. It

is observed that increasing the dropout rate degrades our

model’s performance. Even with a large number of GC layers,

our model is very scalable and does not need any dropout.

Our model with 35 GC layers achieves ever better results

without dropout (see Figure 5D). Also, in the next subsection,

we show that, except for our model, all the other models

perform very poorly with a certain number of GC layers, but

our model performs fine even with 30 GC layers, all without using

any dropout.

Second, we evaluated how changing the learning rate affects

our model performance.We can see from Figure 5B that the best

result is achieved with the learning rate of 0.005, which we use as

the default learning rate for our architecture. We would like to

mention that we used a learning rate scheduler library for each

of the experiments as done in the benchmark study.1

Third, we ran experiments with different batch sizes for our

model. We increased the batch size from 100 (default batch

size for our model) up to 500 with intervals of 100. It is observed

from Figure 5C that a larger batch size usually leads to worse

performance than smaller ones41,42 and our model performs

best with the default batch size.

Next, we investigated the prediction performance by changing

our model’s activation function. By default, our DeeperGATGNN

model uses the Softplus activation function. We compared the

Softplus activation function result (MAE: 0.1298 eV) with those

of ReLU and Leaky-ReLU activation functions. The MAE values

obtained for ReLU and Leaky-ReLU were 0.1514 and 0.1511

eV, respectively. We can see that the Softplus activation function

beats the other activation functions by a large margin.

We then checked how our DeeperGATGNN model’s perfor-

mance might be improved by increasing the number of GC

layers while keeping other hyperparameters as defaults (no

dropout, batch size 100, learning rate 0.005, and Softplus acti-

vation function). Five-fold cross-validation was used for perfor-

mance evaluation in this experiment. The GC layers’ impact is

shown in Figure 5D. We found that, when the number of GC

layers is less than 30, the best result is achieved using 10 GC

layers (MAE: 0.1298 eV). Our model’s performance starts to

degrade with increasing number of GC layers until it reaches

35 GC layers when it achieves a new SOTA result (MAE:

0.1280 eV) for this dataset. We further examined up to 50 GC

layers and found no better result than the result by

DeeperGATGNN with 35 GC layers. One important point to

note is that, even with 50 GC layers, our model’s performance

has not degraded too much: the results with 30 and 50 GC

layers are very close. So, if the SOTA result can be achieved

by our model with 35 GC layers, there is a possibility that we

might achieve even better results if we keep going deeper in

terms of GC layers (>50 GC layers) on this dataset with more

training samples. But, due to computational burden, we did

not go any deeper.

We also examined ourmodel with different cutoff radius values

(on all the datasets) where we got the best results for the default

8 Å radius. The results are shown in Table S1.

Finally, we conducted experiments to evaluate the effect of

changing the training set size. DL architectures’ success largely

depends on the amount of training data and our model is no

different. Figure 6 shows that our model’s accuracy continues

to improve with increasing number of training set samples. We

believe that, if more samples are added to this dataset, our

model can achieve even better performance than the current

SOTA result.

Scalability comparison

We investigated our DeeperGATGNN’s scalability and that of

other models (both shallow and deeper versions). We used the

Bulk Materials Formation Energy dataset for this purpose. All

the experiments are again conducted using 500 epochs and

5-fold cross-validation. We trained each of the models for 4, 6,

8, 10, 15, 20, 25, and 30GC layers and examined their scalability.

We limited our experiments to 30 GC layers because we showed

Table 3. DeeperGATGNN’s performance comparison with corrected benchmark results of other models (GCL denotes the number of

GC layers of the corresponding optimal models)

ML models Bulk crystals GCL Alloy surfaces GCL MOFs GCL 2D materials GCL Pt clusters GCL

SchNet 0.0556 1 0.0470 5 0.2312 9 0.2240 4 0.1726 9

MPNN 0.0349 5 0.0488 5 0.2070 4 0.1893 2 0.1384a 3

CGCNN 0.0349 7 0.0424a 8 0.2141 6 0.2001 6 0.3024 1

MEGNet 0.0329a 5 0.0469 8 0.1968a 7 0.1719a 4 0.2877 8

GATGNN 0.0475 5 0.0727 5 0.2265 5 0.1869 5 0.1748 5

Ours 0.0296 15 0.0409 20 0.2158 20 0.1718 25 0.1298 10

% improve 10.29 3.61 �9.66 0.05 6.21

aThe best results of the other models.
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that 30 GC layers are enough to conclude that our model is the

most scalable one among all. We excluded MPNN from

this experiment due to its exceptionally large parameter number:

it has approximately 4.39, 10.9, and 32.6 million trainable

parameters for 4, 10, and 30 GC layers, respectively, which are

much higher than any other model on average. So the memory

it costs and the time it takes to finish training are too huge to

be conducted for this experiment.

First, we examined how the change of parameter number

affects the prediction performance with increasing numbers of

GC layers for existing graph networks as shown in Figure 7.

We can spot that all the existing GNNs deteriorate after adding

a certain number of GC layers, i.e., the MAE becomes too large

so that it can no longer be used for accurate property prediction.

For example, SchNet deteriorates with 20 or more GC layers.

The MAE value of SchNet increases from 0.0516 eV/atom

(15 GC layers) to 0.1893 eV/atom (20 GC layers) where the num-

ber of parameters increases from 1,102,401 (15 GC layers) to

1,455,901 (20 GC layers).

CGCNN becomes unscalable with 30 GC layers. The MAE

value and the number of trainable parameters increase

from 0.0351 eV/atom and 1,337,101 for 25 GC layers to

2.2776 eV/atom and 1,590,101, respectively for 30 GC layers.

The same deterioration occurs for MEGNet as well, which

also deteriorates with 30 GC layers, and the MAE value and

the number of parameters increase from 0.0302 eV/atom and

4,857,201 for 25 GC layers to 0.2237 eV/atom and 5,819,201,

respectively, for 30 GC layers. But the change of MAE value

is not as drastic as that of CGCNN, although MEGNet has a

much higher number of parameters than that of CGCNN. For

better visualization, we limit the y axis of Figure 7 to 1.25 eV/

atom, which is why the MAE value plot gets trimmed for

CGCNN for 30 GC layers.

Our earlier GATGNN model also deteriorates with 30 GC

layers. It also has a drastic performance change from 25 to 30

GC layers, such aswith CGCNN. TheMAE and the number of pa-

rameters increase from 0.0575 eV/atom and 863,370 for 25 GC

layers to 2.7937 eV/atom and 1,030,770, respectively, for 30

GC layers. We can see that both GATGNN and CGCNN have a

much smaller number of trainable parameters compared with

that of MEGNet and they are also very similar in terms of

scalability.

As we saw that none of the existing GNNs can scale up to 30 or

more GC layers, next we examined these models’ deeper ver-

sions. DeeperSchNet again deteriorates with 20 GC layers, which

means that the modification did not improve its scalability. The

MAE value and the number of parameters change from 0.0421

eV/atom and 1,144,401 (for 15 GC layers) to 0.9656 eV/atom

and 1,511,901, respectively (for 20GC layers). Although the result

for DeeperSchNet with 15GC layers is better than that of the orig-

inal SchNet, surprisingly the change of MAE for 20 GC layers is

much more drastic in DeeperSchNet than that of SchNet.

Both DeeperCGCNN and DeeperMEGNet perform worse than

the original CGCNN and MEGNet in terms of scalability.

DeeperCGCNN deteriorates with 20 GC layers, which is quicker

than the original CGCNN, which deteriorates with 30 GC layers.

The MAE and the number of parameters increase from 0.0425

eV/atom and 873,101 (for 15 GC layers) to 0.7783 eV/atom and

1,140,101, respectively (for 20 GC layers). DeeperMEGNet also

cannot scale up to 20 GC layers. The MAE and the number of

parameters increase from 0.03 eV/atom and 3,185,201 (for 15

GC layers) to 0.9651 eV/atom and 4,231,201, respectively (for

20 GC layers). We did not do experiments with DeeperMEGNet

for 25 and 30 GC layers because it already became unscalable

and the number of parameters is already huge for just 20 GC

layers. We also want to highlight that, for the CGCNN model,

its deeper version DeeperCGCNN can only reduce the MAE for

4 GC layers. Instead for the MEGNet model, our modification

implemented in DeeperMEGNet improves its prediction

performance for almost all 4, 6, 8, 10, and 15 GC layers before

it deteriorates with 20 GC layers.

Now we discuss our DeeperGATGNN model’s scalability. We

can see that our model achieves the SOTA result with 15 GC

layers on this dataset (see Table 2). Our model is the only model

that did not deteriorates with even 30 GC layers. Also, the num-

ber of trainable parameters of our model is the smallest among

other GNNs (except GATGNN) for each specific number of GC

layers. The MAE and the number of parameters of our model

with 30 GC layers are 0.0304 eV/atom and 1,089,906, respec-

tively. One of the key points to note here is that, although our

model can scale up to 30 or more GC layers, the performance

did not improve after 15 GC layers (but also did not get worse).

A similar observation is also found in the experiments over the

Pt-cluster dataset in the previous subsection: our model’s per-

formance did not improve after 10 GC layers until reaching 35

GC layers. So as our model shows its capability to scale to 30

or more GC layers, there is a strong possibility that our model

might achieve an even better result on this dataset if we go

deeper with more training samples. Overall, our experiments

with 30 GC layers have shown that our DeeperGATGNN model

is the most scalable model of all. We would like to mention that

we also tried using a little dropout with 20, 25, and 30 GC layers

with ourmodel but it did not improve our results. Since ourmodel

performance does not become worse with increasing number of

GC layers, it tends to have strong robustness against overfitting.

Ablation study

We perform ablation experiments on DeeperGATGNN to

understand the contribution of each component in the prediction
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Figure 3. Performance change of all GNN models after modification

Performance change of each GNN model after implementing DGN and skip-

connection and then adding more GC layers. GATGNN shows the highest per-

formance improvement after the modification (DeeperGATGNN).
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accuracy. We choose the Bulk Crystal Formation Energy and the

Alloy Surface Adsorption Energy datasets for this purpose. The

results are presented in Table 4. Overall, skip connection has a

larger effect on the results than DGN (13.42% and 14.13%

improvement compared with 24.30% and 31.48% improvement

for formation energy and adsorption energy prediction, respec-

tively). But using both DGN and skip connection with the shallow

Figure 4. Parameter numbers for GNN

models with increasing numbers of GC layers

We limit the y axis to 8 million for better visualization.

GATGNN and its improved and deeper version

DeeperGATGNN have a much shorter number of

parameters compared with other GNN models and

their deeper versions.

A B

C D

Figure 5. Parameter study of DeeperGATGNN

(A–D) (A) MAE versus dropout rate, (B) MAE versus learning rate, (C) MAE versus batch size (using 10 graph convolution layers), and (D) MAE versus graph

convolution layers. All the experiments are done using 500 epochs and 5-fold cross-validation on the Pt-cluster dataset.

GATGNN, we get much better accuracy

than using individual components. The ac-

curacy on the bulk crystal dataset and the

alloy surface dataset increased up to

26.67% and 37.12%, respectively. Finally,

we increased the number of GC layers

along with the previous modification. The

prediction accuracy increases up to

34.97% and 49.32% for the formation en-

ergy and adsorption energy prediction

problems, respectively. The over-smoothing problem that re-

sulted from going deeper in terms of GC layers is now greatly

alleviated by the use of DGN and skip connection. Moreover,

the accuracy is much improved when the architecture is deep,

which demonstrates the necessity to use more GC layers (as it

can better capture embeddings and make effective use of the

higher-order neighbors’ attributes).
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Physical insights

We examined whether our DeeperGATGNN model can bring

certain physical insights into the materials space. We used the

t-distributed stochastic neighbor embedding (t-SNE)43 for this

purpose, which is a widely used non-linear technique for visual-

izing and interpreting high-dimensional data. The objective of

t-SNE is to map higher-dimensional data points to a very low-

dimensional one (usually 2D or 3D) so that the pairwise distances

between data points are well preserved after mapping.43,44 So,

closer points in the higher dimension tend to remain close after

mapping to the lower dimension.

Here, we used the Alloy Surface Adsorption Energy dataset for

visualizing the distribution of the learnedmaterials latent represen-

tation learned by our model, as well as GATGNN, CGCNN, and

MEGNet models. We first trained all the models and then fed the

whole dataset to themodels and fetched the first layer’s output af-

ter the final GC layer to generate the t-SNE plots, as shown in Fig-

ure 8. Different colors represent different alloy surface adsorption

energy levels for the samples represented in the latent space. We
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Figure 7. Scalability study of SOTA GNNs

Scalability of GNN models in terms of parameter

number as regard to the network depth tested on the

Bulk Materials Formation Energy dataset. Different

colors represent different numbers of GC layers in the

networks. All the models except DeeperGATGNN fail

to scale up to at least 30 GC layers.

can see from Figure 8 that different groups

are formed after the two-dimensional map-

ping andmaterials (points) in the same clus-

ter have a very high probability of having

similar composition and/or structures as

the clustering is based on the latent vectors

mapped from the crystal structures. Each

model might generate different latent

spaces, but we can still get a good idea

about their prediction pattern by analyzing

these clusters. We found that many local

areas (clusters) in all the images have been colored with similar

colors implying that these compositionally or structurally similar

materials tend to have similar surface energies. Compared with

the distributions of CGCNN,MEGNet, and GATGNN, the high-en-

ergy alloys are more clearly separated from the lower ones.

However, it is important to mention that the cluster sizes and

the distance between them do not bear much significance in a

t-SNE plot.45

DISCUSSION

GNNs are increasingly used for solving challenging problems in

materials and physics.28,46–48Representations in GNNs are inher-

ently rotation and translation invariant,making it ideal tomodel the

atomic relationships. However, we find that there are several key

issues in designing and training scalable GNN models.

The first pitfall is that GNNmodels can easily go under-trained

due to the high computational training complexity (some models

have several million parameters). The situation becomes even
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worse when one has to do large-scale hyperparameter tuning.

For example, in the benchmark study of GNNs,1 the hyperpara-

meters include three encoding dimensions, GC layer number,

fully connected layer number, pooling methods, the learning

rate, and the batch size. The study found that existing GNNs

tend to achieve optimal performance for different datasets using

different hyperparameter sets. This expensive hyperparameter

search process forced the authors to use only 200 epochs for

evaluation. However, our analysis in Figure 2 shows that their

networks are all under-trained, which will not stagnate until 500

epochs. This has led to their severe under-estimation of the

GNN performances for all the results they reported. For example,

for the Alloy Surface dataset, CGCNN’s MAE with 250 epochs of

training is 0.06 eV, which is 40% larger than the result (0.042 eV)

when trained with 500 epochs. Since running more epochs with

huge hyperparameter space is infeasible, it is more desirable

to use GNN models that can achieve more stable results

with default or minor parameter tuning. For example, our

DeeperGATGNN models achieved SOTA results across five da-

tasets using the same architecture except with a varying number

of GC layers.

The second pitfall for GNNs is that they usually suffer from the

over-smoothing issue, which leads to their performance degrada-

tion when too many layers are used.49 This is clearly shown in our

scalability study and Figure 7. All existing GNN models, except

our DeeperGATGNN, have significant performance degradation

when 30 GC layers are used. It is interesting to find that, while

DGN and skip connections have effectively helped our

DeeperGATGNN to address this issue, the same strategy does

not work equally well for SchNet, CGCNN, and MEGNet, even

though it does help to improve their performance too.

Another limitation to our model performance is the scarcity

of data or the information input to our models. For example,

in the 2D Materials dataset, which has only 3,814 samples,

MEGNet achieved the best result with 4 GC layers. Our

DeeperGATGNN with 25 GC layers achieved the SOTA result

on this dataset. In this case, it seems that to further improve

the performance, additional information, such as the angular

information of the materials structures, is needed. Also other

methods, such as pre-activated skip connections50 or

DenseNet31 as a skip connection method, can also be applied.

In conclusion, we have shown in this work that existing GNNs

for materials property prediction have so far all suffered from the

over-smoothing issue and cannot scale up to very deep net-

works without significant performance degradation. Our pro-

posed DeeperGATGNN achieved SOTA prediction results with

up to 10% performance improvement over the previous best re-

sults for five out of the six diverse benchmark datasets. This is all

achieved with a single neural architecture and hyperparameter

(except for the GC layer). This makes it much simpler in practical

materials property prediction without the need for expensive hy-

perparameter tuning. Our model can also scale up to more than

30GC layers, while all other models show dramatically degraded

prediction performance. Our deeper GNN enabling strategies,

such as skip connections and DGN, have shown to be able to

also improve other GNNs’ performances (e.g., MEGNet,

SchNet, and CGCNN), but only on special datasets while their

scalability remains an issue.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Jianjun Hu (jianjunh@cse.sc.edu).

Materials availability

This study did not generate unique materials.

Data and code availability

The data that support the findings of this study are openly downloadable as

stated in Fung et al.1 The Bulk Materials Band Gap dataset is downloaded

from Materials Project database at https://www.materialsproject.org. The

source code of our work is freely accessible at http://github.com/

usccolumbia/deeperGATGNN. The DOI for our code is https://doi.org/10.

5281/zenodo.6336185.

DGN

One of the major issues in training a deep GNN architecture is the over-

smoothing problem, in which the representation vectors of all nodes of a graph

become indistinguishable as the number of GC layers increases.49,51–53 This

problem restricts GNNs to a very few layers for better performance.35,54,55

For example, both GAT35 and GCN54 perform best when the number of layers

is limited to only two and thus they fail to utilize higher-order neighbors’ fea-

tures.56 Many approaches have already been adopted to improve upon the

problem.57–61 Traditional normalization techniques used to reduce this prob-

lem include batch normalization62 or measures based on node pair distances,

such as pair normalization.60 But these techniques do not take account of the

global graph structure that results in sub-optimal performance when the num-

ber of GC layers of the GNN is large.61 Recently, Zhou et al.61 addressed this

issue by proposing the DGN. The main procedure of DGN is to first use a clus-

ter assignment matrix to cluster the nodes of a graph to different clusters and

then normalize each cluster separately. This will make the nodes’ representa-

tions within the same community/class to be similar while those of different

classes to be separated, leading to effective control of the over-smoothing

issue. More specifically, the DGN works as follows:

Table 4. Results (MAE) of ablation experiments of DeeperGATGNN to perceive the impact of each component

Architecture

Bulk materials

(Eform) GCL % improve

Alloy surfaces

(Adsorption energy) GCL % improve

GATGNN 0.04544 5 – 0.08063 5 –

GATGNN + DGN 0.03934 5 13.42 0.06924 5 14.13

GATGNN + SC 0.0344 5 24.30 0.05525 5 31.48

GATGNN + DGN + SC (shallow) 0.03332 5 26.67 0.0507 5 37.12

GATGNN + DGN + SC (deep) =

DeeperGATGNN

0.02955 15 34.97 0.04086 20 49.32

The experiments are conducted on the Bulk Materials Formation Energy and Alloy Surface Adsorption Energy datasets. GCL and SC denotes the

numxber of GC layers and skip connection, respectively.
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Let, n be the number of nodes, G be the number of clusters specified. Let,

HðlÞ
˛R

n3dðlÞ

be the embedding matrix derived after the l-th layer of a GNN

where dðlÞ is the embedding dimension of layer l. Then the cluster assignment

matrix SðlÞ can be calculated using the following equation where UðlÞ
˛ R

dðlÞ
3G

is a trainable parameter:

SðlÞ
= softmax

�

HðlÞUðlÞ
�

: (Equation 3)

The cluster assignment matrix SðlÞ
˛R

n3G stores the probabilities of each

node of the graph being assigned to each cluster. It then places the nodes

into different groups using the following equation:

H
ðlÞ
i = SðlÞ½:; i�+HðlÞ

; (Equation 4)

where H
ðlÞ
i denotes the embedding matrix for cluster i and + is the row-wise

multiplication operator in Equation 4. Each cluster is then normalized sepa-

rately using the following equation:

~H
ðlÞ

i = gi

 

H
ðlÞ
i � mi

si

!

+ bi; (Equation 5)

where mi and si mean themean and standard deviation of each group i in Equa-

tion 5, and gi and bi denote two trainable parameters.

Finally, the final embedding matrix can be calculated using the following

equation:

~H
ðlÞ

= HðlÞ
+ l
X

G

i = 1

~H
ðlÞ

i ˛ R
n3dðlÞ

; (Equation 6)

where l denotes a balancing factor and ~H
ðlÞ

= ½ ~H
ðlÞ

1 ;

~H
ðlÞ

2 ;.;

~H
ðlÞ

G � denotes the

final embedding matrix in Equation 6.

The two main reasons why DGN is so successful in preventing the over-

smoothing issue are: (1) that each group is normalized separately using

Equation 5, so that each groupwill have a different mean and standard deviation

Figure 8. Alloy surface adsorption energy distribution in the latent space

(A–D) t-SNE plot of the representations after the final GC layer for (A) CGCNN, (B) MEGNet, (C) GATGNN, and (D) DeeperGATGNN trained on the Alloy Surface

Adsorption Energy dataset. Different colors represent different adsorption energy levels in the latent space. Each point indicates a distinct alloy material.

ll
OPEN ACCESSArticle

Patterns 3, 100491, May 13, 2022 11



and thus the probability of the representation vectors of nodesof different groups

beingsimilarwilldecreaseand (2) that inputembedding ispreserved inEquation6

to prevent over-normalization.

Skip connections for enabling scalable GNNs

One of the major enabling techniques in DL for training very deep networks is

the residual skip connection, which was first introduced in the ResNet frame-

work.30 It has allowed training networks with even more than 1,200 layers.63

The key idea of residual skip connection is to learn to achieve identity map-

ping where the input x is added to the output of stacked layers FðxÞ. So, we

have HðxÞ = FðxÞ+ x. Instead of learning the underlying mapping HðxÞ func-

tion, the stacked layers are used to learn the residual mapping FðxÞ =

HðxÞ � x. The major benefit is that, if the identity mapping is already optimal

and the stacked layers cannot learn more salient information, the training

procedure can push the residual mapping to zero to avoid the degradation

problem. Residual connections have been introduced into GNNs for training

deeper networks.50,64,65 In this work, we implement the layer-wise residual

skip connections in the GNN models’ deeper versions, which is similar to

that of IRNet.33 The difference in the skip connection method between

ResNet and our implementation is shown in Figure S3.

Evaluation criterion

To evaluate the models’ performances, we use MAE, which is a standard eval-

uation criterion for materials property prediction problems that is also used as

the primary evaluation criterion in the benchmark study of Fung et al.1 We use

both 5-fold cross-validation and hold-out tests for performance evaluations

depending on specific experiments. The baseline models’ parameters are

specified in the supplemental information of Fung et al.1 Our

DeeperGATGNN model’s hyperparameters are also provided in Note S2.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2022.100491.
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