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THE BIGGER PICTURE Modern deep-learning-based generative models have made it possible to compu-
tationally design millions of hypothetical materials. However, fast and accurate materials property predic-
tion models are needed to conduct large-scale screening of these candidates for new materials discovery.
Graph neural networks (GNNs) have emerged as the most competitive models for materials property pre-
diction, with their performance and scalability, however, still being constrained by the over-smoothing
issue. We present DeeperGATGNN, a global attention-based GNN with differentiable group normalization
and residual connection to achieve not only state-of-the-art performance for five out of six datasets but
also high scalability. Our technique allows us to build very deep GNNs without significant performance
degradation as other GNNs do. Our models can be generally used to build scalable GNNs for any applica-
tion domain, especially where large deep learning models are needed.

00 : 00

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems

SUMMARY

Machine-learning-based materials property prediction models have emerged as a promising approach for
new materials discovery, among which the graph neural networks (GNNs) have shown the best performance
due to their capability to learn high-level features from crystal structures. However, existing GNN models suf-
fer from their lack of scalability, high hyperparameter tuning complexity, and constrained performance due to
over-smoothing. We propose a scalable global graph attention neural network model DeeperGATGNN with
differentiable group normalization (DGN) and skip connections for high-performance materials property pre-
diction. Our systematic benchmark studies show that our model achieves the state-of-the-art prediction re-
sults on five out of six datasets, outperforming five existing GNN models by up to 10%. Our model is also the
most scalable one in terms of graph convolution layers, which allows us to train very deep networks (e.g., >30
layers) without significant performance degradation. Our implementation is available at https://github.com/
usccolumbia/deeperGATGNN.

INTRODUCTION

Out of the almost infinite chemical design space, the largest inor-
ganic crystal materials database (ICSD)? contains only 250,000
crystal materials up to July 13, 2021. To push the boundary of ex-
isting materials properties, modern artificial intelligence (Al) and
machine learning (ML) techniques are now laying the ground for
discovering novel materials for ultra-long-life batteries for cell
phones and electric vehicles, highly efficient solar panels,
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room temperature superconductors, etc.>® One of the most
promising approaches for exploring the vast materials design
space is the deep learning (DL) based generative design para-
digm. In this approach, existing materials are fed to a neural
network based deep generative model, which learns the atomic
assembling rules to form stable crystal structures and uses these
rules to generate chemically valid hypothetical structures™’*° or
compositions.? While these candidate materials can be gener-
ated quickly in millions, a fast and accurate materials property
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Figure 1. An overview of the DeeperGATGNN architecture

An initial graph-encoded material (on the left in blue) is used as input. Then several AGAT layers (with 64 neurons), followed by DGN are applied. A skip connection
is added from the output of the /-th AGAT layer to the output of the (/ + 1)-th AGAT layer (after applying DGN). This completes the deep node feature extraction
process. Next, a global attention layer is applied where the node feature vectors are concatenated with the composition encoded vector. After feeding to two fully
connected layers, this yields a context vector containing the weight relating to each node’s location. The context vector is multiplied with the node feature vectors
and then a global pooling of the node feature vectors is applied. The node features are then passed through one to two hidden layers before finally producing the

output property via another fully connected layer.

prediction model is needed to screen the most promising ones
for further slow property characterization either by first principle
density functional theory (DFT) or molecular dynamic (MD) calcu-
lations or via experiments. After all these, exotic materials in un-
charted design space may be found. In the overall pipeline, fast
and accurate prediction models are critically needed for diverse
materials properties, such as formation energy, band gap, sur-
face adsorption energy, ion and thermal conductivity, etc.
Indeed, ML models for materials properties have emerged as
one of the most promising approaches for materials discovery
due to their high prediction accuracy and speed compared
with the first-principles calculations.'® Both composition and
structure-based ML models can successfully predict materials
properties, whose performance, however, is strongly dependent
on the ML algorithm selection, the features, and the available da-
tasets’ quality and amount. Among these two types of screening
models, the composition-based ML models'''? have the advan-
tages of speed and capability to screen large-scale hypothetical
compositions generated by generative DL models.® However,
almost all materials properties are strongly dependent on the
materials structures, so the structure-based materials prediction
models tend to have much higher prediction accuracy,'®'®
which can be used to screen known materials structure reposi-
tories such as the ICSD? or the Materials Project Database,'®
or hypothetical crystal materials with structures created by mod-
ern generative DL models.”"” Structural information of crystal
materials can be represented using several methods, '® including
structure graph, Coulomb matrix,’® Voronoi tessellation,'°
diffraction fingerprint, or voxel grids.?® However, due to the scar-
city of structure data and property labels, it remains an unsolved
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problem to achieve highly accurate materials property predic-
tions from structures.

Currently, there are two major categories of ML approaches
for structure-based materials property prediction based on their
descriptors or features used: (1) the heuristic feature-based
models,?’'* of which the features are designed based on exist-
ing physicochemical knowledge; (2) learned feature-based
models, of which the descriptors are learned by DL algo-
rithms.'®'*?* While the heuristic feature-based ML models
have demonstrated some successes in a variety of applications,
such as formation energy prediction’’ and ion conductivity
screening,”” large-scale benchmark studies have shown that
the representation learning based deep graph neural network
(GNN) models have achieved much better performance in mate-
rials property prediction, which highlights the importance of
developing more advanced DL models for materials property
prediction. '%®

Since 2018, a variety of GNNs have been proposed to improve
the prediction performance, such as SchNet,>* CGCNN,'®
MEGNet,"* MPNN,?” iCGCNN,?® and GATGNN.?® Each of these
architectures has utilized the graph representation as input along
with slightly different additional information, convolution opera-
tors, and neural network architectures.'>'*?* However, a recent
large-scale benchmark study over five different datasets of vary-
ing sizes' has shown that, while the performance of the existing
GNN models is in general much better than those of non-GNN ap-
proaches, the best four GNN models’ performances tend to be
saturated without significant difference between one another.
For example, for the bulk crystal formation energy prediction
problem, the mean absolute error (MAE) range is 0.046 eV/atom
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Table 1. Details of the six benchmark datasets used in this work

No. of No. of
Dataset Unit Source elements samples
Bulk Materials eV/atom Materials 87 36,839
Formation Energy Project'®
Alloy Surface eV CatHub” 42 37,334
Adsorption Energy
Pt-cluster Total eV the 1 19,801
Energy literature®®
2D Materials eV C2DB*° 60 3,814
Work Function
MOF Band Gap eV QMOF?® 78 18,321
Bulk Materials eV Materials 87 36,837
Band Gap Project'®

(MPNN) and 0.05 eV/atom (SchNet). Also, there is no dominant
winner among these four GNN models. After close investigation,
we find that the optimized architectures of these models have
only one to nine graph convolution (GC) layers, which is in sharp
contrast to other fields of ML applications, such as computer
vision and natural language processing, etc. In computer vision,
ResNet® and DenseNet®' with up to 1,000 layers have been
trained. In natural language modeling, the smallest GPT-3 model
(125M parameters) has 12 attention layers and the largest GPT-3
model (175B parameters) uses 96 attention layers.*” Considering
that, in the materials property prediction problem, the number of
element types and their sophisticated interactions are both much
more complex than the pixels and their neighboring patterns, we
believe very deep networks are needed to achieve significantly
better results than the current state-of-the-art (SOTA) results as
reported in the most recent benchmark study.’

Recently, Jha et al.>® applied the residual skip-connection idea
to vector input-based materials property prediction. Their experi-
ments showed that, when the dataset size is more than 15,000,
their individual residual networks architecture outperforms both
the plain multi-layer perceptron networks and the stacked
residual network. For composition datasets with only 234,299
samples, their 48-layer IRNet beat their 17-layer IRNet, which out-
performed all other ML and plain neural network models. However,
no studies have been shown on GNNs, which can better capture
how the structural features affect their properties. Another study
by Yang et al.** applied a deep convolution network with residual
skip connections for crystal plasticity prediction with good perfor-
mance. However, their models are still limited to vector represen-
tations instead of graph representations. To our knowledge, there
is no study on whether deeper GNNs can significantly push the
frontier or SOTA performance in materials property prediction.

In this work, we propose DeeperGATGNN, a very deep graph
attention neural network model for large-scale materials property
prediction using differentiable group normalization (DGN) and
skip-connections. Our architecture allows training very deep in
terms of GC layers. Our model also has a useful characteristic—
no tedious and expensive hyperparameter tuning is needed,
only a sufficient number of GC layers needs to be set. We also
apply our scaling strategy (DGN and skip-connections) to
the other four GNNs and achieve significant performance
improvements on some datasets for most of the models. We call
these models DeeperCGCNN, DeeperMEGNet, DeeperMPNN,
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and DeeperSchNet. Our contribution in this paper can be summa-
rized as follows:

® We address the main challenge and bottleneck of GNN for
materials property prediction and propose a novel global
attention-based GNN architecture that uses an efficient
technique (DGN + skip-connections) for increasing the net-
works’ depth to overcome the barrier. The simplicity of our
model with almost hassle-free hyperparameter tuning and
high scalability makes it ideal for large-scale materials prop-
erty prediction.

® We evaluate our DeeperGATGNN model on six public
benchmark datasets and show that our model achieves
SOTA results on five out of six datasets with significant
performance improvements, with MAE errors reduction
up to 10% over previous SOTA results.

e Empirically, we show that our model is the most scalable
one among all existing GNN models for materials property
prediction despite having a very low number of training pa-
rameters compared with those of other models.

® We demonstrate that our deeper GNN enabling strategy
for materials property prediction can also be applied to
the other four GNNs to achieve improved performance
on several benchmark datasets.

RESULTS

Architecture description

DeeperGATGNN is based on our previously proposed
GATGNN?® model. In GATGNN, we developed a GNN that
uses two graph soft-attention variants to learn inorganic mole-
cules properties.®>" The first type of soft-attention consists of
additive multi-head attention (four or eight) applied to the one-
hop neighbors of each atom. These attention layers are named
augmented graph attention (AGAT) layers because we augment
the node feature vectors with the features from their connecting
edge. These AGAT layers are only used to extract the locally
dependent features between neighboring atoms. Afterward,
upon extracting the local features, GATGNN then uses a unique
soft-attention at the end to transform neighborhood-dependent
information to a global context (concerning all other atoms in
the crystal). The local soft-attention «;; between a node i and a
neighbor j can be represented as the following equation:

exp(au)

= = Equation 1
2 ke n€XP(@ik) =4 )

Dl,"j

In Equation 1, N; represents the neighborhood of node i and a;,

is the parameterized weight coefficient between nodes i and j,

which represents the importance of node j to node i. The global

attention: g;, which is applied right before the global pooling, cal-

culates each node’s overall importance. It can be described as
the following equation:

_ xEBwW
S x(Xe [E)W

In Equation 2, xe RF represents a learned embedding, E is a
compositional vector of the crystal, We R'™F+E) js g

gi (Equation 2)
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Table 2. Five-fold cross-validation performance comparison of DeeperGATGNN (with 10, 15, 20, 25, and 30 GC layers) versus other
SOTA GNN models for different materials property prediction problems

Bulk crystals Band gap
ML models GC layers (Eform) Alloy surfaces MOFs 2D materials Pt clusters (bulk)
SchNet misc. 0.05 0.063 0.228° 0.214 0.151% 0.2817
MPNN misc. 0.046 0.058% 0.245 0.204° 0.182 0.2649
CGCNN misc. 0.049 0.060 0.233 0.208 0.205 0.2598°
MEGNet misc. 0.048 0.069 0.253 0.224 0.180 0.2659
GATGNN 5 0.0454% 0.0806 0.2422 0.2075 0.2825 0.2734
DeeperGATGNN 10 0.0302 0.0502 0.2238 0.1916 0.1298 0.2624
DeeperGATGNN 15 0.0296 0.0416 0.2178 0.2139 0.1363 0.2559
DeeperGATGNN 20 0.0297 0.0409 0.2158 0.1775 0.1321 0.2550
DeeperGATGNN 25 0.0306 0.0411 0.2169 0.1718 0.1413 0.2457
DeeperGATGNN 30 0.0304 0.0427 0.2178 0.1730 0.1522 0.2459
% of improvements 34.97 29.55 5.34 15.76 14.03 5.42
over previous best
% of improvements 34.97 49.32 10.07 17.16 54.04 10.13

over GATGNN

3The previous SOTA results.

parameterized matrix, and x. is the learned embedding of any
atom c within the crystal. By using the combination of three to
five of these local soft-attentions and one global soft-attention,
GATGNN was able to match SOTA of inorganic materials prop-
erties prediction for most of the properties (except formation en-
ergy) at the time and also provide interpretable results in terms of
each atom’s contribution. Nevertheless, the over-smoothing
issue—a general challenge that prevents using more than a
few layers in GNNs—also affects GATGNN. GATGNN model’s
performance begins to considerably decrease by adding eight
or more GC layers. With the expectation that a deeper model
should be able to extract even more of these inter-atomic-
dependent features, we aim to overcome this over-smoothing
limitation so that our model can more effectively extract the
physics-dependent features of crystals. So, we devised
DeeperGATGNN (later we show that it can go very deep in terms
of GC layers), which uses additive skip-connections between
these attention layers that extract the local features and further
improve the learning by including DGN layers.

The overall DeeperGATGNN architecture is shown in Figure 1.
It consists of several AGAT layers, followed by DGN operators
and skip connections between each of these layers, which are
followed by a global attention layer and a global pooling layer.
Finally, a few fully connected hidden layers are added before
one fully connected layer to produce the predicted output.

Dataset description

We evaluate our model’s performance and other baselines us-
ing six datasets, including five benchmark datasets used in a
previous evaluation study.’ The first five datasets are all for for-
mation/surface energy predictions of nanocluster materials (Pt-
cluster), alloy surface, bulk materials, 2D materials, and MOF
materials. In addition, we include a band gap dataset for the
same bulk materials set. The datasets’ details are shown in Ta-
ble 1. Total samples and total elements range from 3,814 to
37,334 and 1 to 87, respectively, reflecting the datasets’ diver-
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sity and the challenge in predicting corresponding materials
properties.

Model comparison

To fairly and objectively evaluate and compare our model’s per-
formance with other SOTA models, it is critical to ensure all
models are trained on the same datasets with appropriate
training and optimal hyperparameters and using the same
cross-validation method. An excellent benchmark study by
Fung et al." implemented seven different prediction models
(including four GNN models) and a dummy baseline model in
the same code base and evaluated their performance on the
same set of five datasets using large-scale computationally
expensive hyperparameter tuning (limited to 200 epochs due
to the computational burden) to identify eight optimal parame-
ters for all models on different datasets. To compare, we re-im-
plemented our model in their code framework and use a single
parameter setting (with 10, 15, 20, 25, and 30 GC layers) for all
datasets (see Note S1). All the models are trained with 2,500
epochs. The results are shown in Table 2, in which the results
for SchNet, MPNN, CGCNN, and MEGNet are all from the previ-
ous benchmark study.’

We found from the benchmark study1 that, for different data-
sets, there are different winner models with different hyperpara-
meter settings except that MEGNet does not win on any of the
six datasets. Our previous GATGNN achieved better results on
the bulk crystal formation energy prediction problem than the
other four models. However, our DeeperGATGNN with 20 GC
layers beat all the previous best results. We further tried 25
and 30 GC layers, which led to further improvements for the
2D Materials dataset and the band gap problem. The last row
of Table 2 summarizes the performance improvement percent-
ages ranging from 5.34% (for band gap prediction) to a signifi-
cant 34.97% (for bulk crystal formation energy prediction), all
achieved with a single hyperparameter setting (except GC
layers) across six different datasets. Compared with our
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Figure 2. Training/validation error plots of MEGNet and DeeperGATGNN
(A-B) Training/validation errors of (A) MEGNet and (B) DeeperGATGNN on the 2D Materials dataset. All models become stagnant after 500 epochs. So our
DeeperGATGNN models trained with 2,500 epochs should have similar performance when trained with 500 epochs.

previous GATGNN model, by addressing the over-smoothing
issue using DGN and skip connections, our DeeperGATGNN
models achieve from 10.07% to 54.04% reduction in the MAE
prediction errors across the six materials prediction problems.

Next, we investigated if the number of epochs had made the
difference in performance. So, we plotted the training/validation
errors over the training process for all the six GNN models; two of
them are shown in Figure 2 and others are shown in Figure S2.
We noticed that, with the current hyperparameter setting (espe-
cially the learning rate scheduling), almost all models stagnate at
around 500 rather than the 200 epochs that were used in the pre-
vious benchmark study.’ The new results of all the models with
500 epochs and our model’s best results are summarized in
Table 3.

We found that all models’ optimal performances have been
significantly improved by increasing the training epochs to 500
(see Note S3 for more details). However, our DeeperGATGNN
model achieves the best results over five out of six datasets,
with performance improvements from 0.05% to 10.29%. Since
training such large-scale GNNs is very computationally intensive
(some models take 2-7 days to train), finding optimal hyperpara-
meters with large epochs is infeasible. In this case, our
DeeperGATGNN'’s easy hyperparameter setting is a very attrac-
tive feature combined with its outstanding SOTA performance.

We further checked whether increasing the number of GC
layers can improve existing GNN models’ performance. We
found that it does not help (see Figure 7). Increasing the GC
layers moderately deteriorates SchNet’s and GATGNN'’s perfor-
mance and also of CGCNN’s and MEGNet’s performance to a
lower degree.

As most existing message-passing-based GNN models suffer
from the over-smoothing issue, we checked if DGN and skip
connections can help improve other GNN models so that they
can also benefit from deeper GC layers. To verify this, we
increased the GC layers to 10 for all the models as evaluated

in the benchmark study, replaced their original weight normaliza-
tion method with DGN and added the skip connections, and
trained the models using their optimal hyperparameters except
that we used 500 epochs. Then we calculated the performance
changes after these modifications. The results are shown in Fig-
ure 3. For the SchNet model, the DeeperSchNet achieves a 19%
reduction in MAE error for the Bulk Materials Formation Energy
dataset, while getting worse results for all other datasets. For
the Pt clusters, its performance dropped by 29.5%. For the
MPNN model, all enhanced models achieve much worse results,
ranging from —14.2% to —47.7%, demonstrating its lack of scal-
ability. For CGCNN, surprisingly for all datasets except the Pt
clusters, its results became worse. However, for the Pt clusters,
the DeeperCGCNN reduces the MAE error of CGCNN by almost
43% from 0.30 to 0.17 eV. MEGNet and GATGNN are the only
two models that get performance boosting from adding DGN
and skip connections.

To further explain why the existing GNN models benefit little
from the DGN and skip-connections in most cases, we plotted
the number of parameters for these models and their deeper
versions as shown in Figure 4. We found that, for MPNN and
DeeperMPNN, the parameter number increases very rapidly,
reaching more than 8 million when the number of GC layers
reaches 8. With limited training samples, it causes some
serious problems. The second most parameter-rich models
are MEGNet and DeeperMEGNet, both have almost 6 million
parameters when the number of GC layers approximate 30,
which leads to their collapsed performance (see Figure 7).
The CGCNN and SchNet models along with their variants
are more parameter parsimonious, but adding more layers
does not improve the results except for some special data-
sets. Our GATGNN and DeeperGATGNN are the most parsi-
monious models. Even with 50 GC layers, the number of
parameters is under 1.8 million compared with MEGNet’s
and DeeperMEGNet’s more than 9 million parameters, which
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Table 3. DeeperGATGNN’s performance comparison with corrected benchmark results of other models (GCL denotes the number of

GC layers of the corresponding optimal models)

ML models Bulk crystals GCL Alloy surfaces GCL MOFs GCL 2D materials GCL Pt clusters GCL
SchNet 0.0556 1 0.0470 5 0.2312 9 0.2240 4 0.1726 9
MPNN 0.0349 5 0.0488 5 0.2070 4 0.1893 2 0.1384% 3
CGCNN 0.0349 7 0.04247 8 0.2141 6 0.2001 6 0.3024 1
MEGNet 0.0329° 5 0.0469 8 0.1968° 7 0.1719° 4 0.2877 8
GATGNN 0.0475 5 0.0727 5 0.2265 5 0.1869 5 0.1748 5
Ours 0.0296 15 0.0409 20 0.2158 20 0.1718 25 0.1298 10
% improve 10.29 3.61 —9.66 0.05 6.21

®The best results of the other models.

may partially explain why DeeperGATGNN can improve the
base model significantly.

We also plotted the scatterplots of the predicted surface
energies versus the true values for the Alloy Surface dataset
(see Figure S1), over which the DeeperGATGNN achieved the
best performance, with an MAE score of 0.041 eV. We can see
that the plot in Figure S1F has the smallest deviation from the
diagonal lines with a more narrow distribution of the points.

Parameter study

We conducted different parameter studies of our DeeperGATGNN
model using 10 GC layers and 500 epochs. The Pt-cluster dataset
is used here for this purpose. We calculated the results using
5-fold cross-validation as is done in the previous subsection.

First, we experimented with how the dropout rate affects the
prediction performance. The best result we achieved on this da-
taset in the SOTA performance study is 0.1298 eV (MAE) using 10
GC layers and no dropout. Several experiments with varying
dropout rates are run and the results are shown in Figure 5A. It
is observed that increasing the dropout rate degrades our
model’s performance. Even with a large number of GC layers,
our model is very scalable and does not need any dropout.
Our model with 35 GC layers achieves ever better results
without dropout (see Figure 5D). Also, in the next subsection,
we show that, except for our model, all the other models
perform very poorly with a certain number of GC layers, but
our model performs fine even with 30 GC layers, all without using
any dropout.

Second, we evaluated how changing the learning rate affects
our model performance. We can see from Figure 5B that the best
result is achieved with the learning rate of 0.005, which we use as
the default learning rate for our architecture. We would like to
mention that we used a learning rate scheduler library for each
of the experiments as done in the benchmark study.’

Third, we ran experiments with different batch sizes for our
model. We increased the batch size from 100 (default batch
size for our model) up to 500 with intervals of 100. It is observed
from Figure 5C that a larger batch size usually leads to worse
performance than smaller ones*'**? and our model performs
best with the default batch size.

Next, we investigated the prediction performance by changing
our model’s activation function. By default, our DeeperGATGNN
model uses the Softplus activation function. We compared the
Softplus activation function result (MAE: 0.1298 eV) with those
of ReLU and Leaky-ReLU activation functions. The MAE values
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obtained for ReLU and Leaky-ReLU were 0.1514 and 0.1511
eV, respectively. We can see that the Softplus activation function
beats the other activation functions by a large margin.

We then checked how our DeeperGATGNN model’s perfor-
mance might be improved by increasing the number of GC
layers while keeping other hyperparameters as defaults (no
dropout, batch size 100, learning rate 0.005, and Softplus acti-
vation function). Five-fold cross-validation was used for perfor-
mance evaluation in this experiment. The GC layers’ impact is
shown in Figure 5D. We found that, when the number of GC
layers is less than 30, the best result is achieved using 10 GC
layers (MAE: 0.1298 eV). Our model’s performance starts to
degrade with increasing number of GC layers until it reaches
35 GC layers when it achieves a new SOTA result (MAE:
0.1280 eV) for this dataset. We further examined up to 50 GC
layers and found no better result than the result by
DeeperGATGNN with 35 GC layers. One important point to
note is that, even with 50 GC layers, our model’s performance
has not degraded too much: the results with 30 and 50 GC
layers are very close. So, if the SOTA result can be achieved
by our model with 35 GC layers, there is a possibility that we
might achieve even better results if we keep going deeper in
terms of GC layers (>50 GC layers) on this dataset with more
training samples. But, due to computational burden, we did
not go any deeper.

We also examined our model with different cutoff radius values
(on all the datasets) where we got the best results for the default
8 A radius. The results are shown in Table S1.

Finally, we conducted experiments to evaluate the effect of
changing the training set size. DL architectures’ success largely
depends on the amount of training data and our model is no
different. Figure 6 shows that our model’s accuracy continues
to improve with increasing number of training set samples. We
believe that, if more samples are added to this dataset, our
model can achieve even better performance than the current
SOTA result.

Scalability comparison

We investigated our DeeperGATGNN'’s scalability and that of
other models (both shallow and deeper versions). We used the
Bulk Materials Formation Energy dataset for this purpose. All
the experiments are again conducted using 500 epochs and
5-fold cross-validation. We trained each of the models for 4, 6,
8,10, 15, 20, 25, and 30 GC layers and examined their scalability.
We limited our experiments to 30 GC layers because we showed
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Figure 3. Performance change of all GNN models after modification
Performance change of each GNN model after implementing DGN and skip-
connection and then adding more GC layers. GATGNN shows the highest per-
formance improvement after the modification (DeeperGATGNN).

that 30 GC layers are enough to conclude that our model is the
most scalable one among all. We excluded MPNN from
this experiment due to its exceptionally large parameter number:
it has approximately 4.39, 10.9, and 32.6 million trainable
parameters for 4, 10, and 30 GC layers, respectively, which are
much higher than any other model on average. So the memory
it costs and the time it takes to finish training are too huge to
be conducted for this experiment.

First, we examined how the change of parameter number
affects the prediction performance with increasing numbers of
GC layers for existing graph networks as shown in Figure 7.
We can spot that all the existing GNNs deteriorate after adding
a certain number of GC layers, i.e., the MAE becomes too large
so that it can no longer be used for accurate property prediction.
For example, SchNet deteriorates with 20 or more GC layers.
The MAE value of SchNet increases from 0.0516 eV/atom
(15 GC layers) to 0.1893 eV/atom (20 GC layers) where the num-
ber of parameters increases from 1,102,401 (15 GC layers) to
1,455,901 (20 GC layers).

CGCNN becomes unscalable with 30 GC layers. The MAE
value and the number of trainable parameters increase
from 0.0351 eV/atom and 1,337,101 for 25 GC layers to
2.2776 eV/atom and 1,590,101, respectively for 30 GC layers.
The same deterioration occurs for MEGNet as well, which
also deteriorates with 30 GC layers, and the MAE value and
the number of parameters increase from 0.0302 eV/atom and
4,857,201 for 25 GC layers to 0.2237 eV/atom and 5,819,201,
respectively, for 30 GC layers. But the change of MAE value
is not as drastic as that of CGCNN, although MEGNet has a
much higher number of parameters than that of CGCNN. For
better visualization, we limit the y axis of Figure 7 to 1.25 eV/
atom, which is why the MAE value plot gets trimmed for
CGCNN for 30 GC layers.

Our earlier GATGNN model also deteriorates with 30 GC
layers. It also has a drastic performance change from 25 to 30
GC layers, such as with CGCNN. The MAE and the number of pa-
rameters increase from 0.0575 eV/atom and 863,370 for 25 GC
layers to 2.7937 eV/atom and 1,030,770, respectively, for 30
GC layers. We can see that both GATGNN and CGCNN have a
much smaller number of trainable parameters compared with

¢ CellP’ress

that of MEGNet and they are also very similar in terms of
scalability.

As we saw that none of the existing GNNs can scale up to 30 or
more GC layers, next we examined these models’ deeper ver-
sions. DeeperSchNet again deteriorates with 20 GC layers, which
means that the modification did not improve its scalability. The
MAE value and the number of parameters change from 0.0421
eV/atom and 1,144,401 (for 15 GC layers) to 0.9656 eV/atom
and 1,511,901, respectively (for 20 GC layers). Although the result
for DeeperSchNet with 15 GC layers is better than that of the orig-
inal SchNet, surprisingly the change of MAE for 20 GC layers is
much more drastic in DeeperSchNet than that of SchNet.

Both DeeperCGCNN and DeeperMEGNet perform worse than
the original CGCNN and MEGNet in terms of scalability.
DeeperCGCNN deteriorates with 20 GC layers, which is quicker
than the original CGCNN, which deteriorates with 30 GC layers.
The MAE and the number of parameters increase from 0.0425
eV/atom and 873,101 (for 15 GC layers) to 0.7783 eV/atom and
1,140,101, respectively (for 20 GC layers). DeeperMEGNEet also
cannot scale up to 20 GC layers. The MAE and the number of
parameters increase from 0.03 eV/atom and 3,185,201 (for 15
GC layers) to 0.9651 eV/atom and 4,231,201, respectively (for
20 GC layers). We did not do experiments with DeeperMEGNet
for 25 and 30 GC layers because it already became unscalable
and the number of parameters is already huge for just 20 GC
layers. We also want to highlight that, for the CGCNN model,
its deeper version DeeperCGCNN can only reduce the MAE for
4 GC layers. Instead for the MEGNet model, our modification
implemented in DeeperMEGNet improves its prediction
performance for almost all 4, 6, 8, 10, and 15 GC layers before
it deteriorates with 20 GC layers.

Now we discuss our DeeperGATGNN model’s scalability. We
can see that our model achieves the SOTA result with 15 GC
layers on this dataset (see Table 2). Our model is the only model
that did not deteriorates with even 30 GC layers. Also, the num-
ber of trainable parameters of our model is the smallest among
other GNNs (except GATGNN) for each specific number of GC
layers. The MAE and the number of parameters of our model
with 30 GC layers are 0.0304 eV/atom and 1,089,906, respec-
tively. One of the key points to note here is that, although our
model can scale up to 30 or more GC layers, the performance
did not improve after 15 GC layers (but also did not get worse).
A similar observation is also found in the experiments over the
Pt-cluster dataset in the previous subsection: our model’s per-
formance did not improve after 10 GC layers until reaching 35
GC layers. So as our model shows its capability to scale to 30
or more GC layers, there is a strong possibility that our model
might achieve an even better result on this dataset if we go
deeper with more training samples. Overall, our experiments
with 30 GC layers have shown that our DeeperGATGNN model
is the most scalable model of all. We would like to mention that
we also tried using a little dropout with 20, 25, and 30 GC layers
with our model but it did not improve our results. Since our model
performance does not become worse with increasing number of
GC layers, it tends to have strong robustness against overfitting.

Ablation study
We perform ablation experiments on DeeperGATGNN to
understand the contribution of each component in the prediction
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We limit the y axis to 8 million for better visualization.

8 GATGNN and its improved and deeper version

6 w0 DeeperGATGNN have a much shorter number of

parameters compared with other GNN models and

'g W15 their deeper versions.
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5 than using individual components. The ac-

S ‘ ‘ 50 curacy on the bulk crystal dataset and the
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& & & & N <& N & & N 26.67% and 37.12%, respectively. Finally,

S ¥ 000 @@0 ?{\0 oS §2 ooo @@0 v/\0 we increased the number of GC layers

P G & along with the previous modification. The

* O F er'Q prediction accuracy increases up to

accuracy. We choose the Bulk Crystal Formation Energy and the
Alloy Surface Adsorption Energy datasets for this purpose. The
results are presented in Table 4. Overall, skip connection has a
larger effect on the results than DGN (13.42% and 14.13%
improvement compared with 24.30% and 31.48% improvement
for formation energy and adsorption energy prediction, respec-
tively). But using both DGN and skip connection with the shallow

A MAE vs. dropout rate
4
3
3
— 2
w
<
=
;
0
0.00 0.05 0.10 0.15 0.20 0.25
dropout rate
C
MAE vs. batch size
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Figure 5. Parameter study of DeeperGATGNN

34.97% and 49.32% for the formation en-

ergy and adsorption energy prediction
problems, respectively. The over-smoothing problem that re-
sulted from going deeper in terms of GC layers is now greatly
alleviated by the use of DGN and skip connection. Moreover,
the accuracy is much improved when the architecture is deep,
which demonstrates the necessity to use more GC layers (as it
can better capture embeddings and make effective use of the
higher-order neighbors’ attributes).

B MAE vs. learning rate
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C2
w
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20 30 40 50
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(A-D) (A) MAE versus dropout rate, (B) MAE versus learning rate, (C) MAE versus batch size (using 10 graph convolution layers), and (D) MAE versus graph
convolution layers. All the experiments are done using 500 epochs and 5-fold cross-validation on the Pt-cluster dataset.
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erGATGNN'’s performance

Prediction performance improves with increasing
number of training samples. The experiment is done
using 500 epochs and 5-fold cross-validation on the
Pt-cluster dataset.

can see from Figure 8 that different groups
are formed after the two-dimensional map-
ping and materials (points) in the same clus-
ter have a very high probability of having
similar composition and/or structures as
the clustering is based on the latent vectors

2500 5000 7500 10000 12500
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Physical insights

We examined whether our DeeperGATGNN model can bring
certain physical insights into the materials space. We used the
t-distributed stochastic neighbor embedding (t-SNE)*® for this
purpose, which is a widely used non-linear technique for visual-
izing and interpreting high-dimensional data. The objective of
t-SNE is to map higher-dimensional data points to a very low-
dimensional one (usually 2D or 3D) so that the pairwise distances
between data points are well preserved after mapping.**** So,
closer points in the higher dimension tend to remain close after
mapping to the lower dimension.

Here, we used the Alloy Surface Adsorption Energy dataset for
visualizing the distribution of the learned materials latent represen-
tation learned by our model, as well as GATGNN, CGCNN, and
MEGNet models. We first trained all the models and then fed the
whole dataset to the models and fetched the first layer’s output af-
ter the final GC layer to generate the t-SNE plots, as shown in Fig-
ure 8. Different colors represent different alloy surface adsorption
energy levels for the samples represented in the latent space. We

1.00

0.75

MAE (eV/atom) of formation energy
o
o
3

0.25

15000

17500 mapped from the crystal structures. Each
model might generate different latent
spaces, but we can still get a good idea
about their prediction pattern by analyzing
these clusters. We found that many local
areas (clusters) in all the images have been colored with similar
colors implying that these compositionally or structurally similar
materials tend to have similar surface energies. Compared with
the distributions of CGCNN, MEGNet, and GATGNN, the high-en-
ergy alloys are more clearly separated from the lower ones.
However, it is important to mention that the cluster sizes and
the distance between them do not bear much significance in a
t-SNE plot.*®

DISCUSSION

GNNs are increasingly used for solving challenging problems in
materials and physics.?®“5*® Representations in GNNs are inher-
ently rotation and translation invariant, making it ideal to model the
atomic relationships. However, we find that there are several key
issues in designing and training scalable GNN models.

The first pitfall is that GNN models can easily go under-trained
due to the high computational training complexity (some models
have several million parameters). The situation becomes even

|4 Figure 7. Scalability study of SOTA GNNs
W Scalability of GNN models in terms of parameter
8 number as regard to the network depth tested on the
| 10 Bulk Materials Formation Energy dataset. Different
L colors represent different numbers of GC layers in the
20 networks. All the models except DeeperGATGNN fail
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Table 4. Results (MAE) of ablation experiments of DeeperGATGNN to perceive the impact of each component

Bulk materials

Alloy surfaces

Architecture (Eform) GCL % improve (Adsorption energy) GCL % improve
GATGNN 0.04544 = 0.08063 5) =
GATGNN + DGN 0.03934 13.42 0.06924 14.13
GATGNN + SC 0.0344 24.30 0.05525 31.48
GATGNN + DGN + SC (shallow) 0.03332 5 26.67 0.0507 5 37.12
GATGNN + DGN + SC (deep) = 0.02955 15 34.97 0.04086 20 49.32

DeeperGATGNN

The experiments are conducted on the Bulk Materials Formation Energy and Alloy Surface Adsorption Energy datasets. GCL and SC denotes the

numxber of GC layers and skip connection, respectively.

worse when one has to do large-scale hyperparameter tuning.
For example, in the benchmark study of GNNs," the hyperpara-
meters include three encoding dimensions, GC layer number,
fully connected layer number, pooling methods, the learning
rate, and the batch size. The study found that existing GNNs
tend to achieve optimal performance for different datasets using
different hyperparameter sets. This expensive hyperparameter
search process forced the authors to use only 200 epochs for
evaluation. However, our analysis in Figure 2 shows that their
networks are all under-trained, which will not stagnate until 500
epochs. This has led to their severe under-estimation of the
GNN performances for all the results they reported. For example,
for the Alloy Surface dataset, CGCNN’s MAE with 250 epochs of
training is 0.06 eV, which is 40% larger than the result (0.042 eV)
when trained with 500 epochs. Since running more epochs with
huge hyperparameter space is infeasible, it is more desirable
to use GNN models that can achieve more stable results
with default or minor parameter tuning. For example, our
DeeperGATGNN models achieved SOTA results across five da-
tasets using the same architecture except with a varying number
of GC layers.

The second pitfall for GNNs is that they usually suffer from the
over-smoothing issue, which leads to their performance degrada-
tion when too many layers are used.*® This is clearly shown in our
scalability study and Figure 7. All existing GNN models, except
our DeeperGATGNN, have significant performance degradation
when 30 GC layers are used. It is interesting to find that, while
DGN and skip connections have effectively helped our
DeeperGATGNN to address this issue, the same strategy does
not work equally well for SchNet, CGCNN, and MEGNet, even
though it does help to improve their performance too.

Another limitation to our model performance is the scarcity
of data or the information input to our models. For example,
in the 2D Materials dataset, which has only 3,814 samples,
MEGNet achieved the best result with 4 GC layers. Our
DeeperGATGNN with 25 GC layers achieved the SOTA result
on this dataset. In this case, it seems that to further improve
the performance, additional information, such as the angular
information of the materials structures, is needed. Also other
methods, such as pre-activated skip connections®® or
DenseNet®' as a skip connection method, can also be applied.

In conclusion, we have shown in this work that existing GNNs
for materials property prediction have so far all suffered from the
over-smoothing issue and cannot scale up to very deep net-
works without significant performance degradation. Our pro-
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posed DeeperGATGNN achieved SOTA prediction results with
up to 10% performance improvement over the previous best re-
sults for five out of the six diverse benchmark datasets. This is all
achieved with a single neural architecture and hyperparameter
(except for the GC layer). This makes it much simpler in practical
materials property prediction without the need for expensive hy-
perparameter tuning. Our model can also scale up to more than
30 GC layers, while all other models show dramatically degraded
prediction performance. Our deeper GNN enabling strategies,
such as skip connections and DGN, have shown to be able to
also improve other GNNs’ performances (e.g., MEGNet,
SchNet, and CGCNN), but only on special datasets while their
scalability remains an issue.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will
be fulfilled by the lead contact, Jianjun Hu (jianjunh@cse.sc.edu).

Materials availability

This study did not generate unique materials.

Data and code availability

The data that support the findings of this study are openly downloadable as
stated in Fung et al." The Bulk Materials Band Gap dataset is downloaded
from Materials Project database at https://www.materialsproject.org. The
source code of our work is freely accessible at http://github.com/
usccolumbia/deeperGATGNN. The DOI for our code is https://doi.org/10.
5281/zenodo.6336185.

DGN

One of the major issues in training a deep GNN architecture is the over-
smoothing problem, in which the representation vectors of all nodes of a graph
become indistinguishable as the number of GC layers increases.*®*'"* This
problem restricts GNNs to a very few layers for better performance.®>>*>°
For example, both GAT*® and GCN° perform best when the number of layers
is limited to only two and thus they fail to utilize higher-order neighbors’ fea-
tures.*® Many approaches have already been adopted to improve upon the
problem.®”" Traditional normalization techniques used to reduce this prob-
lem include batch normalization® or measures based on node pair distances,
such as pair normalization.®® But these techniques do not take account of the
global graph structure that results in sub-optimal performance when the num-
ber of GC layers of the GNN is large.®” Recently, Zhou et al.®' addressed this
issue by proposing the DGN. The main procedure of DGN is to first use a clus-
ter assignment matrix to cluster the nodes of a graph to different clusters and
then normalize each cluster separately. This will make the nodes’ representa-
tions within the same community/class to be similar while those of different
classes to be separated, leading to effective control of the over-smoothing
issue. More specifically, the DGN works as follows:
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Figure 8. Alloy surface adsorption energy distribution in the latent space
(A-D) t-SNE plot of the representations after the final GC layer for (A) CGCNN, (B) MEGNet, (C) GATGNN, and (D) DeeperGATGNN trained on the Alloy Surface
Adsorption Energy dataset. Different colors represent different adsorption energy levels in the latent space. Each point indicates a distinct alloy material.

Let, n be the number of nodes, G be the number of clusters specified. Let,
H" e R™4" pe the embedding matrix derived after the /-th layer of a GNN
where d(/) is the embedding dimension of layer /. Then the cluster assignment
matrix S? can be calculated using the following equation where U?) e R?"*@
is a trainable parameter:

s = softmax(H(’)U(’)). (Equation 3)

The cluster assignment matrix S¢) e R"C stores the probabilities of each
node of the graph being assigned to each cluster. It then places the nodes
into different groups using the following equation:

HY = SO i]eHY, (Equation 4)
where Hf” denotes the embedding matrix for cluster j and o is the row-wise

multiplication operator in Equation 4. Each cluster is then normalized sepa-
rately using the following equation:

(Equation 5)

10}
o~ HO —
H = <’TI> +6i,
I

where y; and o; mean the mean and standard deviation of each group i in Equa-
tion 5, and v; and g; denote two trainable parameters.

Finally, the final embedding matrix can be calculated using the following
equation:

G
A = HO 223 A e mee”, (Equation 6)
i=1

where A denotes a balancing factor and I:I(I)

final embedding matrix in Equation 6.

The two main reasons why DGN is so successful in preventing the over-
smoothing issue are: (1) that each group is normalized separately using
Equation 5, so that each group will have a different mean and standard deviation

= A" AY ... AY) denotes the
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and thus the probability of the representation vectors of nodes of different groups
being similar will decrease and (2) thatinput embedding is preserved in Equation 6
to prevent over-normalization.

Skip connections for enabling scalable GNNs

One of the major enabling techniques in DL for training very deep networks is
the residual skip connection, which was first introduced in the ResNet frame-
work.? It has allowed training networks with even more than 1,200 layers.®*
The key idea of residual skip connection is to learn to achieve identity map-
ping where the input x is added to the output of stacked layers F(x). So, we
have H(x) = F(x)+x. Instead of learning the underlying mapping H(x) func-
tion, the stacked layers are used to learn the residual mapping F(x) =
H(x) — x. The major benefit is that, if the identity mapping is already optimal
and the stacked layers cannot learn more salient information, the training
procedure can push the residual mapping to zero to avoid the degradation
problem. Residual connections have been introduced into GNNs for training
deeper networks.*®*%° In this work, we implement the layer-wise residual
skip connections in the GNN models’ deeper versions, which is similar to
that of IRNet.>* The difference in the skip connection method between
ResNet and our implementation is shown in Figure S3.

Evaluation criterion

To evaluate the models’ performances, we use MAE, which is a standard eval-
uation criterion for materials property prediction problems that is also used as
the primary evaluation criterion in the benchmark study of Fung et al.” We use
both 5-fold cross-validation and hold-out tests for performance evaluations
depending on specific experiments. The baseline models’ parameters are
specified in the supplemental information of Fung et al' Our
DeeperGATGNN model’s hyperparameters are also provided in Note S2.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/].
patter.2022.100491.
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