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ARTICLE INFO ABSTRACT

Keywords: In recent decades, many inland lakes have seen an increase in the prevalence of potentially harmful algae. In
Season-ahead forecasting many inland lakes, the peak season for algae abundance (summer and early fall in the northern hemisphere)
Algae coincides with the peak season for recreational use. Currently, little information regarding expected algae
Inland lakes - . . . e ie

Hvdroclimate conditions is available prior to the peak season for productivity in inland lakes. Peak season algae conditions are
L/)\,GOS-NE influenced by an array of pre-season (spring and early summer) local and global scale variables; identifying these

variables for forecast development may be useful in managing potential public health threats posed by harmful
algae. Using the LAGOS-NE dataset, pre-season local and global drivers of peak-season algae metrics (represented
by chlorophyll-a) are identified for 178 lakes across the Northeast and Midwest U.S. from readily available
gridded datasets. Forecasting models are built for each lake conditioned on relevant pre-season predictors.
Forecasts are assessed for the magnitude, severity, and duration of seasonal chlorophyll concentrations. Regions of
pre-season sea surface temperature, and pre-season chlorophyll-a demonstrate the most predictive power for
peak season algae metrics, and resulting models show significant skill. Based on categorical forecast metrics,
more than 70% of magnitude models and 90% of duration models outperform climatology. Forecasts of high and
severe algae magnitude perform best in large mesotrophic and oligotrophic lakes, however, high algae duration
performance appears less dependent on lake characteristics. The advance notice of elevated algae biomass
provided by these models may allow lake managers to better prepare for challenges posed by algae during the
high use season for inland lakes.

1. Introduction

Rapid proliferation of algae in surface freshwaters has negative
consequences for ecosystem function (Sunda et al., 2006; Huisman et al.,
2018), economic opportunity (Dodds et al., 2009), and human health
due to the potential for toxin production in some species (Carmichael,
2001; Carmichael and Boyer, 2016). In recent decades, anthropogenic
disturbance of nitrogen and phosphorus cycles has resulted in wide-
spread eutrophication, leading to an increase in the prevalence of
harmful algae (Smith, 2003; O’Neil et al., 2012; Paerl and Paul, 2012).
For many waterbodies, hydroclimatic variability plays an important role
in determining water quality on inter- and intra-annual timescales, and
may influence the suitability of conditions for algae growth (Leon-Mu-
noz et al., 2018; Scordo et al., 2022). Nutrient runoff, in particular, is
sensitive to variability in the hydrologic cycle, which has been projected
to intensify with climate change (Glavan et al., 2015; Me et al., 2018).
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Anthropogenic stressors favoring the dominance of harmful algae,
combined with notable variability in algae biomass, presents a sub-
stantial challenge for water resource managers. In the U.S., harmful
algae in large waterbodies such as Lake Erie has received significant
research and media attention (Reutter et al., 2011; International Joint
Commission, 2014; Wines, 2014; Patel and Parshina-Kottas, 2017;
Dalton, 2021), however, despite similar concerns, strategies for man-
aging harmful algae in small inland waterbodies across the U.S. have
received less attention (Brooks et al., 2016).

In the northern hemisphere, algae biomass tends to peak in the late
summer and early fall (July-October) as a result of a complex array of
pre-season and within-season physical, chemical, and biological pro-
cesses. In the Midwest and Northeast U.S., this season is characterized by
warm temperatures and increased sunlight, allowing for increased
photosynthesis and algae productivity (Singh and Singh, 2015). In many
instances, significant intra- and inter-annual variability in peak season
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Fig. 1. Candidate lakes for model development in the Northeast and Midwest U.S. (a), including mean JASO chlorophyll-a (ug/L) concentrations (b) and mean
monthly chlorophyll-a values (c). Points in (b) and (c) represent values for each lake.

algae biomass is evident, driven partially by local hydrology and tem-
perature that are in turn modulated by large scale climate phenomena
through atmospheric teleconnections (Beal et al., 2021). Predictions of
how these algae conditions vary may benefit lake managers by allowing
them to take early actions to reduce or mitigate harm caused by intense
algae growth. Short-term (days to weeks) predictions of chlorophyll-a (a
proxy for algal biomass) are typically issued within-season and focus on
expected bloom formation or toxin production, allowing managers to
take rapid actions to address odor and taste issues, transition to alter-
native water sources, post warning signs at beaches, etc. (Zhang et al.,
2013; Chen et al., 2015; Qian et al., 2021; Wynne et al., 2013). In
contrast, longer-lead (months) pre-season predictions of expected algae
conditions may allow lake managers to address a different set of actions
(e.g. life-guard training, public awareness, etc.) and decisions, (e.g.,
testing and monitoring budgets and plans). Together, these predictions
can provide decision makers with multi-scale information to inform
appropriate actions at various lead times. However, season-ahead pre-
dictions for water quality have received relatively little attention.
Longer-lead predictions of oceanic chlorophyll-a and inland nutrient
loading have been developed with some success (e.g. Cho et al., 2016;
Park et al., 2019; Rousseaux et al., 2021), but little attention has been
devoted to inland lakes. Long-lead predictions of algae that do exist
typically focus on singular metrics (often mean biomass) to characterize
the potential loss of ecosystem services due to algae accumulation,
however, further characterization may be warranted. For example,
Wilkinson et al. (2021) define three metrics to characterize algae con-
ditions, including: magnitude (mean seasonal chlorophyll), severity (peak
seasonal chlorophyll), and duration (length of time chlorophyll is above
a threshold concentration). In addition to information provided by mean
biomass, this approach provides lake managers with information that
specifically addresses two key management concerns related to algae:
the potential for severe consequences of algae blooms such as fish kills

and toxin production, and length of time a lake may be unfit for recre-
ation. Long-lead predictions also often rely predominantly on nutrient
loads as predictors (Stow et al., 1997; Lathrop et al., 1998; Stumpf et al.,
2016), however consideration of relevant hydroclimatic predictors has
the potential to enhance prediction performance and expand the avail-
ability of water quality predictions to many small inland lakes (Beal
et al., 2021). There is a large and long body of evidence illustrating the
impacts of external nutrient loading on phytoplankton growth in lakes
(Vollenweider, 1971; Schindler, 1978; Reynolds, 1984; Elliott et al.,
2006; Kane et al., 2014). Phosphorus and nitrogen are widely considered
the most important nutrients for phytoplankton growth in freshwater
(Schindler, 1971, 1977). Transportation of phosphorus and nitrogen
into a lake from the surrounding watershed is an important driver of
algae abundance in many systems. Nutrient transport is influenced by
global and local hydroclimatic variables, and thus also represent
important processes in determining algae abundance. Increased pre-
cipitation has been linked to increased fluxes of nitrogen and phos-
phorus (Sinha et al., 2017), particularly in extreme precipitation events
(Haygarth and Jarvis, 1997; Royer et al., 2006; Carpenter et al., 2015,
2018). Soil moisture conditions may also influence nutrient loading by
regulating runoff potential (Kleinman et al., 2006; Liu et al., 2014).
Finally, water temperature has also been shown to control phyto-
plankton biomass and growth rate (Eppley, 1972; Konopka and Brock,
1978; Robarts and Zohary, 1987; Elliott et al., 2006; Liu et al., 2019;
Trombetta et al., 2021), and is closely linked to local air temperature
(Shuter et al., 1983; Woolway et al., 2020; Zhu et al., 2020). March-June
water temperature data are not readily available for all study lakes and
are therefore not included in the final set of potential predictors.

In addition to management applications, season-ahead forecasts at
scale provide a unique opportunity to understand ecological relation-
ships between hydroclimatic variables and water quality (Houlahan
et al.,, 2017). In particular, the relevance of global scale processes in
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determining algae biomass in inland lakes is not well studied. Several
studies have identified teleconnections between large-scale climate
phenomena and phytoplankton dynamics in inland lakes (Arhonditsis
et al., 2004; Xiao et al., 2019; da Rosa Wieliczko et al., 2021), however,
few studies exist that investigate the application of global climate pat-
terns to chlorophyll-a prediction in inland lakes. Beal et al. (2021),
developed a sub-seasonal (2-month lead) forecast of cyanobacteria
biomass in Lake Mendota, Wisconsin (WI), conditioned on local
hydroclimatic variables and teleconnections with global climate pat-
terns. A large-scale analysis of season-ahead predictors of algae biomass
is well suited to improve the understanding of dominant climate signals
related to chlorophyll-a.

Using chlorophyll-a time series from 178 lakes in the Northeast and
Midwest U.S. we evaluated if global and local hydroclimatic processes
can be used to predict algal magnitude, severity, and duration in each
lake using a statistical modeling and forecast validation (hindcast)
approach.

Specifically, we address the following questions:

1) Do local and global (sea surface temperature, SST) hydroclimatic
variables correlate with chlorophyll metrics in a given lake?

2) Are skillful predictions based on these variables possible for algal
magnitude, duration, and severity?

3) Can variability in forecast model performance be explained by static,
lake-specific characteristics?

This modeling approach may provide insight into the role of local
and global hydroclimatic variability in the development of peak season
algal biomass, evaluate the ability of hydroclimatic variables to provide
actionable information to lake managers at a seasonal timescale, and
indicate which characteristics of small inland lakes make them ideal
candidates for seasonal forecast development.

2. Materials and methods
2.1. Lake characterization and selection

Chlorophyll-a measurements, sampled at the surface of the lake and
analyzed following project-specific protocols for each lake, were ob-
tained from LAGOS-NE (Soranno et al., 2017). The measurements range
from 1982 to 2013 in the database, but several chlorophyll timeseries
were extended through 2020 by collating additional measurements from
the reporting agency or program referenced in LAGOS-NE for each lake.
LAGOS-NE aggregates data from lakes located throughout the Midwest
and Northeast U.S. In this region, chlorophyll-a tends to reach peak
concentrations between July and October (JASO) (Fig. 1). The data from
this period were used to calculate three chlorophyll metrics: magnitude,
severity, and duration (see explanation below) for each lake year. To
adequately characterize July-October chlorophyll-a metrics, sufficiently
long observational records and frequent within-season sampling are
needed. Therefore, lakes for this analysis needed at least 15 years of
July-October chlorophyll-a measurements and a minimum sampling
frequency of once every 14 days, following the selection methods of
Wilkinson et al. (2021). Based on these requirements, 178 lakes were
identified from 10 states in the Midwest (Michigan, Wisconsin, Minne-
sota, Ohio, and Missouri; 64 lakes) and Northeast (New York, Vermont,
Rhode Island, Pennsylvania, and Maine; 114 lakes) U.S. The chlorophyll
data were log-transformed for analysis to create a Gaussian-like distri-
bution. Selected lakes had an average depth of 15.8 m (min=1.2 m,
max=198.4 m) and an average area of 1297.9 hectares (min=1.4 ha,
max=113,496.5 ha).

2.2. Chlorophyll metrics

To characterize (and eventually predict) algal conditions in each lake
year during the July-October season, three metrics were used:
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Table 1
Variables used in correlation analysis with peak season chlorophyll-a metrics,
including data source and resolution.

Predictors (March-June) Source Resolution
Total precipitation (mm) PRISM 4km
Mean air temperature ( °C) PRISM 4km
Mean volumetric soil moisture (m ~ 3/m Copernicus Climate 0.25°
3 Change Service
Precipitation events exceeding 20 (40) mm PRISM 4km
in Midwest (Northeast) watersheds
Sea surface temperature anomalies (°C) NOAA ERSST 2°
Pre-season Chlorophyll-a (ug/L) LAGOS-NE In-situ

magnitude, severity, and duration of chlorophyll-a, as defined by Wil-
kinson et al. (2021). Magnitude is the mean chlorophyll-a concentration
in each lake year, and duration is the portion of the season during which
chlorophyll-a concentrations exceed a threshold concentration for rec-
reational value based on Angradi et al. (2018). Here, the severity metric
has been altered from Wilkinson et al. (2021) and is defined as a function
of magnitude. Seasons in which magnitude exceeds the 95th percentile of
all historical chlorophyll concentrations (rather than year specific con-
centrations) are categorized as severe. On an inter-annual timescale,
magnitude characterizes the average conditions during the peak season
and the corresponding impacts on ecosystem services. Severity reflects
the probability of extreme algae biomass (magnitude) that is most likely
to result in severe consequences like toxin production and fish kills.
Finally, duration is the persistence of high algal biomass associated with
a loss of recreational value during the summer, peak season. The
threshold concentrations used here are developed for two ecoregions
(“Mountains” and “Plains™) and vary in each region based on recrea-
tional user’s expectations for water quality. Because these are large re-
gions, lakes that fall below or above the chlorophyll-a threshold in
nearly all sampling events are removed from analysis to avoid artificially
inflating overall forecast skill. Together, these metrics may provide an
enhanced understanding of algae conditions during the peak season of
algal production, with prospects for more refined actionable informa-
tion. Compared to a singular forecast of mean chlorophyll (magnitude),
a forecast that additionally provides advanced warning of protracted
water quality impairment (duration) and the potential for severe con-
sequences of algae growth (severity) allows for more nuanced decision
making around budgeting, testing, and communicating water quality
expectations with the public. The extent to which these three metrics are
correlated with local and global climate variables and predictable across
a diverse set of lakes is the focus of this work.

2.3. Predictor variable selection

To address whether local and global hydroclimatic variables are
correlated with chlorophyll metrics in a given lake, we evaluate to what
extent pre-season (March through June) observations of local and global
hydroclimate variables are correlated with magnitude and duration for
each lake. Correlations for severity were not evaluated independently in
this analysis as the severity metric is a function of magnitude. In addition
to identifying common local and global hydroclimatic variables corre-
lated with chlorophyll metrics, this analysis was used to identify vari-
ables that would be used in the development of each lake-specific
forecasting model, and the validation of each model in a hindcasting
analysis. The hindcasting analysis uses the lake-specific forecasting
model to predict each year in the chlorophyll metric timeseries without
predictor information from the year of interest, simulating a forecast for
model validation. Specifically, we included March-June variables from
readily available, gridded datasets that were connected to physical
processes that may affect magnitude and duration including (Table 1):
total precipitation (mm), mean air temperature ( °C), mean volumetric
soil moisture (m ~ 3/m ~ 2), the sum of daily precipitation events
exceeding 20 (40) mm for Midwest (Northeast) watersheds, and global
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Fig. 2. The distribution of Pearson correlations between candidate predictors and algae metrics for all lakes.

sea surface temperature (SST) anomalies ( °C). Methods for evaluating
SST anomalies as predictors are described below. Additionally, we
evaluated if pre-season chlorophyll-a, which reflects in-situ processes
and the nutrient availability at the start of the season, is correlated with
peak-season chlorophyll metrics. Excluding extreme events, all metrics
were averaged over the March-June season.

As discussed previously, local hydrology regulates nutrient transport
into lakes from the surrounding watershed, which may ultimately in-
fluence algae abundance. The influence of local hydrology-based
candidate predictors (precipitation, extreme events, and soil moisture)
may vary based on land use and topography within a lake’s watershed.
Therefore, local hydrology predictors were evaluated using a correlation
analysis at each grid within each lake’s HUC12 watershed. HUC12
watershed polygons (Watershed Boundary Dataset, 2021) were subset to
only include areas higher in elevation than the corresponding lake
(Fig. A.1) using gridded elevation data for each watershed from the
elevatr package for the R statistical programming language (Hollister
et al., 2021). The timeseries of candidate predictor variables from each
grid intersecting the watershed polygon was used in the correlation
analysis as was an average of all intersecting grids. The grid with the
strongest, statistically significant correlation was retained for the sub-
sequent hindcasting analysis. High precipitation events may have a
more significant influence on overall nutrient loading than total pre-
cipitation (Carpenter et al., 2015), however, precipitation events that
lead to large loading events may vary by region due to land use topog-
raphy, and nutrient availability. Therefore, separate thresholds were
chosen for extreme precipitation events in Midwest (20 mm) and
Northeast (40 mm) watersheds based on a sensitivity analysis of sig-
nificant correlations between high precipitation events and peak-season
chlorophyll-a magnitude conducted for each region.

On a global scale, pre-season sea surface temperatures can influence
in-season precipitation and temperature over the U.S. through modu-
lation of atmospheric flow and thus indirectly influence peak-season
chlorophyll metrics (Barnston, 1994; Giannini et al., 2000;

Markowski and North, 2003). SSTs evolve slowly, with persistent
(months to years) anomalies, and thus can serve well as predictors at
seasonal timescales (Barnett, 1981). To identify oceanic regions with
strong teleconnections to the Northeast and Midwest U.S., global
pre-season sea surface temperature (SST) anomaly grids were correlated
with each lake’s magnitude timeseries (Fig. A.2). Not surprisingly,
correlation patterns, and thus oceanic regions of influence, vary between
the Midwest and Northeast U.S. (Ropelewski and Halpert, 1987; CPC,
1997; Enfield et al., 2001; Tootle et al., 2005), therefore identification of
teleconnections is performed separately for the Midwest and Northeast.
The number of significant correlations with chlorophyll-a timeseries
were tallied for each SST grid and mapped to identify oceanic regions in
which SST grids were associated with algae abundance in the Northeast
and Midwest. SST grids that were significantly correlated with a large
fraction of lakes (>10 for Midwest, >20 for Northeast) were applied to a
principal component analysis (PCA) to extract the dominant modes of
variability in SST data and reduce the dimensionality of candidate SST
predictors. Given the large number of SST grids, there is a high likeli-
hood of generating spurious correlations. Performing PCA extracts the
dominant climate signals and minimizes the effect of spuriously corre-
lated grids. Principal components (PCs) that explained more than 5% of
the variance in SST anomaly data were retained as candidate predictors.

The time series of variables in Table 1 were used in a correlation
analysis with chlorophyll magnitude and duration for each lake to iden-
tify predictor variables for forecast model development and the subse-
quent hindcasting analysis (Fig. 2). For each lake, all variables that were
significantly correlated with the chlorophyll metric (P<0.05) were
retained for the forecasting model. Out of the 178 lakes evaluated, 135
lakes (50 Midwest; 85 Northeast) had at least one significant predictor
variable for magnitude and 82 lakes (30 Midwest; 52 Northeast) for
duration. Severity is a function of magnitude and therefore retained the
same set of predictors.
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2.4. Forecast model development

Two forecasting models were developed for each lake, one focused
on magnitude (including severity) and a separate model for duration
(proportion of sampling events above the impairment threshold). The
array of processes and feedbacks influencing algae growth and abun-
dance are notoriously complex (Roelke and Buyukates, 2001; Glibert
and Burkholder, 2006; Ho et al., 2019), motivating a statistical modeling
approach over a process based/physical model approach. For lakes with
only one significant predictor from the correlation analysis, a simple
linear regression between that variable and the chlorophyll metric was
constructed for the model to be used in the hindcast analysis. For lakes
with multiple significant predictors, a principal component analysis and
regression approach was used to build the forecasting model. PCA
effectively deals with any multi-collinearity present between predictors
and therefore does not artificially inflate predictive skill. Here, principal
components were retained for the forecast model if they explained more
than 10% of the variance. This modeling approach assumes relation-
ships between candidate predictors and peak season algae metrics on a
seasonal timescale to be linear, however, given that many drivers of
algae growth on short timescales (days to weeks) are considered
nonlinear processes, model residuals were evaluated for evidence of
nonlinear relationships. Autocorrelation was also investigated in each of
the candidate predictors and algae metrics. Except for SST PC1, which
likely captures baseline increases in the temperature of the Pacific
Ocean, less than 10% of timeseries for each variable had more than two
statistically significant autocorrelations (lag 1-10). Additionally,
random forest regression, a nonlinear, nonparametric modeling
approach, was tested to determine if there were notable changes in
model skill due to potential nonlinearities or autocorrelation. Statistical
models were developed using R version 4.2.1.

Water Research 229 (2023) 119402

A leave one out cross-validation approach was used to evaluate
model performance for each lake and chlorophyll metric (hindcasting).
In short, for each lake the observed value from one year of the chloro-
phyll metrics was removed from the timeseries and the forecasting
models (above) were used to predict the missing value. This process was
done iteratively for all years in the timeseries for all lakes individually
and both magnitude (including severity) and duration. A prediction
ensemble was created for each peak-season chlorophyll metric in a lake
year based on model errors (difference between observed and predicted
chlorophyll metric) across the hindcast at that lake. Ensemble members
are generated from a normal distribution of errors with mean zero, based
on maximum likelihood estimation. For each time-step, 100 random
draws from the distribution are added to the magnitude and duration
predictions to form the ensemble prediction (Helsel and Hirsch, 1992;
Alexander et al., 2019).

2.5. Performance measures

To assess model performance, four measures were adopted: corre-
lation coefficient (R?), root mean square error (RMSE), ranked proba-
bility skill score (RPSS), and Heidke skill score (HSS) (Heidke, 1926;
Epstein, 1969). HSS and RPSS are measures of categorical skill, inter-
preted as a percent improvement over a reference forecast. A standard
forecast for hydro-climate prediction is an equal-odds (climatological)
distribution of historical observations. Here, the distribution of histori-
cal observations of chlorophyll magnitude for each lake are split into
four categories representing below normal, near normal, above normal,
and severe algae conditions. If no predictive information is present, a
probabilistic prediction of JASO magnitude would default to clima-
tology (33% chance of below normal, 33% chance of near normal con-
ditions, 28% chance of above normal, and 5% chance of severe
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Fig. 4. Number of preseason SST grids that are statistically significantly correlated with chlorophyll-a timeseries (left column) from lakes in the Northeast (top row)
and Midwest (bottom row). Grids retained (right column) have at least 20 (10) significantly correlated lakes for the Northeast (Midwest).

conditions). Similarly, observations of duration are split into two cate-
gories based on mean duration to represent expected below and above
normal conditions. Forecast models developed for magnitude and
duration generate probabilistic predictions of each category that are
compared against climatology (equal odds). This allows for a direct
comparison between the forecast models developed here and a bench-
mark climatology model to understand the prospects for enhanced
predictive skill. In general, prediction models outperform climatology
when the predicted probability of the observed category is greater than
the climatological probability (e.g. 50% for two categories, 33% for
three categories). HSS is defined as:
H-FE

HSS =3 — ¢3)

Where H is the number of categorically correct forecasts, N is the
total number of predictions issued, and E is the number of categorically
correct predictions expected from the reference forecast. HSS values
range from -co to 1, where negative values represent a forecast that
performs worse than climatology, O represents no skill, and 1 represents
a perfect prediction model. The RPSS is a categorical skill score that
increasingly penalizes an ensemble forecast for assigning greater prob-
ability to categories farther from the observed category. The RPSS uses
the ranked probability score (RPS), the average of the squared difference
between the cumulative probability of the forecast and observations
(Eq. (2))

RPS = (CPfct; — CPobs;)’ (2

i=1

where CPfct; and CPobs; are the cumulative probabilities of the forecast
and observed values through categoly i, and n is the total number of
categories. The RPSS is then defined as:

RPS, ) forecast

RPSS =1 — oo
RP. Sclimamlngy

3)

Where RPSgorecast and RPSclimatology are the RPS values calculated
using the forecast model and the reference forecast. RPSS values range
from -0 to 1, where O represents no skill and 1 represents a perfect
forecast. RPSS values are calculated for each year and the median value
is reported.

Finally, we evaluated if variability in hindcast model performance
(forecasting skill) among lakes was related to static characteristics of the
ecosystems. We compared forecasting skill among categories of trophic
state, lake area, land cover, and geographic region among lakes. The
trophic state index (TSI) is calculated based on chlorophyll-a and is
categorized as oligotrophic (TSI<40), mesotrophic (40<TSI<50),
eutrophic (50<TSI<70), and hypereutrophic (TSI>70) (Eq. (4)) (Carl-
son, 1977).

TSI(CHL) = 9.81 In(CHL) + 30.6 (4)
3. Results
3.1. Leading algae characteristic predictors

The three most frequently retained predictors include pre-season
chlorophyll-a, PC1 from SSTs, and extreme events for magnitude
models. The most frequently retained predictors for duration models
include pre-season chlorophyll-a, and PC1 and PC2 based on SSTs. PCs
derived from SSTs typically represent dominant large-scale climate
signals, potential physical processes are explored further in the discus-
sion. Magnitude and duration metrics are uncorrelated in most lakes (only
11are significantly correlated at the 95% confidence level), suggesting
unique seasonal drivers for each metric in most lakes. Compared to
magnitude models, duration models have a more even distribution of
retained predictors (Fig. 3). In magnitude models pre-season chlorophyll-
a meets the selection criteria in 63% of models, SST PC1 in 42% of
models, and extreme events in 16%. In duration models, SST PC2 is
selected in 38% of models, SST PC1 in 33%, and pre-season chlorophyll-
a in 20%. In both magnitude and duration models, all three predictors are
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Fig. 5. The proportion of each prediction category for each observed category (all lakes).

unlikely to appear in the same model, suggesting variable influence of
these processes by lake. In magnitude models, all three of the most
frequently retained predictors are included in 7% of lakes. In contrast,
one of the three predictors in included in 87% of magnitude models. In
duration models, all three of the most frequently retained predictors are
included for only two lakes (2.5%), while one of the three predictors is
included in 71% of duration models.

Preseason SST grids that are statistically significantly correlated with
chlorophyll-a timeseries from at least 20 (10) lakes are retained for the
Northeast (Midwest) region (Fig. 4). SST regions retained for both
Midwest and Northeast lakes indicate teleconnection signals from the
northern Atlantic and the equatorial pacific. For Midwestern lakes, more
grids are retained in the mid and northern Atlantic compared to the

Pacific. Comparatively, the strongest signals for northeastern lakes are
split more evenly between the upper Atlantic and the equatorial pacific.

While local hydroclimatic predictors are present in a significant
proportion of magnitude and duration models, in most instances they are
retained with SSTs or pre-season chlorophyll-a, particularly in magnitude
models. Some combination of local hydroclimatic predictors (precipi-
tation, extreme events, soil moisture, and air temperature) are retained
in 27% of magnitude prediction models, while just 9% of magnitude
models utilize only local hydroclimatic predictors (i.e., without SST PCs
or preseason chlorophyll-a). Compared to magnitude models, a larger
proportion of duration models are built solely with local hydroclimatic
variables. Hydroclimatic predictors are retained in 38% duration models,
and 22% of models are built exclusively with hydroclimatic predictors
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Fig. 6. Lake models that correctly predict more (less) than half of elevated magnitude (top) and duration (bottom) events, illustrated as open (closed) circles.

(Fig. A.3). Finally, 86% of lakes have 1 or 2 significant predictors while
the maximum number of predictors retained for a lake is 5 (Fig. A.4).

3.2. Model performance

For magnitude prediction models, simple linear regression (single
predictor) is applied to 53% of lakes, whereas principal component
regression (PCR, principal component analysis with multiple linear
repression) is applied to 47% of lakes. A cross-validated hindcast
assessment for all lakes results in a mean R? value of 0.28 (0-0.85) and a
mean RMSE of 0.47 (0.29-1.21). For categorical performance, the mean
HSS and RPSS values are 0.17 and 0.10, respectively. Additionally, 87%
(70%) of lake models have HSS (RPSS) values greater than zero, indi-
cating an improvement of prediction skill over climatology for most
lakes. Further, these models predict above normal and below normal algae
abundance moderately well (Fig. 5), with RPSS values of 0.39 and 0.30
respectively. Severe events prove difficult to predict; approximately 51%
of magnitude models accurately predict an above normal or severe year
when an elevated algae event is observed (i.e., not below or near normal)

for more than half of observed elevated algae events (Fig. 6).

For duration prediction models, simple linear regression is applied to
78% of lakes and PCR to 22% of lakes. Mean R? and RMSE are 0.23
(0-0.65) and 0.34 (0.16-0.42), respectively; mean HSS and RPSS scores
are 0.39 and 0.42, respectively, and 96% (94%) of models improve over
climatology based on HSS (RPSS). In a hindcast assessment, durations of
above normal are correctly predicted for more than half the available
timeseries in 87% of lakes (Fig. 6). Additionally, considering all models,
67% of above normal durations are accurately predicted (Fig. 5), a stark
improvement over climatology for most lakes.

Average model skill is similar between regions is similar, however,
Northeast lake forecast models outperform Midwest lake models where
differences in average skill scores occur (Fig. 7). This may be expected
given that the primary difference in predictor selection between models
in the Northeast and Midwest is selection of relevant SST grids. Relevant
Northeast SST regions are more coherent than regions for the Midwest,
which may represent a stronger influence on lake processes. The mini-
mal differences may also point to consistency in the predictive power of
local and within-lake variables between the Northeast and Midwest.
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Fig. 8. Lakes in which chlorophyll-a, SSTs, both, or neither are selected for magnitude predictions.

To evaluate the presence of nonlinear relationships, residuals be-
tween predicted and observed chlorophyll metrics were investigated for
each lake. Residuals generally appeared random, suggesting that the
relationships between the pre-season drivers and peak season chloro-
phyll metrics investigated for this analysis can be approximated as
linear. Hindcasts were also generated using random forest regression to
test for an increase in predictive skill, which may indicate the presence
of nonlinear relationships. Random forests models were created with the
same predictors selected for PCR, each with 500 trees. Cross validated
hindcast results are similar or slightly worse than PCR for both Magni-
tude (Mean: R? = 0.25, RMSE = 0.48, HSS = 0.12, RPSS = 0.04) and
Duration (Mean: R? = 0.23, RMSE = 0.34, HSS = 0.34, RPSS = 0.39),
suggesting that PCR is a suitable approach.

4. Discussion
4.1. Regional characteristics

Predictions of peak season algae growth at scale provide insights into
relevant global and local-scale processes setting the conditions for peak
season algae biomass. Pre-season SSTs and chlorophyll-a observations
provide the most predictive power for both magnitude and duration
metrics, reflecting the importance of these scales. However, while SSTs
and chlorophyll-a are selected most frequently as predictors for both
magnitude and duration, the importance of each predictor is mixed by
region (Fig. 8). Given that SST-atmosphere teleconnections typically
have regional influence, spatial variability in performance of SST pre-
dictors may be the result of localized pre-season processes superseding
the influence of large-scale climatic processes in peak season algae
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Table 2
Average skill scores for magnitude and duration models in which pre-season
chlorophyll-a and/or SSTs are utilized as predictors.

Variable High/Severe RPSS  HSS R? RMSE  Predictand
Correct
Both 0.58 0.22 0.20 0.43  0.49 Magnitude
MAMJ 0.47 0.03 0.15 0.24 0.50
chlorophyll-a
SSTs 0.51 0.08 0.16  0.24  0.40
Other 0.44 0.08 0.14 017 0.43
Both 0.65 0.55 0.40 031 0.33 Duration
MAMJ 0.56 0.12 0.10 0.18 0.36
chlorophyll-a
SSTs 0.70 0.43 041 021 0.34
Other 0.67 0.22 0.27 0.11 0.33

biomass. For example, food web dynamics are well established as having
significant influence on aquatic primary productivity (Lampert et al.,
1986; Carpenter et al., 1987; Vanni and Temte, 1990). In this study,
however, the representation of food web dynamics is limited to
pre-season algae abundance. While this variable is shown to be a
powerful predictor of peak season productivity in many lakes, the effect
of pre-season predatory control on algae communities is unrepresented.
This may limit the skill of prediction models for lakes in which
zooplankton grazing plays a significant role in determining algae pop-
ulations in the summer and early fall. This limitation may be responsible
for differences in average model performance. For example, magnitude
and duration models in which pre-season chlorophyll-a is an important
predictor, and SSTs are not, perform worse on average than the inverse
(Table 2). Lakes retaining only pre-season chlorophyll-a may be more
dependent on within-lake processes, many of which are not represented
in these models. This may explain the less robust predictive signal from
pre-season chlorophyll-a in these lakes, compared to lakes more heavily
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influenced by SST-atmosphere teleconnections.

As discussed previously, relevant SST anomaly grids are identified
for the Northeast and Midwest separately. The PCs of selected SST
anomaly grids represent the dominant climate signals affecting the
selected lakes across the Northeast and Midwest U.S. and may therefore
be associated with large-scale climate phenomena that have well-
established teleconnections with climate conditions across North
America. Two dominant climate phenomena with variable impacts on
local hydroclimatic conditions across the Northeast and Midwest
include the North Atlantic Oscillation (NAO) and the El Nino Southern
Oscillation (ENSO) (Ropelewski and Halpert, 1987; Visbeck et al.,
2001). In the Northeast, two of the three SST PCs used as potential
predictors are significantly correlated with both the NAO index and
multivariate ENSO index (MEI). In the Midwest, two PCs are signifi-
cantly correlated with the MEI and all three are significantly correlated
with the NAO index. This suggests that interannual variability in local
climate, and in lakes, across the Northeast and Midwest is associated
with both ENSO and NAO-like climate signals (Fig. A.5).

Compared to pre-season chlorophyll and SSTs, other variables
considered here provide only modest skill in predicting algae charac-
teristics for most lakes. Despite the perceived importance of local land
and hydrologic variables modulating inflow and lake processes, few
were retained as predictors; however, land use and other watershed
characteristics may be important in determining the relevance of these
predictors. Local hydrology might be expected to play a larger role in
promoting algae growth in agricultural watersheds, given the effect of
runoff on nutrient loading (Castillo et al., 2000; Mander et al., 2000).
This is reflected in predictor selection for model construction, for
example, magnitude models in watersheds with greater than 25% agri-
cultural land are nearly twice as likely to retain a local hydrologic pre-
dictor compared to models in watersheds with less agricultural land
(18.4% vs. 36%). March-June air temperatures are also retained in
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Fig. 10. Probabilities of magnitude prediction categories for Mariaville Lake and Duanespurg reservoir, New York. Diamonds indicate the observed category.

relatively few forecasting models overall but are notably included in
more duration models than any of the local hydrologic predictors. As
discussed previously, the importance of temperature in determining
algae growth is well established, however, the air temperature predictor
included here may be too simplistic to capture the relationship across all
lakes. Significant variability in prediction skill exists among lakes with
little evidence of spatial patterns. On average, skill scores are higher in
the Northeast compared to the Midwest, however, variability within
both regions is significant. The frequency of predictor retention and the
average magnitude of significant correlations between predictor vari-
ables and algae magnitude are similar by region particularly for the most
frequently selected predictors, including SSTs, pre-season chlorophyll-a,
and extreme events (within 0.05). SST PC1 and extreme events in the
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Northeast have slightly higher correlations with algae magnitude than in
the Midwest, which may help explain slightly higher model skill scores
in the Northeast. The magnitude of correlation between predictor vari-
ables and algae duration is also similar, however, SST PC2 is retained
much more often in Northeast models compared to Midwest models
(25% of lakes vs 5% of lakes). Given that SST PC2 is correlated with the
NAO, this might indicate a greater influence of the NAO on duration in
the Northeast and help explain the slightly higher skill scores of duration
models in the Northeast.

Similarly, distributions of skill scores across trophic state and lake
area are variable (Fig. 9).

On average, magnitude models appear to accurately predict
increased algae abundances more frequently in larger lakes and in
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Fig. A.1. An example of the grid selection process for hydrologic predictors. The white polygon represents the HUC12 watershed, the red dot represents the lake, and
the gray represents areas of the watershed with elevation exceeding the lake surface.

mesotrophic and oligotrophic lakes. Duration models have approxi-
mately equal distributions of skill across lake area and trophic state.
While the differences in magnitude model skill based on lake area and
TSI category are notable, they were found to be statistically insignificant
in an analysis of variance (ANOVA; lake area P = 0.24, TSI P = 0.36),
therefore it may be difficult to draw definitive conclusions from these
results. There are a few potential explanations for the variability in
magnitude model performance. In an analysis of lake size and primary
productivity in the Canadian Shield lakes, Fee et al. (1994) found that
larger lakes more efficiently convert external nutrient loads into
phytoplankton biomass due to more frequent resuspension of sediments,
and receive a higher proportion of nutrient loads from runoff rather than
direct precipitation. The focus in this analysis on hydroclimatic pre-
dictors of nutrient runoff is therefore consistent with increased predic-
tive skill in larger lakes. Notably, air temperature did not stand out as an
important predictor of algae abundance at a season-ahead lead time. As
discussed previously, temperature is well-established as an important
variable in algae growth. In some cases warm temperatures have been
shown to hold greater influence over phytoplankton growth (Salmaso
et al., 2012), and cyanobacteria growth in eutrophic lakes (Rigosi et al.,
2014). The air temperature predictor used here may be too simplistic to
capture peak season water temperatures, which may disproportionately
contribute to lower model performance in eutrophic lakes. Rusak et al.
(2018), found a positive relationship between variability of
chlorophyll-a and trophic status in 18 globally distributed lakes, which
may also reduce predictability (Cottingham et al., 2000). This may
explain the moderate reduction in average skill in magnitude models for
eutrophic lakes compared to lakes of a lower trophic status.
Variability in prediction skill can also exist between similar or
proximal lakes. Mariaville lake and Duansespurg reservoir are two
eutrophic waterbodies located in eastern New York, approximately five
miles apart. Mariaville lake has one of the best performing magnitude
prediction models among the lakes considered and accurately predicts
above normal and severe chlorophyll-a conditions for each of the five
years in which they are observed. Comparatively, Duansespurg reservoir
only correctly predicts two out of six observed events (Fig. 10). In 1999,
for example, the Mariaville lake model accurately predicts a large
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probability of above normal conditions (observed state) and is even able
to differentiate between above normal and severe. Comparatively, for the
same year, the Duansepurg model only predicts a 1% chance of below
normal conditions (observed state), and both models predict an
approximately 80% chance of above normal or severe conditions in 1999
(77% Mariaville, 85% Duanespurg). The Mariaville lake model includes
SSTs (PC1) and pre-season chlorophyll-a as predictors, whereas the
Duansespurg model includes only SSTs (PC2). The performance of the
Duanespurg model compared to the Mariaville model again suggests
that while global processes are important in setting conditions for peak
season algae biomass, and both explain significant variability in the
magnitude timeseries of both lakes, within-lake processes that may
determine interannual variability of peak season algae abundance are
not entirely captured by the hydroclimatic predictors investigated here,
or by pre-season algae abundance. The variability in forecast skill and
predictive power of hydroclimatic variables among study lakes high-
lights the importance of catchment- and lake-specific processes and
characteristics in determining the effects of external climate forcing on
peak-season algae abundance. Catchment soil types, land use, and
location, as well as lake area, depth, and management may all influence
the susceptibility of lake systems to climate variables (Moss, 2012), and
may alter predictive skill.

While forecasting models developed on the selected pre-season
predictors cannot entirely capture the nuances of peak season algae
biomass, it is notable that relatively simplistic statistical models based
on global sea surface temperatures and pre-season chlorophyll-a show
significant skill in many of the selected lakes. For these lakes, season-
ahead prediction of algae metrics may provide actionable information
to lake managers and public health officials based on easily accessible
gridded datasets and basic water quality monitoring.

5. Conclusions

In this paper, season ahead predictions for July-October algae
magnitude and duration are developed for 135 lakes identified across the
Northeast and Midwest U.S. to inform lake management decisions prior
to peak algae biomass. Prediction models are conditioned on local and
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Fig. A.5. Correlation between selected SST principal components and NAO and MEI indices for the Northeast and Midwest U.S.

global scale pre-season (March-June), readily available, gridded
hydroclimatic variables and pre-season chlorophyll-a. Global SST and
pre-season chlorophyll-a are the most common sources of predictive
power across lake models. SST grids selected for prediction model
development are concentrated in the northern Atlantic and equatorial
Pacific, with characteristics of both ENSO and NAO.

Forecasting models outperform climatology in 87% (70%) of
magnitude models and in 96% (94%) of duration models based on HSS
(RPSS). Additionally, skillful prediction of elevated algae metrics, based
on magnitude and duration, is evident in more than half of the included
lakes. As cultural eutrophication fuels an expansion of harmful algae in
lakes across the U.S., prediction tools to inform water quality manage-
ment, particularly those conditioned on easily accessible data, may
incentive preparedness actions and lake management decisions toward
protecting public health and informing recreational activities.
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