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ABSTRACT: Oxidation of isoprene, the biogenic volatile organic -
compound (BVOC) with the highest emissions globally, is a large S0, >H,S0,~ Hsos- ’\f — >
A

source of secondary organic aerosol (SOA) in the atmosphere. :

Particulate organosulfates formed from acid-driven reactions of the T
oxidation products isoprene epoxydiol (IEPOX) isomers are - DMS

LA (CHZ0H

G ¢ ., IEPOX

/J'\/ isoprene

T

important contributors to SOA mass. Most studies have focused
on organosulfate formation on ammonium sulfate particles, often at
low pH. However, recent work has shown that sea spray aerosol
(SSA) in the accumulation mode (~100 nm) is quite acidic (pH
~2) and undergoes further heterogeneous reactions with H,SO, to
form Na,SO,. Herein, we demonstrate that substantial SOA,
including organosulfates, are formed on acidic sodium sulfate
particles (pH = 1.4 + 0.1) via controlled laboratory experiments.
Comparable organosulfate formation was observed for acidic sodium and ammonium sulfate particles even though acidic particles
with sodium versus ammonium as the primary cation formed less SOA volume. Both exhibited core-shell morphology after the
reactive uptake of IEPOX; however, organosulfates were identified with Raman microspectroscopy in the core and shell of
ammonium sulfate SOA particles, but only in the core for sodium sulfate SOA. Key organosulfates were also identified in ambient
samples from the Galapagos Island. Our results suggest that isoprene-derived SOA formed on aged SSA is potentially an important,
but underappreciated, source of SOA and organosulfates in marine and coastal regions that could modify SOA budgets.

—>
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Bl INTRODUCTION range from 1 to 12 Tg,'> compared to an annual estimated

13 .
Marine aerosol is the largest contributor to global aerosol total global flux of ~600 Tg ~ Isoprene-derived secondary

budgets' and impacts Earth’s radiative balance through both organic aerosol (iSOA) is known to be an important

direct and indirect effects.” Understanding marine aerosol is contributor to total secondary organic aerosol (SOA) in
important in both remote and coastal regions, where roughly urban and continental regionS;H_lé accounting for up to 41%
50% of the global population lives and where marine aerosol is of the organic mass fraction in the southeast United States
an important contributor to particulate matter (PM) during summer,'” but its formation in coastal and remote
concentrations,3 particularly for sub-micrometer particles.‘*’5 marine regions is far less understood. A major oxidation
This makes it critical to understand both primary aerosol pathway for isoprene leads to the formation of isomers of

o 2
emissions, such as sea spray aerosol (SSA),” and secondary isoprene epoxydiols (IEPOX).'® IEPOX readily undergoes
aerosol that forms from oxidation of gaseous species in coastal

and remote marine environments. Marine secondary aerosol
includes inorganic sulfate from both natural sources (dimethyl
sulfide, DMS, to SO, oxidation) and anthropogenic sources
(ships and SO, emissions),”” as well as organic species
produced from the reactive uptake or condensation of biogenic
volatile organic compound (BVOC)-derived oxidation prod-
ucts.”

Marine biota are well-established sources of isoprene,
with annual global oceanic fluxes of isoprene estimated to

acid-driven reactive uptake onto ammonium sulfate (AS)
particles, forming organosulfate compounds,'” with this
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reaction pathway representing up to ~30% of the particulate
organosulfate mass in the eastern United States.”’ Organo—
sulfate compounds have been identified in the atmosphere
globally,'* including in both marine™*"**
environments. However, most research on iSOA formation has
focused on urban and continental environments,*° while iSOA
and organosulfate formation in marine environments remains
much less understood.

Studies on the formation of iSOA have primarily focused on
the reactive uptake of IEPOX onto ammonium sulfate
salts,"”****7** which are often acidified to replicate urban
aerosol pH.29 In contrast, for marine environments, sodium is
the dominant cation,’® and sodium sulfate (SS) has long been
observed to form by the reactive uptake of H,SO,*' ~** and
displacement of HCl in numerous field studies,”*>™"’
including non-coastal cities (Atlanta)®® and forested sites™
hundreds of km inland (eq 1).

. 23,24
and continental ™

2NaCl(aq) + HZSO4 () i ZHCI(g) + NaZSO4 (aq) (1)

Recent measurements by Angle et al.*’ indicate that sub-
micrometer marine aerosol particles are emitted with a pH of
~2. H,SO, uptake can decrease the pH of SSA particles, as
shown in ambient measurements by Keene et al.*' While
Nguyen et al.** showed that neutral SS particles do not react
with IEPOX to form SOA, to our knowledge, there have not
been studies that investigated the SOA production from
IEPOX uptake to acidic SS particles and subsequent
organosulfate formation. Research on the formation of iSOA
from the reactive uptake of IEPOX onto magnesium sulfate
seed particles resulted in the enhanced formation of
unsaturated oligomeric species,” indicating that the seed
impacted the chemical composition of the resultant iSOA
particles.

In this study, we investigate the potential for proxies of aged
SSA (Na,SO, acidified with H,SO,) to form iSOA. iSOA was
generated on acidic sodium sulfate particles reacted with
gaseous trans-B-IEPOX, a predominant IEPOX isomer.** The
physical and chemical transformations of the SS aerosol
particles were characterized with a wide range of analytical
instrumentation, including both online and offline measure-
ments. The analytical techniques consist of a single-particle
mass spectrometer (aerosol time-of-flight mass spectrometer,
ATOFMS), an aerosol chemical speciation monitor (ACSM),
a scanning electrical mobility spectrometer (SEMS), a Raman
microspectrometer, and a particle-into-liquid sampler (PILS)
whose samples were analyzed by both ion chromatography
(IC) and hydrophilic interaction liquid chromatography
interfaced with electrospray ionization high resolution quadru-
pole time-of-flight mass spectrometry (HILIC/ESI-HR-
QTOFMS). We demonstrate that acidified SS seed particles
are capable of forming significant amounts of iSOA and show
that SS seed particles convert similar amounts of inorganic
sulfates to organosulfates compared to AS-seeded iSOA
particles. Furthermore, we show that SS-seeded iSOA particles
result in comparable formation of methyltetrol sulfates
(MTSs), which are the single most abundant organosulfates
detected in ambient aerosols.””*"** These results indicate that
SSA, after conversion of NaCl to Na,SO,, could potentially be
a significant source of iSOA formation in marine environments.

B MATERIALS AND METHODS

Aerosol Generation. SOA was generated from the reactive
uptake of trans-B-IEPOX, which was synthesized via the
method described by Zhang et al.*” The use of the University
of North Carolina at Chapel Hill (UNC) 10 m® indoor
chamber facility to study SOA has been described previously*®
and was operated at 50% relative humidity (RH) under dark
conditions, as described by Zhang et al”” In short, aerosol
particles were generated from solutions of SS (Sigma-Aldrich,
>99% purity) or AS (Sigma-Aldrich, >99% purity) and 18.3
MQ Milli-Q water (Table S1). The solutions were acidified by
adding sulfuric acid (Sigma-Aldrich, >98% purity) and
measured with a pH probe (Hanna Instruments). Although
it has been previously shown that the aerosol pH is lower than
its corresponding atomizing solution pH, the aerosol used in
the present study approached the lower limit of detection for
direct measurement with pH paper.*’ Thus, only the pH of the
atomized solutions are reported here (Table S1). To improve
run-to-run comparability, the total inorganic sulfate (Sulf,,,,),
including both SO,>~ and HSO,”, in the seed aerosol was held
constant at 0.12 M, based on prior work.” Acidified seed
particles were generated from a custom-made atomizer’® and
injected into the chamber. After the seed aerosol concentration
had stabilized, gaseous trans-f-IEPOX was introduced to the
chamber through a heated manifold (~60 °C) and injected for
60 min.

Online Analysis of Aerosol Size and Composition. A
suite of analytical instruments were connected to the
environmental chamber to measure real-time SOA formation,
including an ATOFMS,”" an ACSM (Q-ACSM, Aerodyne
Research Inc.),”” and a SEMS system (BMI Inc, Model
2100).*"

Aerosol Time-of-Flight Mass Spectrometry. ATOFMS was
used to measure the size and chemical composition of
individual particles, and the version of ATOFMS used in this
study was previously described by Pratt et al’' In short,
aerosol particles were introduced into a differentially pumped
vacuum chamber and focused into a narrow particle beam by
an aerodynamic lens. The particle beam first passes through
two continuous wave lasers (405 and 488 nm, respectively) 6
inches apart, and the single particle speed is measured by
calculating the time taken to travel between the two lasers.
Vacuum aerodynamic diameter (d,,) is calculated by
generating a calibration curve from the particle speed of
polystyrene latex sphere standards of known diameters (90
nm—1.5 ym). Based on their speed, particles are then desorbed
and ionized via a Q-switched Nd:YAG laser (266 nm, fourth
harmonic of a 1064 nm source), producing both positive and
negative ions that are detected simultaneously via separate
time-of-flight mass analyzers, providing size and dual-polarity
time-of-flight mass spectra for individual particles.

Aerosol Chemical Speciation Monitor. The ACSM
measures the time-resolved chemical composition of non-
refractory sub-micrometer aerosol. As described in Ng et al.,>®
aerosol particles are focused into a narrow beam via an
aerodynamic lens and impacted onto a hot vaporizer. The
resulting vapor is ionized via electron ionization (70 eV) and
analyzed via a quadrupole mass spectrometer operated in
positive ion mode. ACSM calibration and tuning procedures
were adopted from our prior studies.”>>*

Scanning Electrical Mobility Sizer. The SEMS consists of a
differential mobility analyzer (DMA, BMI model 2002)
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Figure 1. Single-particle mass spectra collected using the ATOFMS of SS (a) and AS (b) particles after reaction with IEPOX in an atmospheric
chamber experiment. Green peak represents the monoisotopic mass of IEPOX-derived methyltetrol sulfates (an abundant organosulfate). Inset
represents a zoom-in of the mass spectral region with iSOA products. ACSM organic spectra averaged for 20 min post IEPOX injection with SS (c)
and AS (d) seed particles. Peaks labeled represent relevant organosulfate species. Spectra were normalized by the sum of organic species m/z 18—

120.

coupled to a mixing condensation particle counter (MCPC,
BMI model 1710). The SEMS measures aerosol number,
surface area, and volume concentrations within the chamber at
a time resolution of ~1 min.

Offline Analysis. Laboratory Particle Collection. Particles
were impacted onto quartz substrates (Ted Pella Inc.) using a
multi-orifice particle sizer (MPS-3, California Measurements
Inc.). Particles collected on stages 2 (0.4—2.5 ym) and 3 (<0.4
um) were the focus of our analysis as they are closest to the
peak of the particle number size distribution from the
atmospheric chamber.”> Additionally, SOA were collected by
a PILS system (BMI model 4001) for offline inorganic sulfate
quantification via IC, as described previously (Experiments 1
and 2;°*%7 Experiments 3 and 4°%), and organosulfate
quantification via hydrophilic interaction liquid chromatog-
raphy coupled with electrospray ionization high-resolution
quadrupole time of flight mass spectrometry (HILIC/ESI-HR-
QTOFMS), as described previously by Cui et al.>* The PILS
vials were stored in the dark at 2 °C immediately after
collection and analyzed without further pretreatment except
for dilution by acetonitrile for the HILIC/ESI-HR-QTOFMS
method described below.

Field Aerosol Collection and Filter Analysis. Ambient
samples were collected from the Galapagos Science Center on
San Cristobal Island in Puerto Baquierizo Moreno, Ecuador

(0.8957°S, 89.6086°W, 15 masl), with a high-volume PM, g air
sampler (TE-6070 V-BL, Tisch Environmental) onto prebaked
quartz filters. Sampling and extraction conditions were as
described previously in Cui et al.>® The chemical composition
of the extracts were analyzed by HILIC/ESI-HR-QTOFMS as
described below.

Raman Microspectroscopy. Individual particles collected
onto quartz substrates during the laboratory studies were
analyzed via Raman microspectroscopy with a Horiba
LabRAM HR Evolution Raman Spectrometer (Horiba
Scientific) coupled to a confocal optical microscope (Olympus,
100 X 0.9 N.A. objective) at ambient temperature and RH.
The instrument is equipped with a ND:YAG laser source (50
mW, 532 nm) and a CCD detector. Spectra for each particle
were collected in the range of 500—4000 cm™ for three
accumulations of 15 s. An 600 groove/mm diffraction grating
with a spectral resolution of ~1.7 cm™" was used.

lon Chromatography. IC was used to quantify the
inorganic sulfate concentration in the SOA particles from the
chamber. For Experiments 1 and 2, a 500 uL aliquot was
analyzed by an anion exchange IC (Dionex ICS-2100)
equipped with a guard column (Dionex IonPac AG18, 4 mm
X 50 mm) and an anion exchange column (4 mm X 250 mm,
Thermo Fisher) run at a flow rate of 1.0 L min~'. For
Experiments 3 and 4, a 25 uL aliquot of each PILS aqueous
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Figure 2. Raman spectra of SS (a) and AS (b) seed particles compared to the spectra of seed particles after reaction with IEPOX. For SS + IEPOX,
98 particles were analyzed and averaged; for the well-characterized AS + IEPOX, 82 particles were analyzed and averaged. Intensity for all spectra is
normalized to 792 cm™, an intense peak associated with the quartz substrate. Asterisks correspond to other peaks associated with quartz substrate.

sample was analyzed by an anion exchange IC (ICS 3000,
ThermoFisher). The instrument is equipped with an IonPac
AS11-HC guard column (2 mm X 50 mm ThermoFisher) and
an anion-exchange column (2 mm X 250 mm ThermoFisher)
run at a flow rate of 0.4 L min~".

Hydrophilic Interaction Liquid Chromatography Inter-
faced with Electrospray lonization High-Resolution Quadru-
pole Time-of-Flight Mass Spectrometry. HILIC/ESI-HR-
QTOFMS was used to quantify the concentration of
methyltetrol sulfates (MTSs) in the iSOA particles, the
predominant IEPOX-derived organosulfate com-
pounds,”**%%°" and 2-methyltetrols (2-MTs) from the
laboratory and field. As previously described by Chen et
al,>® a 50 uL aliquot of each PILS aqueous sample was
withdrawn and diluted in 950 uL of acetonitrile (ACN, HPLC-
grade, Fisher Scientific) shortly after collection in order to
achieve the solvent composition of the organic mobile phase
(ie., 95:5 ACN:H,0). Diluted PILS samples were stored in
the dark at —20 °C prior to HILIC/ESI-HR-QTOFMS
analysis. Analysis was performed following the method of
Chen et al.>® using an Agilent 6520 Series Accurate Mass Q-
TOFMS with an ESI source operated in negative mode
coupled to an Agilent 6500 Series UPLC equipped with a
Waters ACQUITY UPLC BEH Amide column following the
published method.”® The operating conditions of the HILIC/
ESI-QTOFMS system (elution gradient program, mass
calibration, tuning, voltages, etc.) were previously described
by Chen et al.>

B RESULTS AND DISCUSSION

Identification of Organosulfate Formation. Atmos-
pheric chamber experiments were conducted with both
acidified SS (pH 1.4 + 0.1) and acidified AS (pH 1.4 + 0.1)

seed particles and reacted with IEPOX. The chemical
composition of the reacted particles was monitored at the
single-particle level with ATOFMS and at the bulk aerosol
level with an ACSM. IEPOX-derived MTS isomers have been
previously observed in ambient particles from field measure-
ments using the ATOFMS as deprotonated molecules
(CsH,,0,87) at a mass-to-charge ratio (m/z) of 215.°%%
ATOEFMS spectra from organosulfate standards including 3-
methyltetrol organosulfates, sodium ethyl sulfate, and hydrox-
yacetone sulfate were compared (Figure S1). A negative ion
peak at m/z 215 was only observed in the spectrum for 3-
methyltetrol organosulfates, whereas no peak was observed at
m/z 215 in the spectra for the remaining standards, providing
further evidence that this peak corresponds to MTS isomers. A
negative ion peak at m/z 215 was observed in the ATOFMS
spectra of the reacted particles for both AS and SS seed
aerosol, indicating that MTS isomers can form from the
reaction of IEPOX with sulfate on the acidified SS seed
particles. Example ATOFMS spectra of individual particles are
shown for acidic SS + IEPOX and acidic AS + IEPOX-reacted
particles (Figure lab). We observed particle-to-particle
variability in the collected ATOFMS spectra of SS + IEPOX
reacted particles, which can be noted in the lower m/z region
of the SS + IEPOX-reacted particles (Figure S2). In addition to
MTS isomers observed as deprotonated molecules at m/z 215,
the SS-reacted particles contained other isoprene-derived
organic compounds previously identified in ambient aerosol:
glycolic acid sulfates with deprotonated molecules at m/z 155
and 622,—MTS with deprotonated molecules at m/z 135 (Figure
S2).

Bulk aerosol average mass spectra from the ACSM
demonstrate that organic aerosol forms from the reaction of
IEPOX with acidified SS particles (Figure 1c). The average
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Figure 3. Change in aerosol volume, inorganic sulfate, methyltetrol sulfates (MTS), and 2-methyltetrols (2-MT) for SS (blue) and AS (red) seed
particles at pH = 1.4 + 0.1 reacted with IEPOX in an atmospheric chamber. (a) Change in aerosol volume for SS-seeded and AS-seeded iSOA
particles. (b) Change in the percentage of inorganic sulfate consumed. Shaded region represents standard deviation for IC analysis. (c) Change in
the mass of MTSs. Shaded region represents % relative error for HILIC/ESI-HR-QTOFMS analysis. (d) Change in the mass of 2-MTs. Shaded
region represents % relative error for HILIC/ESI-HR-QTOFMS analysis.

organic ACSM mass spectra of SOA produced following 60
min of IEPOX injection were compared for the AS and SS seed
particles (Figure 1c,d). The AS and SS experiments produce
similar SOA spectra, with both containing mass spectral
fragments at m/z 53 and 82,*® characteristic ACSM mass
fragment ions for [IEPOX-derived organic compounds.'”** The
combined ACSM and ATOFMS results support the conclusion
that organic aerosol forms from the reaction of IEPOX with
acidified SS aerosol via single-particle and bulk analysis.
Impact of Seed on SOA Chemical Composition and
Morphology. To further differentiate inorganic and organic
sulfate within individual particles, Raman spectra were
collected for the SS and AS seed particles and compared to
the particles after reaction with IEPOX in the atmospheric
chamber (Figure 2 and Table S2). Inorganic sulfate (aqueous)
is discernable and located in the seed and reacted particles for
both SS and AS particles at 974 and 972 cm™, respectively, in
the form of the sulfate symmetric stretching mode,
1,(80,27),%* and in the SS-reacted aerosol particles at 1039
in the form of bisulfate 2(HSO,”).®® For both seed aerosol
types, the spectra show the formation of organic compounds
observed via the methyl asymmetric stretching mode in the C—
H stretching region (2950, 2974, and 2952 em™),%* methyl
symmetric stretching mode (2897 and 2892 cm™),°* and
additional organic modes in the fingerprint region (1663, 1462,
1410, 1075, and 1063 cm™').°*~%" Peaks at 1075 and 1063
cm™ in the spectra of the SS- and AS-reacted particles,
respectively, correspond to IEPOX-derived organosulfates.’*”’
The spectra also indicate chemical differences between the
SS-reacted aerosol particles and AS-reacted aerosol particles. In
the AS-reacted aerosol particles, we observed a peak at 1410
em™, potentially corresponding to the ammonium bend,*””°
though neutral organosulfate compounds or other organic
modes may also contribute.””**”? In the AS-seeded iSOA, we
also observed a peak corresponding to carbonyls at 1663

ecm™'7" This peak was not observed in the SS particles,

suggesting that different products may form in SS-seeded iSOA
particles. We also observed a distinct peak in the fingerprint
region for the SS particles corresponding to the CH,/CHj,
bend at 1462 cm™.%° Comparing the Raman spectra of the
reacted to the seed particles for acidified SS further supports
our conclusion that organic aerosol forms from the reaction of
IEPOX with SS seed aerosol.

Impact of Seed Aerosol Type on SOA Mass and
Organosulfate Formation. To investigate how the main
cation (Na* vs NH,") in the seed aerosol impacts the
formation of organosulfate compounds, SEMS was used to
determine aerosol volume formation, IC was used to quantify
the percentage of inorganic sulfate consumed, and HILIC/ESI-
HR-QTOFMS was used to quantify MTSs and 2-MT's formed
in the iSOA during the atmospheric chamber experiments for
SS and AS (Figure 3). After 60 min of reaction in the chamber,
the volume of SOA formation was greater from the reaction of
acidic AS with IEPOX than that from the reaction of acidic SS
with IEPOX. Despite the difference in aerosol volume growth,
the percentage of inorganic sulfate consumption at 60 min was
similar for AS (44% + 4) and SS (45% + 4) at 60 min,
indicating that a comparable amount of organosulfates is
formed for both seed types. We also investigated the mass of
key iSOA products MTSs and 2-MTs at 60 min. The mass of
MTSs formed at 60 min from the reaction of acidic AS with
IEPOX (180 + 30 pg/m*) was comparable to the amount
formed from the reaction of acidic SS with IEPOX (170 + 20
ug/m?) as well as the mass of 2-MTs formed at 60 min for AS
SOA (240 =+ 30 ug/m*) and SS SOA (250 + 30 ug/m?).

We compared the time-resolved volume, inorganic sulfate
consumption, MTS mass, and 2-MT mass for SS and AS seed
aerosol types (Figure 3). SEMS results indicate that AS-seeded
iSOA particle volume growth is greater than iSOA formed
from SS seed aerosol particles (Figure 3a). The volume growth
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for the SS and AS experiments were similar until ~20 min after
the reaction began, when SS-seeded iSOA particles started to
level off and AS-seeded iSOA particles continued to increase.
For iSOA from both AS and SS seed aerosols, the amount of
inorganic sulfate began decreasing at the beginning of IEPOX
injection, indicating that the inorganic sulfate was consumed
and converted to organosulfates immediately after reaction
with gaseous IEPOX. After 60 min, the injection of IEPOX was
stopped and the particles were allowed to react in the chamber
for another 60 min. For both the SS- and AS-seeded iSOA
particles, the inorganic sulfate continued to be consumed,
indicating that further chemical reactions involving sulfate
incorporation into organic species were occurring. However,
the decrease occurred at a slower rate than during the period of
IEPOX injection.

Similar to inorganic sulfate consumption, the formation of
MTS and 2-MT products were comparable for the two seed
types. The mass of MTSs increased until about 20 min into the
reaction, around the same time that the volume formation
leveled off in the SS-iSOA and the AS-iSOA continued to
increase. After ~30 min of reaction, the MTS mass stopped
increasing and remained stable for the experiment for both
inorganic seed particle types. The 2-MT mass increased in
both the AS and SS iSOA until ~40 min of reaction, after
which the mass of 2-MTs in the iSOA slowly decreased in the
particles, potentially due to wall loss, for the remainder of the
experiment.

The experiments for both particle types were repeated, and a
similar trend was observed with increased volume formation in
the AS-seeded iSOA compared to the SS-seeded iSOA (Figure
S3). The particle size distributions were compared for the SS
and AS seed aerosol particles reacted with IEPOX at 0 min
(unreacted), 30 min reaction, and 60 min reaction (Figure S$4).
For both the SS and AS experiments, the particle size modes
were similar. Slightly greater MTS and 2-MT masses of
formation were observed in the repeats that can be attributed
to a greater mass of IEPOX injected during the AS repeat
experiment (3.9 mg) compared to the SS (2.9 mg), though
other factors, including partitioning and formation of other
products, could play a role.

HILIC/ESI-HR-QTOFMS was used to investigate the
formation of other known organosulfate products in the
iSOA. Similar product formation was observed in the iSOA
formed from the two particle types. Future studies will be
conducted to compare the product distribution in iSOA-
formed IEPOX with acidic SS and acidic AS.

Particle Morphology. To investigate the potential for SS
seed particles to form a core-shell morphology, potentially
resulting in the “self-limiting” effect as described by Zhang et
al,”” single-particle morphology and chemical composition was
investigated using Raman microspectroscopy for SS- and AS-
seeded iSOA particles. Both SS- and AS-derived iSOA particles
formed core-shell morphologies after reacting with IEPOX
(Figure 4 and Table S3), as observed by the optical image of
each particle as well as the chemical differences obtained from
the spectra taken at the center (core) and edge of the particle
(shell). Core and shell spectra for particles (AS, n = 18; SS n =
25) were compared to assess reproducibility (Figures SS and
S6).

For SS-reacted particles, an organic peak at 1077 cm™" was
observed in the core, corresponding to organosulfates.”’
Inorganic sulfate was observed in the core and the shell in

the form of aqueous sulfate at 997 em™ L% solid sodium sulfate
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Figure 4. Representative single-particle Raman spectrum for the core
and shell of (a) SS seed particles + IEPOX and (b) AS seed particles
+ IEPOX. Inset shows 100X optical microscope image of aerosol
particle corresponding to the spectrum.

at 996 cm™',** and bisulfate at 1042 cm™ as identified by
Chen et al.”® The core and shell also contained peaks at 1462
corresponding to bending modes for CH,/CH; groups and
three peaks at 2885, 2951, and 2974 cm™' corresponding to
I/s(CH3),64 I/a(CH3),64 and l/a(CH3),65 respectively. Interest-
ingly, the same peak shape with v,(CH;)** (2896) and
v,(CH;)**% (2950 and 2974) was observed in the shell of the
AS particles as well, indicating that the shell of the SS and AS
particles likely has a similar organic composition. The shell of
the SS particles did not contain a peak representative of
organosulfates, indicating that the shell is likely composed of
other non-sulfated organic compounds. The core and shell
spectra were compared for n = 18 particles (Figure SS), and
little particle-to-particle variability was noted. The peaks
discussed above were observed in all of the spectra, but
there was some variability in the relative intensity of the peaks.
These results indicate that, like AS-seeded iSOA particles, both
the core and shell of the SS-reacted particles contain organic
compounds, which could result in a self-limiting effect in the
reactive uptake of IEPOX onto acidic SS particles.””

The core and shell for AS-reacted particles were compared
as well, and two particle types were observed. The first particle
type resembled those previously observed by Olson et al,”
with a chemically distinct core and shell. The second particle
type was homogeneous with no apparent differences between
the core and shell. These particles had a notable absence of a
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peak associated with the N—H stretch, indicating that the
ammonium may have partitioned out of the particles as
ammonia after reaction with IEPOX. Six examples of each
particle type are shown (Figure S6), and a representative
particle for the core-shell morphology is provided (Figure 4).

In the AS-seeded core-shell particles, an organosulfate mode
was identified in the core and shell particles at 1065 cm™,
agreeing with the results from Olson et al.”> The v,(CH;)
stretching modes at 2974 and 2950 cm™' as well as the
v,(CHj;) stretching mode at 2896 cm™" were observed only in
the shell of the AS particles, whereas the carbonyl stretch at
1666 cm™"' and the CH,/CH, bending modes at 1461 cm™!
were observed in both the core and the shell. These results
suggest that the AS-reacted seed particles result in the
formation of iISOA particles with different morphologies than
those formed from SS seed particles.

The SS- and AS-iSOA particles were reanalyzed 1 month
after the experiment was conducted, and it was found that the
chemical compositions of both particle types had changed
(Figure S7). Ammonium was observed in the SS-iSOA,
suggesting that ammonia partitioned into the iSOA particles
during the 1 month of storage in the laboratory. Additionally,
ammonium was present in both the core and shell of the AS-
iSOA, whereas it was only observed in the core of the particles
analyzed shortly after the experiment was conducted. These
results indicate the potential for both SS-iSOA and AS-iSOA to
undergo further reactions after formation in the atmosphere
that could alter the particle morphology, as well as chemical
composition.

Organosulfate Identification in an Ambient Marine
Environment. To assess the potential for iSOA and
organosulfates to form on SS in an ambient marine-influenced
atmosphere, filter samples were collected from the Galapagos
Islands of Ecuador. The aerosol composition was analyzed
using the HILIC/ESI-HR-QTOFMS method. Methyltetrol
sulfates were observed in the extracted ion chromatogram
(EIC) for the negative ion at m/z 215.0231 (Figure S). As
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Figure 5. HILIC/ESI-HR-QTOFMS extracted ion chromatogram
(EIC) for methyltetrol sulfates at m/z —215.0231 in a PM2.5 sample
collected from the Galapagos Islands, Ecuador.

Galapagos Islands are a remote environment with primarily
marine and, to a lesser extent, terrestrial influences, these
organosulfates could be forming from the reaction of IEPOX
with smaller SSA, which were recently shown to be very acidic
(pH ~ 2).* The same number of peaks for the MTS isomers,
corresponding to the structural isomers for 2-MTS and 3-MTS
as previously shown,* and their relative positions (2.7, 3.5, 6.0,
and 7.8 min) were observed in the aerosol sample collected
from the Galapagos Islands (Figure 5) as were observed in
prior HILIC/ESI-HR-QTOFMS data reported by Cui et al.>’
While the formation of iSOA has been primarily investigated in
continental environments, the presence of MTSs from a
remote environment with marine influences demonstrates that

iSOA from the reaction of IEPOX with aged SSA is an
unrecognized and likely important source of MTSs.

Atmospheric Implications. SSA is the largest source of
aerosol emissions to the atmosphere,’ and freshly emitted
submicron SSA were recently shown to have a pH of ~2.**7*
SSA particles intrinsically contain SS salts, and the amount of
sulfate increases substantially after heterogeneous reactions
with H,SO,.> Thus, it is important to consider the potential of
these particles to seed the formation of iSOA. This study
demonstrates that acidified SS particles (pH 1.4 + 0.1) are
capable of seeding the formation of iSOA, resulting in particles
with similar amounts of inorganic sulfate incorporated into
organosulfates and formation of similar amounts of MTSs
when compared to the more-studied iSOA particles formed on
AS seed aerosol. As such, SS particles in SSA should be
considered when modeling iSOA formation in marine
environments in order to accurately predict their formation
and impact on the climate. More so, ambient measurements
indicate that marine aerosol can undergo long-range
atmospheric transport,”*””> and thus, may be a source of
iSOA in continental regions in addition to marine environ-
ments. The experiments conducted in this study isolated the
initial reactive uptake of IEPOX onto particulate sulfate but did
not account for additional chemical processes that could occur
in ambient marine and coastal environments. Further studies
should investigate the potential of SS- and AS-seeded iSOA to
undergo photolysis reactions, heterogeneous reactions with
other organic gases beyond IEPOX, or further aging via
oxidation with OH, which could impact the chemical
compositions and physical properties of these particles. Further
research is needed on the potential of SSA to seed the
formation of organosulfate compounds globally, particularly as
a function of aerosol acidity, and their impact on climate.
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