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ARTICLE INFO ABSTRACT

Keywords: Microplastic particles are widespread in marine sediments and the abundance of the different types of particles
Microplastics vary widely. In this paper we demonstrate that salt marshes effectively capture microplastics in their sediments,
Salt marshes and that microplastic accumulations increase with the level of urbanization of the land surrounding estuarine
Estuaries

areas. We extracted microplastics from sediment cores in salt marshes of SE New England estuaries at different
degrees of urbanization and land use intensity. Microplastics were present everywhere, but their abundances
increased markedly with the degree of urbanization of the land. Microplastic fragment counts were linked to
nearby urbanization and their abundances seemed to be linked to more local, within-watershed inputs. The num-
ber of fibers was similar across all sites suggesting that fiber accumulation in these sediments is likely influenced
by effective long-distance transport from large-scale areas. The sedimentary record confirmed that microplastics
have been accumulating in these estuaries since the early 1950s, and their abundances have increased greatly in
more recent years in response to the progressive urbanization of the watersheds and intensification of land uses.

Sediment cores
Urbanization

Our results highlight the role of salt marsh sediments as sinks for microplastics in the marine environment.

Introduction

Since the 1950s, mass production and use of plastics has grown expo-
nentially. In 2018, global plastic production reached nearly 360 million
metric tons, and production has been increasing by more than 3% each
year (Plastics Europe, 2019). Decades of increasing plastic production
and use have resulted in large quantities of plastic waste entering the
environment. Of the 275 million metric tons of plastic waste globally
generated in 2010 alone, about 5 to 13 million metric tons entered the
ocean (Jambeck et al., 2015). Plastic pollution has now become a global
concern as plastic debris have reached all of the world’s oceans with ad-
verse effects on marine organisms and biodiversity as well as on human
livelihoods and economy (Cdzar et al., 2014; Thevenon et al., 2014).

Among the various types of plastic wastes, microplastics (particles
<5 mm, GESAMP, 2016), generally resulting from the fragmentation
of larger plastic debris, are highly persistent in the environment. Mi-
croplastics are widely distributed across the oceans and are accumu-
lating at increasing rates in the marine biosphere (Andrady, 2011;
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Fisner et al., 2017; Hu et al., 2018; Jambeck et al., 2015; Law et al.,
2010; Marti et al., 2017; Suaria et al., 2016; Yu et al., 2016). Microplas-
tic particles accumulate in sediments in aquatic systems, and they have
been found in locations that range from the deep sea (Van Cauwen-
berghe et al., 2013; Woodall et al., 2014; Zhang et al., 2020) to
high-altitude lakes in Tibet (Zhang et al., 2019), and from Arctic
(Bergmann et al., 2017; Kanhai et al., 2019) and Antarctic (Reed et al.,
2018; Waller et al., 2017) regions to tropical inhabited coral islands
(Patti et al., 2020) and mangroves (Martin et al., 2020; Mohamed Nor
and Obbard, 2014; Zhou et al., 2020). Although the potential damage to
ecosystems posed by microplastics has yet to be adequately quantified
and modelled, evidence of impacts in marine food webs is accumulating
(Andrady, 2011; Khalid et al., 2021).

Highly depositional estuarine habitats, such as salt marshes, are po-
tentially more sensitive to microplastic contamination and its potential
impacts. Despite the ecological relevance of estuarine habitats and the
threat that microplastics pose to the provision of important ecological
services, our current knowledge of microplastic accumulations in estu-
aries is limited, and salt marshes and other estuarine habitats remain
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Fig. 1. A map of the selected estuaries in a) Waquoit Bay, including the Childs
River (1), Quashnet River (2), Hamblin Pond (3), Jehu Pond (4), Sage Lot Pond
(5), and Timm’s Pond (6) estuaries, and in b) the New Bedford Harbor. Red
dots indicate the approximate location of the salt marsh sediment core samples
collected in each estuary.

relatively understudied compared to coastal and open marine environ-
ments. Only a relatively small number of studies have reported the pres-
ence of microplastics in salt marsh sediments (Khan and Prezant, 2018;
Li et al., 2020; Willis et al., 2017). The marsh sediments offer a unique
opportunity to evaluate microplastic contamination because the dense
mat of grass roots and rhizomes confers substantial stability to salt marsh
sediment columns, a feature that may diminish potential bioturbation
and hydrodynamic sediment disturbances that commonly take place in
bare sediments (Nikki et al., 2017).

In this paper we take advantage of the ability of salt marsh sediments
to sequester microplastics to test the hypothesis that, as has been sug-
gested in other coastal environments (Browne et al., 2011; Jang et al.,
2020; Yao et al., 2019), increased presence and activity of people on
the nearshore upland from estuaries results in larger abundances of
microplastic particles of different types. To test that question we col-
lected sediment cores from a set of SE New England estuaries that differ
in intensity and history of watershed land use and population density
(Fig. 1), and counted and identified microplastic particles.

Material and methods
Sediment sample collection

We collected sediment cores from salt marshes from seven SE New
England estuaries subject to different degrees of urbanization (Table 1,
Fig. 1). Data on the degree of watershed urban development and pop-
ulation density was extracted from publicly available datasets from the
state of Massachusetts’ GIS program (MassGIS www.mass.gov). Field
work took place during summer and fall, 2019.

First, to see whether there were current differences in microplastic
particle abundance and types among the salt marsh sediments adjoin-
ing the different estuaries, we collected surface (2 cm depth) sediment
samples from low salt marsh habitats within the estuaries. In all loca-
tions, the dominant vegetation was the salt marsh cordgrass Spartina
alterniflora, the most common low marsh plant species in the region.
Samples were collected by inserting 9 cm diameter core liner pipes into
the sediments. Three to four cores were obtained from each of the es-
tuaries to obtain some measure of within estuary variation. All samples
were collected on stable marsh platform sediments at approximately 2-3
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Table 1

Level of development and population density in the watersheds of the se-
lected estuaries in SE New England. Data from 2016 obtained from MassGIS
(Bureau of Geographic Information).

Level of watershed Population density

Estuary development (%) (people km2)
Waquoit Bay estuaries
Timm's Pond 0 0
Sage Lot Pond 8 32
Jehu Pond 42 674
Quashnet River 53 300
Hamblin Pond 60 1018
Childs River 71 873
New Bedford Harbor 81 1340

m from the marsh edge. Samples were stored in sealed containers and
refrigerated upright until analysis.

Second, to test whether we could document and reconstruct decadal
history of microplastic abundance sequestered in salt marsh sediments,
three deeper (30 cm depth, 9 cm diameter) sediment core samples were
collected from low salt marsh S. alterniflora areas within each of two
estuaries, Childs River and Timm’s Pond (Fig 1a). These two sites were
selected because the adjoining land areas contrasted in the degree of
land use (Bowen and Valiela, 2001; Valiela et al., 2016), with a high
degree of urbanization of the land surrounding Childs River that was
lacking in Timm’s Pond (Table 1). Each 30 cm core was sliced into 2 cm
sections and stored in sealed containers. Samples were kept refrigerated
until analysis. In the laboratory, sections were dried and weighed prior
to microplastic extraction.

To verify the decadal age of each section of the cores, we used exist-
ing 219Pb and !37Cs sediment dating and estimates of marsh accretion
rates obtained in the same marshes used in this study (Gonneea et al.,
2019; Kinney, 2010; Orson and Howes, 1992). Sediment accretion rates
in the salt marshes of the Waquoit Bay area have been relatively spatially
homogeneous, averaging 2.82 mm yr~! (+0.11 mm yr~! standard er-
ror). The relatively limited spatial and temporal variability of sediment
dating measurements found in the cited studies allowed us to estimate,
with certain level of confidence, the relative date of our core sections, at
least at the decadal scale. The cores we collected provided vertical sed-
iment profiles deep enough to capture material deposited from around
the 1940 horizon, a time before the widespread use of plastics, to the
present time.

Sample processing and laboratory analyses

Samples were processed using a stepwise approach that included
sieving, organic material digestion, and density separation to isolate mi-
croplastics from the bulk marsh sediments and other buried marsh plant
remains [modified from Masura et al., (2015)]. This methodology has
been successfully used to extract microplastics in sediments of similar
characteristics (Esiukova et al., 2020; Firdaus et al., 2020; Zobkov and
Esiukova, 2017).

Since microplastics are present in every environment, including in-
door air, proper precautions and strict contamination control measures
were adopted to prevent contamination of samples, both in the field and
in the laboratory (Prata et al., 2021; Wesch et al., 2017). In the field,
glass, metal, wood and cardboard equipment was used whenever pos-
sible (Brander et al., 2020). All laboratory work was conducted under
a vacuum hood, and any exposed samples and equipment were cov-
ered with foil to prevent contamination from airborne microplastics. All
liquid reagents were passed through a 0.7 ym GF/F Whatman filter.
Only natural fiber clothing and laboratory coats were worn throughout
the analysis to reduce microplastic contamination from synthetic cloth-
ing (Hermsen et al., 2018; Zhao et al., 2017). Daily controls to monitor
any possible contamination by airborne particles in the laboratory were
made by placing a glass microfiber filter in a labelled open petri-dish.
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Filters were visually checked for any deposited microplastics at the end
of each day. The only items recorded in these filters were a few non-
plastic clothing fibers that did not appear in our samples.

Whole dried samples (=24 gr) were first placed in a beaker and rinsed
with filtered deionized water and agitated with a metal spatula to dis-
associate large clumps of sediment. The contents of the beaker were
then poured through stacked sieves of 5 mm and 250 ym (Van Cauwen-
berghe et al., 2015). Only microplastics of sizes 5 mm-250 ym were
extracted, identified and counted according to protocols developed by
Lusher, et al. (2020) for studies where infrared spectroscopy or other
methods to infer plastic polymer structures are limited or not readily
available (Abidli et al., 2017; Chubarenko et al., 2018; Lusher et al.,
2014; Martin et al., 2017; Vermaire et al., 2017; Willis et al., 2017). The
size range of microplastics in this study is not subject to the techno-
logical limitations of laboratory processing and uncertainty of smaller
particles (Frias et al., 2018; Frias and Nash, 2019), and is more likely
to be correctly identified (visually) as plastics (Lusher et al., 2020;
Primpke et al., 2020).

The contents of the sieves were rinsed with deionized water, col-
lected in a beaker and dried in an oven at 60 °C, temperature that
ensures integrity of plastic particles (Munno et al., 2018). To separate
microplastic particles, organic matter, and other lighter fractions from
the heavier sediments, 300 mL of zinc chloride solution (density 1.50-
1.65 g mL~1) was added to the dried sediments in the beaker. The den-
sity of the solution was sufficient for the recovery of the most com-
mon types of microplastics, which densities range from 0.28 g mL~! for
some polystyrenes to 1.47 g mL~! for some PVCs (Driedger et al., 2015;
Van Cauwenberghe et al., 2015). Sediments were stirred for 20 min and
allowed to settle for 1h (or until the supernatant was clear of sediment).
All floating solids were carefully decanted to a 250 ym sieve and then
transferred to another beaker with deionized water. This process was
repeated on the remaining sediments for a second time and then the
decanted fraction was rinsed and dried at 60 °C.

Each dried decanted sample was placed in the beaker with Fenton’s
reagent (20 mL of 30% hydrogen peroxide, and 20 mL of 0.05 M iron
(I) solution), and a magnetic stir bar to help digestion and removal of
the natural organic matter. The catalyst solution was adjusted to pH
3.0 using concentrated sulfuric acid. The sediment solution was left at
room temperature for 5 min, then placed on a bath heated up to 60 °C
for 30 min. Additional 20 mL of hydrogen peroxide was added every
15 min, and stirring/heating continued until all visible organic material
was digested. Fenton’s reagent is an optimum protocol for extracting
microplastics from complex, organic-rich, environmental matrices like
estuarine sediments (Hurley et al., 2018). Remaining solids after organic
matter digestion were drained through a 250 ym sieve, which was then
rinsed with deionized water and transferred to a sealed glass petri-dish
for later microscope analysis.

Extracted particles were placed under stereomicroscope magnifica-
tion of 10X to 40X directly on the glass petri-dish. For a robust visual
identification of microplastic particles, morphology (size, shape, and
texture), optical (color, reflectivity) and physical properties (flexibil-
ity, density) were used as descriptive categories (Masura et al., 2015;
Zhao et al., 2017; Lusher et al., 2020). Particles that did not have uni-
form coloration, were matt, or had cellular or organic structures were
rejected. The relatively large size fraction of microplastics considered
in this study (>250 um), the protocols for organic matter digestion and
density separation performed on our samples, and the consideration of
the above mentioned morphological, optical and physical criteria to aid
our identifications greatly reduced any possible bias associated with vi-
sual classifications (Lusher et al., 2020; Primpke et al. 2020). Each mi-
croplastic particle was classified as to type and color, and then counted
and photographed. The typology of extracted microplastics was quite
variable, and the particles found differed greatly in size, shape and color
(Fig. S1).

In this study we reported two major types of microplastic particles:
fibers and fragments. Fibers have their origin in the breakdown (shed-
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Fig. 2. Relationship between the abundances of a) total microplastic, b) frag-
ments, and c) fibers, expressed as number of particles per kg of dry weight
(DW) and degree of urbanization of the land surrounding the sampled estuaries.
Dashed lines indicate non-significant regression curves. Significance of the re-
gression curves was assessed by the use of traditional statistics and calculations
of effect size (Smith, 2020).

ding) of plastic-based textiles and garments, and also from abrasive ac-
tion on synthetic fishing gear and marine ropes. Fragments are a type
that comprises many different items that in general resulted from the
fragmentation of larger plastic items including irregularly shaped plas-
tic particles, paint chips, sheet-like plastic films, microbeads and foam
particles.

Results and discussion
Microplastic abundances across a gradient of urban development

The abundances of total microplastic particles in surface salt marsh
sediment samples increased as the degree of urban development on ad-
joining land increased from nil in Timm’s Pond to 81% in the New Bed-
ford Harbor (Fig. 2a), with the rise becoming evident at about 50% of
urban land cover. Our results on microplastic abundances across the
gradient of urbanization of the land surrounding the selected estuaries
clearly confirmed the increase of microplastic contamination of estuar-
ine sediments by the intensification of human uses on coastal water-
sheds, consistent with findings from other studies (Frére et al., 2017;
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Fig. 3. Some examples of responses of microplastic abundances to vari-
ables linked to the degree of urbanization of the land, including data from
the Pearl River estuary (Fan et al., 2019), estuarine wetlands in Melbourne
(Townsend et al., 2019), and the San Francisco Bay area (Sutton et al., 2019).
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Fig. 4. Frequency distribution of the number of microplastic particles per kg~!
of surface dry marine sediments collected from different areas a) around the
world, and b) in this study. Data in a) compiled from references included in the
supplementary materials.

Huang et al., 2020; Naidoo et al., 2015; Tsang et al., 2017; Vianello et al.,
2013).

The exponential responses of microplastic abundance to urbaniza-
tion we observed in our data seems to be the norm in other estuarine
areas around the world (Fig. 3). The specific shape and the magnitude
of the responses differ across different sites (Fig. 3), probably as a re-
sult of contrasting transport processes, depositional and sedimentolog-
ical factors, as well as differences in plastic availability, use patterns,
effectiveness of disposal, re-use, and recycling.

The abundances of microplastic in marine sediments across the world
seem to be highly variable, ranging from none to many thousands of
particles per kg of sediment (Fig. 4a). In our samples, microplastic
abundances also varied widely among the different sampled locations,
and their numbers covered 85% of the range of microplastic abun-
dances found in sediments around the world (Fig. 4b). Although vari-
able, the values we report fall within the range of microplastic abun-
dances found in other marsh studies (Khan and Prezant, 2018; Li et al.,
2020; Willis et al., 2017), demonstrating that salt marshes efficiently
sequester microplastics in their sediments.

With respect to microplastic particle types, the distribution of frag-
ments and fibers across the urbanization gradient differed (Fig. 2b and
2c¢). Fragments made up the major portion of microplastic particles
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Fig. 5. Ratio of abundance of fibers to fragments in a set of marine environ-
ments that can be taken as a proxy for approximate distances away from human
populations and activities. Data from (Abidli et al., 2018; Claessens et al., 2011;
Fischer et al., 2015; Kane and Clare, 2019; Lozoya et al., 2016; Martin et al.,
2017; Naji et al., 2017; Sathish et al., 2019; Simon-Sanchez et al., 2019;
Townsend et al., 2019; Tsang et al., 2017; Van Cauwenberghe et al., 2013;
Vianello et al., 2013; Wen et al., 2018; Willis et al., 2017; Woodall et al., 2014;
Yona et al., 2019; Zheng et al., 2019; Zobkov and Esiukova, 2017). The me-
dian for beaches was 8.08, a larger value than for other environments. Data for
beaches were not included in this figure since we could not identify beaches
close or far from human centers.

in near-surface sediments, and their response to urbanization paral-
leled that of total particles (Fig. 2b). Abundance of fibers did not re-
spond to degree of near-shore land use, remaining relatively constant
across the sites (Fig. 2c). These suggest that the accumulation of frag-
ments in salt marsh sediments may have a local origin while fibers
might have sources other than the immediate local land surrounding the
estuaries.

To test the above conjectures, we compiled published counts of
fibers and fragments from a series of marine sediments that arguably
tended to be located at different distances from human land sources
(wetlands>lagoons>rivers and estuaries>coasts and harbors>open sea
and large bays, Fig. 5), and we calculated the ratio of fibers to frag-
ments for each environment. The box plots of the compiled data show
that the median ratio from wetlands near urban areas were lower than
those from open seas and large bays (Fig. 5). A possible interpretation
of this trend is that, although humans generate both types of microplas-
tic particles, fibers travel farther than fragments, and their abundance
may be determined by longer-distance transport from larger-scale areas,
even involving aeolian mechanisms (Liu et al., 2019; Rezaei et al., 2019;
Zhang, 2017), a result that seems to be confirmed in our observations.

Historical accumulation of microplastics in salt marsh sediments

The cores taken from salt marshes in Childs River and in Timm’s
Pond showed between-site variability and trends in vertical profiles (and
decadal trajectory) of microplastic abundance. ANOVA showed that the
microplastic abundance values did not differ significantly among the
cores from each site, neither in the case of Childs River (F=0.58, p=0.63)
nor in Timm’s Pond (F=0.57, p=0.58). These results suggested that we
can pool the individual core data to then test whether there were differ-
ences in the vertical profiles between the Childs River and Timm’s Pond
marshes.

The vertical profiles of total microplastic particles in salt marsh sed-
iments of the urbanized Childs River and the unpopulated Timm’s Pond
showed nil to low numbers at about 20 cm deep (Fig. 6a), a depth
dated to about 1950 (Gonneea et al., 2019; Kinney, 2010; Orson and
Howes, 1992), but differed substantially during more recent decades. In-
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and calculations of effect size (Smith, 2020).

Table 2
Regression statistics and effect size analyses for data in Fig. 6.

Estuary Particle type N Equation [y=number of particles, x=depth (cm)]  R? F p f? (effect size class)
Childs River Total 28  y=1234-65x 0.69 56.7 <0.0001 2.18 (large)
Fragments 28  y=1087-55x 0.61 40.7 <0.0001 1.56 (large)
Fibers 28  y=147-10x 034 133 0.0012 0.51 (medium)
Timm's Pond  Total 22 y=202-12x 0.45 16.6 0.0006 0.83 (large)
Fragments 22 y=67-3x 0.07 1.6 0.2222 0.08 (small)
Fibers 22 y=135-8x 0.49 19.3  0.0003 0.96 (large)

* Effect size classes based on f? values: large>0.8, medium>0.5, small<0.5 (Cohen, 1988).

creases were evident in both estuaries, but the rate at which microplastic
concentrations increased differed greatly, resulting in much larger val-
ues in the more urban setting (Fig. 6a, and Table 2).

Microplastic accumulations in the Waquoit Bay estuaries started syn-
chronically around the early 1950s. The predominantly rural landscape
and the low level of development of the land in the Waquoit Bay area
during the 1930s, 1940s and early 1950s (Bowen and Valiela, 2001),
and only nascent plastic production and use during those early years
must explain why microplastics were not present below the 1950 hori-
zon. Human presence in much of the Waquoit Bay area increased seven-
fold since the 1960s (Bowen and Valiela, 2001; Valiela et al., 2016).
Parallel to the increase in population, global use of plastics grew ex-
ponentially (Plastics Europe, 2019), factors reflected in the marked in-
creases in microplastic concentrations recorded in the marsh sediments
in recent decades (Fig. 6a). Our results are consistent with literature re-
ports of higher microplastic abundances in recent sediment layers, and
nil or low abundances in layers that date back to the 1950s and 1960s
(Fan et al., 2019; Li et al., 2020; Matsuguma et al., 2017; Willis et al.,
2017).

Apart from changes in population and plastic use, there are other
factors that may also contribute to differences in the decadal accumu-
lation of microplastics in salt marsh sediments. One of such factors is
the possible alteration of marsh sediment accretion rates caused by the
recent acceleration of sea level rise (Kirwan and Temmerman, 2009).
The potential role that this factor may have played in increasing re-
cent sediment accumulation in the studied salt marshes, and therefore
altering our observed microplastic densities, is relatively limited since
the sediment-poor, organogenic salt marshes of Southeast New England
have shown relatively minor changes in vertical growth in response to
recent sea level rise rates, as revealed in recent assessments of the vul-

nerability of these marshes to current and future sea levels (Valiela et al.,
2018; Watson et al., 2017).

The historical trajectory of accumulation of fragments (Fig. 6b) and
fibers (Fig. 6¢) differed substantially (Table 2). Fragments were scarce
and did not increase significantly in Timm’s Pond (Fig. 6b), while
fragment counts rose by orders of magnitude in Childs River nearer
the present (Fig. 6b). Fragment abundance thus was clearly linked to
nearby, local density of people and degree of urban development on
land near the receiving salt marsh. Abundance of fibers and their decadal
trends did not differ between cores taken from Childs River and Timm’s
Pond (Fig. 6¢, and Table 2). Fibers showed increasing accumulations
throughout the decades (Fig. 6¢, and Table 2), but their abundances
were unresponsive to differences in the degree of local human presence
or development. The inference from this contrasting result seems to con-
firm what we observed in the more recent sediments across the various
sites. The accumulation of fibers, even in undeveloped areas, and owing
to their different physical properties, may likely involve wind transport
from larger, regional scales, while the denser, less buoyant microplastic
fragments likely derive from local sources.

As observed in other similar estuarine environments, such as man-
grove forests (Martin et al., 2020), the current and historical presence
of plastic particles in the studied sediment profiles confirmed the role
of salt marshes as a sink for microplastics in the coastal zone. Highly
depositional estuarine systems efficiently sequester microplastics, and
have been doing so for many decades.

Limitations

Our results confirmed the presence of microplastics in the studied
salt marsh sediments and highlighted the effects of current and histor-
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ical urbanization on particle accumulations. These findings are, never-
theless, restricted by some of the limitations imposed by the methodolo-
gies used in this study.

First, our data resulted from the analyses of large size (>250 pm) mi-
croplastic particles. We did not include data for the smallest microplas-
tic sizes, data that could have potentially included particles as small
as 1 pm, commonly defined as the lower size limit for microplastics
(Frias and Nash, 2019). Our results are, nevertheless, comparable to
other studies including similarly large particle size ranges. Despite cur-
rent technological limitations of laboratory processing of particles of
less than 20-100 pm in size (Frias et al., 2018), some studies confirm
that small size microplastics are particularly abundant in environmen-
tal samples (Bergmann et al., 2017; Haave et al., 2019; Poulain et al.,
2019; Shim and Thomposon, 2015). The inclusion of these abundant
small particle sizes in future studies of microplastic accumulations in
salt marsh sediments will shed more light on the possible links between
urbanization, transport mechanisms and differences in particle abun-
dances and types, adding more complete information to the conclusions
derived from this study.

Second, we did not perform chemical analyses of the microplastic
particles found in our samples. As mentioned above, the consideration
of large particles only, our protocols for sample handling and process-
ing, and the use of standardized identification criteria greatly reduced
any biases associated with our visual microplastic particle identifica-
tions (Lusher et al., 2020; Primpke et al. 2020). However, the use of an-
alytical methods to determine both the presence of plastics and the range
of polymers recovered, such as Fourier transform infrared and Raman
spectroscopy, or pyrolysis and thermal desorption gas chromatography—
mass spectrometry are highly recommended. These methods not only
limit the possible biases associated with visual identifications, but also
add relevant information on chemical composition that could be use-
ful to assess particle behavior and transport, environmental fate, and
interactions with biota (Lusher et al., 2020).

Conclusions

This report is the first to analyze microplastic concentrations in the
sediments of SE New England salt marshes. Our data confirmed that mi-
croplastic particles can be found in salt marsh sediments of all estuaries
we sampled across the region, and highlighted the role of salt marsh
sediments as sinks for microplastics in the marine environment.

Microplastic abundances reflected the level of urbanization of the
surrounding watersheds. Levels of urban development that cover more
than 50% of the land have resulted in a marked increase of over an order
of magnitude in sediment microplastic abundances with respect to other
less populated estuaries in the area. The sedimentary record confirmed
that microplastics have been accumulating in these estuaries since the
early 1950s, and their abundances have increased greatly in more recent
years in response to the progressive urbanization of the watersheds and
intensification of land uses.

The relative abundances of microplastic fragments and fibers re-
vealed important information about the origins and transport mech-
anisms of the different microplastic particles in estuarine sediments.
Fragments have a more local, within-watershed origin while fiber abun-
dances are influenced by effective long-distance transport from large-
scale areas. These results have implications for management, as they
provide clues on the sources and transport of microplastic particles in
the environment that could help design more effective regulatory poli-
cies and strategies to reduce plastic pollution in salt marshes and other
sensitive environments.
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