

Effects of familiar music exposure on deliberate retrieval of remote episodic and semantic memories in healthy aging adults

Paul Alexander Bloom¹, Ella Bartlett², Nicholas Kathios¹, Sameah Algharazi³,
Matthew Siegelman¹, Fan Shen¹, Lea Beresford¹, Michaelle Evangeline DiMaggio-Potter¹,
Anshita Singh⁴, Sarah Bennett⁵, Nandhini Natarajan⁵, Hannah Lee¹, Sumra Sajid¹, Erin Joyce⁵,
Rachel Fischman¹, Samuel Hutchinson¹, Sophie Pan², Nim Tottenham^{1*}, & Mariam Aly^{1*}

*These authors share senior authorship

¹Columbia University

²Barnard College of Columbia University

³City College of New York

⁴University of Delhi

⁵Teachers College, Columbia University

Please address correspondence to:

Paul Alexander Bloom
Columbia University Psychology
Psychology Department, Columbia University
Schermerhorn Hall 409A, Columbia University, 1180 Amsterdam Ave, New York, NY 10027
Email: paul.bloom@columbia.edu

1
2
3

Abstract

4

5 Familiar music facilitates memory retrieval in adults with dementia. However,
6 mechanisms behind this effect, and its generality, are unclear because of a lack of parallel work
7 in healthy aging. Exposure to familiar music enhances spontaneous recall of memories directly
8 cued by the music, but it is unknown whether such effects extend to deliberate recall more
9 generally—e.g., to memories not directly linked to the music being played. It is also unclear
10 whether familiar music boosts recall of specific episodes versus more generalized
11 semantic memories, or whether effects are driven by domain-general mechanisms (e.g.,
12 improved mood). In a registered report study, we examined effects of familiar music on
13 deliberate recall in healthy adults ages 65-80 years (N=75) by presenting familiar music from
14 earlier in life, unfamiliar music, and non-musical audio clips across three sessions. After each
15 clip, we assessed free recall of remote memories for pre-selected events. Contrary to our
16 hypotheses, we found no effects of music exposure on recall of prompted events, though
17 familiar music evoked spontaneous memories most often. These results suggest that effects of
18 familiar music on recall may be limited to memories specifically evoked in response to the music
19 (Preprint and registered report protocol at <https://osf.io/kjnwd/>).

20

21

22

23

24

25

Introduction

26 *Music & enhanced memory recall*

27 Many people report that certain songs they have heard years before allow them to
28 mentally 'travel back in time' and recall vivid memories from earlier in life (Rossato-Bennett,
29 2014). This phenomenon suggests that familiar music may have a particularly powerful role in
30 cueing autobiographical memory recall (declarative memory for events in one's life). Indeed,
31 recent work found that approximately 96% of young adults experienced music-evoked
32 autobiographical memories (MEAMs) while listening to Billboard Top 100 songs released
33 between birth and age 20, and approximately 30% of all songs played triggered a MEAM
34 (Janata, 2009; Janata et al., 2007). Though not all familiar songs evoke MEAMs, both younger
35 and older adults experience this phenomenon, and MEAMs can occur for songs that have not
36 been heard in many years (Belfi et al., 2016; Krumhansl & Zupnick, 2013; Platz et al., 2015;
37 Schuklkind et al., 1999).

38 In concurrence with work on MEAMs, multiple lines of evidence indicate that music
39 facilitates retrieval of content encoded when the music was played (Alonso et al., 2016; Balch et
40 al., 1992; Palisson et al., 2015; Peretz et al., 1998; Wallace, 1991). For example, compared to
41 silence, attaching text to melody during encoding (Ratovohery et al., 2018, 2019; Samson &
42 Zatorre, 1991; Serafine et al., 1986; Wallace, 1994) or playing background music (Ferreri et al.,
43 2014) enhances word recall. Binding of musical tones to words through singing can also help
44 aphasic patients retrieve and enunciate words and phrases (Kasdan & Kiran, 2018; Merrett et
45 al., 2019; Schlaug et al., 2008, 2010; Wan & Schlaug, 2010). Further, music heard during
46 certain 'sensitive periods'—youth and early adulthood in particular—may cue associations to
47 non-musical stimuli experienced around the same time (Krumhansl & Zupnick, 2013; Schubert,
48 2016). Taken together, such evidence indicates that music may serve as a context to which
49 perceptual, episodic, or semantic associations can be mapped at encoding, and later retrieved
50 (Schiller et al., 2015; Smith & Vela, 2001).

51 In recent years, both clinicians and researchers have cited such memory-enhancing
52 properties of music in recommending music listening as a potential therapy for patients with
53 Alzheimer's disease or other forms of dementia (Baird et al., 2019; Brotons et al., 1997; Koger
54 et al., 1999; Larkin, 2001; Peck et al., 2016; Sambandham & Schirm, 1995). Supporting this
55 claim, patients with dementia or severe acquired brain injuries experience MEAMs (Baird &
56 Samson, 2014; Baird, Brancatisano, et al., 2020; Baird, Gelding, et al., 2020; Baird & Samson,
57 2009, 2015; Basaglia-Pappas et al., 2013). One group of 29 dementia patients demonstrated
58 better remote autobiographical memory while exposed to background music compared to
59 silence or background cafeteria noise (Foster & Valentine, 2001). In this study, autobiographical
60 memory was assessed through questions about personal semantic memories (for example,
61 '*which school did you attend*') developed based on the Mini-Mental State Exam (MMSE;
62 Folstein et al., 1975), and caregivers verified correct answers. In a different experiment, 10
63 patients with mild Alzheimer's disease scored higher on average on the Autobiographical
64 Memory Interview (AMI; Kopelman et al., 1989) following listening to Vivaldi's 'Four Seasons'
65 than following silence (Irish et al., 2006). In addition, effects of music on autobiographical recall
66 were stronger for remote memories (events occurring from 0-20 years of age) than mid-remote
67 (20-50 years) or recent memories ('the recent past or present') across several studies using
68 MMSE-based questions to evaluate retrieval (Foster & Valentine, 2001; García et al., 2012).

69 The studies mentioned above played all participants the same pieces of music. This
70 leaves open the possibility that the music may have been familiar to some individuals and not
71 others. However, clinical work has emphasized the benefits of individualized music, or music
72 particularly familiar to a given patient (Gerdner, 2000, 2012; Gerdner et al., 2000; Thomas et al.,
73 2017). In two studies, Alzheimer's patients showed better autobiographical memory recall with
74 exposure to self-chosen music relative to experimenter-chosen music (El Haj et al., 2015; El Haj
75 et al., 2012). Those studies used the TEMPau scale to score the specificity of freely recalled
76 autobiographical narratives on a scale from 0-4 (Piolino et al., 2009). Self-chosen music, relative

77 to experimenter-chosen music, improved autobiographical memory whether it was played
78 before recall (El Haj et al., 2012) or in the background during recall (El Haj et al., 2015). In both
79 of these studies, however, the experimenter-chosen music (*La Bohème*, performed by Charles
80 Aznavour, and *Spring* from Vivaldi's *Four Seasons*) may have been familiar to many
81 participants, so familiarity per se might not explain the benefit for self-chosen music. Although
82 these studies are promising, several other studies failed to find a benefit of putatively familiar
83 music. For example, no benefits to memory were found when examining exposure to
84 researcher-chosen pieces aimed to be familiar (Vivaldi and Handel pieces) compared to "novel"
85 pieces (contemporary compositions by Graham Fitkin). However, in these studies it is unclear to
86 what degree participants were truly familiar with the music in either condition (Foster &
87 Valentine, 1998; Foster & Valentine, 2001).

88

89 *By what mechanism does music affect memory?*

90 While patients with Alzheimer's disease demonstrate enhanced autobiographical
91 retrieval when memories are music-evoked, leveraging such memory enhancements to develop
92 and improve music-based therapies will depend crucially on a deeper understanding of the
93 mechanisms behind such effects (Blackburn & Bradshaw, 2014; Fang et al., 2017; Hobeika &
94 Samson, 2020; Peck et al., 2016). For instance, the generality of such music effects is unknown
95 due to a lack of parallel work in healthy participants. Similar memory-enhancing effects of
96 familiar music in healthy individuals might indicate that music plays a more general role in
97 enhancing remote memory retrieval, as opposed to specifically rescuing processes impaired in
98 dementia patients. In addition, research with healthy individuals may allow for examining the
99 mechanisms of music effects with higher statistical power (e.g., number of distinct events
100 recalled per participant, or number of total participants) than is feasible with dementia patients
101 (Halpern & O'Connor, 2000; Sartori et al., 2004). Thus, parallel work focusing on healthy aging

102 individuals could enable more rigorous examination of the mechanisms behind music effects
103 observed in patients with dementia.

104 It is certainly possible that different processes might underlie effects of music on memory
105 recall in healthy versus memory-impaired populations. Even if the mechanisms behind memory-
106 enhancing effects of familiar music do not directly translate from healthy individuals to patients
107 with dementia, an understanding of such mechanisms would be useful. In particular, knowledge
108 of whether music can enhance autobiographical retrieval in healthy aging individuals could
109 inform therapies for alleviating declining memory or building cognitive reserve during healthy
110 aging (Fan et al., 2019; Hays et al., 2002; Tucker & Stern, 2011). More understanding of music
111 effects on memory in healthy individuals may also help inform music-based treatments for other
112 clinical groups, such as patients with amnesia (Baker, 2001, 2009; Baur et al., 2000; Bower &
113 Shoemark, 2012) or depression (Aalbers et al., 2017; Cross et al., 2012; Hanser & Thompson,
114 1994; Semkovska et al., 2012). To date, few studies have pursued such questions in an
115 approach tailored for directly studying healthy aging individuals. While most studies of music
116 and autobiographical memory with dementia patients also included control groups, the healthy
117 participants scored at or near ceiling on most of the autobiographical memory measures (e.g.,
118 questions developed from the MMSE, AMI, and TEMPau scale; El Haj et al., 2013, 2015; Irish et
119 al., 2006). Thus, most prior work has lacked tools for measuring autobiographical memory
120 sensitively enough to detect effects of music on recall in healthy individuals.

121 Because little work has addressed whether healthy individuals show improved recall of
122 remote memories following familiar music, the mechanisms underlying this effect are not
123 particularly clear. One possibility is that such boosted recall in patients is primarily the result of
124 domain-general effects. For example, observed effects of music on autobiographical recall in
125 Alzheimer's patients have been attributed to enhanced arousal (Foster & Valentine, 2001),
126 changes in affect (El Haj, Postal, et al., 2012; García et al., 2012), reductions in anxiety (Irish et
127 al., 2006; Narme et al., 2014) or agitation (Sánchez et al., 2016; Wall & Duffy, 2010), increased

128 self-consciousness (Arroyo-Anlló et al., 2013), or improved linguistic function (Brotons & Koger,
129 2000; El Haj et al., 2013) following music listening. This can be contrasted to a more specific
130 benefit of music, for example if music acts as a mnemonic cue or helps the formation of an
131 attentional state that promotes memory retrieval (Tarder-Stoll, Jayakumar, et al., 2020).
132 Individualized music therapies for such patients have also been suggested for the purpose of
133 reducing stress and agitation alone (Gerdner, 2012), and familiar music tends to evoke more
134 positive emotions in healthy individuals as well (Peretz, 2006; Peretz et al., 1998; Schukind et
135 al., 1999; Stalinski & Schellenberg, 2013). Whether observed effects of enhanced recall in
136 patients with memory impairments are the result of a boosted state of retrieval versus more
137 domain-general or affective processes (Balteş et al., 2011) thus remains an open question.
138

139 *What kinds of memories are enhanced by music?*

140 Understanding of the mechanisms by which music enhances autobiographical recall
141 would also benefit from more detailed characterization of which specific features of recalled
142 memories are enhanced. In particular, there is not yet consensus on whether exposure to music
143 enables recall for specific episodes, more generalized semantic memories, or both (Tulving,
144 1972). García and colleagues (2012) argue that music-related memory enhancement is
145 semantic in nature, based on evidence that music exposure improved recall of personal
146 semantic memories (general facts about one's past and extended events), but not recent
147 episodes (Baird et al., 2018). At the same time, the presence of both semantic and episodic
148 content in MEAMs within healthy individuals suggests that familiar music may be an associative
149 cue for recall of specific events as well (Belfi et al., 2016; Blais-Rochette & Miranda, 2016; Cady
150 et al., 2008; Ford et al., 2011; Janata et al., 2007). Moreover, Alzheimer's patients scored higher
151 on subscales of the Autobiographical Memory Interview measuring both personal semantic and
152 episodic memory following exposure to music in comparison to silence (Irish et al., 2006).
153 Unfortunately, the evidence from most other patient studies is limited due to the fact that the

154 autobiographical memory measures used (questions derived from the MMSE or TEMPau scale)
155 do not explicitly distinguish episodic from semantic recall. Ultimately, instruments designed
156 specifically to capture differential episodic and semantic recall will be needed for a better
157 understanding of how music impacts remote memory retrieval.

158 Perhaps most importantly, it is yet unclear whether familiar music cues can enhance
159 recall of autobiographical memories beyond those immediately and involuntarily evoked by the
160 music. In addition to these spontaneously triggered memories (i.e., MEAMs), it is possible that
161 such music may facilitate more deliberate, or 'voluntary', recall of other memories (Jakubowski
162 et al., 2018). If familiar music can boost deliberate recall more generally for autobiographical
163 events beyond those directly and spontaneously evoked by the music, familiar music cues might
164 have far broader clinical potential. As the vast majority of studies on MEAMs in healthy
165 individuals examine only such spontaneously evoked memories (Belfi et al., 2016, 2020;
166 Jakubowski & Ghosh, 2019; Janata, 2009; Janata et al., 2007; Platz et al., 2015), the limits of
167 music-evoked enhancements to memory retrieval are unknown. It is possible that music may
168 invoke a 'retrieval mode' of increased attention to internal states and intention to retrieve
169 memories (Tarder-Stoll, Jayakumar, et al., 2020). If familiar songs can induce such a particular
170 focus on retrieval, this could enhance both involuntary and voluntary recall of remote
171 autobiographical episodes. This hypothesis is supported by findings that familiar stimuli
172 decrease acetylcholine release in the hippocampus, which promotes a state optimized for
173 memory retrieval (Decker & Duncan, 2020; Duncan et al., 2019; Duncan & Shohamy, 2016;
174 Hasselmo & Schnell, 1994; Meeter et al., 2004).

175 Alzheimer's patients' music-evoked autobiographical memories have been argued to
176 have many features of involuntary memories (e.g., more specific and more quickly retrieved; El
177 Haj et al., 2012). However, that patients also score higher on MMSE and AMI items probing
178 personal semantic memories (e.g., 'where were you born') might indicate broader memory
179 enhancement (Foster & Valentine, 2001). One group of patients retrieved memories that were

180 more 'self-defining', or central to their identities, with exposure to self-chosen music compared
181 to experimenter-chosen music (El Haj et al., 2015). Overall, while there is some evidence that
182 familiar music can help patients with dementia deliberately retrieve autobiographical details, it is
183 yet unclear whether familiar music can evoke a state of broadly enhanced voluntary retrieval. If
184 familiar music can invoke such a retrieval mode to boost both involuntary and voluntary recall,
185 such an effect could have broad therapeutic potential for both memory-impaired and healthy
186 aging individuals.

187

188 *The present study*

189 The present registered report study asked whether familiar music, compared to
190 unfamiliar music or non-musical auditory stimuli, can enhance voluntary retrieval. The
191 participants were healthy older adults 65-80 years old. We played participants clips from
192 individualized playlists of familiar music selected from popular music charts, unfamiliar music,
193 and non-musical audio clips across three study sessions. We sought to test deliberate recall for
194 remote events that were distinct from any memories spontaneously evoked by the clips. We did
195 this by prompting participants after each clip to describe autobiographical events that had
196 already been selected from a list of prompts in a pre-screening call. Because prior work has
197 highlighted larger music effects for remote than recent events (Foster & Valentine, 2001), all
198 prompts focused on events occurring before age 25. Further, we aimed to examine whether any
199 effects of music on memory retrieval were specific to episodic or semantic recall. To accomplish
200 this, we scored participants' recall of each event for the number of episodic details specific to
201 the event prompted (details 'internal' to the prompted episode) versus more general semantic
202 details (details 'external' to the prompted episode) using Autobiographical Interview procedures
203 (Levine et al., 2002). Finally, we determined whether music also impacted more domain-general
204 processes of mood, and whether differences in mood were associated with episodic or semantic
205 recall.

206 In pre-planned analyses (see the Registered Report protocol at <https://osf.io/kjnwd/>), we
207 estimated effects of both experimenter-manipulated and participant-reported music familiarity on
208 deliberate recall (Table 1 Questions 1-2). Specifically, we examined whether familiar music
209 affected the retrieval of internal episodic details, external semantic details, and their relative
210 proportions. Further, to assess more general effects of music not specific to familiar songs, we
211 estimated how these recall outcomes were impacted in both music conditions in contrast with
212 the no-music condition (Table 1 Question 3). In order to examine the robustness of potential
213 findings, all primary analyses were accompanied by specification curve analyses with pre-
214 registered specification choices (Simonsohn et al., 2015).

215 Most generally, we hypothesized that familiar music would enhance deliberate recall of
216 remote autobiographical memory details in our sample of healthy aging adults. More
217 specifically, we predicted that exposure to familiar music, compared to unfamiliar music, would
218 promote voluntary retrieval of specific events and result in enhanced recall of internal details,
219 relative to external details (see Table 1, hypothesis M1). However, we also tested competing
220 hypotheses that familiar music would specifically enhance retrieval of external details (see Table
221 1, hypothesis A1a), or would increase retrieval of both internal and external details, but not the
222 relative proportion of either detail type (see Table 1, hypothesis A1b). We made similar
223 hypotheses for the effects of both familiar and unfamiliar music in contrast with non-music clips
224 (see Table 1, hypotheses M3, A3a, A3b).

225

Question	Hypotheses	Analyses	Results
1. Does exposure to familiar music (in contrast to unfamiliar music) impact subsequent voluntary retrieval of internal details, external details, or the proportion of internal details? <i>*Will be conducted only if familiarity manipulation is successful*</i>	M1: Exposure to familiar music will increase the number of internal, but not external, details retrieved, thereby increasing the proportion of retrieved details that are internal A1a: Exposure to familiar music will increase the number of external, but not internal, details retrieved, thereby decreasing the proportion of retrieved details that are internal A1b: Exposure to familiar music will increase the number of both internal and external details retrieved, but will not affect the proportion of retrieved details that are internal	<ul style="list-style-type: none"> Bayesian multilevel linear regression model with number of details as outcome, and contrasts for familiar > unfamiliar music Corresponding specification curves 	<ul style="list-style-type: none"> No support for Q1 hypotheses. No effects of familiar music (versus unfamiliar music) exposure on subsequent voluntary (prompted) recall of internal details, external details, or the proportion of internal details.
2. Is participant-rated familiarity with individual songs associated with voluntary retrieval of internal details, external details, or the proportion of internal details after exposure to those songs?	M2: Higher ratings of song familiarity will be related to increases in the number of internal, but not external, details retrieved, such that familiarity will be positively associated with the proportion of retrieved details that are internal A2a: Higher ratings of song familiarity will be related to increases in the number of external, but not internal, details retrieved, such that familiarity will be negatively associated with the proportion of retrieved details that are internal A2b: Higher ratings of song familiarity will be related to increases in the number of both internal and external details, but not the proportion of retrieved details that are internal	<ul style="list-style-type: none"> Bayesian multilevel linear regression model with number of details as outcome, contrasts for a 1-unit increase in familiarity rating Corresponding specification curves 	<ul style="list-style-type: none"> No support for Q2 hypotheses No associations between familiarity with individual songs and voluntary (prompted) retrieval of internal details, external details, or the proportion of internal details.
3. Does exposure to music (in contrast to non-music clips) impact subsequent voluntary retrieval of internal details, external details, or the proportion of internal details?	M3: Exposure to music will increase the number of internal, but not external, details retrieved, thereby increasing the proportion of retrieved details that are internal A3a: Exposure to music will increase the number of external, but not internal, details retrieved, thereby decreasing the proportion of retrieved details that are internal A3b: Exposure to music will increase the number of both internal and external details retrieved, but will not affect the proportion of retrieved details that are internal	<ul style="list-style-type: none"> Bayesian multilevel linear regression model (same model as Q1) with number of details as outcome, and contrasts for both music conditions > no music Corresponding specification curves 	<ul style="list-style-type: none"> No support for Q3 hypotheses. No effects of music (versus non-music clips) exposure on subsequent voluntary (prompted) recall of internal details, external details, or the proportion of internal details.

226 **Table 1:** Main questions and corresponding hypotheses, planned analyses, and results. Main
 227 hypotheses are labeled with M (e.g., M1) and alternative hypotheses are labeled with A (e.g., A1a).

228

Materials and Methods

229 Methods were preregistered and accepted in-principle as a Stage 1 Registered Report
230 protocol on February 11, 2021. The full protocol can be found at <https://osf.io/kjnwd/>.

231

232 *Participants*

233 We recruited healthy adults between ages 65-80 years. Recruitment continued until our
234 target N=75 was reached for participants meeting all inclusion criteria (see Supplemental Fig.
235 1). We screened a total of 112 participants to meet our target sample size and accrual criteria.
236 Participants were recruited through paper and electronic newsletters at retirement communities,
237 social media (Facebook), paper flyers posted in New York City, and word of mouth. Because of
238 the ongoing COVID-19 pandemic, all interactions with participants were conducted remotely via
239 Zoom videoconferencing software. Participant consent was obtained via REDCap before the
240 pre-screening call, and participants had opportunities to ask any questions about the consent
241 form before starting study procedures. Participants were compensated \$20/hour for their time
242 (following the end of their participation in the study) via electronic gift cards.

243 Participants reported their ages in years, and their gender, race, and ethnicity in open-
244 ended questions (all verbal reports; see Supplemental Table 1). Participants also reported their
245 annual household income and level of education through multiple-choice questions (see
246 Supplemental Tables 3-4). Overall, the included participants were highly educated, with 74 out
247 of 75 participants reporting at least some form of postsecondary education. 73 participants were
248 in the United States at the time of participation, and 2 were in Canada.

249

250 *Pre-screening call*

251 Study inclusion criteria were: (1) willingness to schedule three videoconference memory
252 interview sessions, (2) fluency in English, (3) age between 65-80 years, (4) no known

253 neurological conditions or hearing impairments, (5) access to a computer, internet connection,
254 and a quiet space, (6) memory for a sufficient number of early-life events (details below), (7)
255 reporting having listened to a sufficient number of popular music artists before age 25 (details
256 below), and (8) a score of 16/22 or higher on the T-MoCA. In addition to the above criteria, we
257 aimed for nearly equal proportions of participants identifying as male and female. To ensure
258 this, we capped accrual of any gender at 45 participants (60% of the total sample). We also
259 aimed to recruit a sample as racially heterogeneous as the 2019 US population, such that at
260 least 19/75 participants (~25%) identified as a race other than White (census.gov, 2019).

261 Participants first took part in a Zoom call to determine study eligibility and provide
262 information for selecting participant-specific music stimuli and memory probes. Participants
263 were encouraged to find a quiet and private space with strong internet access to conduct this
264 call. Experimenters kept their video feeds on for the duration of all calls with participants (unless
265 there were connection issues that were resolved by turning video off), and participants had the
266 option to keep their cameras on or off. At the start of the pre-screening call, experimenters first
267 offered any necessary support for navigating the Zoom software, thanked participants for joining
268 the call, troubleshooted any technological or call quality issues, and read participants a short
269 overview of the study. Participants were then asked about eligibility criteria 1-5.

270 Next, participants were asked to report on the degree of early-life exposure to different
271 musical artists to guide selection of participant-specific clips for the familiar music condition.
272 Experimenters read participants a list of musical artists who had songs ranked on the Billboard
273 Hot 100 United States year-end charts between 1946-1983 (see <https://osf.io/r3sxd/> for the full
274 list of songs and artists, and for more music list details see <https://osf.io/jvb3m/>). The artists on
275 these lists were those who released charting songs when participants were ages 5-9 years
276 (childhood), ages 14-18 years (adolescence), and ages 20-25 years (early adulthood). We
277 selected these age ranges to maximize the likelihood that participants would have been familiar
278 with popular music released during these periods in life (Krumhansl & Zupnick, 2013; Schuklind

279 et al., 1999; Spivack et al., 2019). Music heard during these age ranges may also be more
280 integral to the development of participants' sociocultural identities (Miranda et al., 2015; Stras,
281 2011). Participant-specific lists contained the 30 artists with the most songs ranked on the top
282 100 chart for each respective time period. If artists were redundant (e.g., in the top 30 across
283 multiple time periods), more artists were added such that each list contained 30 unique artists
284 (additional artists were added for the time period for which redundant artists had fewer songs on
285 the charts). For each artist, participants reported how much they listened to that artist from birth
286 to age 25 (either 0 = '*never heard of this artist*', or a numerical scale from 1-'*barely listened*' to 5-
287 '*very frequently listened*'). To increase the likelihood that all study participants were familiar with
288 the music clips in the familiar music condition, only participants who gave ratings ≥ 3 for at least
289 five artists in each of the three time periods were included for participation in the study.

290 Next, participants were read a list of events that they may have experienced during each
291 of the three time periods (childhood, adolescence, and early adulthood), and reported whether
292 or not they could recall a memory of each specific event (Materials available at
293 <https://osf.io/6d3hr/>). Events were specific to a certain developmental time period (e.g., '*Your*
294 *high school graduation*', or '*A time receiving a holiday present in childhood*'). Events were split
295 into three distinct time periods to ensure that participants retrieved memories from a distribution
296 of times early in life, rather than just one span of a few years. We did not include any events
297 occurring later in life to ensure that all probed memories are of remote events (Acevedo-Molina
298 et al., 2020; St. Jacques & Levine, 2007). Participants were told to say 'no' to any events that
299 they knew happened in their lives but could not recall specifically, or events they did not feel
300 comfortable discussing later in detail. We encouraged participants to provide quick responses
301 (within 10s) to these prompts and not to dwell on any event in detail. Participants who reported
302 being able to recall at least 15 events (out of 50 possible) in each time period were eligible for
303 participation. This inclusion criterion was meant to ensure that participants would be able to

304 complete a sufficient number of trials for adequate statistical power (see Power Calculations in
305 Supplement).

306 Lastly, participants completed the telephone version of the Montreal Cognitive
307 Assessment (T-MoCA) protocol to assess cognitive health (Nasreddine et al., 2005; Pendlebury
308 et al., 2013). The T-MoCA is equivalent to the standard MoCA with all visual items removed,
309 and participants can receive a maximum score of 22. We used a cutoff of 16 points or higher
310 (out of 22 possible) for inclusion, and all prescreened participants scored at or above this cutoff.
311 This cutoff was chosen based on the fact that some pilot participants scored as low as 70%
312 correct on the full MoCA (87% is the usual cut-off for healthy cognition), but no pilot participants
313 struggled to understand the instructions or remember events in response to memory prompts.
314 We chose 16/22 on the T-MoCA as a cutoff to roughly match this 70% correct threshold on the
315 full MoCA.

316 Pre-screening calls on average took 30 minutes. At the end of the pre-screening call,
317 participants who met the inclusion criteria were scheduled for the three music and memory
318 interview sessions. Participants who completed the pre-screening call but did not meet inclusion
319 criteria were paid for their time, but not invited to participate in further sessions.

320

321 *Music clip selection*

322 After pre-screening, 15 participant-specific music clips were selected for the familiar
323 music condition. For each time period (childhood, adolescence, and early adulthood), we first
324 selected the 5 artists on the Billboards charts that each participant rated having listened to most
325 (e.g., highest listening ratings on a scale from 0-5 during the pre-screening call). If there were
326 ties in participant ratings, artists with more total songs on the charts during the time period were
327 selected. For each of these 5 artists, we selected their top-charting song released within the
328 respective time period. Only one song was selected from any one artist in each time period,
329 though songs from the same artist (up to a maximum of three, or one in each time period) could

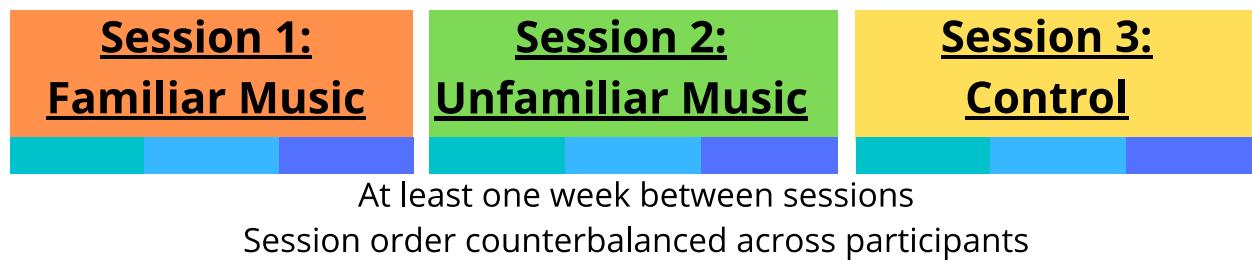
330 be selected if the artist had songs on the Billboard charts across multiple time periods. Thus,
331 songs in the familiar music condition were selected on a participant-specific basis to maximize
332 potential familiarity without participants selecting songs themselves. This is important because
333 playing music to the participant prior to the memory recall sessions may serve as a reminder or
334 probe for memory, which would then confound our ability to identify how single-shot exposure to
335 familiar music affects retrieval. In addition, we wanted to distinguish effects of music familiarity
336 from potential effects of participants having chosen specific clips, so our procedures were aimed
337 to maximize familiarity without participants directly choosing songs beforehand.

338 One caveat is that this process cannot guarantee that participants were exposed to the
339 music clips during the intended time periods, as opposed to later in life. However, the use of
340 top-charting songs may maximize the likelihood that participants were exposed to them shortly
341 after their release, particularly through radio or television airplay (Bartlett & Snelus, 1980;
342 Krumhansl, 2017). To test whether participants listened to the familiar music clips most during
343 the approximate time period they were released, we included a manipulation check to assess
344 the timing of music exposure (see Fig. 2).

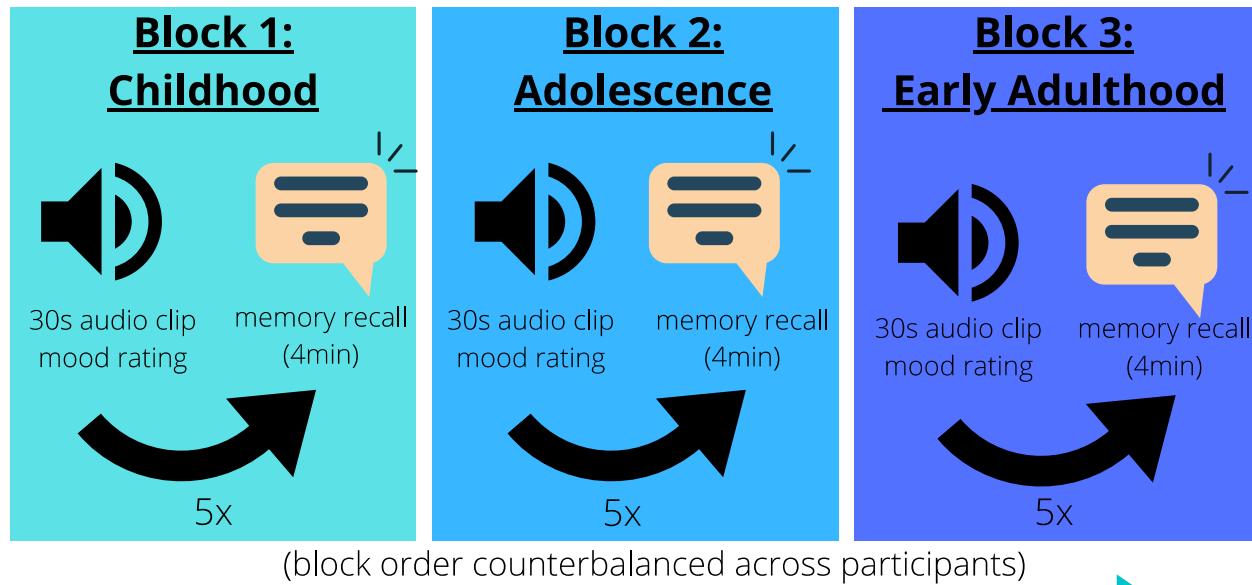
345 Clips for the unfamiliar music condition were selected from a list of more obscure songs
346 released after the year 2000 to ensure that participants had no exposure to them before age 45
347 (i.e., a 65-year-old participant recruited in 2021), and minimize participant familiarity overall
348 (Schulkind et al., 1999). Before the study, a set of 300 clips was selected by the experimenters
349 for stylistic similarity to the popular music clips used in the familiar music condition (see
350 <https://osf.io/6d3hr/>). These clips were also selected to have fewer than 500,000 total streams
351 on Spotify, and to neither have appeared on Billboard Hot 100 charts nor received major
352 film/TV/radio features to minimize the likelihood that participants will be familiar with them. For
353 each participant, 15 clips were selected from this list using an algorithm designed to maximize
354 similarity with the corresponding familiar music clips on 6 auditory features generated by Spotify
355 (valence, tempo, loudness, danceability, energy, acousticness, see

356 <https://developer.spotify.com/documentation/web-api/reference/tracks/get-audio-features/>) and
357 experimenter-rated genre. For all participants, algorithm-selected playlists for the unfamiliar
358 music condition did not significantly differ from the familiar music condition on any of the
359 auditory features (pairwise t-tests for all participants for all features $p > .05$).

360 Clips for the no-music control condition were 15 audio segments from news, weather,
361 and traffic reports selected to be neutral in valence. These clips were the same for all
362 participants. Control condition clips and materials for song clip selection are available via the
363 Open Science Framework at <https://osf.io/6d3hr/>.


364

365 *Music and memory interview sessions*


366 Participants each took part in three 60-90 minute sessions (familiar music, unfamiliar
367 music, and no-music control conditions; order counterbalanced across participants) occurring at
368 least one week after the pre-screening call and with at least one week between sessions (see
369 Figure 1). Participants were sent email reminders both one week and one day prior to each
370 session with time details and videoconference call information. At the beginning of each
371 session, experimenters worked with participants to ensure that the call quality was sufficient for
372 participants to clearly hear the music and elaborate on their memories (including playing a
373 sample audio clip to test audio quality). If technological issues prevented a session from
374 starting, sessions were rescheduled. If technological issues caused a call to prematurely end
375 during the middle of a session, experimenters first tried to restore the call to finish the session. If
376 the call could not be completed, experimenters scheduled an additional partial session to finish
377 the incomplete session. If participants missed scheduled sessions, experimenters made three
378 attempts to re-contact participants via email and phone, with the third contact attempt at least 1
379 week after the second. If participants did not respond or indicated that they did not want to
380 continue in the experiment, they were regarded as having 'dropped out' of the study and were
381 not included in primary analyses (see Supplemental Fig. 1). No participants dropped out after

382 having completed any sessions, although several participants declined participation after
383 prescreening and before starting any sessions (see Supplemental Table 1).

384 At the beginning of each session, participants were told to think of the upcoming session
385 as “recording a journal” of their memories, rather than a conversation with the experimenter.
386 During each session, participants completed 15 trials, each consisting of listening to one 30s
387 clip, then recalling one memory. These 15 trials were split into 3 blocks of 5 trials each
388 corresponding to childhood, adolescent, and early adulthood event prompts (order
389 counterbalanced across participants). During the familiar music condition, the developmental
390 time period of the release of each song clip matched the time period of the events (e.g., songs
391 released during the participant’s childhood were paired with event prompts referring to the
392 participant’s childhood).

Example Session

393
394
395
396
397
398
399
400

Figure 1: Study design. **Top:** Participants each took part in three sessions, in which they were exposed to either familiar music, unfamiliar music, or control non-music clips. After each clip, they were prompted to recall an autobiographical memory. **Bottom:** Schematic of an example session. Each session was split into 3 blocks, in which participants were prompted to recall events from either childhood, adolescence, or early adulthood. Each block consisted of 5 trials, in which participants first heard a music clip and then were prompted to recall an event.

401 Audio recordings were made of each session using Zoom. During each trial, participants
402 were first instructed to relax and listen to a 30s audio clip. Participants were then asked to rate
403 their mood based on the prompt *“how did the clip you just heard make you feel?”* on a numerical
404 scale from 1-7 scale (1 = ‘extremely negative’, 4 = ‘neutral’, 7 = ‘extremely positive’). Next,
405 participants were prompted to elaborate on one of the events they had reported being able to

406 recall during the prescreening call. Within each time period, events were randomly assigned to
407 each session. Following standard protocols for the Autobiographical Interview (Levine et al.,
408 2002), participants were prompted to focus on a specific event, rather than general facts. If
409 participants elaborated on events occurring in a different developmental time period than the
410 one prompted, they were prompted again to focus on an event occurring during the prompted
411 time period. If participants started to talk about events already elaborated upon for a previous
412 prompt, they were asked to focus on a different event fitting the prompt description (see
413 Supplemental Fig. 2). Participants were given up to 4 minutes to elaborate upon the prompt. If
414 participants finished within this time, they were given a general probe for more details (“*is there*
415 *anything else you can remember about that event?*”). No probes for specific types of details
416 were given.

417 After 4 minutes total, participants were asked to rate the positivity and vividness of each
418 memory on a numerical scale from 1-7. Following this, we assessed whether the audio clips
419 also evoked spontaneous memories (i.e., MEAMs). Participants were asked whether the clip
420 they heard during the trial brought any memories to mind spontaneously. If participants reported
421 a spontaneous memory, they were then asked how closely related the prompted event was to
422 the spontaneous memory on a numerical scale from 1 (*completely different*) to 5 (*the same*
423 *memory*). Participants were not asked about the content of spontaneous memories.

424 At the end of the final session, participants listened to 10s clips of both the familiar and
425 unfamiliar music clips an additional time, and rated familiarity with each individual clip on a
426 numerical scale from 1-5 (1 = *'not familiar at all'*, 5 = *'extremely familiar'*). Participants also rated
427 how much they listened to each clip during childhood (5-9 years of age), adolescence (14-18
428 years of age), early adulthood (20-25 years of age), and after age 25 on the same scale.
429 Participants were thanked and had the opportunity to participate in a debriefing conversation in
430 which they were given time to discuss the study and any questions they had.

431

432 *Memory Interview Transcription and Scoring*

433 Experimenter generated text transcriptions of participants' recall of each event. To do
434 this, experimenters ('transcribers') compared automatically generated (by Zoom) text transcripts
435 of each videocall to the audio recording and made any necessary corrections. Transcriptions
436 included all utterances made by both the participant and experimenter during the recall and
437 general probe periods. If a participant recalled more than one event following a probe, all events
438 were transcribed.

439 Each transcribed memory was scored by experimenters ('coders') using the
440 Autobiographical Interview guidelines developed by Levine et al. (2002). Consistent with prior
441 work, details were coded as episodic (or 'internal') if they reflected occurrences, locations,
442 perceptions, thoughts, or emotions specific to the primary event described in response to the
443 probe (Wardell, Esposito, et al., 2020). Details not specific to the time and place of the primary
444 event were coded as 'external'. Specifically, external details included semantic details (e.g., "We
445 *always went to the cabin in the summer*") and episodic details that were not pertinent to the
446 primary recalled episode. In particular, if more than one episode was recalled during a single
447 prompt, the episode judged by the coding experimenter as most related to the prompt was
448 considered the 'internal' or 'primary' episode, and any others were scored as 'external'
449 episodes. Sum scores for total internal and external details were calculated for each memory
450 prompt. Coders did not score any utterances by the experimenter running the session. Coders
451 were not present at the experiment sessions they scored and were blind to the music condition.
452 Study-specific manuals for transcribers and coders are available at
453 https://github.com/pab2163/amfm_public.

454 For each participant, two coders initially scored each memory. If for that participant,
455 reliability (as measured by the intraclass correlation coefficient; ICC2K) between coders was
456 less than .9, the coders examined discrepancies and re-scored memories, along with one
457 additional coder. This process was then repeated, adding an additional coder each time, until

458 reliability $\geq .9$ was reached. Once reliability $\geq .9$ was achieved, final scores for each memory
459 were calculated by averaging the ratings across all coders scoring that participant. While this
460 resulted in more total number of coders for some participants than others, it ensured a minimum
461 reliability of .9 for every participant. This procedure also ensured consistency in scoring across
462 all memories of a given participant, removing potential confounds that might be introduced by
463 varying the coders for different experimental sessions or blocks.

464

465 *Inclusion Criteria*

466 Only data from participants meeting all inclusion criteria from the prescreening call were
467 analyzed. All main analyses only included participants who completed all three music and
468 memory interview sessions. Although we planned additional analysis specifications including
469 participants who dropped out after completing only one or two sessions, no participants who
470 completed any sessions dropped out. Trials were included in primary analysis according to
471 Supplemental Fig. 2. Any trials where technological or other factors (other people, pets, etc.)
472 interrupted memory recall for more than 10s were also excluded from analysis. If such
473 interruptions fell during music listening (prior to memory recall), we restarted the trial by playing
474 the music clip again from the beginning and included the trial in analyses. Under all trial-level
475 inclusion criteria, 6.8% of all trials were excluded from analyses (see Supplemental Table 5).

476

Question	Analysis	Analysis Contingencies	Result
1. Music familiarity manipulation check: Do participants rate clips played in the familiar condition as more familiar than clips played in the unfamiliar condition?	Bayesian multilevel ordinal regression model with familiarity ratings as outcome	Planned analysis #1 will only be conducted if the manipulation is successful, such that participants rate clips in the familiar condition as more familiar than clips played in the unfamiliar condition on average.	Participants rated clips in the familiar music condition as more familiar than clips in the unfamiliar music condition, indicating the familiarity manipulation was successful (Fig. 2A).
2. Music exposure timing manipulation check: Do participants report having listened to familiar music clips more within the time period when they were released (childhood, adolescence, or early adulthood) than other times in life?	Bayesian multilevel logistic regression model with outcome indicating whether participants rate the time period of song release as the time at which they listened to it most	No analyses will be contingent on this. However, our interpretation of any observed effects will be adjusted based on whether this manipulation check holds or not — namely if participants report listening to songs in the familiar music condition more within the time period when they were released than during other times in life for >80% of songs in the familiar music condition.	Participants reported listening to clips most during the time period of release roughly 82% of the time for songs released during young adulthood, 77% of the time for songs released during adolescence, and 40% of the time for songs released during childhood. This indicates that our manipulation of music exposure timing was often not specific to the time window of the music release, especially for songs released during childhood (Fig. 2B).
3. Spontaneous music-evoked recall manipulation check	Bayesian multilevel logistic regression model with outcome indicating whether clips evoke spontaneous recall.	No analyses will be contingent on this. This analysis will inform interpretations of whether our music manipulation impacts spontaneous autobiographical memory recall.	Participants reported having spontaneous memories most often in the familiar music condition, less often in the non-music clips condition, and least often in the unfamiliar music condition (Fig. 2C).
4. Check for coincidence between spontaneous and prompted recall	Bayesian multilevel logistic regression model with outcome indicating whether spontaneously evoked and prompted memories coincide	Planned specification curve analyses will include a fork with an additional covariate for coincidence if there is an effect of music condition on coincidence.	Overall coincidence between the content of spontaneous and prompted memories was rare. However, such coincidence occurred more often in the familiar music condition compared to unfamiliar music and non-music clips, so specification curve analyses included forks with coincidence as a covariate.

477 **Table 2:** Manipulation checks for music familiarity, music exposure timing, spontaneous
478 music-evoked recall, and coincidence between spontaneous and prompted recall will be
479 conducted first to inform primary planned analyses.

480

481

482 **Manipulation checks**

483

484 *Music familiarity manipulation check*

485 To examine the effectiveness of our music familiarity manipulation, we tested whether
486 participants reported being more familiar with the songs used in the familiar music condition
487 compared to the unfamiliar music condition. Only data from the familiar music and unfamiliar
488 music sessions was used in this analysis. Because music familiarity ratings are ordinal
489 responses on a 5-point scale, we used a cumulative ordinal regression model with a probit link
490 function (Bürkner & Vuorre, 2019). This model was fit with package default weakly informative
491 priors, and included participant-specific random effects of music condition. Effectiveness of the
492 music manipulation was examined through the fixed-effect term for music condition in a model
493 using the following R syntax:

494

495 *familiarity_rating ~ music_condition + (music_condition | id)*

496

497 We set criteria such that if 97.5% of draws from the posterior distribution for the music
498 condition parameter had the same sign, this would be interpreted as evidence for an effect of
499 music condition on familiarity ratings. If there was an effect of music condition, such that
500 familiarity ratings are higher for songs in the familiar music condition, we would conduct planned
501 analysis #1 (see Table 1 Question 1).

502

503 *Music exposure timing manipulation check:*

504 The goal of this analysis was to determine the degree to which participants' exposure to
505 songs in the familiar condition was highest during the time period of the song's release (i.e.,
506 matching the time period of the corresponding event prompt). To that end, we tested whether

507 participants rated listening to each song most during this time period, relative to several other
508 time periods in life. For each song in the familiar music condition, we compared each
509 participant's 1-5 ratings of exposure during childhood (5-9), adolescence (14-18), early
510 adulthood (20-25), and later in adulthood (25+). A song was coded as 'matching' if the
511 participant rated their exposure as highest (or tied for highest) during the time period of the
512 song's release, compared to the other time periods. We estimated the proportion of 'matching'
513 songs using a logistic regression model with random effects of time period of release
514 (childhood, adolescence, or early adulthood) for each participant:

515

516 $matching \sim time_period + (time_period | id)$

517

518 We extracted posterior predictive distributions of the group-level proportion of matching
519 songs in each time period. We set decision criteria such that we would consider the song
520 exposure timing manipulation to have been successful if the median posterior estimate for the
521 proportion of songs matched was greater than 0.8 among songs released in each of the three
522 time periods (childhood, adolescence, early adulthood). No other analyses were conditional on
523 the results of this manipulation check, though our interpretations of any potential music effects
524 were based on whether this manipulation was successful.

525

526 *Spontaneous music-evoked recall manipulation check*

527 Although the primary focus of the current study was voluntary (prompted) recall, we also
528 assessed whether involuntary recall (i.e., memories that are spontaneously evoked by the clips)
529 differed as a function of music condition. Participants gave binary responses (yes/no) to indicate
530 whether each clip spontaneously evoked a memory. We estimated the proportion of clips
531 evoking spontaneous recall in each condition using a logistic regression model with random
532 effects of condition for each participant:

533

534 $spontaneous_recall \sim music_condition + (music_condition | id)$

535

536 From this model we examined the following contrasts: 1) likelihood of spontaneous recall
 537 in the familiar music condition > unfamiliar music condition, and 2) likelihood of spontaneous
 538 recall for both music conditions > the no-music condition. If 97.5% of draws from the posterior
 539 distribution had the same sign for either contrast, we interpreted this as evidence for an effect of
 540 music condition on spontaneous recall.

541

542 *Manipulation check for coincidence between spontaneous and prompted recall*

543 It is possible that memories that are spontaneously evoked by a clip overlap to some
 544 degree with the randomly selected event prompt. We expected such coincidence between
 545 spontaneous and prompted memories to be rare. However, to ensure that this possibility did not
 546 play a confounding role, we examined the proportion of total trials for which these memories
 547 coincided. We defined 'coincide' as participants giving a rating ≥ 4 (on a scale from 1-5) for how
 548 closely related the prompted and spontaneous memories were for a given trial. We used a
 549 logistic regression model to estimate, for each condition, the proportion of clips evoking a
 550 coinciding memory. This model included random intercepts and effects of condition for each
 551 participant.

552

553 $coincidence \sim music_condition + (music_condition | id)$

554

555 From this model we examined the following contrasts: 1) likelihood of coincidence in the
 556 familiar music condition > unfamiliar music condition, and 2) likelihood of coincidence for both
 557 music conditions > the no-music condition. If 97.5% of draws from the posterior distribution had
 558 the same sign for either contrast, we interpreted this as evidence for an effect of music condition

559 on coincidence between spontaneous and prompted memories. We planned that if there was
560 such an effect, then we would include an additional fork for all specification curve analyses in
561 which we added an additional trial-level binary covariate for degree of coincidence (see
562 Supplemental Table 6). This covariate was coded as 0 if participants did not report a
563 spontaneous memory or if coincidence did not occur (using the same coding as above) and
564 coded as 1 if coincidence did occur.

565 **Primary Planned Analyses**
566
567

568 *1. Effects of familiar vs. unfamiliar music on memory retrieval*

569 **Primary analysis:** This analysis was conducted only after confirming that the music familiarity
570 manipulation was successful (see *Music familiarity manipulation check*). We fit a Bayesian
571 multilevel linear regression model to estimate effects of exposure to familiar music on retrieval
572 of both internal and external details, as well as the proportion of internal details (see Table 1
573 Question 1). In this model, we included both fixed and random (varying by participant) terms for
574 detail type, music condition, developmental time period, and the interactions of music condition
575 and developmental time period with detail type. While regressors for developmental time period
576 were included in all models to help explain variance, such effects were not the focus of the
577 current study (see Fig. 5). Detail type was effect-coded such that main effects of music condition
578 represented ANOVA-like grand mean differences in number of details recalled (averaging
579 across internal and external details). The model syntax in R was as follows:

580
581 *num_details ~ detail_type*music_condition + detail_type*time_period +*
582 *(detail_type*music_condition + detail_type*time_period | id)*

583
584

585 Our model structure allowed us to estimate effects of music exposure on both internal
586 and external details individually, and with respect to each other. From the model, we examined
587 the following contrasts: 1) internal details in the familiar > unfamiliar music condition, 2) external
588 details in the familiar > unfamiliar music condition, 3) proportion of details that are internal (i.e.,
589 $\frac{\text{internal}}{\text{internal} + \text{external}}$) in the familiar > unfamiliar music condition, and 4) details in the familiar >
590 unfamiliar music condition, averaged across external and internal details. Effect estimates for all
591 contrasts were calculated through extracting 4000 draws from the model's posterior predictive
592 distribution for the linear predictor. Highest density intervals (HDI) were calculated for each
593 contrast. Such intervals are roughly analogous to confidence intervals (Turkkan & Pham-Gia,
594 1993).

595 The primary analysis included data from the 75 participants meeting the main inclusion
596 criteria for the study, and included summed internal and external details, respectively, across
597 both the recall and general probe phases. Trials in which participants reported no memories in
598 response to probes were excluded from analysis, though trials for which participants reported
599 memories with no internal details (and >0 external details) were included (Supplemental Fig. 2).
600 Thus, all reported memories contributed to the analyses, irrespective of their content.

601

602 **Specification curves:** In addition to the primary analyses, we considered additional analyses
603 that were theoretically motivated. This allowed us to determine whether our observed results
604 were robust to different analysis decisions that were equally valid. To that end, we conducted
605 specification curve analysis to determine the robustness of observed results (Orben &
606 Przybylski, 2019; Steegen et al., 2016). We reran the model described above under all possible
607 combinations of the analysis specifications detailed in Supplemental Table 6, resulting in a total
608 of 24 analysis specifications. For each contrast, we tested whether the median effect of the
609 specification curve significantly differed from that expected in the absence of a true effect

610 through permutation testing. Specifically, we shuffled the music condition labels randomly for
611 each participant, then re-calculated the specification curve and the corresponding median effect
612 estimate 100 times (Simonsohn et al., 2015). This procedure tested the statistical significance of
613 the specification curve as a whole, and we considered any results for individual specifications
614 (other than the primary analyses) exploratory. We set an alpha level $\alpha = 0.05$ as the criterion
615 for significance for these analyses. See specification curves at
616 https://pbloom.shinyapps.io/music_memory_specification_curves/.

617

618 *2. Associations between ratings of song familiarity and memory retrieval*

619 **Primary analyses:** We also used similar Bayesian multilevel linear regression models to those
620 outlined for analyses #1 (see Table 1 Question 1) to estimate associations between participants'
621 ratings of familiarity for each song and retrieval of internal and external details following
622 exposure to that song (see Table 1 Question 2). We included random effects terms for
623 familiarity rating and time period (and their interactions with detail type) for each participant.
624 Familiarity rating was treated as a continuous variable, with effect coding for detail type and
625 dummy coding for time period (see Supplemental Table 8). The syntax will be as follows:

626

627 *num_details ~ detail_type*familiarity_rating + detail_type*time_period + (detail_type*
628 familiarity_rating + detail_type*time_period | id)*

629

630
631 We examined the following four contrasts from the model: 1) the average expected
632 increase in internal details associated with a 1-unit increase in familiarity, 2) the average
633 expected increase in external details associated with a 1-unit increase in familiarity, 3) the
634 average expected increase in the proportion of details that are internal associated with a 1-unit

635 increase in familiarity, and 4) the average increase in all details (averaged across internal and
636 external) associated with a 1-unit increase in familiarity.

637

638 *3. Effects of music vs. non-music clips on memory retrieval*

639 **Primary analysis:** To estimate effects of music on memory recall more generally (see Table 1
640 Question 3), we examined an additional 4 contrasts from the model described in planned
641 analysis #1 (see Table 1 Question 1 and Supplemental Table 7). The contrasts we examined
642 here were: 1) internal details in both music conditions > no-music condition, 2) external details
643 in both music conditions > no-music condition, 3) the proportion of details that are internal in
644 both music conditions > no-music condition, and 4) all details in both music conditions > no-
645 music condition, averaged across external and internal details. Effect estimates were calculated
646 through draws from the model's posterior predictive distribution for the linear predictor as
647 previously detailed.

648

649 *Corrections for multiple comparisons*

650 To account for the multiple comparisons introduced by making inferences for several
651 contrasts from the same model, we implemented a modified Holm-Bonferroni procedure (Holm,
652 1979). For each model, contrasts were ordered from greatest to least by the proportion of
653 posterior draws with the same sign (a rough equivalent of frequentist confidence intervals;
654 Ludbrook, 2000). With a maximum family-wise error rate of $\alpha = 0.05$, contrasts were interpreted
655 as showing evidence for an effect if a proportion greater than $1 - \frac{\alpha/2}{m}$ of posterior draws had the
656 same sign for each contrast, where m is initially the total number of contrasts tested (4 for each
657 model), then is reduced by 1 for each subsequently tested contrast (thereby relaxing the
658 criteria). If for any contrast, this multiple comparisons-corrected criterion was not met, we

659 interpreted such a result as absence of consistent evidence for that contrast, and any following
660 contrasts.

661 We applied this correction for multiple comparisons to all models used in primary
662 analyses. However, such procedures were unnecessary, as no primary analyses met our
663 planned criteria for an effect even without such corrections. Because specification curve
664 analyses were considered in combination with the primary analysis, we did not apply additional
665 corrections for multiple comparisons to specification curves.

666

667

668

Secondary Planned Analyses

669

Question	Analysis	Interpretation	Result
1. Effects of music condition on mood: Is there an effect of music condition on participant-rated mood?	Bayesian multilevel ordinal regression model with mood ratings as outcome	Results will inform the degree to which our music manipulation impacts affect.	Familiar music clips evoked the most positive affect compared to unfamiliar music or non-music clips. Unfamiliar clips also evoked more positive affect compared to non-music clips.
2. Associations between mood and retrieval of internal and external details: Is participant-rated mood associated with voluntary retrieval of internal details, external details, or the proportion of internal details?	Bayesian multilevel linear regression model with number of details as outcome, contrasts for a 1-unit increase in mood rating	Results will inform interpretations of whether music effects on memory retrieval may be related to changes in mood.	We did not find associations between affect and retrieval of internal or external details.
3. Associations between spontaneous recall and voluntary retrieval of internal and external details: Is the occurrence of a spontaneous memory associated with subsequent voluntary retrieval of internal details, external details, or the proportion of internal details?	Bayesian multilevel linear regression model with number of details as outcome, including only participants who reported spontaneous recall on at least one trial	Results will inform whether spontaneous recall is associated with subsequent enhanced deliberate recall. If so, this might indicate a potential mechanism by which music could boost voluntary recall.	We did not find associations between spontaneous recall and voluntary (prompted) recall of internal or external details.
4. Associations between self-reported music exposure during the time period of music release and voluntary memory retrieval: Is higher self-reported exposure during the time period of music release (vs. during different time periods) associated with retrieval of internal details, external details, or the proportion of internal details?	Bayesian multilevel linear regression model with number of details as outcome, including only trials from the familiar music condition	Results will inform whether exposure to music during the time period of music release (versus other times in life) is associated with retrieval of memories from the same time period. Such an association might suggest temporally specific effects of music on memory recall.	While preregistered analyses found an association between exposure during the time period of release and prompted recall of internal details, such analyses were likely confounded by the time periods of the prompted events. In follow-up analyses controlling for the time period of events, we did not find associations between exposure during the time period of music release and recall of internal or external details (see Supplemental Results).

670 **Table 3:** Questions, analysis methods, interpretations, and results, for secondary planned analyses.

671

672 *Effects of music condition on mood*

673 Although our music manipulation was not designed to affect participants' mood, we
674 analyzed mood as a function of music condition (Jakubowski et al., 2018; Nineuil et al., 2020;
675 Schulkind et al., 1999). Mood (affect) ratings were ordinal responses on a 7-point scale, so we
676 used a cumulative ordinal regression model (as we proposed for the music familiarity
677 manipulation check). We estimated effects of familiar relative to unfamiliar music clips, and
678 music relative to non-music clips, on self-reported mood. This model included a regressor for
679 developmental time period to help the model explain more variance. This model also had
680 participant-specific random effects of music condition and time period as follows:

681

682 $mood \sim music_condition + time_period + (music_condition + time_period | id)$

683

684 From this model we examined the following contrasts: 1) mood ratings in the familiar
685 music condition > unfamiliar music condition, and 2) mood ratings in both music conditions > the
686 no-music condition. If 97.5% of draws from the posterior distribution had the same sign for either
687 contrast, we interpreted this as evidence for an effect of music condition on mood.

688

689 *Associations between mood and memory retrieval*

690 To ask whether mood and remote memory retrieval were associated, we will model both
691 internal and external details as a function of mood (Palombo et al., 2020; Sheldon et al., 2020;
692 Sheldon & Donahue, 2017; Simpson & Sheldon, 2019; Wardell, Madan, et al., 2020). Detail type
693 was effect-coded such that the main effect of mood represented the mean association of mood
694 with retrieval averaged across internal and external details. Number of details and mood were
695 treated as continuous variables, and mood was z-scored within participants. The model syntax
696 in R included participant-level random effects for all terms as follows:

697

698 $num_details \sim detail_type*mood + (detail_type*mood | id)$

699

700 From this model we examined the following contrasts: 1) the average expected increase
701 in internal details associated with a 1-unit increase in mood, 2) the average expected increase
702 in external details associated with a 1-unit increase in mood, 3) the average expected increase
703 in the proportion of details that are internal associated with a 1-unit increase in mood, and 4) the
704 average increase in all details (averaged across internal and external) associated with a 1-unit
705 increase in mood. Multiple comparisons corrections were applied across all contrasts as
706 described previously (see *Corrections for Multiple Comparisons*). No other analyses were
707 contingent on these results.

708

709 *Associations between spontaneous and voluntary recall*

710 We fit an additional Bayesian multilevel model to ask whether involuntary recall was
711 associated with voluntary (prompted) recall on a trial-by-trial basis. Recall measures included
712 internal details and external details, and the model included random effects of
713 spontaneous_recall, detail type, and their interaction for each participant.

714

715 $num_details \sim spontaneous_recall*detail_type + (spontaneous_recall*detail_type | id)$

716

717 From this model we examined the following contrasts: 1) number of internal details recalled in
718 trials with spontaneous recall > trials without spontaneous recall, 2) number of external details
719 recalled in trials with spontaneous recall > trials without spontaneous recall, 3) the total number
720 of details (across internal and external) in trials with spontaneous recall > trials without
721 spontaneous recall, and 4) the proportion of recalled details that are internal in trials with
722 spontaneous recall > trials without spontaneous recall.

723

724 *Associations between self-reported music exposure during the time period of music release and*
725 *voluntary memory retrieval*

726 For the familiar music condition only, we also asked whether self-reported music
727 exposure during the time period of the music's release (childhood, adolescence, or early
728 adulthood) was associated with deliberate recall of memories from that same time period. To
729 accomplish this, we constructed a Bayesian multilevel linear regression to estimate associations
730 between reported exposure to music clips and deliberate recall of internal or external details.

731 The preregistered model had terms for both music exposure during the time period of the
732 music's release (music_exposure_matching) and average music exposure during all other time
733 periods (music_exposure_nonmatching). The preregistered model included both music
734 exposure terms, detail type (internal vs. external), and interactions of the music exposure terms
735 with detail type, with participant-varying random effects for all parameters.

736

737 *Num_details ~ music_exposure_matching*detail_type +*
738 *music_exposure_nonmatching*detail_type + (music_exposure_matching*detail_type +*
739 *music_exposure_nonmatching*detail_type | id)*

740

741 After data collection, we realized that associations of time-windowed music exposure in
742 the preregistered model were likely confounded by the developmental time windows of the
743 prompted event memories. Within the familiar music condition, the time period of the event
744 prompt was matched to the time period of song release, and time-windowed music exposure
745 was higher for songs released in adolescence and young adulthood compared to childhood
746 (Supplemental Fig. 13). Thus, effects of the time period of the recalled events—more internal
747 details for adolescent and young adulthood memories vs. those from childhood—may have
748 driven apparent effects of music exposure in the preregistered model. To explore this possibility,

749 we fit an additional (not preregistered) model with added covariates for the time period of the
750 events as follows:

751

752 *num_details ~ music_exposure_matching*detail_type +*
753 *music_exposure_nonmatching*detail_type + time_period*detail_type +*
754 *(music_exposure_matching*detail_type + music_exposure_nonmatching*detail_type +*
755 *time_period*detail_type | id)*

756

757 From these models we examined the following contrasts: 1) the average expected
758 increase in internal details associated with a 1-unit increase in music exposure in the matching
759 time period, 2) the average expected increase in external details associated with a 1-unit
760 increase in music exposure in the matching time period, 3) the average expected increase in
761 internal details associated with a 1-unit increase in music exposure in the non-matching time
762 periods, and 4) the average expected increase in external details associated with a 1-unit
763 increase in music exposure in the non-matching time periods. Multiple comparisons corrections
764 were applied across contrasts (see *Corrections for Multiple Comparisons*). See Supplemental
765 Results and Supplemental Fig. 10 for all results of this analysis.

766

767 *Model-fitting*

768 We fit all models using Hamiltonian Monte Carlo No-U-Turn sampling as implemented by
769 the brms package in the R computing environment (Bürkner, 2019). We chose to use fully
770 Bayesian estimation for all models to improve estimation of hierarchical regression models with
771 many parameters, as well as to address the practical concern that maximum likelihood-based
772 approaches are often prone to model convergence issues or underestimation of coefficient
773 uncertainty (Chung et al., 2015). All linear models were fit using weakly informative priors,
774 namely package-default student's t distributions centered at 0 with 3 degrees of freedom and a

775 scale parameter of 10 (units are standard deviations of the predictor variable) for both fixed
776 effects and the standard deviation of participant-level random effect distributions (priors for
777 standard deviations were censored to only include values 0 and above). Additionally, a
778 package-default LJK prior with shape $\eta = 1$ was used for the covariance matrix of participant-
779 level coefficients. For all models, we fit 4 chains of 2000 sampling iterations (1000 warmup)
780 each for a total of 4000 post-warmup samples. In cases where the tail effective sample size was
781 low (as indicated by Stan warning messages), we added 1000 more sampling iterations for each
782 chain until sufficient tail effective sample size was achieved. For all primary analysis models, the
783 \hat{R} statistic for all fixed effects was below a threshold of 1.1 (Gelman et al., 2013). We computed
784 full posterior distributions for all contrasts of interest, and plotted these along with corresponding
785 highest density intervals for each primary analysis (Kruschke, 2021; van de Schoot et al., 2021).
786 Extraction and transformation of posterior draws after models were fit was done using the
787 tidybayes package and the tidyverse collection of packages in R (Kay, 2022; Wickham et al.,
788 2019). All results figures were created using ggplot2.

789

Exploratory Analyses

792 *Differences in prompted recall as a function of age at the time of the prompted event*

793 Using the model previously fit for primary planned analysis #1, we examined whether
794 prompted recall of internal or external details differed as a function of age at the time of the
795 prompted event. This served as an additional (not preregistered) manipulation check, given that
796 autobiographical memories tend to be less detailed for childhood events (Bauer, 2012).
797 Between each of the time periods (childhood, adolescence, or young adulthood), we calculated
798 posterior contrasts for differences in internal details, external details, all details (the sum of
799 internal + external), and the proportion of details that were internal. Multiple comparisons

800 corrections were not applied to these analyses, as our goal was to explore estimated
801 differences in recall between time periods, rather than to test specific hypotheses.

802

803 *Differences in prompted recall as a function of event prompts*

804 We used a Bayesian multilevel linear regression model to explore whether different
805 event prompts evoked differing recall of internal or external details. Because not all participants
806 recalled memories for all prompts, we included only event prompts for which ≥ 10 participants
807 recalled memories, and included random intercepts and effects of detail type for each
808 participant as follows:

809
810 $num_details \sim event * detail_type + (detail_type | id)$

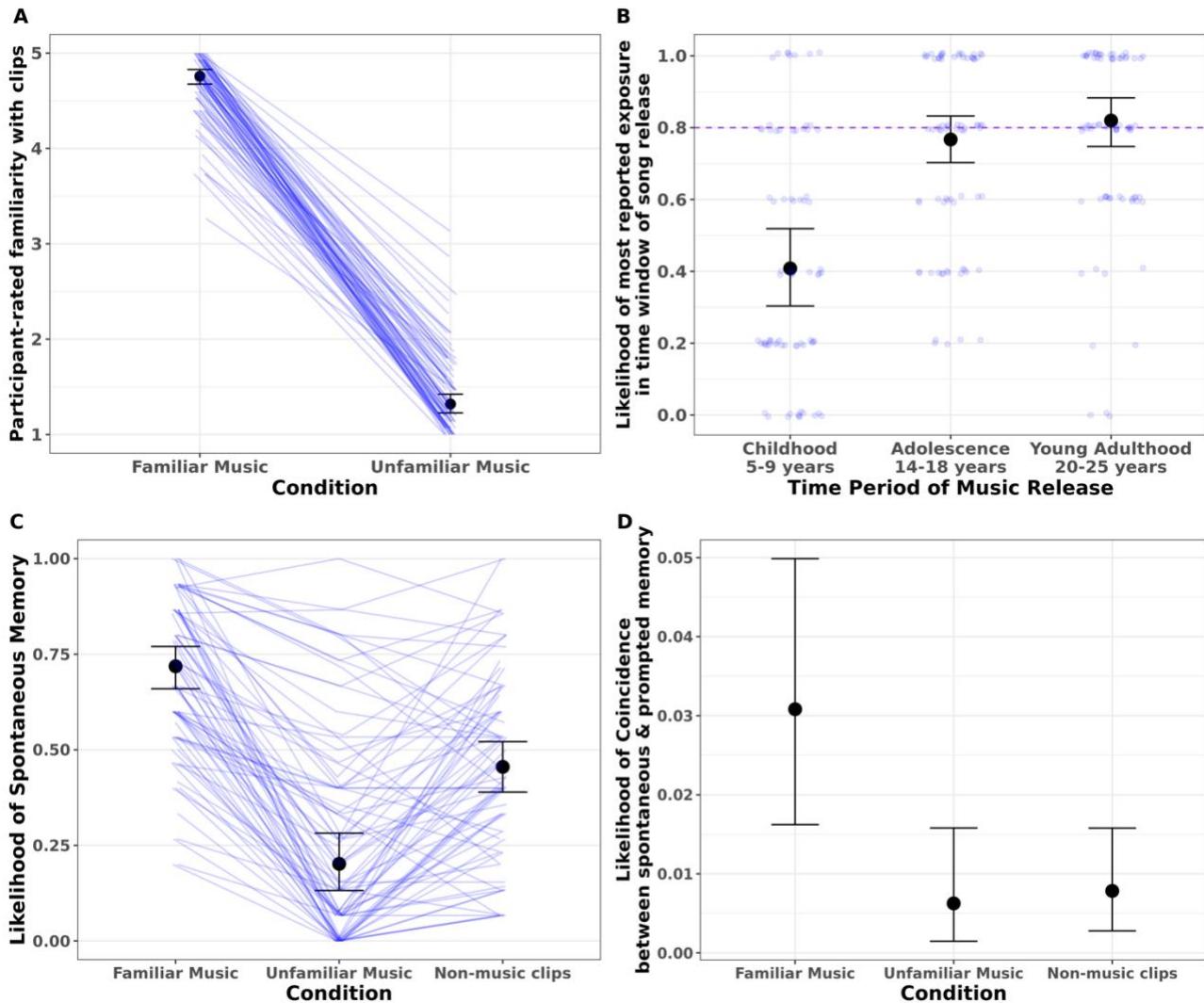
811
812 We then extracted posterior predictions for the average internal details, external details,
813 all details (the sum of internal + external), and proportion of internal details recalled for each
814 event. We grouped events by their time period of occurrence to help visualization of differences
815 in recall between events within each time period. As the goal of this exploratory analysis was to
816 estimate differences in recall among event prompts, we did not compute contrasts between
817 specific pairs of events or apply corrections for multiple comparisons.

818 *Deviations from preregistered methods*

819 Although we largely followed all preregistered methods (see <https://osf.io/kjnwd/>), we
820 note several small changes from the registered protocol. First, we used an additional
821 recruitment method of paper flyers posted in several locations in New York City, and we did not
822 recruit any participants through shared institutional participant lists. In addition, while the
823 preregistered protocol stated that we would play participants a sample audio clip at the end of
824 the prescreening session, we played this audio at the beginning of each study session to ensure
825 that audio quality was sufficient for each call.

826 Although preregistered methods stated that participants would be given 4 minutes to
827 recall a memory in response to each prompt, in practice it was difficult to interrupt participants if
828 they were continuing to recall a memory beyond the designated time. This was particularly true
829 because participants could not always hear on Zoom if an experimenter interjected while they
830 were simultaneously speaking. Thus, for some trials (10.3%), recall continued after 4 minutes
831 before the experimenter was able to move on to the next item. Experimenters worked to be as
832 consistent as possible for each participant in moving to the next follow-up question as soon as
833 possible after 4 minutes of recall had elapsed.

834 Preregistered methods also stated that members of the research team correcting
835 automatically generated text transcripts ('transcribers') using the Zoom audio would not be
836 those conducting the corresponding study sessions. However, some Zoom transcripts (25
837 participants) were corrected by the same person who conducted the session, such that
838 transcribers in these cases were aware of the music condition for the text transcripts they
839 corrected. In addition, even when transcribers were not correcting transcripts for sessions they
840 ran themselves, they could have been aware of the condition because the recordings and text
841 transcripts contained the audio of the clips and corresponding text (i.e., the song lyrics or
842 dialogue from non-music clips; transcribers always removed this information from transcripts so
843 that coders would not see it). It is unlikely that this could have been a potential source of bias,
844 as transcribers did not make decisions about how memories were coded and were always
845 distinct from coders making such decisions for each participant.


846 Lastly, with the permission of the journal editor, we added one questionnaire item at the
847 end of the final study session assessing participants' liking of each music clip on a numerical
848 scale from 1-5 (see Supplemental Fig. 3). Overall, we believe that the deviations from the
849 preregistered protocol were minor and did not substantially impact the rigor or results of the
850 study.

851

852
853
854
855

Results

Manipulation Checks & Preliminary Planned Analyses

856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871

Figure 2: Manipulation checks and preliminary analyses (see Table 2). **A:** Song familiarity manipulation check. Participant-reported familiarity (y-axis) with music clips selected to be familiar and unfamiliar. Note: while familiarity was treated as an ordinal variable in the model, it is plotted as a continuous variable here for ease of visualization. **B:** Likelihood of highest self-reported music clip exposure during the window of each song's release. Y-axis shows the estimated proportion of trials where participants reported the highest (or tied for highest) exposure to each song clip during the developmental window of the song's release (from the options of ages 5-9, 14-18, 20-25, or 26-present). The dashed horizontal line at 0.8 represents the preregistered study criterion for successful manipulation of the time window of music exposure. **C:** Likelihood of participants reporting that a spontaneous memory was evoked during listening of sound clips in each condition. **D:** Likelihood of coincidence between spontaneous memories and prompted memories in each condition. Coincidence was defined by participants giving a rating ≥ 4 (on a 1-5 numerical scale) for how similar the spontaneous and prompted memories were for each given trial. For all panels, black points and error bars represent group-level model estimates and 95% posterior intervals, and blue points or lines are summaries

872 (average familiarity in panel A, proportions in panels B & C) of each individual participant's raw
873 data.

874

875

876 *Music Familiarity Manipulation Check*

877 A Bayesian multilevel cumulative ordinal regression model indicated that participant-
878 reported familiarity with music clips was higher in the familiar music condition compared to the
879 unfamiliar music condition ($\beta=3.53$, 95% HDI [3.26, 3.83]). Further, all individual participants
880 reported numerically higher average familiarity in the familiar music condition compared to the
881 unfamiliar condition (Fig. 2A). We interpret this as a successful manipulation of music familiarity
882 (see Table 1 Q1).

883

884 *Music Exposure Timing Manipulation Check*

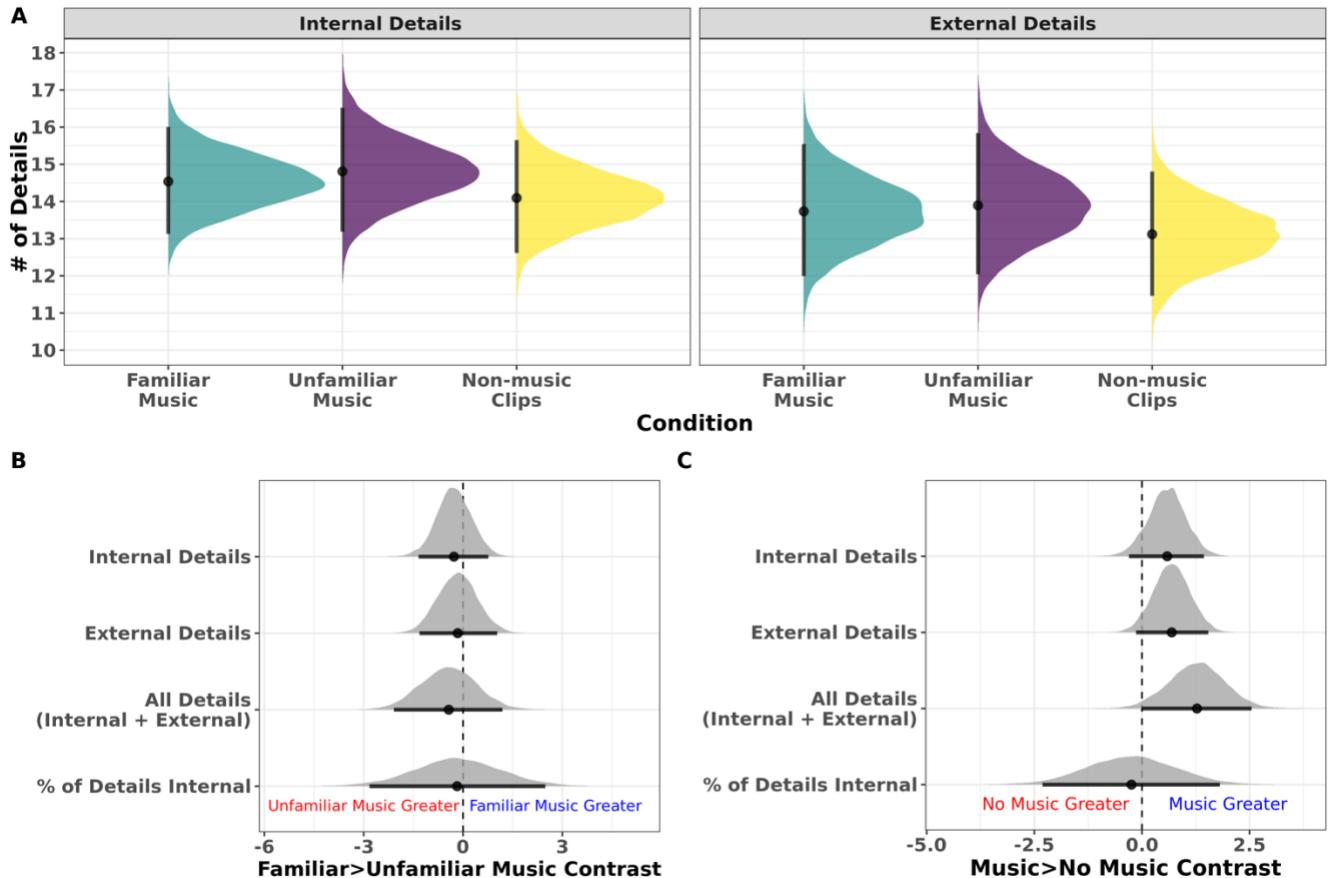
885 Using a Bayesian multilevel logistic regression model, we estimated the proportion of
886 clips in the familiar music condition for which participants reported the highest (or tied for
887 highest) exposure during the time window of the song's release (among the options of childhood
888 [ages 5-9], adolescence [ages 14-18], young adulthood [ages 20-25], and 26-present) (Fig. 2B).
889 Although participants reported highest exposure during the time window of release for the
890 majority of songs released during their adolescence (Median proportion = 0.77, 95% HDI [0.70,
891 0.83] and young adulthood (Median proportion = 0.82, 95% HDI [0.75, 0.88]), this was true less
892 often for songs released during their childhood (Median proportion = 0.40, 95% HDI [0.30, 0.52]).
893 Based on the criteria of a 0.8 likelihood of highest reported exposure during the time window of
894 release, our music exposure timing manipulation did not succeed in temporal specificity (see
895 Table 1 Q2). Thus, any effects of familiar music on memory cannot be ascribed to temporal
896 matching between prompted events and the developmental timing of the release of the songs.

897

898 *Spontaneous music-evoked recall*

899 Using a Bayesian multilevel logistic regression model, we estimated the proportion of
900 trials in each condition for which participants reported a spontaneous memory coming to mind
901 while listening to the clip (Fig 2C). We found an effect of music familiarity on spontaneous recall,
902 such that participants reported more spontaneous memories in the familiar music condition
903 compared to both the unfamiliar music condition ($\beta=2.31$, 95% HDI [1.92, 2.75]) and the non-
904 music clips condition ($\beta=1.11$, 95% HDI [0.85, 1.38]). In addition, participants reported more
905 spontaneous memories in the non-music clips condition compared to the unfamiliar music
906 condition ($\beta=1.20$, 95% HDI [0.81, 1.63]). This latter effect was not expected, and we explore
907 reasons for why unfamiliar music may have evoked the fewest spontaneous memories in the
908 Discussion.

909


910 *Coincidence between spontaneous and prompted recall*

911 We used a Bayesian multilevel logistic regression model to estimate the proportion of all
912 trials where participants reported a high degree of coincidence (≥ 4 on a numerical scale from 1-
913 5) between prompted and spontaneous memories in each condition. Although such coincidence
914 was rare overall (generally fewer than 5% of trials; Fig. 2D), participants reported coincidence
915 more often during the familiar music condition compared to either the unfamiliar music ($\beta=1.61$,
916 95% HDI [0.55, 2.89]) or non-music clips ($\beta=1.37$, 95% HDI [0.70, 2.33]). There were no
917 differences in likelihood of coincidence between the unfamiliar music condition and non-music
918 clips ($\beta=-0.20$, 95% HDI [-1.61, 0.96]). Thus, we included specifications in our specification
919 curves for primary planned analyses with an additional covariate for coincidence (see
920 Supplemental Table 6).

921

922 Primary Planned Analyses

923

924

925 **Figure 3:** Effects of music manipulation on deliberate recall. Overall, primary analyses found no
 926 effects of familiar > unfamiliar music (see Table 1 Q1) or all music > non-music clips (see Table
 927 1 Q3) under preregistered criteria, as 95% posterior intervals for all contrasts included 0. **A:**
 928 Model predictions for mean internal (left) and external (right) details recalled in each condition.
 929 Shaded distributions are posterior predictive distributions for mean details, and black points and
 930 error bars represent posterior medians and 95% intervals. **B:** Posterior distributions for the
 931 familiar music > unfamiliar music contrast, representing differences in mean recall between
 932 those two conditions. Shaded distributions represent all posterior contrast samples, and error
 933 bars represent 95% intervals. **C:** Posterior distributions for the all music > non-music clips
 934 contrast, representing differences in mean recall between those two conditions. As all 95%
 935 intervals included 0, multiple comparisons-corrected intervals are not displayed.

936

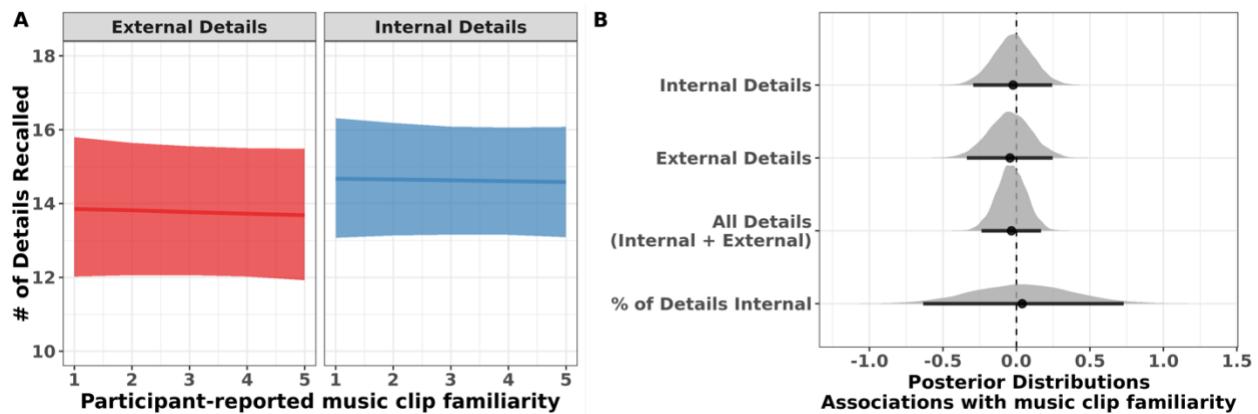
937

938

939 *Effects of familiar vs. unfamiliar music exposure on prompted memory recall*

940 We found no effects of familiar versus unfamiliar music exposure on prompted memory

941 recall under preregistered decision criteria (Fig. 3A-B). Specifically, a Bayesian multilevel


942 regression model did not find differences between the familiar and unfamiliar music conditions in

943 internal details (Familiar > unfamiliar estimate = -0.27, 95% HDI [-1.27, 0.82]), external details

944 (Familiar > unfamiliar estimate=-0.17, 95% HDI [-1.34, 1.00]), all details (the sum of internal +
 945 external) combined (Familiar > unfamiliar estimate=-0.44, 95% HDI [-2.11, 1.16]), or the
 946 percentage of details that were internal (Familiar > unfamiliar estimate=-0.17, 95% HDI [-2.90,
 947 2.40]). Specification curves also found no evidence for effects of familiar versus unfamiliar
 948 music on prompted recall (see
 949 https://pbloom.shinyapps.io/music_memory_specification_curves/). Additional visualizations
 950 illustrating summaries of the raw data and between-participant heterogeneity in effects of
 951 familiar music can be found in Supplemental Figures 6 & 7.

952
 953 *Associations between ratings of song familiarity and prompted memory recall*
 954 We found no associations between participant-reported familiarity with music clips and
 955 prompted memory recall under preregistered decision criteria (Fig. 4). Specifically, a Bayesian
 956 multilevel linear regression did not find associations between music clip familiarity and internal
 957 details ($\beta=-0.02$, 95% HDI [-0.30, 0.24]), external details ($\beta=-0.04$, 95% HDI [-0.33, 0.25]), all
 958 details (sum of internal + external) combined ($\beta=-0.07$, 95% HDI [-0.47, 0.33]), or the
 959 percentage of details that were internal ($\beta=0.04$, 95% HDI [-0.63, 0.73]). Specification curves
 960 also found no such associations (see
 961 https://pbloom.shinyapps.io/music_memory_specification_curves/).

962

964 **Figure 4:** Associations between participant-reported music clip familiarity and deliberate recall.
 965 **A:** Model-predicted mean details recalled as a function of participant-reported familiarity (on a
 966 numerical scale from 1-5) with each music clip. This analysis included only clips from the
 967 familiar and unfamiliar music conditions. Lines represent median posterior predictive estimates
 968 for average internal (left) and external (right) details, and shaded regions represent 95%
 969 posterior intervals. **B:** Posterior distributions for estimated associations between memory detail
 970 type and participant-reported familiarity. For Internal Details, External Details, and All Details,
 971 posterior estimates represent the change in number of details recalled with a 1-unit (on a
 972 numerical scale from 1-5) increase in clip familiarity. For % of Details Internal, posterior
 973 estimates represent the change, with a 1-unit increase in clip familiarity, in the percentage of
 974 recalled details that are internal. As all 95% intervals included 0, multiple comparisons-corrected
 975 intervals are not displayed.

976
 977

978 *Effects of music vs. non-music clips on prompted memory recall*

979 Primary analysis did not find any robust effects of exposure to music (both familiar and
 980 unfamiliar combined) versus non-music clips on prompted recall under preregistered decision
 981 criteria (Fig. 3A & C), although some weak evidence was observed. Specifically, a Bayesian
 982 multilevel regression model did not find differences between the music and non-music clips
 983 conditions in internal details (Music > no-music estimate=0.58, 95% HDI [-0.29, 1.45]), external
 984 details (Music > no-music estimate=0.69, 95% HDI [-0.16, 1.52]), all details (the sum of internal
 985 + external) combined (Music > no-music estimate=1.27, 95% HDI [-0.01, 2.53]), or the
 986 percentage of details that were internal (Music > no-music estimate=-0.25, 95% HDI [-2.31,
 987 1.80]). For external details and all details combined, however, the 95% HDIs (not adjusted for
 988 multiple comparisons) barely overlapped 0, with most posterior draws indicating that more
 989 details were recalled in the music compared to no-music condition.

990 Specification curves allowed us to examine whether effects were present using different
 991 analysis choices. However, no specification curves found strong evidence for effects of music
 992 versus non-music clips on prompted recall (see
 993 https://pbloom.shinyapps.io/music_memory_specification_curves/). While the permutation test
 994 for the specification curve for differences in all details (sum of internal + external) resulted in $p =$
 995 .05, this p -value did not strictly meet the preregistered $p < .05$ criteria, and only 3 out of 24

996 individual specifications (not including the primary analysis) indicated an effect such that the
997 95% highest density interval excluded 0. Because the permutation test of the specification curve
998 was limited to 100 resampling iterations for computational feasibility, and not adjusted for
999 multiple comparisons (though decision criteria for primary analyses were adjusted for multiple
1000 comparisons), the result of the specification curve should not be over-interpreted as strong
1001 evidence of an effect. The combination of the primary analysis and specification curve indicate
1002 that the evidence for an effect of music exposure on prompted recall is not robust, and at best
1003 mixed.

1004
1005 **Secondary Planned Analyses**

1006
1007 *Effects of music manipulation on clip-evoked affect*
1008 We used a Bayesian multilevel cumulative ordinal regression model to estimate effects
1009 of the music manipulation on affect (rated on a 1 [most negative] to 7 [most positive] numerical
1010 scale) evoked by the sound clips (Supplemental Fig. 9A). We found differences between all
1011 conditions, such that evoked affect was more positive on average for familiar music clips
1012 compared to both unfamiliar music ($\beta=1.23$, 95% HDI [1.06, 1.38]) and non-music clips ($\beta=1.69$,
1013 95% HDI [1.52, 1.87]). Evoked affect was also more positive on average for unfamiliar music
1014 clips compared to the non-music clips ($\beta=0.46$, 95% HDI [0.30, 0.64]).

1015
1016
1017 *Associations between clip-evoked affect and prompted memory recall*

1018 We found no associations between clip-evoked affect and prompted memory recall
1019 (Supplemental Fig. 9B-C). Specifically, a Bayesian multilevel regression did not find
1020 associations between clip-evoked affect and internal details ($\beta=0.01$, 95% HDI [-0.23, 0.25]),
1021 external details ($\beta=0.11$, 95% HDI [-0.09, 0.32]), all details (the sum of internal + external)

1022 combined ($\beta=0.06$, 95% HDI [-0.10, 0.22]), or the percentage of details that were internal ($\beta=-$
1023 0.18, 95% HDI [-0.74, 0.37]).

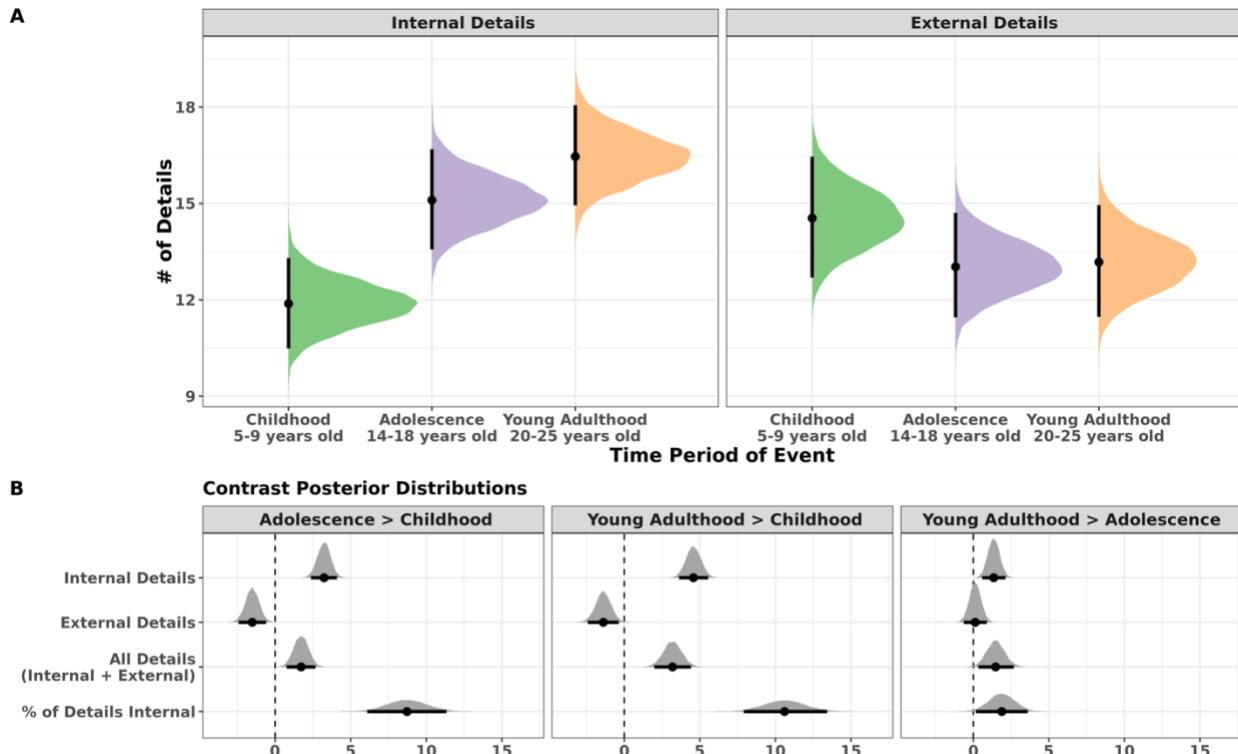
1024

1025 *Associations between spontaneous and prompted memory recall*

1026 We found no differences in prompted memory recall as a function of whether a
1027 spontaneous memory occurred during listening to the sound clip on the same trial
1028 (Supplemental Fig. 11). Specifically, a Bayesian multilevel regression did not find differences in
1029 internal details ($\beta=-0.15$, 95% HDI [-0.80, 0.46]), external details ($\beta=0.56$, 95% HDI [-1.18,
1030 0.08]), all details (the sum of internal + external) combined ($\beta=-0.71$, 95% HDI [-1.54, 0.31]), or
1031 the percentage of details that were internal ($\beta=0.78$, 95% HDI [-0.77, 2.36]) as a function of
1032 whether a spontaneous memory had occurred.

1033

1034


1035

1036

1037 **Exploratory Analysis Results**

1038

1039

1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050

Figure 5: Exploratory analysis of differences in deliberate recall as a function of age at the time of the prompted event. **A:** Model predictions for mean internal (left) and external (right) details recalled as a function of the time period of the prompts. Shaded distributions are posterior predictive distributions for mean details, and black points and error bars represent posterior medians and 95% intervals. **B:** Posterior distributions representing differences in mean recall for each pair of time periods (adolescence > childhood, young adulthood > childhood, and young adulthood > adolescence). Shaded distributions represent all posterior contrast samples, and error bars represent 95% intervals.

1051 *Differences in prompted recall as a function of age at the time of the prompted event*

1052 To probe factors impacting prompted recall, we explored differences in recalled details

1053 as a function of the developmental time period of the prompted event (these exploratory

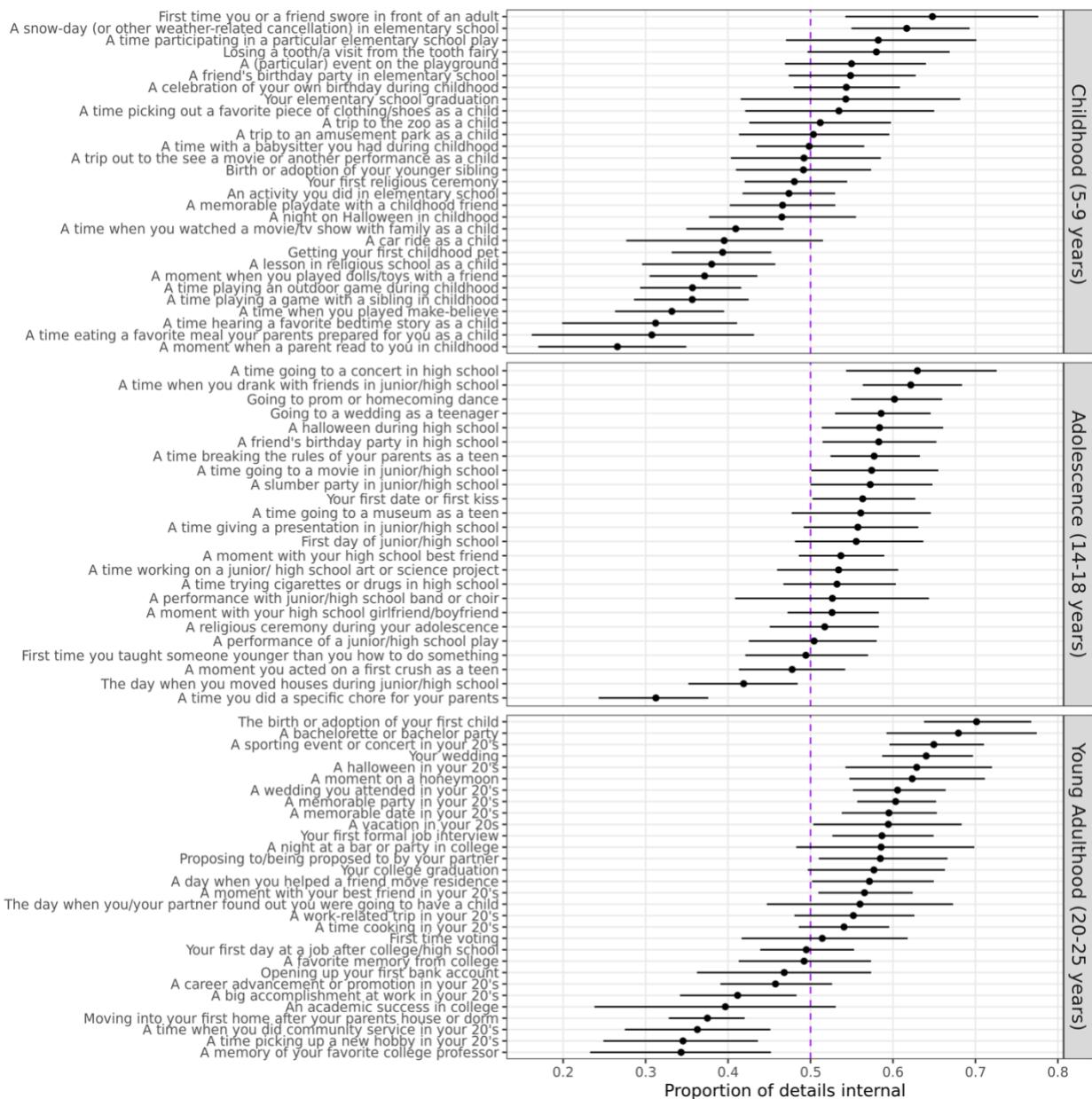
1054 analyses were not adjusted for multiple comparisons). Prior studies of autobiographical memory

1055 have found worse memory (e.g., fewer internal details) for memories from early childhood vs.

1056 other time periods (Bauer, 2007; Newcombe et al., 2000; Rubin & Schulkind, 1997). This

1057 analysis therefore offered a post-hoc manipulation check that our memory scoring procedures

1058 were sensitive to these reported effects.


1059 Using the Bayesian multilevel linear regression model previously fit to test the music
1060 condition manipulation, we found that participants recalled more internal details on average for
1061 events in adolescence ($\beta=3.26$, 95% HDI [2.41, 4.11]) and young adulthood ($\beta=4.61$, 95% HDI
1062 [3.63, 5.56]) compared to childhood (Fig. 5). Participants also recalled more internal details for
1063 events in young adulthood compared to adolescence ($\beta=1.35$, 95% HDI [0.57, 2.12]).
1064 Participants recalled more external details for events in childhood compared to adolescence
1065 ($\beta=1.54$, 95% HDI [0.57, 2.39]) and young adulthood ($\beta=1.41$, 95% HDI [0.40, 2.41]), though
1066 there were no differences in external details between young adulthood and adolescence
1067 ($\beta=0.13$, 95% HDI [-0.63, 0.95]). Recall of all details (internal + external) was greater for events
1068 in both adolescence ($\beta=1.72$, 95% HDI [0.78, 2.74]) and young adulthood ($\beta=3.20$, 95% HDI
1069 [2.02, 4.45]) compared to childhood, and also greater for young adulthood compared to
1070 adolescence ($\beta=1.49$, 95% HDI [0.31, 2.67]). In addition, the percentage of details recalled that
1071 were internal was greater for events in both adolescence ($\beta=8.81$, 95% HDI [6.31, 11.51]) and
1072 young adulthood ($\beta=10.69$, 95% HDI [8.00, 13.45]) compared to childhood, and also greater for
1073 young adulthood compared to adolescence ($\beta=1.88$, 95% HDI [0.09, 3.62]). In general, effect
1074 sizes were larger for differences in internal details compared to external details, and for
1075 childhood compared to other developmental periods (e.g. smaller for comparisons between
1076 adolescence and young adulthood). These results therefore concord with prior work in showing
1077 worse autobiographical recall for events from early childhood (Newcombe et al., 2000; Pillemer
1078 & White, 1989; Rubin & Schulkind, 1997).

1079
1080 *Differences in prompted recall as a function of event prompts*

1081 We explored whether different event prompts influenced recall of internal or external
1082 details. Visualization of the estimated proportion of internal details recalled for each prompt
1083 revealed substantial variability among prompts, even those within the same time window (Fig.
1084 6). We also found substantial variability between prompts in the total number of details recalled

1085 (see Supplemental Fig. 14). These large differences may have made it more difficult to find
 1086 more subtle memory differences due to music condition, a topic we return to in the Discussion.

1087
 1088

1089

1090 **Figure 6:** Exploratory analysis of differences in deliberate recall as a function of prompt. X-axis
 1091 shows the estimated average proportion of details that are internal for responses to each
 1092 prompt. Points are posterior medians and error bars are 95% posterior intervals. The y-axis
 1093 indicates each specific prompt grouped by each time period. Only prompts that ≥ 10 participants
 1094 responded to are included in this visualization. Prompts are sorted by highest to lowest
 1095 proportion of internal details, separately for each time period.
 1096

1097

Discussion

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

We examined whether hearing familiar music (vs. unfamiliar music or non-music audio)

impacted autobiographical memory recall for prompted events in healthy adults ages 65-80

years. We created customized music lists for each participant to manipulate music familiarity,

overcoming limitations of prior work that assumes which music may have been unfamiliar

(Foster & Valentine, 1998; Irish et al., 2006; Salakka et al., 2021). Our manipulation of

participants' familiarity with the music clips was successful, yielding robust differences in

familiarity between familiar and unfamiliar music conditions. Nevertheless, we observed no

differences across music conditions in deliberate autobiographical memory recall in response to

pre-selected event prompts. According to preregistered criteria, we found no effects of exposure

to familiar music versus unfamiliar music, nor music versus non-music clips, on prompted

episodic or non-episodic recall. Further, participant-reported familiarity with music clips was not

associated with deliberate autobiographical recall. At the same time, the music exposure

manipulation influenced both spontaneous recall and affect, such that hearing familiar music

clips (compared to both unfamiliar music and non-music clips) evoked more spontaneous

memories and more positive affect on average. Overall, our results provide evidence that,

among healthy aging adults and within the context of the current paradigm, effects of hearing

familiar music on autobiographical recall may be specific to memories directly triggered by the

music, rather than extending to more deliberate recall of distinct memories.

1117

Specificity of music exposure effects on memory recall

1119

The current investigation did not find effects of music exposure on recall of pre-selected

1120

prompted events. Although prompted recall of all details (episodic and non-episodic) was

1121

numerically higher following hearing music compared to non-music clips, this effect did not meet

1122

preregistered criteria. However, our results were concordant with prior findings that familiar

1123 music evokes *spontaneous* memories more often in comparison to unfamiliar music (Janata et
1124 al., 2007; Salakka et al., 2021). Thus, the absence of effects of music exposure on prompted
1125 autobiographical recall helps to distinguish which aspects of memory retrieval can be influenced
1126 by listening to music.

1127 Unlike most prior work, voluntarily recalled memories in the present study were nearly
1128 always distinct from any memories spontaneously evoked by the music (see Fig. 2D). Although
1129 recent work has investigated both involuntary and voluntary music-evoked autobiographical
1130 memories, in most studies participants were instructed to retrieve a memory *in response* to each
1131 music cue (Belfi et al., 2020, 2022; Sheldon et al., 2020; Sheldon & Donahue, 2017) or describe
1132 memories that came to mind during music exposure (Baird et al., 2018; Belfi et al., 2016; El Haj,
1133 Fasotti, et al., 2012; Jakubowski & Eerola, 2021). Therefore, even voluntary (as opposed to
1134 memory spontaneously evoked by music) retrieval in most prior studies consisted of responses
1135 directly to the music, rather than recall of separate memories. Because the current paradigm
1136 specifically examined recall for events distinct from those that came to mind during music
1137 exposure, our findings suggest that music effects on autobiographical recall may be limited to
1138 memories recalled specifically in response to music clips.

1139 The presence of effects of familiar music on spontaneous, but not prompted, recall in the
1140 current study suggests that while familiar music may serve as a cue for specific events or
1141 semantic information, it may not induce a ‘retrieval mode’ of broadly enhanced recall. Though
1142 multiple lines of evidence indicate that exposure to familiar stimuli can evoke a state of
1143 enhanced retrieval (Tarder-Stoll, Jayakumar, et al., 2020), such effects may last only seconds
1144 (Patil & Duncan, 2018) which potentially explains why music familiarity did not impact prompted
1145 recall in the current study. More broadly, if encoding and retrieval modes only persist for several
1146 seconds after the offset of familiar stimuli (Meeter et al., 2004), free autobiographical recall
1147 paradigms allowing participants minutes to recall memories may not be well-suited to examine
1148 such states.

1149 We emphasize that the absence of effects of music on deliberate recall does not
1150 contradict prior work showing that exposure to familiar music can facilitate retrieval of
1151 information encoded during (or very close in time to) prior listening through associative, or
1152 context-dependent, mechanisms (Balch et al., 1992; Janata, 2009; Kubit & Janata, 2022). In the
1153 current study prior music exposure was not precisely synchronized in time (within a 5-year
1154 window at best) with the prompted events; thus, the music clips were likely only weakly
1155 associated with most prompted memories. In particular, participants reported lower exposure to
1156 music released during childhood within the time window of its release (see Supplemental Fig.
1157 13), yet high familiarity for this music overall (see Supplemental Fig. 15A); this suggests that
1158 familiarity may have come from listening at later times. It is therefore unlikely that the music
1159 clips had strong associative links to the prompted events, unlike the links that may exist in prior
1160 studies that play music concurrently or in close proximity to to-be-remembered information.

1161
1162 *Potential methodological explanations for the absence of music effects on deliberate recall*

1163 Our primary findings indicate an absence of evidence for effects of music exposure on
1164 prompted autobiographical recall. Here, we consider several reasons—beyond a true null
1165 effect—that may have contributed to this lack of a difference. First, one concern may be that
1166 high within-participant variance for deliberate recall measures (internal and external details),
1167 even within music conditions and time periods, may have lowered the statistical power of the
1168 current study to identify music exposure effects (Baker et al., 2021). Such variance in recall was
1169 likely due to the fact that prompted events varied in autobiographical salience (see Fig. 6).
1170 However, observed within-participant variance was roughly consistent with that used to perform
1171 sample size calculations, indicating that the current study was powered appropriately to detect
1172 true effects of approximately 2 details or larger (see Supplemental Fig. 12).

1173 In the current study, participants heard music immediately before memory prompts were
1174 given, but not during recall. Although prompted recall began only seconds after the end of each
1175 music clip, it is possible that the temporal separation of the music listening and recall processes
1176 may have diminished true music effects that would have been observed had the music been
1177 played during recall. Indeed, some studies of music-evoked memory in patients with Alzheimer's
1178 or other forms of dementia have found effects of playing music clips softly in the background
1179 during memory retrieval (El Haj et al., 2015; Foster & Valentine, 1998; Irish et al., 2006). Yet,
1180 several studies have found that music can enhance autobiographical memory retrieval for
1181 patients with Alzheimer's disease for at least several minutes after listening (El Haj et al., 2012;
1182 García et al., 2012). It is possible that the duration of effects differs for direct memory cues (i.e.,
1183 spontaneous memory recall) versus retrieval mode induction (i.e., for deliberate memory recall).
1184 Future work will be needed to test this possibility. In the present study, the use of Zoom
1185 videoconferencing prevented playing music during recall as it is difficult to listen to audio and
1186 speak at the same time using this platform. Subsequent studies could explore whether
1187 simultaneous versus preceding music presentation impacts prompted or spontaneous memory
1188 retrieval.

1189 In addition, unlike some previous work, the familiar music stimuli were chosen by the
1190 experimenters (not directly by the participants), and unfamiliar music stimuli were matched in
1191 sound quality. We consider both design choices to be strengths of the study for mitigating
1192 potential confounds (i.e., differences in sonic features, or if participants were able to choose the
1193 familiar, but not unfamiliar music clips). However, it is possible that some mnemonic effects of
1194 familiar music observed in the literature are driven by participants' preference for their chosen
1195 music, or because unfamiliar music clips were a different (or entirely unfamiliar) genre of music.
1196 Here, because unfamiliar music clips were selected by the research team to be stylistically

1197 similar to the familiar music clips, any potential effects of *familiarity with the music genre* (as
1198 opposed to familiarity with specific songs) would not have been observed.

1199
1200 *Music-evoked affect was not sufficient to impact deliberate autobiographical recall*
1201 Consistent with prior work indicating that more familiar music evokes more positive
1202 emotions (Belfi et al., 2022; Gabard-Durnam et al., 2018; Kathios et al., 2022; Salakka et al.,
1203 2021) and that music generally induces pleasure and reward processes in most people (Belfi et
1204 al., 2021; Belfi & Loui, 2020; Peretz, 2006), our music manipulation induced changes in affect.
1205 Participants reported feeling most positive after listening to familiar music compared to
1206 unfamiliar music or non-music clips, and more positive after listening to unfamiliar music
1207 compared to non-music clips (Supplemental Fig. 9A).

1208 However, music-evoked affect was not associated with recall of prompted memories
1209 (Supplemental Fig. 9B-C). While previous work has found that pleasure evoked by music can
1210 boost associative memory for non-musical information encoded during listening (in particular,
1211 through dopaminergic modulation of memory consolidation; see Ferreri & Rodriguez-Fornells,
1212 2022), the present results indicate that such mood induction may not be sufficient to impact
1213 deliberate autobiographical recall. Alternatively, because hearing music may most strongly
1214 influence emotionally congruent memories (i.e., positively valenced music impacts positively
1215 valenced memories), it is possible that mismatch between music-evoked emotions and the
1216 emotional content of prompted memories diminished such effects (Sheldon et al., 2020;
1217 Talamini et al., 2022). Additionally, it is possible that participants' music-evoked emotions in the
1218 current study were influenced by their expectations for the study paradigm. Although
1219 participants were informed that some audio clips played in the study would not be music, some
1220 expressed surprise and disappointment not to be hearing music while listening to the non-music
1221 clips. The lower affect ratings in the non-music condition then may have been due to violated
1222 expectations rather than more negative emotions evoked by the content of the clips.

1223

1224 *Age-related and prompt-specific effects on deliberate autobiographical recall*

1225 After observing that music exposure did not impact deliberate autobiographical recall, we
1226 sought to explore whether other factors impacted retrieval of internal or external details.
1227 Exploratory analyses indicated that participants retrieved more episodic information and less
1228 non-episodic information for prompted events that occurred in young adulthood (20-25 years)
1229 relative to adolescence (14-18 years) or childhood (5-9 years), and for adolescence relative to
1230 childhood. In particular, memories in the childhood time window contained the least episodic
1231 detail related to the prompted events, consistent with age-related increases in episodic memory
1232 from middle childhood through adolescence (Bauer & Larkina, 2014; Ghetti & Angelini, 2008;
1233 Ghetti & Bunge, 2012; Nelson, 2018; Usher & Neisser, 1993; Willoughby et al., 2012). This
1234 finding further aligns with previous findings of 'reminiscence bumps' of enhanced memory
1235 among older adults for events in adolescence and young adulthood, compared to other time
1236 periods (Jakubowski et al., 2020; Krumhansl & Zupnick, 2013; Schlagman et al., 2007). In
1237 addition, participants recalled the most non-episodic information (or information for non-
1238 prompted episodes) in response to prompts from childhood, indicating potential compensatory
1239 mechanisms for the lack of episodic retrieval (Lalla et al., 2022). While differences in recall
1240 among developmental time periods cannot be fully distinguished from impacts of recency
1241 (Moreton & Ward, 2010), that all prompted events were remote (≥ 40 years before the study)
1242 may have reduced the magnitude of potential recency effects.

1243

1244 Even within each time window, recall of episodic information varied substantially as a
1245 function of the specific event prompted (see Fig. 6). Event prompts were randomly assigned to a
1246 music condition for each participant to avoid prompt-induced confounds. However, as previously
1247 discussed, high within-participant variance in deliberate recall due to prompt effects may have
made it more difficult to detect recall differences due to music exposure. In future investigations,

1248 researchers may consider selecting prompts that are relatively well-matched in average evoked
1249 memory content (Fig. 6) to minimize unwanted sources of variability in recall.

1250
1251 *Non-music clips evoked spontaneous memories more often than unfamiliar music*
1252 Familiar music clips evoked spontaneous memories most often, but we also found that
1253 non-music clips evoked spontaneous memories more often than unfamiliar music (see Fig. 2C).
1254 In line with these findings, some prior work has found that unfamiliar music elicits fewer
1255 autobiographical memories compared to environmental sounds or word cues, suggesting that
1256 unfamiliar music may not be a strong retrieval cue for many memories (Jakubowski & Eerola,
1257 2021). Unfamiliar clips may shift focus away from retrieval and towards an “encoding mode” in
1258 which participants attend to sonic features, lyrics, or musical event structures (Janata, 2005;
1259 Janata et al., 2002; Williams et al., 2022). Further, participants in the current study may have
1260 focused their attention on trying to identify the unfamiliar music clips; this could have
1261 suppressed memory retrieval. Alternatively, the non-music clips played in the current study may
1262 have cued comparatively more specific associations based on their semantic content (news,
1263 weather, traffic).

1264 It is noteworthy that this difference between unfamiliar music and non-music clips was
1265 specific to spontaneous memory recall and did not extend to deliberate recall. Thus, the
1266 cognitive variables that may have suppressed spontaneous memories in response to unfamiliar
1267 music did not similarly affect the ability to deliberately search for a distinct memory.

1268
1269 *Limitations and Future Directions*

1270 Several limitations to the current study may be addressed with further research. First,
1271 while the Autobiographical Interview allowed us to measure what types of details were recalled,
1272 the internal versus external designations of details represent extremely broad categorizations.
1273 Future work could also take a more fine-grained approach to understand whether recall of

1274 subcategories of details (for example, perceptual, emotion/thought, place, or time details) are
1275 impacted by music exposure. Furthermore, the current study only investigated remote
1276 autobiographical recall; future investigations could explore whether music exposure impacts
1277 recall of more recent events. Further studies may also benefit from using additional
1278 measurements of autobiographical recall that allow for verifying the accuracy of participants'
1279 memories (Barclay & Wellman, 1986; Cabeza & St Jacques, 2007) or rely less on manual
1280 experimenter scoring of recalled details (for example via automated software, see Genugten &
1281 Schacter, 2022).

1282 Our measurements of spontaneous memory were also limited to binary responses
1283 indicating the presence versus absence of a memory evoked by each clip. We did not ask
1284 participants to elaborate or share further details on spontaneously evoked memories in efforts to
1285 avoid burdening participants with longer study sessions and because the main hypotheses of
1286 the study concerned prompted memory. Because we only measured the presence or absence
1287 of evoked memories, our work does not speak to the quality of music-evoked autobiographical
1288 memories (i.e. MEAMs; see Belfi et al., 2020; Janata et al., 2007). Although there is much
1289 reason, based on prior literature, to expect reports of detailed autobiographical memories in
1290 response to music, there is also the possibility that such memories may be relatively weak or
1291 gist-like. In particular, familiar stimuli associated with many events are weaker associative cues
1292 for episodic recall compared to stimuli only associated with one specific event (i.e. 'fan effects';
1293 Badham et al., 2016; Tulving & Thomson, 1973). In the current study, if the familiar music clips
1294 were broadly associated with many events, it is possible that the spontaneous memories these
1295 clips elicited were gist-like, rather than strongly episodic. Broad associative links of familiar
1296 music may have also interfered with the ability to deliberately access other memories not
1297 directly associated with the music; however, such an explanation may lead to the prediction of
1298 worse deliberate recall following familiar versus unfamiliar music, which we did not observe.

1299 Nevertheless, discussion of such fan effects is purely speculative based on the current
1300 paradigm; future research aiming to investigate relationships between spontaneous and
1301 prompted retrieval would benefit from allowing participants to freely recall both types of
1302 memories.

1303 The current study was conducted via Zoom videocalls so as not to increase participants'
1304 risk of COVID-19 infection. This format may have had unintended effects on both the
1305 experience of music listening and memory recall. Although participants were instructed to
1306 choose a consistent and comfortable volume for music listening at the beginning of each
1307 session, we were not able to ensure that the quality and volume of audio were constant across
1308 sessions. In addition, it is possible that participants felt less energetic (i.e., through "Zoom
1309 fatigue" mechanisms) or less comfortable sharing memories with an experimenter over Zoom
1310 than they would have been in person. Although the video call format allowed this study to be
1311 conducted given the circumstances, impacts of music on memory may be explored with more
1312 experimental control within in-person lab environments.

1313 An additional limitation of the study design is that experimenters were aware of the goals
1314 of the study and music condition during each session. Therefore, it is possible that
1315 experimenters may have unintentionally altered their interactions with participants based on
1316 knowledge of the study condition (Schulz & Grimes, 2002). While we do not believe such biases
1317 likely gave rise to the current results (given the absence of hypothesized effects on deliberate
1318 recall), further work could eliminate such potential biases by computerizing experimental
1319 procedures or otherwise ensuring that experimenters are unaware of the condition while
1320 interacting with participants. Relatedly, while participants did not know the goals, hypothesis, or
1321 manipulations of the study, the fact that different sound clips were played in each session was
1322 necessarily transparent to them. Thus, participants may have been able to guess aspects of the
1323 study design, which could have introduced demand characteristics (Gillihan et al., 2007). For

1324 example, participants may have thought experimenters expected them to recall more in the
1325 music conditions compared to the non-music clips.

1326 We also note several limitations to the generalizability of the current findings. The
1327 studied cohort was a highly educated majority-White sample recruited mostly from the United
1328 States. Moreover, that participants self-selected for a study involving Zoom videoconferencing
1329 and listening to popular music likely yielded a non-representative sample among healthy adults
1330 ages 65-80 years. Further, the study inclusion criteria selected for a cohort that probably was
1331 more familiar with popular music and higher in memory function compared to other adults in the
1332 same age range. Finally, the music stimuli themselves only represented a small subset of
1333 styles, and the vast majority of lyrics were in English. It is possible that impacts of music on
1334 autobiographical memory differ for different populations (for example, participants of different
1335 ages or cultural backgrounds) or styles of music.

1336 In particular, individuals with dementia or other memory disorders may experience effects of
1337 music on autobiographical memory not observed among the healthy participants in the current
1338 study. Several prior studies have found evidence for effects of music on autobiographical
1339 memory in Alzheimer's patients but not healthy control individuals (El Haj et al., 2013, 2015;
1340 Irish et al., 2006). Thus, different processes may underlie music-induced effects on memory in
1341 memory-impaired patients compared to healthy individuals. Future work examining impacts of
1342 music exposure on memory for both healthy participants and patients with memory disorders—
1343 while avoiding ceiling effects in healthy participants—will be important in understanding whether
1344 common mechanisms exist.

1345 Crucially, lack of music-evoked effects on recall of distinct prompted memories does not
1346 preclude the usefulness of music-based therapies (Taylor, 1997). That music can provoke
1347 spontaneous recall and induce positive affect is sufficient motivation for further development of
1348 music-based techniques in a variety of treatment settings. Indeed, music-based therapies may
1349 be powerful even if effects are somewhat general and not limited to memory. For example, for

1350 patients with Alzheimer's disease, music therapies have been shown to act through non-
1351 mnemonic mechanisms (e.g., arousal, affect, self-consciousness, linguistic function; see Peck
1352 et al., 2016 for review). Recent work has also highlighted potential music-based interventions
1353 targeting auditory and reward systems for healthy aging adults (Quinci et al., 2022).

1354
1355 *Conclusions*

1356 The results of the current study indicate that among healthy adults ages 65-80 years,
1357 exposure to familiar music (vs. unfamiliar music or non-music audio), evoked spontaneous
1358 memories more often. Familiar music did not, however, impact voluntary recall of distinct
1359 prompted events. If translated to clinical populations, these findings may be able to help
1360 optimize methods and target outcomes for music-based therapies (Loui, 2020; Thaut &
1361 Hoemberg, 2014). As there is much need to develop and refine non-pharmacological treatments
1362 for dementia and other memory disorders (Baird et al., 2019), it will be important for further
1363 research to explore how music can influence memory, and what types of memories are
1364 impacted.

1365

1366
1367

1368

Data Availability Statement

1369

Deidentified data are available at <https://osf.io/56khe/>.

1370

CRediT Author Statement:

1371

1372

Paul Alexander Bloom: Conceptualization, Methodology, Investigation, Visualization, Software, Data Curation, Project administration, Formal analysis, Writing - Original Draft, Writing – Review & Editing, **Ella Bartlett:** Methodology, Investigation, Data Curation, Writing – Review & Editing **Nicholas Kathios:** Methodology, Investigation, Data Curation, Formal analysis, Visualization, Writing – Review & Editing **Sameah Algharazi:** Methodology, Investigation, Data Curation, Formal analysis, Writing – Review & Editing **Matthew Siegelman:** Software **Fan Shen:** Software, Formal analysis **Lea Beresford:** Investigation, Formal analysis, Writing – Review & Editing **Michaelle Evangeline DiMaggio-Potter:** Investigation, Software, Formal analysis, Writing – Review & Editing **Anshita Singh:** Project administration, Formal analysis, Writing – Review & Editing **Sarah Bennett:** Investigation, Formal analysis, Writing – Review & Editing **Nandhini Natarajan:** Investigation, Formal analysis, Writing – Review & Editing **Hannah Lee:** Formal analysis, Writing – Review & Editing **Sumra Sajid:** Formal analysis, Writing – Review & Editing **Erin Joyce:** Investigation, Formal analysis, Writing – Review & Editing **Rachel Flora Fischman:** Investigation, Formal analysis, Writing – Review & Editing **Samuel Hutchinson:** Investigation, Formal analysis, Writing – Review & Editing **Sophie Pan:** Investigation, Formal analysis, Writing – Review & Editing **Nim Tottenham:** Supervision, Conceptualization, Methodology, Resources, Writing – Review & Editing **Mariam Aly:** Supervision, Conceptualization, Methodology, Resources, Writing – Original Draft, Writing – Review & Editing

1391

Acknowledgments

1392

1393

1394

We thank the participants for contributing their time and energy to this study. We also

1395

thank Amaesha Durazi, Nicolas Camacho, Monica Thieu, Carina Fan, R.B., and the DANLAB

1396

and Alyssano groups for their contributions and feedback.

1397

1398

Funding

1399

This work was supported by a National Science Foundation Graduate Fellowship to PAB (DGE 1644869) and a National Science Foundation CAREER Award to MA (BCS-1844241).

1400

1401

Conflicts of Interest

1403

We have no known conflicts of interest to disclose.

1404

1405

1406

References

1407 Aalbers, S., Fusar-Poli, L., Freeman, R. E., Spreen, M., Ket, J. C., Vink, A. C., Maratos, A.,
1408 Crawford, M., Chen, X.-J., & Gold, C. (2017). Music therapy for depression. *Cochrane
1409 Database of Systematic Reviews*, 11. <https://doi.org/10.1002/14651858.CD004517.pub3>

1410 Acevedo-Molina, M. C., Matijevic, S., & Grilli, M. D. (2020). Beyond episodic remembering:
1411 Elaborative retrieval of lifetime periods in young and older adults. *Memory*, 28(1), 83–
1412 93. <https://doi.org/10.1080/09658211.2019.1686152>

1413 Alonso, I., Davachi, L., Valabregue, R., Lambrecq, V., Dupont, S., & Samson, S. (2016). Neural
1414 correlates of binding lyrics and melodies for the encoding of new songs. *NeuroImage*,
1415 127, 333–345. <https://doi.org/10.1016/j.neuroimage.2015.12.018>

1416 Arroyo-Anlló, E. M., Díaz, J. P., & Gil, R. (2013). Familiar Music as an Enhancer of Self-
1417 Consciousness in Patients with Alzheimer's Disease. *BioMed Research International*,
1418 2013. <https://doi.org/10.1155/2013/752965>

1419 Badham, S. P., Poirier, M., Gandhi, N., Hadjivassiliou, A., & Maylor, E. A. (2016). Aging and
1420 memory as discrimination: Influences of encoding specificity, cue overload, and prior
1421 knowledge. *Psychology and Aging*, 31(7), 758–770. <https://doi.org/10.1037/pag0000126>

1422 Baird, A., Brancatisano, O., Gelding, R., & Thompson, W. F. (2018). Characterization of Music
1423 and Photograph Evoked Autobiographical Memories in People with Alzheimer's Disease.
1424 *Journal of Alzheimer's Disease*, 66(2), 693–706. <https://doi.org/10.3233/JAD-180627>

1425 Baird, A., Brancatisano, O., Gelding, R., & Thompson, W. F. (2020). Music evoked
1426 autobiographical memories in people with behavioural variant frontotemporal
1427 dementia. *Memory*, 28(3), 323–336. <https://doi.org/10.1080/09658211.2020.1713379>

1428 Baird, A., Garrido, S., & Tamplin, J. (2019). *Music and Dementia: From Cognition to Therapy*.
1429 Oxford University Press.

1430 Baird, A., Gelding, R., Brancatisano, O., & Thompson, W. F. (2020). A Preliminary Exploration of
1431 the Stability of Music- and Photo-Evoked Autobiographical Memories in People with
1432 Alzheimer's and Behavioral Variant Frontotemporal Dementia. *Music & Science*, 3,
1433 2059204320957273. <https://doi.org/10.1177/2059204320957273>

1434 Baird, A., & Samson, S. (2009). Memory for Music in Alzheimer's Disease: Unforgettable?
1435 *Neuropsychology Review*, 19(1), 85–101. <https://doi.org/10.1007/s11065-009-9085-2>

1436 Baird, A., & Samson, S. (2014). Music evoked autobiographical memory after severe acquired
1437 brain injury: Preliminary findings from a case series. *Neuropsychological Rehabilitation*,
1438 24(1), 125–143. <https://doi.org/10.1080/09602011.2013.858642>

1439 Baird, A., & Samson, S. (2015). Chapter 11—Music and dementia. In E. Altenmüller, S. Finger, &
1440 F. Boller (Eds.), *Progress in Brain Research* (Vol. 217, pp. 207–235). Elsevier.
1441 <https://doi.org/10.1016/bs.pbr.2014.11.028>

1442 Baker, D. H., Vilidaite, G., Lygo, F. A., Smith, A. K., Flack, T. R., Gouws, A. D., & Andrews, T. J.
1443 (2021). Power contours: Optimising sample size and precision in experimental
1444 psychology and human neuroscience. *Psychological Methods*, 26(3), 295–314.
1445 <https://doi.org/10.1037/met0000337>

1446 Baker, F. (2001). Rationale for the Effects of Familiar Music on Agitation and Orientation Levels
1447 of People in Posttraumatic Amnesia. *Nordic Journal of Music Therapy*, 10(1), 32–41.
1448 <https://doi.org/10.1080/08098130109478015>

1449 Baker, F. (2009). *Post traumatic amnesia and music: Managing behavior through song*. VDM
1450 Verlag Dr. Müller. <http://espace.library.uq.edu.au/view/UQ:189580>

1451 Balch, W. R., Bowman, K., & Mohler, L. A. (1992). Music-dependent memory in immediate and
1452 delayed word recall. *Memory & Cognition*, 20(1), 21–28.
1453 <https://doi.org/10.3758/BF03208250>

1454 Balteş, F. R., Avram, J., Miclea, M., & Miu, A. C. (2011). Emotions induced by operatic music:
1455 Psychophysiological effects of music, plot, and acting: A scientist's tribute to Maria
1456 Callas. *Brain and Cognition*, 76(1), 146–157.
1457 <https://doi.org/10.1016/j.bandc.2011.01.012>

1458 Barclay, C. R., & Wellman, H. M. (1986). Accuracies and inaccuracies in autobiographical
1459 memories. *Journal of Memory and Language*, 25(1), 93–103.
1460 [https://doi.org/10.1016/0749-596X\(86\)90023-9](https://doi.org/10.1016/0749-596X(86)90023-9)

1461 Bartlett, J. C., & Snelus, P. (1980). Lifespan Memory for Popular Songs. *The American Journal of
1462 Psychology*, 93(3), 551–560. <https://doi.org/10.2307/1422730>

1463 Basaglia-Pappas, S., Laterza, M., Borg, C., Richard-Mornas, A., Favre, E., & Thomas-Antérion, C.
1464 (2013). Exploration of verbal and non-verbal semantic knowledge and autobiographical
1465 memories starting from popular songs in Alzheimer's disease. *International
1466 Psychogeriatrics*, 25(5), 785–795. <https://doi.org/10.1017/S1041610212002359>

1467 Bauer, P. J. (2007). Recall in Infancy: A Neurodevelopmental Account. *Current Directions in*
1468 *Psychological Science*, 16(3), 142–146. <https://doi.org/10.1111/j.1467->
1469 8721.2007.00492.x

1470 Bauer, P. J. (2012). The life I once remembered: The waxing and waning of early memories. In D.
1471 C. Rubin & D. Berntsen (Eds.), *Understanding Autobiographical Memory: Theories and*
1472 *Approaches* (pp. 205–225). Cambridge University Press.
1473 <https://doi.org/10.1017/CBO9781139021937.016>

1474 Bauer, P. J., & Larkina, M. (2014). Childhood amnesia in the making: Different distributions of
1475 autobiographical memories in children and adults. *Journal of Experimental Psychology.*
1476 *General*, 143(2), 597–611. <https://doi.org/10.1037/a0033307>

1477 Baur, B., Uttner, I., Ilmberger, J., Fesl, G., & Mai, N. (2000). Music memory provides access to
1478 verbal knowledge in a patient with global amnesia. *Neurocase*, 6(5), 415–421.
1479 <https://doi.org/10.1080/13554790008402712>

1480 Belfi, A. M., Bai, E., & Stroud, A. (2020). Comparing Methods for Analyzing Music-Evoked
1481 Autobiographical Memories. *Music Perception*, 37(5), 392–402.
1482 <https://doi.org/10.1525/mp.2020.37.5.392>

1483 Belfi, A. M., Bai, E., Stroud, A., Twohy, R., & Beadle, J. N. (2022). Investigating the role of
1484 involuntary retrieval in music-evoked autobiographical memories. *Consciousness and*
1485 *Cognition*, 100, 103305. <https://doi.org/10.1016/j.concog.2022.103305>

1486 Belfi, A. M., Karlan, B., & Tranel, D. (2016). Music evokes vivid autobiographical memories.
1487 *Memory*, 24(7), 979–989. <https://doi.org/10.1080/09658211.2015.1061012>

1488 Belfi, A. M., & Loui, P. (2020). Musical anhedonia and rewards of music listening: Current
1489 advances and a proposed model. *Annals of the New York Academy of Sciences*, 1464(1),
1490 99–114. <https://doi.org/10.1111/nyas.14241>

1491 Belfi, A. M., Moreno, G. L., Gugliano, M., & Neill, C. (2021). Musical reward across the lifespan.
1492 *Aging & Mental Health*, 0(0), 1–8. <https://doi.org/10.1080/13607863.2021.1871881>

1493 Blackburn, R., & Bradshaw, T. (2014). Music therapy for service users with dementia: A critical
1494 review of the literature. *Journal of Psychiatric and Mental Health Nursing*, 21(10), 879–
1495 888. <https://doi.org/10.1111/jpm.12165>

1496 Blais-Rochette, C., & Miranda, D. (2016). Music-evoked autobiographical memories, emotion
1497 regulation, time perspective, and mental health. *Musicae Scientiae*, 20(1), 26–52.
1498 <https://doi.org/10.1177/1029864915626967>

1499 Bower, J., & Shoemark, H. (2012). Music Therapy for the Pediatric Patient Experiencing
1500 Agitation During Posttraumatic Amnesia: Constructing a Foundation From Theory. *Music
1501 and Medicine*, 4(3), Article 3. <https://doi.org/10.47513/mmd.v4i3.318>

1502 Brotons, M., & Koger, S. M. (2000). The Impact of Music Therapy on Language Functioning in
1503 Dementia. *Journal of Music Therapy*, 37(3), 183–195.
1504 <https://doi.org/10.1093/jmt/37.3.183>

1505 Brotons, M., Koger, S. M., & Pickett-Cooper, P. (1997). Music and Dementias: A Review of
1506 Literature. *Journal of Music Therapy*, 34(4), 204–245.
1507 <https://doi.org/10.1093/jmt/34.4.204>

1508 Bürkner, P.-C. (2019). *brms: Bayesian Regression Models using “Stan”* (2.10.0). <https://CRAN.R-project.org/package=brms>

1510 Bürkner, P.-C., & Vuorre, M. (2019). Ordinal Regression Models in Psychology: A Tutorial.
1511 *Advances in Methods and Practices in Psychological Science*, 2(1), 77–101.
1512 <https://doi.org/10.1177/2515245918823199>

1513 Cabeza, R., & St Jacques, P. (2007). Functional neuroimaging of autobiographical memory.
1514 *Trends in Cognitive Sciences*, 11(5), 219–227. <https://doi.org/10.1016/j.tics.2007.02.005>

1515 Cady, E. T., Harris, R. J., & Knappenberger, J. B. (2008). Using music to cue autobiographical
1516 memories of different lifetime periods. *Psychology of Music*, 36(2), 157–177.
1517 <https://doi.org/10.1177/0305735607085010>

1518 census.gov. (2019). *U.S. Census Bureau QuickFacts: United States*.
1519 <https://www.census.gov/quickfacts/fact/table/US/PST045219>

1520 Chung, Y., Gelman, A., Rabe-Hesketh, S., Liu, J., & Dorie, V. (2015). Weakly Informative Prior for
1521 Point Estimation of Covariance Matrices in Hierarchical Models. *Journal of Educational
1522 and Behavioral Statistics*, 40(2), 136–157. <https://doi.org/10.3102/1076998615570945>

1523 Cross, K., Flores, R., Butterfield, J., Blackman, M., & Lee, S. (2012). The Effect of Passive
1524 Listening versus Active Observation of Music and Dance Performances on Memory
1525 Recognition and Mild to Moderate Depression in Cognitively Impaired Older Adults.
1526 *Psychological Reports*, 111(2), 413–423.
1527 <https://doi.org/10.2466/10.02.13.PRO.111.5.413-423>

1528 Decker, A. L., & Duncan, K. (2020). Acetylcholine and the complex interdependence of memory
1529 and attention. *Current Opinion in Behavioral Sciences*, 32, 21–28.
1530 <https://doi.org/10.1016/j.cobeha.2020.01.013>

1531 Duncan, K. D., & Shohamy, D. (2016). Memory states influence value-based decisions. *Journal of*
1532 *Experimental Psychology. General*, 145(11), 1420–1426.

1533 <https://doi.org/10.1037/xge0000231>

1534 Duncan, K., Semmler, A., & Shohamy, D. (2019). Modulating the Use of Multiple Memory
1535 Systems in Value-based Decisions with Contextual Novelty. *Journal of Cognitive*
1536 *Neuroscience*, 31(10), 1455–1467. https://doi.org/10.1162/jocn_a_01447

1537 El Haj, M., Antoine, P., Nandrino, J. L., Gély-Nargeot, M.-C., & Raffard, S. (2015). Self-defining
1538 memories during exposure to music in Alzheimer's disease. *International*
1539 *Psychogeriatrics*, 27(10), 1719–1730. <https://doi.org/10.1017/S1041610215000812>

1540 El Haj, M., Clément, S., Fasotti, L., & Allain, P. (2013). Effects of music on autobiographical
1541 verbal narration in Alzheimer's disease. *Journal of Neurolinguistics*, 26(6), 691–700.

1542 <https://doi.org/10.1016/j.jneuroling.2013.06.001>

1543 El Haj, M., Fasotti, L., & Allain, P. (2012). The involuntary nature of music-evoked
1544 autobiographical memories in Alzheimer's disease. *Consciousness and Cognition*, 21(1),
1545 238–246. <https://doi.org/10.1016/j.concog.2011.12.005>

1546 El Haj, M., Postal, V., & Allain, P. (2012). Music Enhances Autobiographical Memory in Mild
1547 Alzheimer's Disease. *Educational Gerontology*, 38(1), 30–41.

1548 <https://doi.org/10.1080/03601277.2010.515897>

1549 Fan, C., Romero, K., & Levine, B. (2019). *Older adults with lower autobiographical memory*
1550 *abilities report less age-related decline in everyday cognitive function.*

1551 <https://doi.org/10.31234/osf.io/zqs78>

1552 Fang, R., Ye, S., Huangfu, J., & Calimag, D. P. (2017). Music therapy is a potential intervention
1553 for cognition of Alzheimers Disease: A mini-review. *Translational Neurodegeneration*;
1554 *London*, 6. <http://dx.doi.org.ezproxy.cul.columbia.edu/10.1186/s40035-017-0073-9>

1555 Ferreri, L., Bigand, E., Perrey, S., Muthalib, M., Bard, P., & Bugaiska, A. (2014). Less Effort, Better
1556 Results: How Does Music Act on Prefrontal Cortex in Older Adults during Verbal
1557 Encoding? An fNIRS Study. *Frontiers in Human Neuroscience*, 8.
1558 <https://doi.org/10.3389/fnhum.2014.00301>

1559 Ferreri, L., & Rodriguez-Fornells, A. (2022). Memory modulations through musical pleasure.
1560 *Annals of the New York Academy of Sciences*, n/a(n/a).
1561 <https://doi.org/10.1111/nyas.14867>

1562 Folstein, M., Folstein, S., & McHugh, P. (1975). "Mini-mental state". A practical method for
1563 grading the cognitive state of patients for the clinician. *Journal of Psychiatric Research*,
1564 12(3), 189–198. [https://doi.org/10.1016/0022-3956\(75\)90026-6](https://doi.org/10.1016/0022-3956(75)90026-6)

1565 Ford, J. H., Addis, D. R., & Giovanello, K. S. (2011). Differential neural activity during search of
1566 specific and general autobiographical memories elicited by musical cues.
1567 *Neuropsychologia*, 49(9), 2514–2526.
1568 <https://doi.org/10.1016/j.neuropsychologia.2011.04.032>

1569 Foster, N. A., & Valentine, E. R. (1998). The Effect of Concurrent Music on Autobiographical
1570 Recall in Dementia Clients. *Musicae Scientiae*, 2(2), 143–155.
1571 <https://doi.org/10.1177/102986499800200203>

1572 Foster, N. A., & Valentine, E. R. (2001). The Effect of Auditory Stimulation on Autobiographical
1573 Recall in Dementia. *Experimental Aging Research*, 27(3), 215–228.

1574 <https://doi.org/10.1080/036107301300208664>

1575 Gabard-Durnam, L. J., Hensch, T. K., & Tottenham, N. (2018). Music Reveals Medial Prefrontal
1576 Cortex Sensitive Period in Childhood. *BioRxiv*, 412007. <https://doi.org/10.1101/412007>

1577 García, J. J. M., Iodice, R., Carro, J., Sánchez, J. A., Palmero, F., & Mateos, A. M. (2012).
1578 Improvement of autobiographic memory recovery by means of sad music in Alzheimer's
1579 Disease type dementia. *Aging Clinical and Experimental Research*, 24(3), 227–232.

1580 <https://doi.org/10.3275/7874>

1581 Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). *Bayesian
1582 Data Analysis, Third Edition*. CRC Press.

1583 Genugten, R. van, & Schacter, D. L. (2022). *Automated Scoring of the Autobiographical
1584 Interview with Natural Language Processing*. PsyArXiv.
<https://doi.org/10.31234/osf.io/nyurm>

1585

1586 Gerdner, L. A. (2000). Effects of Individualized Versus Classical “Relaxation” Music on the
1587 Frequency of Agitation in Elderly Persons With Alzheimer's Disease and Related
1588 Disorders. *International Psychogeriatrics*, 12(01), 49–65.
1589 <https://doi.org/10.1017/S1041610200006190>

1590 Gerdner, L. A. (2012). Individualized music for dementia: Evolution and application of evidence-
1591 based protocol. *World Journal of Psychiatry*, 2(2), 26–32.
1592 <https://doi.org/10.5498/wjp.v2.i2.26>

1593 Gerdner, L. A., Hartsock, J., & Buckwalter, K. C. (2000). *Assessment of Personal Music Preference*
1594 (*Family Version*). The University of Iowa Gerontological Nursing Interventions Research
1595 Center: Research Development and Dissemination Core.
1596 https://www.health.ny.gov/diseases/conditions/dementia/edge/forms/edge_project_in
1597 div_music_assessment.pdf

1598 Ghetti, S., & Angelini, L. (2008). The development of recollection and familiarity in childhood
1599 and adolescence: Evidence from the dual-process signal detection model. *Child
1600 Development*, 79(2), 339–358. <https://doi.org/10.1111/j.1467-8624.2007.01129.x>

1601 Ghetti, S., & Bunge, S. A. (2012). Neural changes underlying the development of episodic
1602 memory during middle childhood. *Developmental Cognitive Neuroscience*, 2(4), 381–
1603 395. <https://doi.org/10.1016/j.dcn.2012.05.002>

1604 Gillihan, S. J., Kessler, J., & Farah, M. J. (2007). Memories affect mood: Evidence from covert
1605 experimental assignment to positive, neutral, and negative memory recall. *Acta
1606 Psychologica*, 125(2), 144–154. <https://doi.org/10.1016/j.actpsy.2006.07.009>

1607 Halpern, A., & O'Connor, M. (2000). Implicit memory for music in Alzheimer's disease.
1608 *Neuropsychology*, 14(3), 391–397.

1609 Hanser, S. B., & Thompson, L. W. (1994). Effects of a Music Therapy Strategy on Depressed
1610 Older Adults. *Journal of Gerontology*, 49(6), P265–P269.
1611 <https://doi.org/10.1093/geronj/49.6.P265>

1612 Hasselmo, M., & Schnell, E. (1994). Laminar selectivity of the cholinergic suppression of synaptic
1613 transmission in rat hippocampal region CA1: Computational modeling and brain slice

1614 physiology. *Journal of Neuroscience*, 14(6), 3898–3914.

1615 <https://doi.org/10.1523/JNEUROSCI.14-06-03898.1994>

1616 Hays, T., Bright, R., & Minichiello, V. (2002). The Contribution of Music to Positive Aging: A
1617 Review. *Journal of Aging and Identity*, 7(3), 165–175.
1618 <https://doi.org/10.1023/A:1019712522302>

1619 Hobeika, L., & Samson, S. (2020). Chapter 13—Why do music-based interventions benefit
1620 persons with neurodegenerative disease? In L. L. Cuddy, S. Belleville, & A. Moussard
1621 (Eds.), *Music and the Aging Brain* (pp. 333–349). Academic Press.
1622 <https://doi.org/10.1016/B978-0-12-817422-7.00013-4>

1623 Holm, S. (1979). A Simple Sequentially Rejective Multiple Test Procedure. *Scandinavian Journal
1624 of Statistics*, 6(2), 65–70. JSTOR.

1625 Irish, M., Cunningham, C. J., Walsh, J. B., Coakley, D., Lawlor, B. A., Robertson, I. H., & Coen, R.
1626 F. (2006). Investigating the Enhancing Effect of Music on Autobiographical Memory in
1627 Mild Alzheimer's Disease. *Dementia and Geriatric Cognitive Disorders*, 22(1), 108–120.
1628 <https://doi.org/10.1159/000093487>

1629 Jakubowski, K., Bashir, Z., Farrugia, N., & Stewart, L. (2018). Involuntary and voluntary recall of
1630 musical memories: A comparison of temporal accuracy and emotional responses.
1631 *Memory & Cognition*, 46(5), 741–756. <https://doi.org/10.3758/s13421-018-0792-x>

1632 Jakubowski, K., & Eerola, T. (2021). Music Evokes Fewer but More Positive Autobiographical
1633 Memories Than Emotionally Matched Sound and Word Cues. *Journal of Applied
1634 Research in Memory and Cognition*. <https://doi.org/10.1016/j.jarmac.2021.09.002>

1635 Jakubowski, K., Eerola, T., Tillmann, B., Perrin, F., & Heine, L. (2020). A Cross-Sectional Study of
1636 Reminiscence Bumps for Music-Related Memories in Adulthood. *Music & Science*, 3, 1–
1637 3. <https://doi.org/10.1177/2059204320965058>

1638 Jakubowski, K., & Ghosh, A. (2019). Music-evoked autobiographical memories in everyday life.
1639 *Psychology of Music*, 649–666. <https://doi.org/10.1177/0305735619888803>

1640 Janata, P. (2005). Brain Networks That Track Musical Structure. *Annals of the New York
1641 Academy of Sciences*, 1060(1), 111–124. <https://doi.org/10.1196/annals.1360.008>

1642 Janata, P. (2009). The Neural Architecture of Music-Evoked Autobiographical Memories.
1643 *Cerebral Cortex*, bhp008. <https://doi.org/10.1093/cercor/bhp008>

1644 Janata, P., Tillmann, B., & Bharucha, J. J. (2002). Listening to polyphonic music recruits domain-
1645 general attention and working memory circuits. *Cognitive, Affective, & Behavioral
1646 Neuroscience*, 2(2), 121–140. <https://doi.org/10.3758/CABN.2.2.121>

1647 Janata, P., Tomic, S. T., & Rakowski, S. K. (2007). Characterisation of music-evoked
1648 autobiographical memories. *Memory*, 15(8), 845–860.
1649 <https://doi.org/10.1080/09658210701734593>

1650 Kasdan, A., & Kiran, S. (2018). Please don't stop the music: Song completion in patients with
1651 aphasia. *Journal of Communication Disorders*, 75, 72–86.
1652 <https://doi.org/10.1016/j.jcomdis.2018.06.005>

1653 Kathios, N., Sachs, M. E., Zhang, E., Ou, Y., & Loui, P. (2022). *Generating New Musical
1654 Preferences from Hierarchical Mapping of Predictions to Reward* (p. 2022.06.17.496615).
1655 bioRxiv. <https://doi.org/10.1101/2022.06.17.496615>

1656 Kay, M. (2022). *tidybayes: Tidy Data and Geoms for Bayesian Models* (v3.0.2). Zenodo.

1657 <https://doi.org/10.5281/ZENODO.1308151>

1658 Koger, S. M., Chapin, K., & Brotons, M. (1999). Is Music Therapy an Effective Intervention for

1659 Dementia? A Meta-Analytic Review of Literature. *Journal of Music Therapy*, 36(1), 2–15.

1660 <https://doi.org/10.1093/jmt/36.1.2>

1661 Kopelman, M. D., Wilson, B. A., & Baddeley, A. D. (1989). The autobiographical memory

1662 interview: A new assessment of autobiographical and personal semantic memory in

1663 amnesic patients. *Journal of Clinical and Experimental Neuropsychology*, 11(5), 724–744.

1664 <https://doi.org/10.1080/01688638908400928>

1665 Krumhansl, C. L. (2017). Listening Niches across a Century of Popular Music. *Frontiers in*

1666 *Psychology*, 8. <https://doi.org/10.3389/fpsyg.2017.00431>

1667 Krumhansl, C. L., & Zupnick, J. A. (2013). Cascading Reminiscence Bumps in Popular Music.

1668 *Psychological Science*, 24(10), 2057–2068. <https://doi.org/10.1177/0956797613486486>

1669 Kruschke, J. K. (2021). Bayesian Analysis Reporting Guidelines. *Nature Human Behaviour*, 5(10),

1670 Article 10. <https://doi.org/10.1038/s41562-021-01177-7>

1671 Kubit, B. M., & Janata, P. (2022). Spontaneous mental replay of music improves memory for

1672 incidentally associated event knowledge. *Journal of Experimental Psychology. General*,

1673 151(1), 1–24. <https://doi.org/10.1037/xge0001050>

1674 Lalla, A., Tarder-Stoll, H., Hasher, L., & Duncan, K. (2022). Aging shifts the relative contributions

1675 of episodic and semantic memory to decision-making. *Psychology and Aging*.

1676 <https://doi.org/10.1037/pag0000700>

1677 Larkin, M. (2001). Music tunes up memory in dementia patients. *The Lancet*, 357(9249), 47.

1678 [https://doi.org/10.1016/S0140-6736\(05\)71549-X](https://doi.org/10.1016/S0140-6736(05)71549-X)

1679 Levine, B., Svoboda, E., Hay, J. F., Winocur, G., & Moscovitch, M. (2002). Aging and

1680 autobiographical memory: Dissociating episodic from semantic retrieval. *Psychology and*

1681 *Aging*, 17(4), 677–689.

1682 Loui, P. (2020). Neuroscientific Insights for Improved Outcomes in Music-based Interventions.

1683 *Music & Science*, 3, 2059204320965065. <https://doi.org/10.1177/2059204320965065>

1684 Ludbrook, J. (2000). Multiple inferences using confidence intervals. *Clinical and Experimental*

1685 *Pharmacology & Physiology*, 27(3), 212–215. <https://doi.org/10.1046/j.1440->

1686 1681.2000.03223.x

1687 Meeter, M., Murre, J. M. J., & Talamini, L. M. (2004). Mode shifting between storage and recall

1688 based on novelty detection in oscillating hippocampal circuits. *Hippocampus*, 14(6),

1689 722–741. <https://doi.org/10.1002/hipo.10214>

1690 Merrett, D. L., Zumbansen, A., & Peretz, I. (2019). A theoretical and clinical account of music

1691 and aphasia. *Aphasiology*, 33(4), 379–381.

1692 <https://doi.org/10.1080/02687038.2018.1546468>

1693 Michael Rossato-Bennett (Director). (2014). *Alive Inside* [Documentary]. Netflix.

1694 <http://www.aliveinside.us/>

1695 Miranda, D., Blais-Rochette, C., Vaugon, K., Osman, M., & Arias-Valenzuela, M. (2015). Towards

1696 a cultural-developmental psychology of music in adolescence. *Psychology of Music*,

1697 43(2), 197–218. <https://doi.org/10.1177/0305735613500700>

1698 Moreton, B. J., & Ward, G. (2010). Time scale similarity and long-term memory for
1699 autobiographical events. *Psychonomic Bulletin & Review*, 17(4), 510–515.
1700 <https://doi.org/10.3758/PBR.17.4.510>

1701 Narme, P., Clément, S., Ehrlé, N., Schiaratura, L., Vachez, S., Courtaigne, B., Munsch, F., &
1702 Samson, S. (2014). Efficacy of Musical Interventions in Dementia: Evidence from a
1703 Randomized Controlled Trial. *Journal of Alzheimer's Disease*, 38(2), 359–369.
1704 <https://doi.org/10.3233/JAD-130893>

1705 Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I.,
1706 Cummings, J. L., & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: A
1707 Brief Screening Tool For Mild Cognitive Impairment. *Journal of the American Geriatrics
1708 Society*, 53(4), 695–699. <https://doi.org/10.1111/j.1532-5415.2005.53221.x>

1709 Nelson, K. (2018). The cultural construction of memory in early childhood. *Handbook of Culture
1710 and Memory*, 2018, ISBN 9780190230821, Págs. 185-208, 185–208.
1711 <https://dialnet.unirioja.es/servlet/articulo?codigo=7144589>

1712 Newcombe, N. S., Drumrey, A. B., Fox, N. A., Lie, E., & Ottinger-Alberts, W. (2000).
1713 Remembering Early Childhood: How Much, How, and Why (or Why Not). *Current
1714 Directions in Psychological Science*, 9(2), 55–58. [https://doi.org/10.1111/1467-8721.00060](https://doi.org/10.1111/1467-
1715 8721.00060)

1716 Nineuil, C., Dellacherie, D., & Samson, S. (2020). The Impact of Emotion on Musical Long-Term
1717 Memory. *Frontiers in Psychology*, 11. <https://doi.org/10.3389/fpsyg.2020.02110>

1718 Orben, A., & Przybylski, A. K. (2019). The association between adolescent well-being and digital
1719 technology use. *Nature Human Behaviour*, 3(2), 173–182.
1720 <https://doi.org/10.1038/s41562-018-0506-1>

1721 Palisson, J., Roussel-Baclet, C., Maillet, D., Belin, C., Ankri, J., & Narme, P. (2015). Music
1722 enhances verbal episodic memory in Alzheimer's disease. *Journal of Clinical and*
1723 *Experimental Neuropsychology*, 37(5), 503–517.
1724 <https://doi.org/10.1080/13803395.2015.1026802>

1725 Palombo, D., Te, A., Checknita, K., & Madan, C. R. (2020). *Exploring the Facets of Emotional*
1726 *Episodic Memory: Remembering 'What', 'Where', and 'When'* [Preprint]. PsyArXiv.
1727 <https://doi.org/10.31234/osf.io/ru2xz>

1728 Patil, A., & Duncan, K. (2018). Lingering Cognitive States Shape Fundamental Mnemonic
1729 Abilities. *Psychological Science*, 29(1), 45–55.
1730 <https://doi.org/10.1177/0956797617728592>

1731 Peck, Katlyn. J., Girard, Todd. A., Russo, Frank. A., & Fiocco, Alexandra. J. (2016). Music and
1732 Memory in Alzheimer's Disease and The Potential Underlying Mechanisms. *Journal of*
1733 *Alzheimer's Disease : JAD*, 51(4), 949–959. <https://doi.org/10.3233/JAD-150998>

1734 Pendlebury, S. T., Welch, S. J. V., Cuthbertson, F. C., Mariz, J., Mehta, Z., & Rothwell, P. M.
1735 (2013). Telephone assessment of cognition after transient ischemic attack and stroke:
1736 Modified telephone interview of cognitive status and telephone Montreal Cognitive
1737 Assessment versus face-to-face Montreal Cognitive Assessment and neuropsychological
1738 battery. *Stroke*, 44(1), 227–229. <https://doi.org/10.1161/STROKEAHA.112.673384>

1739 Peretz, I. (2006). The nature of music from a biological perspective. *Cognition*, 100(1), 1–32.

1740 <https://doi.org/10.1016/j.cognition.2005.11.004>

1741 Peretz, I., Gaudreau, D., & Bonnel, A.-M. (1998). Exposure effects on music preference and

1742 recognition. *Memory & Cognition*, 26(5), 884–902. <https://doi.org/10.3758/BF03201171>

1743 Pillemer, D. B., & White, S. H. (1989). Childhood Events Recalled by Children and Adults. In H.

1744 W. Reese (Ed.), *Advances in Child Development and Behavior* (Vol. 21, pp. 297–340). JAI.

1745 [https://doi.org/10.1016/S0065-2407\(08\)60291-8](https://doi.org/10.1016/S0065-2407(08)60291-8)

1746 Piolino, P., Desgranges, B., & Eustache, F. (2009). Episodic autobiographical memories over the

1747 course of time: Cognitive, neuropsychological and neuroimaging findings.

1748 *Neuropsychologia*, 47(11), 2314–2329.

1749 <https://doi.org/10.1016/j.neuropsychologia.2009.01.020>

1750 Platz, F., Kopiez, R., Hasselhorn, J., & Wolf, A. (2015). The impact of song-specific age and

1751 affective qualities of popular songs on music-evoked autobiographical memories

1752 (MEAMs). *Musicae Scientiae*, 19(4), 327–349.

1753 <https://doi.org/10.1177/1029864915597567>

1754 Quinci, M. A., Belden, A., Goutama, V., Gong, D., Hanser, S., Donovan, N. J., Geddes, M., & Loui,

1755 P. (2022). Longitudinal changes in auditory and reward systems following receptive

1756 music-based intervention in older adults. *Scientific Reports*, 12(1), Article 1.

1757 <https://doi.org/10.1038/s41598-022-15687-5>

1758 Ratovohery, S., Baudouin, A., Gachet, A., Palisson, J., & Narme, P. (2018). Is music a memory

1759 booster in normal aging? The influence of emotion. *Memory*, 26(10), 1344–1354.

1760 <https://doi.org/10.1080/09658211.2018.1475571>

1761 Ratovohery, S., Baudouin, A., Palisson, J., Maillet, D., Bailon, O., Belin, C., & Narme, P. (2019).

1762 Music as a mnemonic strategy to mitigate verbal episodic memory in Alzheimer's

1763 disease: Does musical valence matter? *Journal of Clinical and Experimental*

1764 *Neuropsychology*, 41(10), 1060–1073. <https://doi.org/10.1080/13803395.2019.1650897>

1765 Rubin, D. C., & Schukkind, M. D. (1997). The distribution of autobiographical memories across

1766 the lifespan. *Memory & Cognition*, 25(6), 859–866. <https://doi.org/10.3758/BF03211330>

1767 Salakka, I., Pitkäniemi, A., Pentikäinen, E., Mikkonen, K., Saari, P., Toiviainen, P., & Särkämö, T.

1768 (2021). What makes music memorable? Relationships between acoustic musical

1769 features and music-evoked emotions and memories in older adults. *PLOS ONE*, 16(5),

1770 e0251692. <https://doi.org/10.1371/journal.pone.0251692>

1771 Sambandham, M., & Schirm, V. (1995). Music as a nursing intervention for residents with

1772 Alzheimer's Disease in long-term care: Music may be a memory trigger for patients with

1773 Alzheimer's and provide a means of communication. *Geriatric Nursing*, 16(2), 79–83.

1774 [https://doi.org/10.1016/S0197-4572\(05\)80011-4](https://doi.org/10.1016/S0197-4572(05)80011-4)

1775 Samson, S., & Zatorre, R. J. (1991). Recognition memory for text and melody of songs after

1776 unilateral temporal lobe excision: Evidence for dual encoding. *Journal of Experimental*

1777 *Psychology: Learning, Memory and Cognition*, 793–804.

1778 Sánchez, A., Maseda, A., Marante-Moar, M. P., de Labra, C., Lorenzo-López, L., & Millán-Calenti,

1779 J. C. (2016). Comparing the Effects of Multisensory Stimulation and Individualized Music

1780 Sessions on Elderly People with Severe Dementia: A Randomized Controlled Trial.

1781 *Journal of Alzheimer's Disease*, 52(1), 303–315. <https://doi.org/10.3233/JAD-151150>

1782 Sartori, G., Snitz, B. E., Sorcinelli, L., & Daum, I. (2004). Remote memory in advanced
1783 Alzheimer's disease. *Archives of Clinical Neuropsychology*, 19(6), 779–789.
1784 <https://doi.org/10.1016/j.acn.2003.09.007>

1785 Schiller, D., Eichenbaum, H., Buffalo, E. A., Davachi, L., Foster, D. J., Leutgeb, S., & Ranganath, C.
1786 (2015). Memory and Space: Towards an Understanding of the Cognitive Map. *The
1787 Journal of Neuroscience: The Official Journal of the Society for Neuroscience*, 35(41),
1788 13904–13911. <https://doi.org/10.1523/JNEUROSCI.2618-15.2015>

1789 Schlagman, S., Kvavilashvili, L., & Schulz, J. (2007). Chapter 5 – Effects of Age on Involuntary
1790 Autobiographical Memories. In *Involuntary Memory* (pp. 87–112). John Wiley & Sons,
1791 Ltd. <https://doi.org/10.1002/9780470774069.ch5>

1792 Schlaug, G., Marchina, S., & Norton, A. (2008). From Singing to Speaking: Why Singing May Lead
1793 to Recovery of Expressive Language Function in Patients with Broca's Aphasia. *Music
1794 Perception: An Interdisciplinary Journal*, 25(4), 315–323.
1795 <https://doi.org/10.1525/mp.2008.25.4.315>

1796 Schlaug, G., Norton, A., Marchina, S., Zipse, L., & Wan, C. Y. (2010). From singing to speaking:
1797 Facilitating recovery from nonfluent aphasia. *Future Neurology*, 5(5), 657–665.
1798 <https://doi.org/10.2217/fnl.10.44>

1799 Schubert, E. (2016). Does recall of a past music event invoke a reminiscence bump in young
1800 adults? *Memory*, 24(7), 1007–1014. <https://doi.org/10.1080/09658211.2015.1061014>

1801 Schukkind, M. D., Hennis, L. K., & Rubin, D. C. (2013). Music, emotion, and autobiographical
1802 memory: They're playing your song. *Memory & Cognition*, 27(6), 948–955.
1803 <https://doi.org/10.3758/BF03201225>

1804 Schulz, K. F., & Grimes, D. A. (2002). Blinding in randomised trials: Hiding who got what. *Lancet*
1805 (London, England), 359(9307), 696–700. [https://doi.org/10.1016/S0140-6736\(02\)07816-9](https://doi.org/10.1016/S0140-6736(02)07816-9)

1807 Semkovska, M., Noone, M., Carton, M., & McLoughlin, D. M. (2012). Measuring consistency of
1808 autobiographical memory recall in depression. *Psychiatry Research*, 197(1), 41–48.
1809 <https://doi.org/10.1016/j.psychres.2011.12.010>

1810 Serafine, M. L., Davidson, J., Crowder, R. G., & Repp, B. H. (1986). On the nature of melody-text
1811 integration in memory for songs. *Journal of Memory and Language*, 25(2), 123–135.
1812 [https://doi.org/10.1016/0749-596X\(86\)90025-2](https://doi.org/10.1016/0749-596X(86)90025-2)

1813 Sheldon, S., & Donahue, J. (2017). More than a feeling: Emotional cues impact the access and
1814 experience of autobiographical memories. *Memory & Cognition*, 45(5), 731–744.
1815 <https://doi.org/10.3758/s13421-017-0691-6>

1816 Sheldon, S., Williams, K., Harrington, S., & Otto, A. R. (2020). Emotional cue effects on accessing
1817 and elaborating upon autobiographical memories. *Cognition*, 198, 104217.
1818 <https://doi.org/10.1016/j.cognition.2020.104217>

1819 Simonsohn, U., Simmons, J., & Nelson, L. (2015). Specification Curve: Descriptive and Inferential
1820 Statistics on All Reasonable Specifications. *Marketing Papers*.
1821 <https://doi.org/10.2139/ssrn.2694998>

1822 Simpson, S., & Sheldon, S. (2019). Testing the impact of emotional mood and cue characteristics
1823 on detailed autobiographical memory retrieval. *Emotion (Washington, D.C.)*, 20(6), 965–
1824 979. <https://doi.org/10.1037/emo0000603>

1825 Smith, S. M., & Vela, E. (2001). Environmental context-dependent memory: A review and meta-
1826 analysis. *Psychonomic Bulletin & Review*, 8(2), 203–220.

1827 <https://doi.org/10.3758/BF03196157>

1828 Spivack, S., Philibotte, S. J., Spilka, N. H., Passman, I. J., & Wallisch, P. (2019). Who remembers
1829 the Beatles? The collective memory for popular music. *PLOS ONE*, 14(2), e0210066.

1830 <https://doi.org/10.1371/journal.pone.0210066>

1831 St. Jacques, P., & Levine, B. (2007). Ageing and autobiographical memory for emotional and
1832 neutral events. *Memory*, 15(2). <https://doi.org/10.1080/09658210601119762>

1833 Stalinski, S. M., & Schellenberg, E. G. (2013). Listeners remember music they like. *Journal of*
1834 *Experimental Psychology: Learning, Memory, and Cognition*, 39(3), 700.

1835 <https://doi.org/10.1037/a0029671>

1836 Steegen, S., Tuerlinckx, F., Gelman, A., & Vanpaemel, W. (2016). Increasing Transparency
1837 Through a Multiverse Analysis. *Perspectives on Psychological Science*, 11(5), 702–712.

1838 <https://doi.org/10.1177/1745691616658637>

1839 Stras, L. (Ed.). (2011). *She's So Fine: Reflections on Whiteness, Femininity, Adolescence and Class*
1840 *in 1960s Music* (1st Edition). Routledge.

1841 Talamini, F., Eller, G., Vigl, J., & Zentner, M. (2022). Musical emotions affect memory for
1842 emotional pictures. *Scientific Reports*, 12(1), Article 1. <https://doi.org/10.1038/s41598-022-15032-w>

1843 Tarder-Stoll, H., Jayakumar, M., Dimsdale-Zucker, H. R., Günseli, E., & Aly, M. (2020). Dynamic
1844 internal states shape memory retrieval. *Neuropsychologia*, 138, 107328.

1845 <https://doi.org/10.1016/j.neuropsychologia.2019.107328>

1847 Taylor, D. B. (1997). *Biomedical Foundations of Music as Therapy*. MMB Music.

1848 Thaut, M., & Hoemberg, V. (2014). *Handbook of Neurologic Music Therapy*. Oxford University

1849 Press.

1850 Thomas, K. S., Baier, R., Kosar, C., Ogarek, J., Trepman, A., & Mor, V. (2017). Individualized

1851 Music Program is Associated with Improved Outcomes for U.S. Nursing Home Residents

1852 with Dementia. *The American Journal of Geriatric Psychiatry*, 25(9), 931–938.

1853 <https://doi.org/10.1016/j.jagp.2017.04.008>

1854 Tucker, A. M., & Stern, Y. (2011). Cognitive Reserve in Aging. *Current Alzheimer Research*, 8(4),

1855 354–360. <https://doi.org/10.2174/156720511795745320>

1856 Tulving, E. (1972). Episodic and semantic memory. In *Organization of memory* (pp. xiii, 423–xiii,

1857 423). Academic Press.

1858 Tulving, E. (1983). *Elements of Episodic Memory*. Oxford University Press.

1859 Tulving, E., & Thomson, D. M. (1973). Encoding specificity and retrieval processes in episodic

1860 memory. *Psychological Review*, 80, 352–373. <https://doi.org/10.1037/h0020071>

1861 Turkkan, N., & Pham-Gia, T. (1993). Computation of the highest posterior density interval in

1862 bayesian analysis. *Journal of Statistical Computation and Simulation*, 44(3–4), 243–250.

1863 <https://doi.org/10.1080/00949659308811461>

1864 Usher, J. A., & Neisser, U. (1993). Childhood Amnesia and the Beginnings of Memory for Four

1865 Early Life Events. *Journal of Experimental Psychology: General*, 122(2), 155.

1866 <https://doi.org/10.1037/0096-3445.122.2.155>

1867 van de Schoot, R., Depaoli, S., King, R., Kramer, B., Märkens, K., Tadesse, M. G., Vannucci, M.,

1868 Gelman, A., Veen, D., Willemsen, J., & Yau, C. (2021). Bayesian statistics and modelling.

1869 *Nature Reviews Methods Primers*, 1(1), Article 1. <https://doi.org/10.1038/s43586-020-00001-2>

1870 00001-2

1871 Wall, M., & Duffy, A. (2010). The effects of music therapy for older people with dementia. *British Journal of Nursing*, 19(2), 108–113. <https://doi.org/10.12968/bjon.2010.19.2.46295>

1874 Wallace, W. T. (1991). Jingles in Advertisements: Can They Improve Recall? *ACR North American Advances*, 18, 239–24.

1876 Wallace, W. T. (1994). Memory for Music: Effect of Melody on Recall of Text. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 20(6), 1471–1485.

1878 Wan, C. Y., & Schlaug, G. (2010). Music Making as a Tool for Promoting Brain Plasticity across the Life Span. *The Neuroscientist*, 16(5), 566–577. <https://doi.org/10.1177/1073858410377805>

1881 Wardell, V., Esposito, C. L., Madan, C. R., & Palombo, D. J. (2020). Semi-automated transcription and scoring of autobiographical memory narratives. *Behavior Research Methods*, 507–517. <https://doi.org/10.3758/s13428-020-01437-w>

1884 Wardell, V., Madan, C. R., Jameson, T. J., Cocquyt, C., Checknita, K., Liu, H., & Palombo, D. (2020). *Emotional Autobiographical Recollection: The Devil is in the Details* [Preprint]. PsyArXiv. <https://doi.org/10.31234/osf.io/pbdr5>

1887 Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., ... Yutani, H. (2019). Welcome to the

1890 Tidyverse. *Journal of Open Source Software*, 4(43), 1686.

1891 <https://doi.org/10.21105/joss.01686>

1892 Williams, J. A., Margulis, E. H., Nastase, S. A., Chen, J., Hasson, U., Norman, K. A., & Baldassano,

1893 C. (2022). High-Order Areas and Auditory Cortex Both Represent the High-Level Event

1894 Structure of Music. *Journal of Cognitive Neuroscience*, 34(4), 699–714.

1895 https://doi.org/10.1162/jocn_a_01815

1896 Willoughby, K., Desrocher, M., Levine, B., & Rovet, J. (2012). Episodic and Semantic

1897 Autobiographical Memory and Everyday Memory during Late Childhood and Early

1898 Adolescence. *Frontiers in Psychology*, 3.

1899 <https://www.frontiersin.org/articles/10.3389/fpsyg.2012.00053>

1900