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Abstract
Individual passenger travel patterns have significant value in understanding passen-
ger’s behavior, such as learning the hidden clusters of locations, time, and passengers.
The learned clusters further enable commercially beneficial actions such as customized
services, promotions, data-driven urban-use planning, peak hour discovery, and so on.
However, the individualized passenger modeling is very challenging for the following
reasons: 1) The individual passenger travel data are multi-dimensional spatiotemporal
big data, including at least the origin, destination, and time dimensions; 2) Moreover,
individualized passenger travel patterns usually depend on the external environment,
such as the distances and functions of locations, which are ignored in most current
works. This work proposes a multi-clustering model to learn the latent clusters along
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themultiple dimensions ofOrigin,Destination, Time, and eventually, Passenger (ODT-
P). We develop a graph-regularized tensor Latent Dirichlet Allocation (LDA) model
by first extending the traditional LDA model into a tensor version and then applies
to individual travel data. Then, the external information of stations is formulated as
semantic graphs and incorporated as the Laplacian regularizations; Furthermore, to
improve the model scalability when dealing with massive data, an online stochastic
learning method based on tensorized variational Expectation-Maximization algorithm
is developed. Finally, a case study based on passengers in the Hong Kong metro sys-
tem is conducted and demonstrates that a better clustering performance is achieved
compared to state-of-the-arts with the improvement in point-wise mutual information
index and algorithm convergence speed by a factor of two.

Keywords Individualized analysis · Tensor · Topic model · Graph structure · Online
algorithm · Spatiotemporal data

1 Introduction

The public transportation system is the backbone of a city’s infrastructure, and the
intelligent transportation system (ITS) has been an essential chapter for the smart city
blueprint. Most studies for ITS focus on traffic flow prediction (Ren and Xie 2017;
Geng et al. 2019; Guo et al. 2019; Shi et al. 2020; Wang et al. 2019; Li et al. 2020).
Tensor-based methods, such as tensor decomposition (Ren and Xie 2017), tensor
completion (Li et al. 2020), as well as deep learning methods, such as convolutional
neural networks (Geng et al. 2019), graph convolutional networks (Yu et al. 2018), and
spatiotemporal attentions (Guo et al. 2019), have been developed to predict city-wide
traffic flow (Geng et al. 2019), metro station-level passenger flow (Li et al. 2020),
origin-destination (OD) flow matrix (Ren and Xie 2017; Wang et al. 2019; Shi et al.
2020), etc.

However, themethodsmentioned above target trafficflowprediction at amacro level
and utilize the traffic data of passengers indiscriminately, consequently neglecting the
personalized travel characteristics of individual passengers. For example, to calculate
the passenger flow value, only the number of passengers is counted, which abandons
individual information (Yi et al. 2019). Thus, those methods could not directly handle
individual travel data.

To overcome this issue, we propose to fully utilize the “individual” travel data for an
“individualized” travel pattern discovery. Individual travel data preserve the abundant
trajectory information, i.e., that passenger u departs from origin o at time t and arrives
at destination d at time t ′. This encourages us to focus on the following individualized
analysis tasks due to their high research values (Zhao et al. 2017). We aim at the
following two goals:

• Clustering of origin, destination, and time (ODT): The latent clusters for origin,
destination, and time could be better learned from individual travel pattern data,
given the abundant information is well preserved. The intuition is that those origins
may belong to the same cluster if they all co-occur in the same type of passengers,
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Individualized passenger travel pattern multi-clustering 1249

Fig. 1 (a) Different passengers travel from O cluster to D cluster at T cluster; (b) Analogy from document
to passenger

as shown in Fig. 1(a). The learned clusters for ODT could guide better urban
planning, more suitable station-surrounding facilities, and uncover the peak hour
for crowd control.

• Clustering of passengers: Passengers will also be clustered into different groups
based on their trajectories. For public transport providers, with a better understand-
ing of individual passengers’ travel patterns, customized promotions and more
suitable operational policies can be designed. For example, the fare surcharge-
reward scheme could be tailored for different passenger groups (Tang et al. 2020).

The two clustering tasks above for Origin, Destination, Time, and Passenger are
called for short as “ODT-P Multi-clustering”. However, these two tasks are rather
challenging due to the multi-mode spatiotemporal big data and the influence from the
external environment.

• Challenge 1:Multi-mode spatiotemporal big data. TakeHongKong as an exam-
ple, there are 2 million passengers daily: Each passenger has multiple trips, and
each trip has multiple modes such as origin, destination, and time.

• Challenge 2: external environment. Moreover, passenger behaviors are also
affected by the external environment, such as the locations and surroundings of
stations. If two stations are geographically adjacent to each other or located in
similar functional areas (such as business area, residential area, school), they will
attract the same type of passengers.

To tackle the aforementioned challenges, we propose a novel Graph-Regularized
Tensor Latent Dirichlet Allocation model (GR-TensorLDA) for ODT-P multi-
clustering based on individual passenger travel patterns. First, to preserve the
multi-mode structure of the high dimensional spatiotemporal data, we focus on the
tensor-based methodology (Kolda and Bader 2009), which represents the original data
with three-mode tensors,where differentmodes representODT respectively. Secondly,
a tensor LDA model is proposed to achieve ODT-P multi-clustering.

The main novelty of our proposed method is that we extend the traditional LDA
(Blei et al. 2003) to a tensor version and apply into individual traffic data. An important
analogy is made as shown in Fig. 1(b):

(1) “Word”-level:A trip is viewedas a three-dimensionalwordw = (wO , wD, wT );
(2) “Document”-level: A passenger with several trips, i.e., “a bag of words”, is
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treated as a three-dimensional document du ∈ RO×D×T . Generative processes in
the passenger-level and trip-level will be defined along with each mode of ODT; (3)
“Topic”-level: Therefore, the latent topic will also be formulated as a tensor, with each
element as z = (zO , zD, zT ).

The clusters of ODT-P will be eventually obtained in the following way: (1) ODT
clustering: Along each dimension of ODT, the topic is a latent distribution of words,
which can be viewed as a cluster containing different words; (2) P clustering: each
passenger is represented by the latent distribution of the tensor topics, which will be
utilized to cluster passengers.

Our most significant technical contributions are twofold:

• Semantic graph structure: To tackle Challenge 2, we incorporate the external
environment as graph structures into the model. Precisely, we first formulate the
station-related information as two graphs: (1) A geographical graph measures the
spatial distance between stations; (2) A contextual graph quantifies whether two
stations are located in similar functional areas (Geng et al. 2019; Li et al. 2020).
Then the graph structures are incorporated into the tensor LDA generative process
for OD, such that if two stations are close on these two graphs, they are more likely
to be in the same topic. We show that by adding such graph regularizations, the
interpretability of the learned ODT-P clusters can be significantly improved.

• Efficient online algorithm: Since the graph regularization breaks the conju-
gacy, standard optimization techniques such as Gibbs sampling (Griffiths and
Steyvers 2004) are no longer possible, we propose a tensorized variational
Expectation-Maximization (EM) algorithm to estimate parameters. Moreover, to
tackle Challenge 1, we need an efficient and scalable algorithm to deal with mas-
sive passenger data. Therefore, we further propose to conduct the algorithm in an
online stochastic learningmanner (Hoffman et al. 2010).We show that to reach the
same level of performance, the online learning algorithm converges twice faster
than the batch learning algorithm.

The remainder of the paper is structured as follows. Section 2 briefly reviews exist-
ing tensor methods, individual travel analysis, and topic models. Section 3 formulates
the proposed model, and Section 4 proposes an efficient optimization algorithm. Sec-
tion 5 provides a detailed experiment to demonstrate the improved meaningfulness of
the learned clusters andmodel scalability; Section 6 gives the conclusion and discusses
the future work and model generalization.

2 Related works

2.1 Tensor and tucker decomposition

We would like to first introduce tensor and tensor decomposition since high dimen-
sional data are usually formulated as a tensor, and tensor decomposition is widely
used for clustering (Kolda and Bader 2009; Sun and Axhausen 2016). Tensor is
mathematically defined as a multi-dimensional array, which is believed to have suf-
ficient capacity to preserve innate complex correlations across multiple dimensions
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(Kolda and Bader 2009). One of the most popular techniques is tensor decomposition.
Tucker decomposition is a high-order principal component analysis. It decomposes a
tensor X O×D×T into a core tensor C J×K×L multiplied by a mode matrix along each
dimension, UO ,UD,UT : X = C ×1 UO ×2 UD ×3 UT : Tensor decomposition has
been applied into smart transportation for prediction (Li et al. 2020) and clustering
(Sun andAxhausen 2016). However, tensor decompositionmight be rather impractical
to be applied to our problem. The main reason is: data formulated with each individ-
ual passenger are extremely sparse due to curse of dimensionality. According to our
preliminary study (Li et al. 2021), the sparsity could reach 99.97%, which paralyzes
traditional tensor decomposition methods (Tang et al. 2018). Therefore, a technique
that specializes in individual analysis is needed.

2.2 Individual travel pattern analysis

The new generation of ITS aims to be more personalized. Recently individual travel
data have been utilized for passenger clustering (Briand et al. 2017; Mohamed et al.
2016), station clustering (Mohamed et al. 2016), and personalized services such as
travel time estimation (Tang et al. 2018), route recommendation (Liu et al. 2019),
destination inference (Cheng et al. 2020), driving state recognition (Yi et al. 2019),
and activity discovery (Zhao et al. 2020). There are mainly two kinds of approaches
as follows.

2.2.1 Spatio-temporal feature engineering

Thefirst kindof approach relies on intense feature engineering to extract useful features
such as spatial, temporal, OD pair, transportation mode. It then combines the features
with traditional statistical learning models for clustering and prediction, such as K-
mean clustering (Zhao et al. 2017), boosting tree (Liu et al. 2019), random forest (Yi
et al. 2019). However, the feature extraction is rather complicated and differs from one
system to another, which does not offer a universal solution. Furthermore, it typically
assumes that the feature has the same dimension for each passenger. However, the
number of trips of each passenger can be dramatically different. In contrast, our model
learns the latent dimension in a data-driven way and can be accommodated to different
numbers of trips, which offers a general solution with explainable results.

2.2.2 Generative models

As the second option, generative models (Briand et al. 2017; Mohamed et al. 2016;
Tang et al. 2018; Cheng et al. 2020; Zhao et al. 2020) have been adopted into indi-
vidual traffic analysis. To cluster passengers’ temporal behaviors, Briand et al. (2017)
and Mohamed et al. (2016) proposed two-layer generative models with a mixture of
Gaussian or unigrams model: The first layer partitions passengers into clusters, and
the second layer formulates each cluster’s temporal activity. However, the limitation
is that passengers are only clustered based on their active or boarding time; Therefore,
the passengers’ abundant spatiotemporal information is not fully utilized. As a result,
no insights about the latent nature of origins and destinations could be obtained.
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To capture all dimensions of the spatiotemporal information for individual passen-
gers, researchers have adopted topic models into individual traffic data (Cheng et al.
2020; Zhao et al. 2020), where an individual passenger’s travel data is regarded as a
document, where each trip is recorded as a word. Specifically, Cheng et al. (2020) and
Zhao et al. (2020) proposed a high-dimensional LDA model with a generative pro-
cess on each dimension, such as location, day, hour, and trip duration. However, the
existing methods ignored the underlining spatial correlations in the passengers’ travel
data, which may lead to a clustering model that could not reflect reality. Compared
with them, our most significant advantages are that we incorporate semantic graphs
into the LDA generative process. This is inspired by the state-of-the-art topic models
(Yao et al. 2017; Li et al. 2019b) that incorporates knowledge graph to improve the
interpretability of model output, which we will review them in details in the follow-
ing section. Such coupling of the “pure-trip” data with external contexts significantly
improves topics’ interpretability, and that we propose an efficient online stochastic
learning algorithm based on a variational EM algorithm.

2.3 Graph-based topic models

Incorporating knowledge graphs into topic models could enhance the interpretability
of the learned topics (Yao et al. 2017; Li et al. 2019a; Mei et al. 2008; Chen et al. 2016;
Li et al. 2019b). In particular, two categories of incorporating methods are considered
in state-of-the-art models. The first category embeds words into a continuous space
withword relations definedby an external knowledge graph such asDBpedia,WordNet
(Yao et al. 2017; Li et al. 2019a). However, in traffic data, such knowledge graph is only
applied to a single word representation, which cannot be used for high-dimensional
word representation. The second category introduces graph-based regularization (Mei
et al. 2008; Chen et al. 2016; Li et al. 2019b), such as graph harmonic function, to
encourage entities close on the graph to be more likely to have the same topic. These
regularization-based techniques are compatible with our generative model. However,
the existing graph-based topic models are formulated only for one-dimensional word,
not for high-dimensional data like our passenger travel data. Moreover, the challenges
lie in the parameter learning for our corresponding tensor topic model. To this end,
we rigorously develop online stochastic learning based on tensorized variational EM
algorithm to estimate parameters with higher efficiency and scalability.

2.4 Multi-view subspace clustering

Last but not the least, subspace clustering is also a popular method for high-
dimensional clustering (Parsons et al. 2004),which learns data representation in certain
low-dimensional subspaces and clusters the data points. Multi-view subspace cluster-
ing (Gao et al. 2015; Zhang et al. 2017, 2018) specifically deals with data represented
by multiple distinct feature sets.

We would like to emphasize the difference between our model and subspace clus-
tering from the perspectives of data and model: (1) The typical multi-view data are
formulated as Xv ∈ R

dv×n , where dv and n are the number of features and samples
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on the v-th view. Our data instead present a hierarchical structure: a passenger has
a sequence of a few trip records, and each trip is an instance in a three-dimensional
space of ODT. Moreover, our data suffer from high sparsity, which also hinders sub-
space clustering, e.g., factorization-based methods, from normal functioning. (2) A
typical formulation of multi-view subspace clustering is based on the data’s self-
expression property (Gao et al. 2015), which is to use the data set to represent itself:
Xv = XvZv +Ev , where Zv ∈ R

n×n is the subspace representation matrix of the v-th
view, and the nonzero elements in Zv correspond to the data points from the same
subspace. Various methods are proposed to add different regularizations on Zv , such
as sparsity (Elhamifar and Vidal 2013), low rank (Liu et al. 2012) and smoothness
(Hu et al. 2014). However, self-expression property cannot be applied to our model
since our data are already high-dimensional and extremely sparse, which may lead to
a even higher-dimensional and more sparse Z.

3 Proposedmethodology

We will introduce the proposed methodology. Section 3.1 gives the data formulation
and the notations; Section 3.2 introduces the tensor topic and tucker decomposition;
Section 3.3 formulates the generative process along each dimension; Section 3.4 for-
mulates the graph structure for dimensionOD; Section 3.5 gives the final loss function.
The concepts of “passenger” and “document”, “trip” and “word”, “topic” and “cluster”
are interchangeably used here.

3.1 Data representation and notation

Firstly, the notations throughout this paper are as follows: We denote scalars in italics,
e.g., n, vectors by lowercase letters in boldface, e.g.,β, matrices by uppercase boldface
letters, e.g., B, and tensors by boldface script capital W .

Then, we would like to define the data representation. A trip is defined as a three-
dimensional tuple (i.e., word) w = (wO , wD, wT ), indicating a trip that starts from
origin wO at time wT and heads to destination wD . V O , V D, V T are the vocabulary
sizes for ODT respectively. A passenger who has traveled several trips is regarded as
“a bag of words” (i.e., document): du = {w1, . . . ,wi , . . . ,wNu }, with i as the i-trip
of the passenger u, Nu as the number of trips from passenger u ∈ R

M , and M as the
total number of passengers. All the notations in the paper are summarized in Table 1.

3.2 Tensor topic definition and decomposition

The topic for the i-th word wi in passenger u is also formulated as a three-element
tuple z j,k,l = (zOi j , z

D
ik, z

T
il )(i ∈ R

Nu , j ∈ R
J , k ∈ R

K , l ∈ R
L), where J , K , L

are the number of latent topics of ODT respectively, and (zOi j , z
D
ik, z

T
il ) indicates the

i-th word belongs to the j-th ‘O’ topic, k-th ‘D’ topic and l-th ‘T’ topic, respectively
(Cheng et al. 2020).
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Table 1 Notation

Symbols Description

()O,D,T Superscripts O, D, T mean three dimensions: Origin, Destination, Time
respectively

Wu The tensor ODT data for each passenger u

M The total number of passengers (iterator u)

du The trip sets of u-th passenger

Nu The number of trips (words) in du (iterator i)

J , K , L Amount of topics for ODT (iterator j, k, l) respectively

A(α j,k,l ) A ∈ R
J×K×L 3d-Dirichlet distribution parameter

Cu(cu, j,k,l ) Cu ∈ R
J×K×L topic distribution for passenger u

zOi , zOj , zOi j zOi : the origin topic for i-th word; zOj : the origin topic is j ; zOi j : the origin topic for
i-th word is j

wO
i , wO

o wO
i : the origin element of the i-trip; wO

o : the word in Origin dimension is o,

wO = o

V O , V D, V T The vocabulary of all unique ODT

BO (βO
jo) BO ∈ R

J×V O
; its element βO

jo: the multinomial parameter for word o ∈ V O

drawn from topic j .

�O (φO
i j ) Variational variable for zO , the probability of the word at i-th position generated

from j-th topic.

Eu(εs, j,k,l ) Eu ∈ R
J×K×L variational variable for Cu

According to Bayes’ theorem, the probability of the i-trip wi = (wO
i , wD

i , wT
i )

from passenger du can be written as:

P(wi = (o, d, t) | du) =
J∑

j=1

K∑

k=1

L∑

l=1

P(zOi j , z
D
ik, z

T
il | du)×

P(wO
i = o | zOi j )P(wD

i = d | zDik)P(wT
i = t | zTil ).

(1)

We denote P(zOi j , z
D
ik, z

T
il | du) = cu, j,k,l as the probability that topic z for i-trip in

passenger du is ( j, k, l); We further denote P(wO
i = o | zOi j ) = βO

jo as the probability

of wO in i-trip is o given the j-th origin topic; Similarly for dimension D and T we
have P(wD

i = d | zDik) = βD
kd , P(wT

i = t | zTil ) = βT
lt .

Tucker Decomposition: Eq. (1) can be presented in Tucker decomposition as fol-
lows:

Wu = Cu ×1 BO ×2 BD ×3 BT . (2)

The essence of the model is revealed as probabilistic tucker decomposition (Kolda
and Bader 2009), where the tensor ODT data for each passenger u is Wu ∈
R
V O×V D×V T

, which is decomposed into a core tensor Cu ∈ R
J×K×L , and along
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Fig. 2 Tensor topic and tucker decomposition

each dimension there is a mode matrix BO ∈ R
J×V O

,BD ∈ R
K×V D

,BT ∈ R
L×V T

as shown in Fig. 2.
It is worth mentioning that although the essence of the model is a decomposition,

yet since Wu is intractable, Cu,BO ,BD,BT could not be learned by decomposing
Wu . Instead, we learn the latent parameters first and then Wu could be calculated.

3.3 Generative process

The generative process for a trip w will be defined along ODT.
Prior: Dirichlet distribution is known as a good conjugate prior for multinomial

distribution (Zhou 2018). The tensor topic distribution Cu ∈ R
J×K×L for the u-

th passenger is generated from the 3D-Dirichlet distribution with parameter A ∈
R

J×K×L and each element cu, j,k,l(
∑

j
∑

k
∑

l cu, j,k,l = 1) defines the possibility
for the passenger to have trips from topic z j,k,l :

Cu ∼ DirJ×K×L(A). (3)

Passenger to Tensor Topic: The topic for the i-trip in the u-th passenger is drawn
from the multinomial distribution:

z j,k,l | wi ∼ Multi(cu, j,k,l). (4)

Topic to Trip: We define BO ∈ R
J×V O

as the topic-trip matrix, in which the
element βO

jo is the multinomial probability that wO = o is drawn from the j-th origin

topic, P(wO
i = o | zOi j ). B

D , BT are defined the same way. Therefore the word

(wO , wD, wT ) is drawn from each multinomial distribution with parameter BO ,BD

and BT respectively:

wO ∼ Multi(βO
j ), wD ∼ Multi(βD

k ), wT ∼ Multi(βT
l ). (5)
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3.4 Graph structure on origin and destination

If two stations are geographically close to each other or located in the similar functional
area, intuitively these two stations are more likely to be in the same topic. This external
information will be formulated as a graph and then introduced into the model as the
Laplacian regularization.

Precisely, two graphs are defined accordingly to capture the inter-relationships
of different stations: (1) Geographical graph Gnet : describes how two stations are
geographically close to each other on the network; (2) Functional similarity graph
Gpoi : quantifies how similar the functions of two stations’ locations are. These two
graphs have effects on both OD dimensions, with definition details in Section 5.2.

The graph regularization term is defined as follows. Take one graph in origin dimen-
sion as an example,

R(GO) = 1

2

∑

o1,o2∈GO

κ(o1, o2)
J∑

j=1

(βO
jo1 − βO

jo2)
2 = 1

2

J∑

j=1

(βO
j )TLβO

j , (6)

where GO ∈ R
V O×V O

is the graph on origin stations, κ(o1, o2) = {GO}o1,o2 defines
the weight between entity o1 and o2, and L is the Laplacian matrix for graph GO (Li
et al. 2020; Wang et al. 2015; Yu et al. 2019). The intuition is that two stations that
are closer on the graph will be more likely to have the same topic (Mei et al. 2008).

With the corresponding Laplacian matrices as Lnet and Lpoi , the final graph Lapla-
cian penalty on OD could be formulated as:

R(GO,D) = 1

2

∑

j

(βO
j )T (μLnet + (1 − μ)Lpoi )β

O
j

+ 1

2

∑

k

(βD
k )T (νLnet + (1 − ν)Lpoi )β

D
k .

(7)

where the tuning parameters μ and ν adjust the relative effect of two graphs on OD
respectively. The whole generative process is shown in Fig. 3.

3.5 Loss function

In order to learn the model parameters A,BO ,BD and BT for the GR-TensorLDA
model, the log-likelihood function could be formulated as follows:

L(A,BO ,BD,BT ) =
M∑

u=1

logP(du | A,BO ,BD,BT ) (8)

where P(du | A,BO ,BD,BT ) is themarginal distribution of a passengerwhich canbe

defined as: P(du | A,BO ,BD,BT ) = ∫
P(Cu | A)

(∏Nu
i=1

∑
zi P(zi | Cu)P(wO

i |
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Fig. 3 Generative Process for trips from each passenger via latent topics z

zOi ,BO)P(wD
i | zDi ,BD)P(wT

i | zTi ,BT )
)
dCu . However, the quantity P(du | A,

BO ,BD,BT ) cannot be computed tractably due to the coupling between A and
BO ,BD,BT in the summation over latent topics Blei et al. (2003). Luckily, varia-
tional inference provides us with a tractable lower bound on the log likelihood, which
will be elaborated in detail in Section 4.

After combining the external knowledge, the model parameters are learned by
maximizing the regularized likelihood function, with λ tuning the penalty strength:

max
A,BO ,BD ,BT

λL(A,BO ,BD,BT ) − (1 − λ)R(GO,D). (9)

4 Parameter estimation

In this section, we describe a tensorized variational EM-algorithm to optimize the
model parametersA,BO ,BD,BT in Eq. (9), efficiently. Based on the existing varia-
tional EM-algorithm (Blei et al. 2003), we mainly emphasize the following significant
contributions in our algorithm: (1) For E-step in Section 4.1, the variational E-step is
extended from one-dimension words to high-dimension words with tucker decompo-
sition; (2) For M-step in Section 4.2, the gradient ascend method is adopted to address
the graph regularizations; (3) Most importantly, in Section 4.3, an online learning
algorithm is proposed to handle the big data problem in smart transportation systems.
The algorithm is summarized as follows:

• Tensorized variational E-step: to approximate posterior, four variational distri-
butions q(·)s are introduced for C, zO , zD, zT with free variational parameters
E,�O ,�D,�T respectively, as shown in Fig. 4; then the lower bound (LB) for
the original log-likelihood is calculated by Jensen’s inequality, with optimal vari-
ational parameters learned to maximize the LB;

• M-step: A,BO ,BD,BT are estimated to maximize the tightest LB learned from
E-step.
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Fig. 4 Variational distribution to
approximate posterior

4.1 Tensorized variational E-Step

The variational distribution is formulated as Eq. (10) to approximate the posterior
distribution of each passenger:

Q = q
(
C, (zO , zD, zT ) | E, (�O ,�D,�T )

)

= q(C | E)

Nu∏

i=1

q(zOi | φO
i )q(zDi | φD

i )q(zTi | φT
i ),

(10)

where φO
i ∈ R

J , with φO
i j interpreting the probability that word at i-th position in

current document is generated from origin topic j .
A tight lower-bound is found by minimizing Kullback-Leibler (KL) divergence

between the inference distribution Q and posterior P:

min
E,�O ,�D ,�T

K L
[
Q ‖ P

(
C, zO , zD, zT | du,A,BO ,BD,BT

)]
. (11)

As shown in Appendix A.2, the optimal variational parameters E∗, (�O∗,�D∗,
�T∗) are learned by computing the derivatives of the KL divergence and setting them
to zero, with results shown in Eqs. (12) and (13).

To estimate φO
i j for the u-th passenger by Appendix A.2.1:

φO
u,i j ∝ βO

jo exp
[ K∑

k=1

L∑

l=1

φD
u,ikφ

T
u,il

(
	(εu, j,k,l) − 	(

∑

jkl

εu, j,k,l)
)]

. (12)

The parameter of one dimension, for example, φO
i j , is not only related to its own

dimension but also other dimensions φD
ik and φT

il .
Therefore, we could perform the block coordinate descent algorithm, which itera-

tively update the parameters for ODT dimensions until convergence.
To estimate ε j,k,l for the u-th passenger via Appendix A.2.2:

εu, j,k,l = α j,k,l +
Nu∑

i=1

φO
u,i jφ

D
u,ikφ

T
u,il . (13)
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Algorithm 1GR-TensorLDA in batch learning: TensorizedVariational EMAlgorithm
Input: passengers, J , K , L , λ, μ, ν, stopping tolerance tol, max_i ter EM , max_i ter I n f er , max I terβ .
1: for i ter = 1 to max_i ter EM do
2: E-Step:
3: Initialization: φO

i j = 1
J , φD

ik = 1
K , φT

il = 1
L and εu, j ,k,l = αu, j,k,l + Nu

J×K×L for all u, i, j, k, l.
4: for i ter = 1 to max_i ter I n f er do
5: for u = 1 to M do
6: for i = 1 to Nu do
7: Update φO

u,i j , φ
D
u,ik , φ

T
u,il by Eq. (12) ∀ j, k, l; Normalize

8: Update εu, j ,k,l by Eq. (13) ∀( j, k, l).
9: end for
10: end for
11: if parameteri+1 − parameteri < tol, break
12: end for
13: M-Step:
14: Update βO

j , βD
k ,βT

l by Eqs. (14), (15) until convergence
15: Update α j,k,l by Eq. (16) until convergence
16: end for
Output: A,BO ,BD,BT .

4.2 M-Step

In the M-step, we aim to maximize the lower bound learned from E-step with respect
to BO ,BD,BT and A.

As shown in Appendix A.3.1, BO and BD cannot be solved in the closed-form
solution due to the graph regularization. Therefore, we propose to use the gradient
ascend method to update BO and BD:

β
O,τ+1
j = β

O,τ
j + r∇L(βO

j ). (14)

the gradient with respect to βO
jo is ∇L(βO

j ) = λ 1
βO
jo1

∑M
u=1

∑Nu
i=1 φO

u,i j1(w
O
ui = o1)−

(1 − λ)
∑

o2(μκ
Gnet
o1o2 + (1 − μ)κ

Gpoi
o1o2 )(βO

jo1
− βO

jo2
) + aOj .

BT has a closed form solution as shown in Appendix A.3.2:

βT
l,t =

M∑

u=1

Nu∑

i=1

φT
u,i,l1(w

T
ui = t). (15)

Finally, similar to the original LDA model (Blei et al. 2003), A can be estimated
using the Newton-Raphson method:

αs+1
j,k,l = αs

j,k,l −
[
H−1(A)g(A)

]

j,k,l
. (16)

Its detailed derivation is given in Appendix A.3.3.
It is worth mentioning that Eqs. (14), (15), and (16) do not show a direct relation

between J , K , L and model parameters: this is because J , K , L affect the variational
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Algorithm 2 Online GR-TensorLDA: Tensorized Variational EM Algorithm
Input: passengers, J , K , L , λ, μ, ν, stopping tolerance tol, max_i ter I n f er , max I terβ , r , κ , τ0.
1: for s = 0 to ∞ do
2: E-Step:
3: Initialization: φO

i j = 1
J , φD

ik = 1
K , φT

il = 1
L and εs, j ,k,l = αs, j,k,l + Ns

J×K×L for all s, i, j, k, l.
4: for i ter = 1 to max_i ter I n f er do
5: for i = 1 to Ns do
6: Update φO

s,i j , φ
D
s,ik , φ

T
s,il by Eq.(12) ∀ j, k, l; Normalize

7: Update εs, j,k,l by Eq.(13) ∀( j, k, l).
8: end for
9: if parameteri+1 − parameteri < tol, break
10: end for
11: M-Step:

12: Update B̃O , B̃D by β̃
O
j ← β̃

O
j + r∇Ls (β̃

O
j ) until convergence

13: Update B̃T by β̃T
l,t = M

∑Ns
i=1 φT

s,il1(w
T
si = t)

14: Set BO,D,T = (1 − ρs )BO,D,T + ρs B̃O,D,T

15: Update α j,k,l by Eq.(16) until convergence
16: end for
Output: A,BO ,BD,BT .

variables and then the variational variables affect model parameters. Besides, in the
parameter initialization, sincewedonot have a prior knowledge about the distributions,
equalized and uniform parameters are initialized.

The whole algorithm is shown as Algorithm 1: it is in a batch learning manner
which needs to read through the whole document set for each iteration.

4.3 Online learning algorithm

In practice, the proposed Algorithm 1 is very computationally intense since it updates
parameters in a batch learningmanner, which iterates between analyzing each observa-
tion and updating dataset-wide variational parameters. Therefore, as shown in Line 5
in Algorithm 1, E-step needs a full pass through the entire corpus each iteration, which
is impractical when dealingwith a large dataset containing tens of thousands of passen-
gers. For example, Hong Kong, as an international transport hub, the monthly visitor
arrivals were recorded to 6 million in Dec-2018, and the batch learning algorithm is
not suitable for the situation where new visitors are continually arriving (Hoffman
et al. 2010).

To this end, to efficiently implement the proposed model in real traffic systems,
we further develop an online stochastic algorithm, which outputs good estimates out-
standingly faster than the batch algorithm. To avoid repetitious details, only the critical
differences in the algorithm will be explained.

In E-step, the updating equations from Eq. (12) to Eq. (13) remain the same except
that variational variables are updated each time a passenger s is read, as shown in Line
6–7 in Algorithm 2.

In M-step, to update model parameters stochastically, once observing the current
passenger s, we first assume the optimal model parameters are learned if the entire
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corpus contained this passenger s repeated M times: under this setting (denoted with
the accent symbol β̃ ), B̃O and B̃D are updated by stochastic gradient ascend, with the
gradient calculated based on the single observation ds times M :

β̃
O
j = β̃

O
j + r∇Ls(β̃

O
j ). (17)

where gradient∇Ls(β̃
O
j )with respect to β̃O

jo is∇Ls(β̃
O
j ) = λ M

β̃O
jo1

∑Ns
i=1 φO

s,i j1(w
O
si =

o1) − (1 − λ)
∑

o2(μκ
Gnet
o1o2 + (1 − μ)κ

Gpoi
o1o2 )(β̃O

jo1
− β̃O

jo2
) + aOj , with details in

Appendix A.3.1.
Similar with Eq. (15), B̃T has closed-form solution with passenger s repeated M

times:

β̃T
l,t = M

Ns∑

i=1

φT
s,il1(w

T
si = t). (18)

Then the final model parameters BO,D,T are updated by using a weighted average
of its previous value and B̃O,D,T :

BO,D,T = (1 − ρs)BO,D,T + ρsB̃O,D,T . (19)

where ρs = (τ0 + s)−κ . κ ∈ (0.5, 1] controls the rate at which old values of B̃ are
forgotten and guarantees convergence; τ0 ≤ 0 slows down the early iterations.

The proposed online learning algorithm of the GR-TensorLDA method is summa-
rized in Algorithm 2.

The computational complexity of each iteration in the batch learning algorithm is
O (MN (J + K + L)) (M ≫ N , J , K , L), whereas the complexity of each iteration
in the online learning algorithm reduces to O(N (J + K + L)) (Teh et al. 2007).

Mini-Batches: To reduce noise, parameters could be updated with a mini-batch
containing multiple observations, with mini-batch size as S. B̃T is updated as β̃T

l,t =
M
S

∑S
s=1

∑Ns
i=1 φT

s,il1(w
T
si = t). B̃O,D are updated by stochastic gradient ascend with

mini-batches.

5 Experiments

5.1 Dataset

The individual travel data from 1st-Jan-2017 to 31st-Mar-2017 are chosen for analysis.
Each trip has recorded the anonymized passenger ID, entry station, exit station, entry
time, and exit time. In this implementation, entry station, exit station, and hour stamp
of entry time have been collected for each trip and aggregated over the whole three
months to ensure each passenger has enough trips for analysis, with average amount
of trips around 134. The Hong KongMTR system has 98 stations in total and operates
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Table 2 Data information Data Dimension and Description

Passenger (Training) M = 50, 000

Passenger (Validation, Test) 1000

Average Length N̄ ≈ 134 (trips)

Origin, Destination V O , V D = 98 (stations)

Time (Entry) V T = 24 (hours)

in 24 hours. Thus the vocabulary size for origin, destination, and time is 98, 98, 24.We
randomly pick 50,000 passengers as the training set, 1000 passengers as the validation
set for tuning parameter selection, and another 1000 passengers as the test set. The
data information is summarized in Table 2.

5.2 Graph definition

As discussed in Section 3.4, the geographical graph and the functional similarity graph
affect passengers’ travel patterns. Herewewould like to define the two graphs in detail.

Geographical graph: Two spatially close stations are more likely to be in the same
topic. The distance from station i to j in the graph {Gnet }i, j is usually simplified as an
“H -hop” binary graph: if from station i to j less than H -hops are needed, two stations
are connected, and the edge between them is ’1’; Otherwise, the edge is ’0’. We set
H = 3 since a survey stated that passengers are willing to travel freely if two stations
are only three hops away (Geng et al. 2019; Li et al. 2021).

{Gnet }i, j =
{
1 hop distancei, j <= H

0 hop distancei, j > H

Functional similarity graph: Two stations located in highly similar functional
areas are also prone to be in the same topic. A functional similarity graph is com-
monly formulated with the point of information (POI) (Li et al. 2020; Zhong et al.
2017). We collect each station’s surrounding POIs1 with the following seven services:
hotel, leisure shopping, major building, public facilities, residential, school, and public
transport. Each element of the POI vector indicates the amount of the corresponding
service nearby the station. The element {Gpoi }i, j can be defined as cosine similarity
between POI vectors of station i and station j , and a higher value in Gpoi means a
higher functional similarity between two stations:

{Gpoi }i, j = POIi · POI j
‖POIi‖ · ‖POI j‖

1 This information is available at “Location Map, MTR” showing leading hotels, shopping centres and
major buildings of each stations.
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5.3 Benchmarkmethods

We apply the following benchmark methods to passenger travel data and compare the
results with the proposed model. However, a relatively limited amount of research
targets ODT-P multi-clustering based on individual passenger travel data.

• One-dimensional LDA (1d-LDA): It defines the generative process from docu-
ment to topic, topic to word in a single dimension (Blei et al. 2003). To apply
it, three-dimensional data (wO , wD, wT ) = (o, d, t) are flattened into one-
dimensional w = odt : each different element creates a new word; thus, the total
vocabulary size for the new data format is expanded to 98 × 98 × 24 ∼ 105, and
the computational complexity of each iteration is O (MNK ).

• Tucker Decomposition (Tucker): It decomposes an ODT flow tensor into a core
tensor and mode matrices along each dimension. Each rank vector from a mode
matrix can be regarded as a cluster (Sun and Axhausen 2016). However, this
method is not applicable to individual travel data due to extreme sparsity. Merely
to examine its ODT clustering performance, we feed it with macro-level passenger
flow data with the dimension of origin, destination, and time (Sun and Axhausen
2016).

• CP Decomposition with Graphs (CP-G): Similar to tucker decomposition, the
input is passenger flow data to check its ODT clustering performance. It decom-
poses an ODT flow tensor into a weight vector and mode matrices along each
dimension, with graphs on OD (Li et al. 2020).

• Three-dimensional LDAwithGibbs sampling (3d-LDA(Gibbs)): It also defines
a generative process for each dimension, however, without any semantic graph
structure. Parameters are estimated by Gibbs sampling (Cheng et al. 2020), with
the computational complexity of each iteration asO (MN (J + K + L)) (Porteous
et al. 2008; Xiao and Stibor 2010).

All the methods are compared by whether it is an individualized analysis (Indiv.
for short), tensor-based (Tensor), and graph-structured (Graph) model with efficient
online algorithm (Eff.) and low computational complexity (Complexity) as shown in
Table 3. Only our model ticks all the boxes.

Table 3 Comparison of benchmark methods

Methods Indiv. Tensor Graph Eff. Complexity 2

1d-LDA � × × × O(MNK )

Tucker ×1 � × - -

CP-G ×1 � � - -

3d-LDA(Gibbs) � � × × O(MN (J + K + L))

GR-TensorLDA (online) � � � � O(N (J + K + L))

1 Not individualized analysis, input with passenger flow data;
2 Computational complexity of each iteration, and M ≫ N , J , K , L
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5.4 Evaluationmetrics

Traditional topic models only measure the quality of the model via perplexity, but
ignore how “interpretable” the learned topics are. For example, a topic containing
all words related to covid (e.g., omicron, vaccine, quarantine, etc: these words are
all connected in a knowledge graph) is more “interpretable” than a topic containing
words from various themes (e.g., covid, solar energy, iPhone: these words are far
away to each other in a knowledge graph). Such “interpretability” is usually measured
by point-wise mutual information (PMI), known as topic coherence. Besides, given
our graph structure on origin and destination dimensions, we also innovatively design
distance of graph to measure the “interpretability”: a topic with words that are close
to each other on a graph is more interpretable than the one that does not.

Topic Coherence PMI: PMI is to evaluate how meaningful the learned topics
along each dimension are (Yao et al. 2017; Newman et al. 2010). For exam-
ple, topic j in dimension of the origin stations is calculated as PMI (βO

j ) =
∑

o1,o2∈No
j ,o1 �=o2

P(wO
o1

,wO
o2

)

P(wO
o1

)P(wO
o2

)
, where No

j is the top N words in origin topic j , and we

choose the top 10 words. P(wO
o ) is the probability that word wO = o is observed in

a passenger, and P(wO
o1 , w

O
o2) captures the probability that wO = o1 and wO = o2

co-occur in the same passenger. A higher PMI value means a more coherent topic.
Distance on Graph (dG ): Based on the Laplacian matrix of a graph, dG measures

the distance of the word components from a topic. A smaller value means a more
concentrated topic. For example, the distance on graph for origin topic j is defined as
dGnet = (βO

j )TLnetβ
O
j , dGpoi = (βO

j )TLpoiβ
O
j .

Perplexity: Perplexity (Blei et al. 2003) examines the likelihood of the proposed
model in the test set. A lower perplexity means a higher likelihood.

5.5 Parameter tuning and station topics

5.5.1 Parameter tuning

The number of topics in each ODT dimension is set as J = 10, K = 10, L = 4 in
our dataset. This is chosen by the expert knowledge: J , K = 10 since the POI of
each station has seven elements; L = 4 since there are usually at least three time-
components capturing morning peak, evening peak, and midday trend. Generally, if
there is no prior information about the parameters, J , K , L could be determined by
a grid search to minimize perplexity (Blei et al. 2003) or maximize topic coherence
(Yao et al. 2017). Theoretically, with bigger J , K , L , the dimensions of model param-
eters A,BO ,BD,BT also increase, which means more latent clusters are introduced
to describe data pattern: this will naturally increase model’s likelihood and decrease
perplexity. However, too large J , K , L may cause overfitting. Tuning parameters for
graph regularization λ,μ, ν are searched from grids λ,μ, ν ∈ {0.1, 0.2, . . . , 0.9},
and configuration parameters for online algorithm κ ∈ {0.5, 0.6, . . . , 1.0}, τ0 ∈
{1, 4, 16, 64, 256, 1024} and S ∈ {1, 4, 16, 64, 256, 1024}. The optimal values are
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Table 4 Origin topic

Metric Method zO0 zO1 zO2 zO3 zO4 zO5 zO6 zO7 zO8 zO9

PMI Tucker −33.29 −43.53 −177.27 −49.02 −102.80 −106.24 −39.06 −26.31 −39.44 −24.69

CP-G −34.59 −43.05 −73.91 −36.57 −38.17 −64.46 −35.81 −25.25 −47.15 −40.66

3d-LDA(Gibbs) 3.21 2.86 9.31 26.77 13.40 12.09 24.02 −18.94 3.95 33.80

GR-TensorLDA 3.29 3.0 24.31 19.21 28.95 26.41 57.86 −19.42 14.12 34.38

dG poi
Tucker 2.27 13.14 8.02 3.72 3.28 4.28 2.85 19.54 1.66 2.53

CP-G 2.20 2.88 2.48 2.85 2.21 3.03 2.56 2.59 2.26 2.20

3d-LDA(Gibbs) 2.71 2.67 3.50 2.27 4.32 1.79 2.94 2.50 3.82 4.54

GR-TensorLDA 2.92 1.32 1.42 1.42 1.46 0.91 1.42 0.89 2.25 2.43

dGnet Tucker 0.46 1.82 1.91 0.99 1.01 0.99 0.72 5.4 0.50 0.67

CP-G 0.38 0.49 0.40 0.48 0.36 0.47 0.43 0.44 0.42 0.37

3d-LDA(Gibbs) 0.63 0.57 0.73 0.55 0.99 0.48 0.64 0.55 0.75 1.12

GR-TensorLDA 0.65 0.35 0.34 0.43 0.29 0.25 0.39 0.20 0.44 0.53

chosen to maximize likelihood in the validation set, with λ = 0.5, μ = 0.4, ν = 0.2
and S = 128, κ = 0.5, τ0 = 256.

5.5.2 Topic matching

It is worth mentioning that before the comparison, the topics learned from different
methods need to be matched first. We match two topics from two methods if they have
the highest cosine similarity. For example, topic i from method m1 refers to topic ĵ
from method m2 when ĵ = argmax j {cos-similarity(βm1

i ,β
m2
j )}.

5.5.3 PMI and distance on graph

The PMI and dG for the learned origin topics are shown in Table 4, with the best
performance highlighted in boldface and the second-best performance highlighted in
underline.

From Table 4, we find that: (1) Tucker and CP decomposition have the worst
PMI since they are methods targeting macro-level traffic analysis. Thus it ignores
the individual passenger information; However, tensor decomposition with graphs
considered (i.e., CP-G) still has higher PMI and lower dG than that without graphs;
(2) Our proposed method achieves twice higher PMI than 3d-LDA(Gibbs) for most
topics, which means the proposed model can discover more meaningful topics. This
is due to the external information introduced as graphs, with more than 50% lower dG
observed on both graphs.

5.5.4 Perplexity vs interpretability

In Table 5, our model has a 10% higher perplexity in the test set, which means a
lower likelihood score for these passengers. When we introduce the regularization
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Table 5 Trade-off between perplexity and intepretability

Perplexity Interpretability1

Methods O D T Overall ¯PMI d̄G poi d̄Gnet

1d-LDA – – – 575.11 – – –

3d-LDA(Gibbs) 44.69 48.24 17.48 110.41 11.05 3.11 0.71

GR-TensorLDA 50.61 53.33 17.31 121.25 19.21 1.64 0.38

1 Under the interpretability, ¯PMI, d̄G poi , d̄Gnet are the average of PMI, dG poi , dGnet over the 10 origin
topics in Table 4

term into the loss function, it naturally decreases the likelihood score because regu-
larization terms generally reduce the model fitting accuracy (i.e., likelihood score) in
the exchange of a better generalizability on the testing samples.

However, in the literature, it has been shown that perplexity is not a good measure
compared to the topic coherence PMI score. This is because the perplexity itself does
not reflect the meaningfulness of topics, and topics with lower perplexity might even
conflict with the real-world knowledge (Yao et al. 2017; Chang et al. 2009). Our exper-
iments show that, by adding the graph regularization, although the model likelihood
score (i.e., 10% higher perplexity measure) is lower, the model interpretability and
generalization power (i.e., as seen in the twice higher PMI and 50% lower dG mea-
sures) are significantly improved. Therefore, we observed such a trade-off between
perplexity and interpretability.

1d-LDA has the highest perplexity since it is not a tensor-based model, thus cannot
preserve the innate spatiotemporal correlations.

5.6 Improved interpretability in station topics

To better demonstrate the enhanced interpretability of the proposedmodel’s topics and
check how they reflect the real world, we also visualize: (1) the topic POI features,
(2) topic locations, and (3) topic station components based on the real metro map, in
comparison to the second-best model 3d-LDA (Gibbs) in origin dimension only. The
discovered topics can be used as station clusters.

(1) Topic POI Feature to check the POI feature of each topic: Usually, more
distinguishable topics are better (Zhu et al. 2012). The POI features of topics from
3d-LDA(Gibbs) and our model are calculated as BO

(poi) = BOG poi , where BO
(poi) ∈

R
J×Npoi and the j-th row βO

j(poi) ∈ R
Npoi indicates the POI feature of this topic.

As shown in Fig. 5. (a2), topics from the proposed model capture more distinct POI
groups: origin topic 4, 5, 6, and 8 capture the POI leisure shopping, major building,
residential and school respectively; Topics from 3d-LDA(Gibbs) instead, as shown in
Fig. 5. (a1), capture the topics with similar and non-distinguishable POI distribution.
The distinct POI patterns are observed in our destination topics too.

(2) Topic Location on Map to check each topic’s location on map: The top 10
stations with the highest weights from origin topics 4, 5, 6, and 8 are located on the
metro map. In Fig. 5. (b), the stations from our topics are concentrated in the same
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Fig. 5 (a) POI features for origin topics; (b) The locations of top 10 stations from origin topics 4,5,6 and 8

line/region; however, topics without graphs are dispersed among different regions.
Therefore, the topics learned from our proposedmethod have significant improvement
in interpretability and reflect external knowledge.

(3) Station Components Analysis to check each topic’s station component in
terms of the station location and POI: A further detailed study about the top 10 station
components with the highest weights inside each topic (here topic 6 is chosen) is
conducted to check those stations’ exact locations and the surrounding POIs. (1) In
Fig. 6. (b), the top 10 stations of our topic 6 are all located in the same metro line,
and the POI feature of each station is also mainly residential; (2) On the contrary, in
Fig. 6. (a) the top 10 stations of topic 6 without graphs are scattered over different
three lines, and those stations also have quite different POI features, such as station
80 in leisure shopping, station 99 in the major building.

To conclude, the identified topics from the proposed model have better physical
meanings and interpretability.

123



1268 Z. Li et al.

Fig. 6 The top 10 stations from topic 6, with station weights presented as line charts on top, real metro lines
plotted below and station POI features presented as pie charts

Applications of OD Clustering: Metro companies usually categorize stations by
their expert knowledge, such that different station categories have different operational,
marketing, and urban planning strategies. However, this categorization is usually out-
of-date since a station’s feature evolves over time. The learned station clustering is
purely data-driven and updated with data, which provides better insights.

5.7 Time topics

The time topics from our method are shown in Fig. 7(a), Topic 0 captures the first
morning peak (7–8 AM); Topic 1 captures the secondmorning peak (9–10 AM); Topic
2 captures the mid-day trend, and Topic 3 captures the evening peak (8 PM).

Applications ofTimeClustering: The learned time topics could offer clear insights
about the peak hours and enable crowd management.

5.8 Passenger clustering

The passenger cluster could be learned from each passenger’s tensor topic dis-
tribution parameter Cu . The distance between two passengers’ topic distributions
could be measured by the Euclidean distance, the Jensen Shannon (JS) divergence
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Fig. 7 (a) Time topics, (b) Passenger clusters

(Cheng et al. 2020) and so on. We choose the JS divergence since it is a symmetric
measure for distributions. Then clustering methods such as K-means could be applied
to cluster passengers.

Two passenger clusters are shown: In Fig. 7(b1) ‘student’ cluster travels from O6
(residential) to D0 (school) at T0 (7–8 AM) and travels back from O8 (school) to D4
(residential) at T2 (mid-day); In Fig. 7(b2) ‘white-collar’ cluster usually travels from
O5 (major building) to D9 (major building) at T1 (9–10 AM) and after work travels
from O5 (major building) to D8 (leisure shopping) at T3 (8 PM).

Applications of passenger clustering: (1) Customized Services: Passenger
clustering could help public transport companies better understand passenger demo-
graphics, enabling customized travel reward plans or tailored advertisements for
different passenger clusters. (2) Destination Inference: Moreover, the conditional
probability based on the latent parameters BO ,BD,BT , and Cu enables more poten-
tial applications. For example, given the passenger u′, origin o′, and entry time t ′, the
destination could be predicted by: P(wD = d | wO = o′, wT = t ′, u′) ∝ P(wO =
o′, wD = d, wT = t ′, u′) = ∑J

j=1
∑K

k=1
∑L

l=1 cu′, j,k,l × βO
jo′ × βD

kd × βT
lt ′ . As a

result, a destination crowd warning message in the mobile application could then be
directed towards each passenger. With BO ,BD better estimated with graphs, for pas-
sengers who travel between two stations (accounts for 83.8% of the population in our
dataset), the destination inference accuracy is improved by 18% compared with 3d-
LDA(Gibbs), as shown in Table 6. In Fig. 8, the most popular OD pairs (i.e., o′ → d ′)
are selected to visualize destination inference. With the input of passenger u′, who has
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Table 6 Destination inference accuracy

Route Type (Percent in data) 3d-LDA(Gibbs) GR-TensorLDA

A � B (83.8%) 65.73% 77.21%

A � C � B(10.5%) 59.11% 66.19%

≥ 4 stations (5.7%) 50.21% 51.48%

Fig. 8 Destination inference for selected OD pairs: o′ in blue, ground-truth d ′ in grey, correct d in green,
wrong d in red

Fig. 9 Convergence comparison of (a) log-likelihood evolution and (b) origin perplexity evolution between
Online Algorithm 2 in green and Batch Algorithm 1 in red. Each point marker ‘·’ in online version denotes
10 iterations, and each cross marker ‘×’ in batch version denotes 1 iteration

these OD pairs, and the time t ′ when he/she enters o′, the destination is inferred by
our method with higher accuracy (correct d ′ in green); However, the method without
graphs makes more mistakes (wrong d in red).

5.9 Faster convergence from online algorithm

Last but not least, as shown in Fig. 9, we compare the convergence speed of the
algorithm’s batch version and its online version in the same computation environment.
The proposed online stochastic algorithm needs more iterations to converge but 60%
less time: The online version (shown in color green) converges at t ≈ 300, more than
twice faster than the batch algorithm (shown in color red), which converges at t ≈ 700.

Moreover, the online algorithm also convergeswithwith better parameter estimates:
(1) Higher log-likelihood: As shown in Fig. 9. (a), online version converges at log-
likelihood ≈ −113 × 103, higher than batch version’s convergence at log-likelihood
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≈ −118×103; (2) Lower perplexity: as shown in Fig. 9. (b), online version converges
at origin perplexity ≈ 60, lower than batch version’s convergence at origin perplexity
≈ 89.

6 Conclusion

In this paper, we studied theODT-Pmulti-clustering problem for the individual passen-
ger travel pattern to achievemeaningful clusters on eachdimension (origin, destination,
and time) and on the individual passenger by incorporating external information on
the origin and destination stations. To solve this challenge, we proposed a novel graph-
regularized tensor Latent Dirichlet Allocation model, which applies to the travel data
of each passenger with the consideration of the external information as the graph regu-
larization.We proposed a tensorized variational EM-algorithm to estimate parameters.
To improve the scalability, an online learning algorithm is further proposed. In the case
study based on the Hong Kong metro system, we demonstrate our superiority over
state-of-the-art methods in terms of two times higher topic coherence, 50% lower
distance on graph, and better interpretability. Our improvement is also reflected on
its 20% more accurate individual destination inference. The proposed online learning
method can also converge twice faster with the same good performance as the batch
learning method.

Future work

Our model will be extended to cover trip duration, which is a continuous variable. The
generative process will be extended to handle continuous distribution correspondingly.
Besides, due to the independent assumption of Dirichlet distribution, correlations
between passengers will also be further examined.

Generalization

This work could also be applied to non-metro data such as bus and sharing rides if the
ODT information is recorded. In the road traffic, the nodes inGnet andGpoi could be
defined as different grids, road segments, or zip code zones, and the edges could be
defined similarly if distance and POI are available.
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Appendix A tensorized variational EM algorithm

In this appendix, the proposed Tensorized Variational EM Algorithm will be derived
in detail. For simplicity, we replace

∑J
j=1

∑K
k=1

∑L
l=1 with

∑
jkl to avoid some long

expression.

A.1 Computing Eq[log(cj,k,l | A)]

The three-dimensional Dirichlet distribution could be written as an exponential

family: P(C | A) = exp
{∑

jkl(α j,k,l − 1) log c j,k,l + log�(
∑

jkl α j,k,l) −
∑

jkl log�(α j,k,l)
}
, where α j,k,l − 1 is the natural parameter, log c j,k,l is the suf-

ficient statistic for c j,k,l , and log�(
∑

jkl α j,k,l) − ∑
jkl log�(α j,k,l) is the log of the

normalization factor. Since the derivative of the log of the normalization factor with
respect to the natural parameter is equal to the expectation of the sufficient statistic,
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we can get:

E[log(c j,k,l | A)] = 	(α j,k,l) − 	

⎛

⎝
∑

jkl

α j,k,l

⎞

⎠

A.2 Variational inference

The lower bound (LB) of the log likelihood of a document is obtained by Jensen’s
inequality:

log P(du | A,BO ,BD,BT ) = log
∫ ∑

z j,k,l

P(C, z,du | A,BO ,BD,BT )dC

= log
∫ ∑

z j,k,l

P(C, z,du | A,BO ,BD,BT )q(C, z)
q(C, z)

dC

≥ Eq [log P(C, z,du | A,BO ,BD,BT )] − Eq [log q(C, z)] = LB

LB can be expanded by using the factorizations of p and q:

LB = Eq [log P(C, z,du | A,BO ,BD,BT )] − Eq [log q(C, z)]
= Eq [log P(C | A)] + Eq [log P(z | C)] + Eq [log P(du | z,BO ,BD,BT )]

− Eq [log q(C)] − Eq [log q(z)]

The five terms are further expanded using Appendix A.1 result:

LB = log�

⎛

⎝
∑

jkl

α j,k,l

⎞

⎠ −
∑

jkl

log�(α j,k,l) +
∑

jkl

(α j,k,l − 1)

⎛

⎝	(ε j,k,l) − 	

⎛

⎝
∑

jkl

ε j,k,l

⎞

⎠

⎞

⎠

+
Nu∑

i=1

∑

jkl

φO
i jφ

D
ikφ

T
il

⎛

⎝	(ε j,k,l) − 	

⎛

⎝
∑

jkl

ε j,k,l

⎞

⎠

⎞

⎠

+
Nu∑

i=1

⎛

⎝
J∑

j=1

V O∑

o=1

φO
i jw

O
io logβO

jo +
K∑

k=1

V D∑

d=1

φD
ikw

D
id logβD

kd +
L∑

l=1

V T∑

t=1

φT
il w

T
it logβT

lt

⎞

⎠

− log�

⎛

⎝
∑

jkl

ε j,k,l

⎞

⎠ +
∑

jkl

log�(ε j,k,l) −
∑

jkl

(ε j,k,l − 1)

⎛

⎝	(ε j,k,l) − 	

⎛

⎝
∑

jkl

ε j,k,l

⎞

⎠

⎞

⎠

−
Nu∑

i=1

⎛

⎝
J∑

j=1

φO
i j logφO

i j +
K∑

k=1

φD
ik logφD

ik +
L∑

t=1

φT
it logφT

it

⎞

⎠
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A.2.1 Variational multinomial

We keep the terms in lower bound containing φO
i j for example:

LB[φO
i j ] = φO

i j

K∑

k=1

L∑

l=1

φD
ikφ

T
ik(	(ε j,k,l) − 	

⎛

⎝
∑

jkl

ε j,k,l)

⎞

⎠

+ φO
i j logβO

jo − φO
i j logφO

i j + λi

⎛

⎝
J∑

j=1

φO
i j − 1

⎞

⎠

To maximize it with respect to φO
i j , derivative is calculated and set to be zero:

∂LB

∂φO
i j

=
K∑

k=1

L∑

l=1

φD
ikφ

T
ik

⎛

⎝	(ε j,k,l) − 	

⎛

⎝
∑

jkl

ε j,k,l

⎞

⎠

⎞

⎠

+ logβO
jo − logφO

i j − 1 + λ = 0

Then we have:

φO
i j ∝ βO

jo exp

⎡

⎣
K∑

k=1

L∑

l=1

φD
ikφ

T
ik

⎛

⎝	(ε j,k,l) − 	

⎛

⎝
∑

jkl

ε j,k,l

⎞

⎠

⎞

⎠

⎤

⎦

Same steps are followed to get φD
ik and φT

il .

A.2.2 Variational dirichlet

The term containing ε j,k,l is simplified as follows:

LB[ε] =
∑

j,k,l

(	(ε j,k,l) − 	

⎛

⎝
∑

j,k,l

ε j,k,l)

⎞

⎠ ×
⎛

⎝α j,k,l +
Nu∑

i=1

φO
i jφ

D
ikφ

T
il − ε j,k,l

⎞

⎠

− log�

⎛

⎝
∑

jkl

ε j,k,l

⎞

⎠ +
∑

jkl

log�(ε j,k,l)

Similarly, to maximize the lower bound, derivative is calculated:

∂LB

∂ε j,k,l
=

⎛

⎝α j,k,l +
Nu∑

i=1

φO
i jφ

D
ikφ

T
il − ε j,k,l

⎞

⎠ ×
⎛

⎝	 ′(ε j,k,l) − 	 ′(
∑

jkl

ε j,k,l)

⎞

⎠ = 0
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By setting the derivative as zero we have:

ε j,k,l = α j,k,l +
Nu∑

i=1

φO
i jφ

D
ikφ

T
il

A.3 Parameter estimation

A.3.1 Conditional multinomials BO, BD

This will be solved by gradient ascend algorithm due to the graph regularization.

Terms in lower bound containing βO
jo with R(GO) and the constraint

∑V O

o=1 βO
jo = 1

considered are:

LB[βO
jo] = λ

M∑

u=1

Nu∑

i=1

J∑

j=1

V O∑

o=1

φO
u,i jw

O
u,io logβO

jo − (1 − λ)R(GO)

+
J∑

j=1

aOj

⎛

⎝
V O∑

o=1

βO
jo − 1

⎞

⎠

Gradient ∇L(βO
j ) with respect to βO

jo is as follows:

∇L(βO
j ) = ∂LB

∂βO
jo1

= λ
1

βO
jo1

M∑

u=1

Nu∑

i=1

φO
u,i j1(w

O
ui = o1)

− (1 − λ)
∑

o2

(μκGnet
o1o2 + (1 − μ)κ

Gpoi
o1o2 )(βO

jo1 − βO
jo2) + aOj .

As mentioned in Section 4.3, BO will be updated in an online stochastic manner,
where gradient is calculated with only one observation s repeated M times, thus,

gradient ∇Ls(β̃
O
j ) with respect to βO

jo is

∇Ls(β̃
O
j ) = ∂LBs

∂βO
jo1

= λ
M

βO
jo1

Ns∑

i=1

φO
s,i j1(w

O
si = o1)

− (1 − λ)
∑

o2

(μκGnet
o1o2 + (1 − μ)κ

Gpoi
o1o2 )(βO

jo1 − βO
jo2) + aOj .

BD will be updated same way.
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A.3.2 Conditional multinomials BT

There is no regularization in T dimension, so the estimation is similar with the work
in (Blei et al. 2003).

βT
l,t =

M∑

u=1

Nu∑

i=1

φT
u,i,l1(w

T
ui = t)

A.3.3 DirichletA

α j,k,l will also be updated with Newton-Raphson method. The gradient g j,k,l with
respect to α j,k,l is as below:

g j,k,l = ∂L

∂α j,k,l
= M

⎛

⎝	(
∑

jkl

α j,k,l) − 	(α j,k,l)

⎞

⎠

+
M∑

u=1

⎛

⎝	(εu, j,k,l) − 	

⎛

⎝
∑

jkl

εu, j,k,l

⎞

⎠

⎞

⎠

Then A is updated as follows:

αs+1
j,k,l = αs

j,k,l −
{
H−1(A)g(A)

}

j,k,l
= αs

j,k,l − g j,k,l − c

h j,k,l

where c =
∑

jkl g j,k,l/h j,k,l

z−1+∑
jkl h j,k,l

, h j,k,l = −M	 ′(α j,k,l), and z = M	 ′(
∑

jkl α j,k,l)

(Blei et al. 2003).
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