Transport signatures of fragile-glass dynamics
in the melting of the two-dimensional vortex lattice
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In a two-dimensional superconducting vortex lattice, the melting from the solid to the isotropic
liquid can occur via an intermediate phase that retains orientational correlations. The effect of such
correlations on transport and their interplay with the quenched disorder remain open questions. We
perform magnetotransport measurements in a wide range of temperatures and magnetic fields on a
weakly pinned 2D vortex system in amorphous MoGe films. While at high fields, where quenched
disorder dominates, we recover the typical strong-glass behavior of a vortex liquid, at low fields the
resistivity shows a clear crossover to a fragile vortex glass. Our findings, supported by numerical
simulations, suggest that this is a signature of heterogeneous dynamics that arises from the presence

of orientational correlations.

Thermal melting of two-dimensional (2D) crystalline
solids has been investigated in a variety of systems, in-
cluding colloids, electrons on the surface of liquid he-
lium, rare-gas atoms on substrates such as graphite, lig-
uid crystal films, dust plasmas, and vortices in thin super-
conducting (SC) films in a transverse magnetic field [1, 2].
The melting transition is generally understood to be
driven by the proliferation of topological defects, as de-
scribed by the Berezinskii-Kosterlitz-Thouless-Halperin-
Nelson-Young (BKTHNY) theory [3-5]. According to
BKTHNY, for weak enough quenched disorder the tran-
sition from the 2D (weakly pinned) solid to the isotropic
liquid phase occurs via an intermediate phase called hex-
atic. In the hexatic phase, free dislocations appear,
breaking the quasi-long-range positional order, but pre-
serving the hexagonal orientational one. By increasing
the temperature (T') further, free disclinations form and
a fully isotropic liquid is established. This melting se-
quence has indeed been detected by scanning-tunneling-
spectroscopy (STS) imaging of vortices in 2D supercon-
ductors [6-9], but the morphology of dislocations can be
affected by microscopic details, resulting in the appar-
ent coexistence of isotropic with hexatic liquid as well as
with smectic-like (striped) regions [6], or the emergence
of chains of dislocations [10]. The presence of compet-
ing orders may give rise to metastable states and the
associated slow dynamics in many systems [11]. An STS
study on amorphous MoGe (a-MoGe) thin films did ob-
serve [9] a strong suppression of the vortex diffusivity
in the presence of hexatic correlations compared to the
isotropic liquid. However, the nature of the vortex dy-
namics near the melting transition, its effect on electrical
transport, and its evolution with magnetic field (H) have
not been explored in relatively clean a-MoGe samples,

where finite orientational correlations may arise even in
the liquid phase.

We perform extensive magnetotransport measure-
ments on a-MoGe thin films similar to those used in the
STS studies that revealed the presence of hexatic corre-
lations at low H [8, 9]. Our key experimental finding
is that, for fixed low fields H < 9 T, the low-T resis-
tivity follows a Vogel-Fulcher-Tamman (VET) law, i.e.
p(T) = pvrr, where

PVFT = Zexp(—%) (1)
Here W(H) is a constant independent of T, and Ty(H)
marks the temperature where the linear resistivity van-
ishes. As H increases, we find that Ty(H) is suppressed to
zero, i.e. standard Arrhenius behaviour is recovered, and
non-linear voltage-current characteristics V—-I emerge.
The VFT law [12-14] generally describes the behavior
of the so-called fragile liquids above the glass transition,
and it is usually attributed to the emergence of dynam-
ical heterogeneities [15]. We argue that the VFT law
at low H results from dynamical heterogeneities due to
emergent orientational correlations as the melting tran-
sition is approached. This is supported by our Monte
Carlo simulations of the 2D XY model in the presence
of a transverse H. We show that the orientational order
leads to a caging effect that suppresses vortex diffusivity,
which follows a VFT law as one enters the hexatic phase,
i.e. the vortex diffusion coefficient

W(H)

Dv = ZeXp(—m

)- (2)
The temperature T identifies the liquid-solid transition
temperature corresponding to the vanishing of the super-
fluid density. Our results thus reveal a fragile-glass-like



dynamics associated with the thermal melting of a weakly
pinned 2D vortex lattice, and a crossover to a strong-glass
(Ty = Tp = 0) behavior at higher H, resulting from the
interplay of orientational correlations and disorder.
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FIG. 1. (a) p(T) at selected H, extracted from the data in
Fig. 4 of Appendix for sample 1. The dashed lines guide
the eye. (b) p(T) fitted with the Arrhenius (red dashed
line) and VFT (blue dotted line) laws for H = 5 T; the
fits are performed for the data points within the two red ar-
rows, although the VFT describes the data also at higher
T. Here To = (3.42 £ 0.01) K [the fit to Eq. (2) gives
To = (3.37 £ 0.01) K]. Inset: The data for H = 11 T are
well described by parn (or pver with To ~ 0 K), as shown
by the red dashed line. The excitation current Iexc = 100 nA
for H=5T and Iexc = 10 nA for H =11 T.

Our samples are 22 nm thick a-MoGe films with SC
transition temperature T, ~ 7.6 K at zero field (see
Appendix A), and low normal-state sheet resistances
Rs =~ 78 ) indicative of a very weak disorder [9, 16].
Here T, is defined as the temperature at which the lin-
ear resistance R = lim;_,oV/I (i.e. p) falls below the
experimental noise floor (see Appendix A). The charac-
teristic length scales for vortex distortions parallel to the
applied H and caused by thermal fluctuations or pinning
are of the order of several pum [17, 18], i.e. much larger
than the sample thickness ¢t. Therefore, the vortex lattice

(VL) in these films is indeed 2D, although the SC state
is 3D (¢ > &, where £ ~ 5 nm is the SC coherence length
[17]). In the field range of interest, any geometric, edge
barrier effects on the vortex motion are negligible [19].

Measurements of p(H) at fixed T' (Fig. 4 in Appendix
B) were performed with heavily filtered wiring (see Ap-
pendix B) due to the extreme sensitivity of the SC state
to external radiation [9]. The p(H) data were used to de-
termine T (H) (i.e. the corresponding field H. for a given
T) and the upper critical field H.o(T'), which we define
as the magnetic field where p = 0.95px at a given T
(pn = 0.17 mQ cm is the normal-state resistivity). Since
T.(H) depends on the experimental resolution, it does
not necessarily allow one to determine the real bound-
ary between the liquid and solid phase, nor the possible
transition to an orientational liquid phase.

To explore the melting of the VL, we extract p(T)
curves at fixed H (Fig. 1(a); also Fig. 5a). A rapid,
orders-of-magnitude change of p with T, observed for
fields below about 12 T and with no sign of saturation at
low T', suggests an exponential p(T') dependence. Indeed,
the Arrhenius law,

paren = po exp(— Ly, (3)

is often used to describe the linear resistivity in the vor-
tex liquid regime at low enough 7' [20]. In this picture
of a thermally-assisted flux flow (TAFF), vortices move
collectively and overcome pinning barriers via thermal
excitations when T' < U(H). Although p is nonzero, V-1
remains non-ohmic (i.e., nonlinear) for I # 0 [23]. We
note that Eq. (3) assumes p is finite at all nonzero T.
However, when the superfluid phase sets in, which corre-
sponds to a solid phase for the VL, p vanishes, so devi-
ations from (3) should be observed whenever the critical
temperature is finite and the transition is not strongly
first-order (i.e. in the absence of a large, abrupt jump).
We have performed fits of the p(T') data, for fixed H,
according to p or-n. Two examples are shown in Fig. 1(b),
one for a low field (H = 5 T) and another for a high field
(H = 11 T). While at high H the Arrhenius fit works
extremely well down to T¢, at low fields we systemati-
cally find significant deviations (see also Fig. 6 in Ap-
pendix C), with a faster suppression of p than predicted
by parrn. Interestingly, such deviation can be captured
very well by the VFT law, Eq. (1). Since we are inter-
ested in the vortex diffusivity, we have also performed fits
to p(T) = (h/2e)*n, Dy /(kpT), where n, = B/® is the
vortex density (®o = h/2e is the quantum of magnetic
flux attached to a single vortex, h is Planck’s constant,
e is electron charge), kg is the Boltzmann constant, and
D, is given by Eq. (2). For both (1) and (2), the fit-
ting parameters were extracted using global minimiza-
tion, and typically found to be the same within error
(see, e.g., Fig. 1(b) and Fig. 6); in particular, Ty = Tp.
The parameters Z and Z are the same within the propor-
tionality constant between p and D,,, consistent with the



exponential term dominating p(7"). Hence, hereafter we
present only the VFT fitting parameters obtained using
Eq. (2).

Fig. 2 shows To(H), Tc(H), Hea(T') (see also Fig. 5b
in Appendix B), and the range of T' where the VFT and
the Arrhenius fits are effective (see Fig. 7 in Appendix C
for all the fitting parameters as a function of H). We find
that for fields below H* ~ 9 T the VFT fit gives a sig-
nificantly better description of the data. With increasing
H, however, Ty decreases gradually, and vanishes near
H*~9T.For9 < H <125 T, To(H) = 0 within exper-
imental error and, indeed, p(T') curves are well described
by the Arrhenius fits, consistent with 7o = 0 (see Fig. 8).
In this regime, we find that U(H) = Uy In(Ho/H) (see
Fig. 9 in Appendix C), as expected from the TAFF model
and the logarithmic vortex-vortex interactions in 2D [20].
The behavior observed in the high-field (H > H*, “Ar-
rhenius” in Fig. 2 with Ty = 0, T > T¢) regime is, there-
fore, consistent with the thermally-activated collective
motion of vortices in the presence of strong pinning, sim-
ilar to previous studies of disordered SC films, including
a-MoGe [21, 22]. This conclusion is further supported by
our measurements of the differential resistance (dV/dI)
versus dc current bias Ig. at fixed H (see Appendix D
for a detailed discussion). In particular, the non-ohmic
(nonlinear) V—I characteristic observed for I4. # 0 at
low enough T (Fig. 10a, b in Appendix D) is expected
from the motion of vortices in the presence of disorder,
ie. it is a signature of a viscous vortex liquid [23]. As
T increases, nonlinear behavior is no longer observed
(Fig. 10c, d in Appendix D). As T' < T, where p drops
below our noise floor, a finite I4. is then needed to depin a
measurable number of vortices (Fig. 10e in Appendix D).
Our transport results thus suggest that in this regime an
isotropic vortex liquid freezes into an amorphous vortex
glass as T' — 0, i.e. that the solid phase is only realized
at T = 0.

In the normal state (H > Hc.), V-I characteristics
are ohmic (Fig. 10b,e in Appendix D), as expected. In
the low-field (H < H*, Ty # 0, T > T,) regime (“VFT”
in Fig. 2), we also find Ohmic behavior (Fig. 10f in Ap-
pendix D). The key question is the origin of the observed
VFT behavior.

Within the context of glasses, one can define a tem-
perature Ty, where the relaxation time diverges and the
configurational entropy vanishes [15]. Tp is below the
temperature T, where the dynamical glass transition oc-
curs, the value of which depends on the sensitivity of
the probe. The VFT fit allows one to overcome such
an experimental upper bound and to infer Ty, that is,
the temperature scale at which the residual entropy is
comparable to that of the ordered state. In our exper-
iment, the role of T, is then played by 7., where the
resistance drops below the measurable threshold, while
Ty corresponds to the transition to the truly superfluid
phase where D, (or p) vanishes. In that case, we expect
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FIG. 2. (T, H) phase diagram (sample 1). To(H) (blue dots)
are obtained from the VFT fits, whose range of validity is
marked by the shaded blue “VFT” region; the error bars re-
flect the standard errors of the fits and Ty = Tp. For H 2 9 T,
p can only be fitted with the Arrhenius law in the shaded
orange “Arrhenius” region. Here the isotropic vortex liquid
freezes into an amorphous vortex glass at T'= 0. The purple
dot-dashed line shows the high-T" extent of the VFT and Ar-
rhenius fits. Green triangles: the upper critical field He2(T);
here p reaches 95% of its normal-state value. Red diamonds:
T.(H), where p drops below the experimental noise floor. Er-
ror bars in T;(H) and H.o are the uncertainty in defining
the magnetic field corresponding to each quantity within our
experimental resolution.

that the “VEFT” region above T, shows the extent of the
dynamically heterogeneous vortex liquid in the (T, H)
phase diagram (Fig. 2). Analogies to glasses were used
to propose the VFT law (1) to describe the slowing down
and freezing of the strongly disordered 3D vortex matter
[24, 25], but in our a-MoGe films the disorder-dominated
high-field regime (Tp = 0) is described, in contrast, by
the TAFF model (3). Thus our results strongly suggest
that quenched disorder is not the main origin of the VFT
suppression of the vortex diffusivity observed at lower H.

To explore the possibility that the presence of orien-
tational correlations may give rise to dynamical hetero-
geneities and the VFT behavior, we performed Monte
Carlo (MC) simulations on the 2D XY model in a trans-
verse field. Its Hamiltonian reads:

HXY =—J Z COS(ei - ei-‘,—lu, + Fiﬂ)7 (4)

LU=2,9

where 6; represents the SC phase of the condensate, J
the effective Josephson-like interaction between nearest
neighboring sites, and F! = i—’;ﬁi”“ Al' - dr, is the
Peierls phase resulting from the minimal substitution
prescription. The intensity of the magnetic field BZ =
V x A can be expressed in terms of the quantum-flux frac-
tion f passing through a unitary plaquette f = Ba?/®,
where a = 1 is the lattice spacing. Within the model (4),
vortices are topological excitations of the phase variable
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FIG. 3. (a) MC results of the T-dependence of the superfluid stiffness Js and the G¢ orientational order parameter. The
insets show snapshots of the VL at temperatures T' = 0.02,0.04,0.07 from left to right, respectively. Blue dashed line: the
temperature Tp where the VFT fit of D, shown in panel (b) vanishes. Gray dot-dashed line: the isotropic to the hexatic liquid
transition temperature Thex obtained from xs (see Fig. 11 in Appendix E). Below T =~ Ty, a pinned solid exists, with true
quasi long-range positional and long-range orientational order, as identified by a finite Js and Gg¢ ~ 1. Above Ty, the quasi
long-range positional order is lost due to the appearance of dislocations, formed by bound pairs of disclinations with opposite
sign (marked with blue and orange dots in the VL snapshots). As T further increases above Thex, isolated disclinations appear,
leading to a fully isotropic liquid with vanishing orientational order. (b) T-dependence of the vortex diffusion constant Dy,
extracted from the diffusive regime of the mean-square displacement shown in the inset. The dashed lines in the inset mark
the linear fits (Ar2(t)) ~ Dyt at selected T. In the main figure, the dashed blue line is a fit of D, with the VFT law (2), while

the continuous red line is the Arrhenius fit Dy arn = D exp(—U,/T). The vertical gray dot-dashed line indicates Thex.

0;, allowing for the direct characterization [26-31] of the
static properties of the solid to liquid transition, via com-
putation of the phase rigidity. Dynamical effects, how-
ever, have been mainly studied via effective models where
vortices are mapped into individual particles [10, 32-34].
Here we show how model (4) allows us to address both
aspects. Indeed, the solid phase can be identified via
the superfluid response, and the dynamical properties of
vortices can be characterized by tracking the diffusion of
each individual vortex in time at a given 7.

To establish the superfluid phase, we computed the
superfluid stiffness Js, namely the global phase rigidity
of the condensate (see Appendix E). At the same time,
to establish the orientational order of the VL, we com-
puted the six-fold orientational order parameter Gg (see
Appendix E). The T dependence of Js and G is shown
in Fig. 3(a), along with prototypical images of the cor-
responding VL; T is expressed in units of J/kg. We can
identify three distinct phases: a low-T SC phase, where
the VL is a pinned solid with a complete hexagonal order
(Gg ~ 1); a disordered non-SC phase at high T', where
the VL has melted into an isotropic liquid (G ~ 0); and
an intermediate phase which is a liquid (J; = 0) but with
a persistent orientational order of the VL (Gg # 0) (see
also Fig. 12 in Appendix E). The isotropic to hexatic
liquid critical temperature Tjex in Fig. 3 has been identi-
fied from the orientational susceptibility x¢ (see Fig. 11
in Appendix E).

Our study of vortex dynamics reveals all the typical

fingerprints of the hexatic phase, as identified in 2D soft-
colloid systems [35-39]. We tracked in time each in-
dividual vortex, and computed the vortex mean-square
displacement (Ar2(t)), where (---) denotes the ther-
mal average and the average over 10 independent nu-
merical simulations, at several T (see Fig. 13(b) in Ap-
pendix E and inset of Fig. 3(b)). At high T, we find
(Ar2(t)) directly crosses over from a short-time subdif-
fusive regime to the typical long-time diffusive regime,
where (Ar?(t)) ~ Dyt, with D, the vortex diffusion con-
stant. However, at the verge of the isotropic- to hexatic-
liquid transition, an additional subdiffusive regime ap-
pears with a strong suppression of (Ar?(t)) at interme-
diate time scales. This hallmark of dynamical hetero-
geneities is due to the caging mechanism provided by
the finite orientational order in the hexatic phase (see
also Video S1 described in Appendix G). The signa-
tures of the dynamical heterogeneities persist at longer
time scales, with a marked reduction at these tempera-
tures of the asymptotic diffusion coefficient, defined as
Dy = § limy_o0 (Ar2(t)) /t.

The resulting T-dependence of D, (T) is shown in
Fig. 3(b). It is clear that Arrhenius law strongly deviates
from the data at low T" and the VFT law provides a good
description of the data, similar to our experimental find-
ings in the lower-field regime. Also, we see an internal
consistency between the static characterization and the
vortex dynamics in the description of the transition from
solid to liquid, i.e., Ty extracted from the VFT fit almost



coincides with the T" where J; vanishes (see Fig. 3(a)).

Our study has revealed similarities between the ther-
mal melting of a 2D VL in weakly pinned a-MoGe films
and the behavior of fragile glass-forming liquids. The
results of our numerical work strongly support the exis-
tence in our samples of heterogeneous dynamics whose
origin can be mainly attributed to the presence of ori-
entational correlations, while below Ty a true superfluid
state is recovered, in contrast to early conclusions [40].

Using the analogy with strong and fragile glasses [15],
we can argue that the decrease of Ty with increasing H
signals a crossover from a fragile to a strong glass (with
To = 0). This is consistent with the magnetic field in-
creasing the effective disorder [23], which suppresses the
orientational correlations leading to a disordered state
where the dynamics is no longer heterogeneous and the
Arrhenius trend is recovered. The extrapolation of To(H)
to zero at H* ~ 9 T also suggests the existence of a quan-
tum critical point separating the dissipationless solid (for
H < H*) from the SC vortex glass phase that only exists
at T = 0. A similar field-tuned transition between two
SC ground states with different ordering of the vortex
matter, a vortex solid at lower H and a T = 0 vortex
glass at higher H, has been observed also in underdoped
copper-oxide high-T, superconductors [41, 42], which are
relatively clean quasi-2D systems. In this context, it
is interesting to speculate whether the low-temperature
part of the Ty(H) line corresponds to the so-called order-
disorder transition that has been observed in numerous
experiments on various SC materials [43].

Our work establishes an additional paradigm for the
2D vortex dynamics in the presence of weak quenched
disorder, in close analogy with fragile-glass dynamics of
the 2D melting in soft-matter systems. Further insight
into the physical mechanisms responsible for such hetero-
geneous dynamics of the melting of a 2D VL could come
from experiments on more disordered thin films and the-
oretical exploration of its evolution in the presence of
finite disorder. Moreover, thin films of other relatively
clean amorphous SC materials could be tested with sim-
ilar transport measurements to verify the general char-
acter of the resulting phase diagram. Other probes, such
as scanning tunneling spectroscopy at various temper-
ature and magnetic field ranges, could provide a more
detailed understanding of such transitions. At the same
time, our work establishes the 2D weakly pinned vortex
lattice systems as an alternative platform to systemati-
cally investigate the fragile-to-strong glass crossover with
the significant advantage of a single tuning parameter,
the magnetic field H. This is a remarkable result since
typically the well-known Angell plot is realized compar-
ing different materials, each one being either a fragile
or a strong glass. Our findings offer a fresh perspective
on the universal emergence of glassy behavior in differ-
ent research areas, ranging from SC vortex physics to
soft-matter colloidal systems and physisorbed atom lay-

ers [44].

APPENDIX A: SAMPLES

a-MoGe films with thickness ¢ = 22 nm were grown
on surface-oxidized Si substrate through pulsed laser de-
position. The reported chemical stoichiometry of these
thin films, as seen from the dispersive X-ray analysis, is
Mo71+1.5Gegg41.5; their properties have been described
in detail elsewhere [8, 9, 17]. The films were capped with
a 2 nm thick Si layer to prevent surface oxidation, and
patterned in Hall bar geometry using a shadow mask.
Detailed measurements were performed on two samples
with dimensions 0.36 mm (width)x2.8 mm (length), and
1.1 mm distance between the voltage contacts. The two
samples exhibited an almost identical behavior. For sam-
ple 1, the voltage contact width is 0.05 mm and the zero-
field T. = (7.70 £ 0.05) K; for sample 2, the voltage
contact width is 0.025 mm and T, = (7.50 £ 0.05) K.
T. is defined as the temperature at which the resis-
tivity start to rise above the experimental noise floor
(~ 3.6x10~% mQcm or ~ 0.5  in resistance). Gold leads
(= 50 pm in diameter) were attached to the samples (on
top of a Si layer) using the two-component EPO-TEK-
E4110 epoxy. The resulting contact resistances were
~ 200 Q each at room temperature.

APPENDIX B: MEASUREMENTS

Resistance was measured using the standard four-
probe ac technique (~13 Hz or 17 Hz) with either
SR 7265 lock-in amplifiers or a LS 372 resistance bridge.
Some of the measurements were performed using a dc re-
versal method with a Keithley 6221 current source and
a Keithley 2182A nanovoltmeter. The excitation current
densities were 0.1-4 A cm™?2, depending on the tempera-
ture, and low enough to avoid Joule heating. Specifically,
a current of I = 10 nA (density ~ 0.1 Acm™?) was
used for measurements at T < 1 K, while most of the
T > 1 K measurements were done with 100 nA (density
~ 1 Acm™2), making sure that the data are still in the
Ohmic regime (i.e. that the V-I response at low cur-
rents is linear.) dV/dI measurements were carried out
by applying a dc current bias I4. and a small ac current
excitation (~ 13 Hz) through the sample (I, =1 pA at
T>1Kand I,. =10 nA at T < 1 K), while measuring
the ac voltage across the sample for 150 s and recording
the average value for each Igc.

Several cryostats were used to cover a wide range of
temperatures and fields: a HelioxVL *He system (0.25 <
T < 200 K) with H up to 9 T; a dilution refrigerator
(0.02 < T < 1K) and a 3He system (0.3 < T < 60 K)
in superconducting magnets with H up to 18 T; and
a variable-temperature insert (1.8 < T < 200 K) in a



Ml 0.017K 32K 637 K4
0.092K 351K 659K
0212K 373K 6.81K
Il 0354 K 4x 7K

Il 0.445K 418K 7.24K
1] 0.640K 44K 746K ]
0.775K 4.62K 7.67K
0.975K 4.84K 7.89K
12K 506K 832K
2K 528K 875K
22K 55K 981K

| 24K 572K 14K T
26K 594K
6.15K

FIG. 4. Resistivity of a 22 nm thick a-MoGe film at different
T, ranging from 0.017 K to 14 K, as function of H. The data
are shown for sample 1.

Quantum Design PPMS with H up to 9 T. The fields,
applied perpendicular to the film surface, were swept at
constant temperatures. A low sweep rate of 0.1 T/min
was used to avoid heating of the sample due to eddy cur-
rents. Measurements in the dilution refrigerator and the
HelioxVL 3He system were equipped with filters, consist-
ing of a 1 k) resistor in series with a w-filter [5 dB (60
dB) EMI reduction at 10 MHz (1 GHz)] in each wire at
the room temperature end of the cryostat to reduce high-
frequency noise and heating by radiation. Furthermore,
the dilution refrigerator and the 3He system measure-
ments in 18 T magnets were carried out in the Millikelvin
Facility of the National High Magnetic Field Laboratory,
which is an electromagnetically shielded room.

APPENDIX C: FITTING PROCEDURES

The T-dependence of the resistivity p at various fixed

H was fitted to the Arrhenius and VFT forms: pann =

00 exp(f%) and pypr = Zexp(f%), respec-

tively, as described in the main text. We find that, at low
H, pypr provides a better description of the data than
parrh- This is illustrated in Fig. 1(b).Here we present
also examples for two more fields (3 T and 8.2 T) for
which the VFT and the Arrhenius fits were performed
(Fig. 6). The low-field, H = 3 T resistivity data within
the two red arrows follow the VFT fit (blue dotted line),
and the data are pretty far from the Arrhenius fit (red
dashed line). The high-field, H = 8.2 T resistivity data
still follow the VFT fit better, but the deviation from the
Arrhenius fit is getting smaller.

To compare to the results of numerical simulations, we
also performed fits to the diffusion coefficient D,,, using
o(T) = (h/2e)*n,D,/(kgT), where n, = B/® is the

vortex density and D, = Z exp(f%). For both

this fit and pypr, we implemented the Mathematica’s
global minimization feature to obtain the fitting parame-
ters. In both cases, the fitting parameters were found to
be the same within error, consistent with the exponential
term dominating p(7T"). The results for To(H) obtained
using fits to the diffusion coefficient are shown in Fig. 5b,
along with the values of T.(H) and Ho(T') (also Fig. 2 in
the main text). We note that, when comparing the fits,
we paid attention not only to the quality of the fit, but
also to the range of temperatures where either one was
effective - those ranges are shown in Fig. 2 of the main
text. Fig. 7 shows all the parameters obtained from fits
to the diffusion coefficient.

In Fig. 8, we compare the parameter W from fits to the
diffusion coefficient with the parameter U from the pa,n
fit for different values of H. For H 2 9 T where Ty = 0,
the two parameters are equal within error (Fig. 8) thus
confirming the consistency of the analysis.

At these fields, the resistance R (or p) exhibits an
orders-of-magnitude drop with decreasing T, and thus
it can be fitted well with the Arrhenius form, as shown
in Fig. 9a. The parameters obtained from such pa.p fits
for various fields are shown in Fig. 9b. The activation en-
ergy U shows a logarithmic dependence on H as expected
from the TAFF model and the logarithmic vortex-vortex
interaction in 2D [20].

APPENDIX D: NONLINEAR TRANSPORT

We find that the V-I characteristic at low enough
T remains non-ohmic (i.e. nonlinear) for Iy, # 0 and
dV/dI increases with I4. (Fig. 10a, 10b). Such nonlin-
ear transport is expected from the motion of vortices in
the presence of disorder, i.e. it is a signature of a vis-
cous vortex liquid [23]. As T increases, nonlinear behav-
ior is no longer observed (Fig. 10c, 10d). At T < T,
where p drops below our noise floor, a finite Iy, (i.e. a
critical current) is then needed to depin a measurable
number of vortices (Fig. 10e). Since p(T) in the liquid
phase at high fields can only be fitted with the Arrhenius
law parh = po exp(—%)7 our transport results suggest
that in this regime an isotropic vortex liquid freezes into
an amorphous vortex glass as T — 0, i.e. the solid phase
is only realized at T' = 0.

In the normal state (H > Hc), V—I characteristics
are ohmic, i.e. we find a linear response (Fig. 10b, S10e),
as expected. In the low-H (H < H*, Ty # 0, T > T¢)
regime (“VFT” in Fig. 2 of the main text), we also find
Ohmic behavior (Fig. 10f). However, since this regime is
measured only at relatively high 7', in analogy with the
Arrhenius region we speculate that any nonlinear trans-
port that might be present for small I4. at lower T is
experimentally inaccessible.
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quantum-flux fraction f passing through a unitary pla-
quette f = Ba?/®,. Here we considered f = 1/L, which
results in N, = fL? = 56 vortices with a given vorticity.

APPENDIX E: MONTE CARLO SIMULATIONS

We have performed Monte Carlo (MC) simulations
on a spin system on a square grid with lattice spac-
ing a = 1, linear size L = 56 and uniform magnetic
field, whose intensity can be expressed in terms of the

Although the system size simulated is smaller than in
other numerical simulations of particle systems [10, 34—
37, 39], it is the state of the art for numerical simulations
of vortex lattices within XY models. Each MC step con-
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sists of the local updating of all spins of the lattice by
means of the Metropolis-Hastings algorithm. All observ-
ables have been computed at equilibrium, as achieved
after a certain number t of MC steps. For temperatures
above Ty, we identify # with the entrance into the diffu-
sive regime, while below Ty we estimated that £ ~ 10%
MC steps provides a stable result. After discarding the
first ¢ steps, we reset the Monte Carlo time and proceed
with the measurements of both the statical and the dy-
namical observables.

The superfluid stiffness J; is defined as the linear re-
sponse to an infinitesimal phase twist in a given direction,
say p, and it reads:

Jt=Jh = J¥, (5)

Ji =

h‘g‘

J? , u ’
- <Zsln(9i —0ip + F )> )

It accounts for two contributions: the diamagnetic part
J!, proportional to the energy density of the system,
and the paramagnetic part JJ, given by the connected
current-current response function. Here and in what fol-
lows, (...) stands for both the thermal average, per-
formed at equilibrium over all the MC steps, and for the
average over ten independent numerical simulations.

The local orientational order parameter v; is obtained
by means of a Delaunay triangulation of the VL. It is
defined for the hexagonal symmetry, as

1
I 6i97-
Yo = 5 > (8)

J k=1

J2
' (7)

where N; is the number of nearest neighbors of the j-th
vortex, and 6, is the angle that the bond connecting the
two neighboring vortices j and k forms with respect to a
fixed direction in the plane. The global six-fold orienta-
tional order parameter Gg is then obtained by summing
over all the IV, vortices and by computing its average,
ie. Go = (5~ Zjvzl ¥e;). The susceptibility of the ori-
entational oder parameter yg is defined as

X6 = (¥3) — (W), 9)

where Wg = - 37, ¢ with tg; defined in (8). The
temperature dependence of xg (Fig. 11) exhibits a peak
at T' = 0.05 that we identify as the critical temperature
Thex between the hexatic and the isotropic liquid phase.

Due to the small size of our system we cannot discrimi-
nate between a floating solid [29, 33] and a hexatic liquid
based on the static properties. Nonetheless, the dynamic
features of the vortices show all the typical fingerprints
of the hexatic phase, as they have been identified in 2D
soft-colloidal systems [35-39].

1. Monte Carlo simulations: Static characterization
of the vortex lattice

To further characterize the three phases found, we have
computed the structure factor of the vortex lattice de-
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fined as:
S0 = 537 S exp [ik- (11 )| (i), (10)

where N, is the total number of vortices, v(r;) is the lo-
cal vortex density, equal to one if a vortex occupies the
site r; and zero otherwise, and k is the vortex lattice re-
ciprocal vector. In Fig. 12, we show S(k) computed at
three different temperatures: T = 0.02,0.04,0.07, cor-
responding respectively to the solid, hexatic-liquid, and
isotropic-liquid phase. At high T', the structure factor
presents the typical circular symmetry of an isotropic
liquid. Decreasing the T, such symmetry breaks down
and the Bragg-peaks structure appears showing six well-
defined spots. Finally, in the solid state the Bragg peaks
become well-defined even at large k. Let us highlight
that the structure-factor anisotropy observed at low T
is due to the commensurability of the VL with respect
to the underlying square lattice of spins. The VL has
indeed two ways to align with respect to the underlying
square lattice: either to be perfectly commensurate with
the z-axis or with the g-axis.

In order to identify the isotropic to hexatic liquid tran-
sition, we have computed the orientational susceptibility

Xx6- The susceptibility of the orientational oder parame-
ter xg is defined as

Xe = (¥5) — (¥6)?, (11)
where Uy =

= S0 s with vg; defined in Eq. 8
above.

2. Monte Carlo simulations: Signatures of
heterogeneous dynamics

The heterogeneous nature of the vortex dynamics in
the hexatic phase has its fingerprints in different ob-
servables. Together with the mean-square displacement
(Ar2(t)), discussed in the main text, we also com-
puted the self-part of the intermediate scattering func-
tion Fy(|k*|,t), and the non-Gaussian parameter «s(t).
The resulting trends in time for different temperatures
are shown in Fig. 13, where the time variable ¢ labels the
discrete MC steps. To highlight the onset of the hexatic
phase, the curves at the verge of the isotropic-liquid to
the hexatic-liquid transition (7" = 0.05) have been plot-
ted in gray.

The self-part of the intermediate scattering function is

a dynamical autocorrelation function for the VL and it
is defined as:

tnv—t
1

N,
1 & 1
Rk ) =Y —rn Y —
(k" t) Ny (b — 1) = N

Z exp{ik[r;(to +t) — r;(to)],

ke ke | = k|

(12)

where |k*| = 27/a, (with a, the lattice spacing of the
VL) is the reciprocal vector at which the structure factor
shows its first peak (see Fig. 12), r;(t) is the position of
the j-th vortex at the MC time ¢ and ty is the largest
MC time used in the simulations. The thermal average
is thus the sum over all the possible ¢ty for a given time £,
while (...) stands for the average over ten independent
simulations. From Fig. 13a, one can see that, in the
isotropic liquid phase, Fi(|Kmaz|,t) decays exponentially
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FIG. 10. Differential resistance dV/dI as a function of dc current I4c in different regimes. a, In the “Arrhenius” region (Fig. 2)
at T =1.3 Kand H =9 T, a strong nonlinearity is observed, consistent with the motion of vortices in the presence of disorder;
T.(H =9T) =11+0.2 K. b, Similar nonlinear dV/dI vs I4c in the “Arrhenius” region for H = 12.7 T and T = 0.017 K.
At a much higher field (H = 18.0 T > Hc2), in the normal state, dV/dI vs Iac is ohmic. The nonlinear behavior becomes
unobservable also as T increases, as shown inc, for H =9 T at T =1.5 K, and d, for H =9 T at T = 1.75 K, at lower currents
than in a. e, The evolution of dV/dI vs I4. with increasing H, as shown, at 7' = 0.017 K. The data for H = 18.0 T and
H =12.7 T are the same as in b. When p drops below the noise floor, e.g. for H = 12.25 T, a finite Iq. ~ 2 pA, i.e. a critical
current, is needed to depin a measurable number of vortices. At somewhat higher H = 12.5 T, p is nonzero at low current bias,
consistent with the vortex creep due to thermal fluctuations. The depinning effect becomes observable at the critical current
Isc ~ 0.1 pA, which is lower than that for H = 12.25 T, as expected. f, dV/dI vs I4c is ohmic at T~ 5.5 K and H = 2.5 T,
where p(T') obeys the VFT law. At this field, Tp ~ 5 K and T, ~ 5.37 K (Fig. 2). The error bars in all panels correspond to
+1 SD obtained from averaging the ac voltage over 150 s at a fixed Iq.. Dashed lines guide the eye. The T' fluctuations for
these measurements were less than 5 mK.

to zero with a unique relaxation time. On the other hand,
as the hexatic phase is approached, it starts showing a
plateau, which increases with decreasing 7. This two-
step relaxation decay is another typical signature of a
caging mechanism [15] due in this case to the onset of the
hexatic phase. The mean-square displacement, already
shown in the inset of Fig. 3b and in Fig. 13b, is defined

as:
1 v tnm—t

(Ar?(t FZ v—1) Z Ir; t0—|—t)—r](t0)| .
v g:1 to 0

(13)

As briefly introduced in the main text, (Ar2(t))

is computed for each individual vortex at several T.
At high T, (Ar2(t)) directly crosses over from the
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FIG. 11. Orientational order parameter and susceptibility.
Orientational order parameter Gg and the corresponding ori-
entational susceptibility xs as function of the temperature in
units of the coupling constant of the XY model J. The peak
of the orientational susceptibility identifies the temperature
Thex separating the hexatic from the isotropic liquid phase.

short-time subdiffusive regime (due to the presence
of the numerical square grid) to the typical long-time
diffusive behavior, where (Ar?(t)) ~ Dyt, with D, the
vortex diffusion constant. However, at the verge of
the isotropic- to hexatic-liquid transition, an additional
subdiffusive regime appears with a strong suppression
of (Ar%(t)) (see Fig. 13b and Fig. 3b inset) at inter-
mediate time-scales that is the hallmark of dynamical
heterogeneities (see also Supplemental Video S1). This
signals an inhibition of the particle motion due to the
cage formed by the neighboring particles, similar to
what happens in supercooled liquid and glassy systems.
The signatures of the dynamical heterogeneities persist
at longer time scales, with a marked reduction at these
temperatures of the asymptotic diffusion coefficient,
defined as Dy = 1 limy_, o (AT%(t)) /1.

The intermediate plateau observed both in the mean-
square displacement and in the intermediate scattering
function signals the emergence of a heterogeneous dy-
namics within a certain time scale. To further investi-
gate this behavior, we have computed the non-Gaussian
parameter

<Ar4 (t)>

A (14

axlt) =

which quantifies the heterogeneity of the dynamics in
terms of strength and extent in time [45]. We find
(Fig. 13c) that, at very short times, the VL displays a
strongly heterogeneous dynamics for all the temperatures
analyzed. This anomalous behavior is due to the under-
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FIG. 12. Structure factor of the vortex lattice in the three
phases. Structure factor computed for a given sample at three
different temperatures corresponding to the three different
phases: T = 0.07 isotropic liquid phase; T' = 0.04 hexatic
liquid phase; T' = 0.02 solid phase. To highlight the main
features of the structure factor we have fixed S(k = 0) = 0.

lying squared grid of spins that forces vortices to move
only along four possible directions: +2 and +y. With
increasing time, the direction of motion becomes less sen-
sitive to the underlying grid and aso(t) decreases. Apart
from the initial heterogeneity, at high temperatures the
VL shows a homogenous dynamics. On the other hand,
at the onset of the hexatic phase, the non-Gaussian pa-
rameter starts displaying a dome at longer time scales.
This additional signature of heterogeneity is another in-
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FIG. 13. Dynamic characteristics of the liquid phase. a, The self-part of the intermediate scattering function computed at
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function of the MC time for different temperatures. The two arrows, which indicate entry into and exit from the cage, refer to
the temperature T' = 0.05 plotted in gray. In all panels, gray lines correspond to the hexatic critical temperature Thex = 0.05.

dication of a caging mechanism triggered by the onset of
the hexatic phase. With decreasing T' the height of the
dome increases, signalling the increase of the heteroge-
neous dynamics strength. At the same time, the peak of
the dome moves to longer times, reflecting the increase of
the time scale at which vortices escape from their cage.

APPENDIX G: BRIEF DESCRIPTION OF THE
SUPPLEMENTAL VIDEO

Supplemental Video S1: Heterogeneous vortexr motion
in the hexatic phase. Images of the vortex motion at
T = 0.045 for different MC times. In this regime, the
dynamics is strongly heterogeneous in both space and
time. The vortices remain indeed trapped for a long time
in the cage formed by their neighbors before exiting in
a collective burst along the symmetry axis of the vortex
lattice.

In the video, the vortices are represented as colored
disks, centered at a given position x; at time ¢;. Each
frame shows vortex evolution over ten consecutive dis-
crete time steps t;. To help visualize the time evolution,
we assigned to each disk a radius r; that is increasing
with increasing time t;. As a consequence, larger disks
identify the vortex position at larger times. In addition,
we add a solid black line connecting the centers of the
disks to help visualize the vortex motion as a function of
time. The grey lines in the background show the trails
left by the vortices during the whole simulation. The
horizontal line at the bottom of the image indicates the
time flow. Note that the time steps t; are not equally
spaced with respect to the MC time. Indeed, for the
sake of the memory allocation, we have stored the data
each tyie = int(A?) + kAN, with ¢ € [0, Ny], k € [0, Ny
and A =1.3.
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