Development and Implementation of an AI-Embedded
and ROS-Compatible Smart Glove System in Human-
Robot Interaction

Laury Rodriguez
Department of Computer
Science
Montclair State University
Montclair, USA
rodriguezl16@montclair.edu

Zofia Przedworska
Department of Computer
Science
Montclair State University
Montclair, USA
przedworskaz 1 @montclair.edu

Omar Obidat
Department of Computer
Science
Monitclair State University
Montclair, USA
obidatol @montclair.edu

Jesse Parron
Department of Computer
Science
Montclair State University
Montclair, USA
parronjl @montclair.edu

Weitian Wang®
Department of Computer
Science
Montclair State University
Montclair, USA
wangw(@montclair.edu

Abstract—Robotics technology is being widely used for an
array of tasks in today’s evolving markets. Human-robot
collaboration is inevitable which leads to the need for safe,
untroublesome, and easy-to-produce products. A smart glove has
capabilities to collect data concerning its wearer’s movements by
the use of sensors. Motivated by this, in this study, we develop an
Al-embedded and ROS-compatible smart glove system to realize
real-time human-robot interaction in collaborative tasks. To allow
the robot to intelligently learn and predict new human intentions
for human-robot interaction, we propose an Extreme Learning
Machine (ELM)-based human gesture understanding approach
using the data from a set of strip and force sensors embedded in
the smart glove and effectively run it through ROS. Three typical
baseline gestures are conjured for ELM training purposes and fed
into the algorithm with an appended label and corresponding
sensor data. The developed system and proposed approach are
validated in real-world human-robot collaborative tasks with
efficiency and success. This work can also serve as a catalyst for
the implementation of many important robot-supported
applications such as healthcare and daily assistance for senior
groups. Future work of this study is also discussed.

Keywords—smart glove, artificial intelligence (Al), human-
robot interaction, robot operating system (ROS), sensors, machine
learning

I. INTRODUCTION

Human-robot interaction relies on the robots’ seamless
interpretation of human actions. Robots that work with humans
need to be equipped with the ability to dynamically make
decisions when differentiated tasks are presented to them [1-3].
This can be encouraged by developing systems with the purpose
of tracking and interpreting user input so that robots can be
programmed with appropriate corresponding reactions [4-8]. A
smart glove has capabilities to collect data concerning its
wearer’s movements by the use of sensors [9, 10]. This data is
then able to be processed and used to categorize the user input
into a set of known gestures. The recognition of different hand
gestures has the potential to be used in a variety of human-robot
collaborative tasks, including medical procedures, product
assembly, object hand-over, and kinaesthetic communication
[11-15]. As more human hand movements are introduced,
machine learning algorithms can be employed to recognize
possible new gestures through the sensor data. A library of
human hand movements has applications in equipping the robot
with intention prediction competencies which it can employ in

real-time and without the need for the programming of its every
action [16]. Such measures allow for the successful execution of
human-robot interactions to which the robot can efficiently adapt.

Previous work has recorded efforts to enhance human-robot
collaboration by studying human input in a given situation and
shaping robots’ actions based on it. Cakmak et. al. investigated
the role of nonverbal communication in facilitating human-
robot interaction in an assembly line setting. This was observed
to have an effect on the way robots perform tasks involving
giving objects to humans [17]. Another study that focused on
such interactions was conducted by Aleotti et. al., who used
Kinect body tracking technology to make a robot assess the
most human-friendly way in which it could act [18]. The Kinect
method detected when a human hand was holding an object,
although the system was designed to track the placement of a
handover object relative to the hand of its recipient, rather than
independently evaluating the various motions made by the
human hand. Yacoub et. al. used a Random Forest algorithm to
have a robot’s actions mimic those of humans [19]. The system
relied on Force/Torque sensor data to program the moves made
by robots in co-manipulative settings. The study has
applications limited to situations where humans and robots
simultaneously work on a task. Cohen et. al. created an
interface that employed intention prediction methods. This
system relied on the close monitoring of human actions to
foresee the user’s next choice [16]. As the system operates
without assigning values to human movements, it requires a
given amount of interaction with a user before starting to make
decisions. Yu et. al. used the Lyapunov theory to aid in the
filling in of unstable output from robots [20]. The robots subject
to this experiment were equipped with torque sensors, and
computers were used to approximate data such as the velocity
of the robots’ movements. The study was conducted using a
system compatible with Baxter Robot Operating System SDK
(RSDK). Yahya et. al. shortened the average training time for
several robots learning how to complete a task. The study relied
on a modified version of Guided Policy Search algorithms to
reduce issues caused by processing the data from the robots [21].

Different from the above research efforts, in this study, we
develop an Al-embedded and ROS-compatible smart glove system
to realize real-time human-robot interaction in collaborative
tasks. To combat the gap in real-time and intelligent gesture
recognition techniques for human-robot interaction, we propose
an Extreme Learning Machine (ELM)-based human gesture



understanding approach using the data from a set of strip and
force sensors embedded in the smart glove and effectively run
it through ROS. To achieve this, three typical baseline gestures
are conjured for ELM training purposes and fed into the
algorithm with an appended label and corresponding sensor
data. This is considered offline data as it is pre-processed and
not fed in real-time. The ultimate goal is to have the trained
ELM recognize in real-time gestures being performed by the
user of the smart glove system and in turn interact with robots
based on the results of the model. After the initial training, a
ROS subscriber node embedded within the ELM would begin
receiving online data from a ROS publisher script. The trained
algorithm would be equipped enough to output its prediction of
the gesture being motioned by the user. The predicted human
intentions would be used in human-robot interaction via another
ROS node. The developed system and proposed approach are
validated in real-world human-robot collaborative tasks with
efficiency and success. This work can also serve as a catalyst
for the implementation of many important use cases. With the
ROS embedded feature, this ELM technique is easily
modifiable for use in various practical applications. The
contributions of this work can be summarized as: (1) We develop
an easy-to-use smart glove system, which is compatible with
ROS and can be used for real-time human-robot interaction; (2)
An Al-embedded human gesture understanding approach is
proposed to allow the robot to intelligently learn and predict
new human intentions for human-robot interaction.

Fig. 1. The smart glove system.

II. SYSTEM DEVELOPMENT

A. System Overview

As shown in Fig. 1, the smart glove system consists of a
force-sensitive resistor (FSR) [22] (Fig. 1(a)) and a set of Spark
Fun flex sensors [23] (Fig. 1(b)) integrated into a glove. The
sensors sit flush with the assistance of another glove overtop.
The FSR is sewn over the thumb and the strip sensors on top of
the hand over the pointer and middle fingers. Although the unit
for the flex sensors includes a controller breakout, jumper
cables were soldered directly into the board’s pins for ease of
use, as presented on the right side of Fig. 1. The force sensor
used is an Interlink model with its two extended pins can be
directly placed into a breadboard. Nonetheless, this would
render it unusable in a glove system. As such, the FSRs were
connected via female jumper cables to the Arduino
microcontroller. The Arduino Mega2560 used has 54 digital
input/output pins, 16 analog inputs, and 4 serial ports [24]. With
this board, communication between the sensors is achieved,

allowing the smart glove system’s sensors to output data. The
system is easy to use and construct. After attaching all
components and with the correct software, the user can begin to
see in the terminal the output of data from the sensors.

B. Flex Sensor

On one of the sides of the flex sensor, there is a print done
with a polymer ink that has conductive particles embedded in
it. For example, when the sensor is straight, its resistance is
decreased. On the other hand, when the sensor is bent the
resistance will be increased. The sensing information when the
sensors are bent is calculated via the resistance as:

Vo-flex = Vcc*(R/(R + Rﬂex) ) (1)

where V,.qex 1s the output voltage, Vcc is the input voltage, R is
the resistance of the pull-down resistor, and Rpex is the
resistance between the ink and the particles.

As shown in Fig. 2, the Qwicc Flex Sensor [23], which is a
durable more permanent solution to the traditional and fragile
flex sensors seen on the market, is used in our smart glove
system development. The controller integrated with the sensor
keeps the solder points isolated to minimize breakage although
spaced pins are available for soldering and/or use of a
breadboard. The controller is two flex sensors joined at the head
via a board. The board gives access to four pins: a 3.3-volt
power supply, GND, SDA, and an SCL pin. Communication to
the controller is enacted via an onboard ADS1015 ADC to 12C
chip [23]. Connecting the sensor to a microcontroller can be
achieved either with the proprietary Qwiic cable into the
controller's breakout or through solder points found at the head.

Fig. 2. The flex sensor used in our smart glove system [23].

C. Force Sensor

We used a Force Sensitive Resistor (FSR) on the thumb of
our smart glove system to track when a user wearing the glove
applied pressure to the sensor, as presented in Fig. 3. The sensor
is constructed of two flexible, semiconducting silicon wafers
conjoined by an adhesive. The part that detects the applied
force, known as the active area, consists of an interlocking
electrode pattern and is cushioned by the substrate layers. Upon
the application of force onto the electrodes of the FSR’s active
area, the resistance level drops from its baseline state [22]. The
acquired information when force is applied on the sensor is
estimated via the resistance as:

Vorsk = Ve *(R/(R + Resr) ) (@)

where V,rsr is the output voltage, Vcc is the input voltage, R
is the resistance of the pull-down resistor, and Rgsg is the
resistance of the force sensitive resistor. In the process of data
collection, the object placed on the active, sensing area of the
sensor is a human thumb. Measures were taken in ensuring
consistency in the sensor reading between each placement of
the human user’s thumb on the sensor. For example, the human



user’s thumb evenly places at the center of the sensor each time
and avoids the adhesive-bound borders of the active area.

Fig. 3. The force sensor used in our smart glove system [22].

D. Software Architecture

Fig. 4 depicts the baseline software architecture designed
for the smart glove system. The sensors simultaneously
communicate with the Arduino board loaded with data
collection code to output onto one line of data from the two
sensors. Note, since the strip sensors are, in actuality, two
conjoined sensors, its output is two pieces of data, one for each
finger. From there, a ROS Publisher node listens for the
conjoined data and the subscriber node written within the ELM
receives said data. The trained ELM model accepts this data as
its new test case and begins gesture recognition in real-time.

STRIP SENSOR :> ARDUINO <: FORCE SENSOR

PUBLISHER
NODE 1

ELM w/
SUBSCRIBER
NODE

Fig. 4. Software architecture of the smart glove system.

Fig. 5 shows the extended software architecture for the
smart glove system as applied to a collaborative robot. The
architecture takes the original model and adds additional
publisher and subscriber ROS nodes. In other words, after the
trained ELM model categorizes the data subscribed from the
microcontroller and sensors into gestures, it publishes its
classifications and the additional subscriber node within an
external python script acknowledges it. From here, the
collaborative robot in conjunction with the control program
performs the required action based on the gesture being
performed in real-time.

STRIP SENSOR :> ARDUINO <: FORCE SENSOR
PUBLISHER
SUBSCRIBER PUBLISHER
<:> NODE 2 <:> NODE 2

Fig. 5. Extended software architecture of the smart glove system.

ROBOT

E. Robot Operating System

The Robot Operating System suite was used in our study
and was run on Ubuntu 20.04. ROS functions as a link between
the raw sensor data and the controls that cause a robot to
complete a set of given tasks [25-27]. ROS is a versatile body
for prototype robotics software, which is compatible with
several multiple languages and can be used with different hosts
in a network rather than being restricted to the control of a
single main server. ROS contains the algorithms necessary for
the robot to function in the form of nodes which can freely
exchange information with one another. Additional software
distributed by ROS can be installed and added to the system in
the form of individual packages. A standard ROS package is
constructed from a directory that is accompanied by a listing of
the package dependencies [25]. The broad applications of the
ROS operating system were favorable in our study, as the smart
glove system spans a variety of different configurations and
real-world applications.

IITI. GESTURE RECOGNITION USING ELM

In machine learning, neural networks are a subset of
learning that mimic the biological network system of the brain.
Extreme Learning Machine (ELM) is an algorithm for single-
hidden layer feedforward neural networks (SLFNs) with
random hidden nodes [28-31]. This algorithm provides simpler
learning methods that in turn lead to faster training times and
good performance.

In ELM, the input layer is randomly assigned weights. In
turn, the output weights are typically calculated using the least-
squares (LS) solution. ELM operates much faster than its
gradient-based competitors such as back propagation (BP)
because of the lack of iteration in the learning process [30-32].
This is what makes ELM extremely fast and useful for many
real-world applications, especially in the field of robotics.

The training methodology for ELM is straightforward.
Given training set N = (x;, t;), where x; = [X;q, X2, -, Xin]T €
R™ and t; = [t;1, iz, - tim]T € R™, activation function g(x),
and hidden node quantity N, the learning method via ELM is
described as follows [31, 33]:

(1) Creation of input weight w; and bias b; within [-1,1] range
using activation functions;

(2) Compute the hidden layer output matrix H,

(3) Compute the output weight g where f = H'T, where H is
the generalized inverse of the output matrix H.

After the implementation of the learning method, the
prediction result will be calculated from the maximum elements
ofy; = Hf, k = 1,2,...C. C denoting the number of classes.

For our application, the sigmoid activation function was
chosen although any activation function is acceptable
dependent on the task and data at hand. The model originally
returned an accuracy score for both the training and testing
stages. At its peak, the model reached a nearly 94% accuracy
rate. At this stage, it was ready to replace its testing case with
the real-time ROS node’s data. Instead of returning success
rates, the model will display the label of the gesture it believes.
In other words, it will output the results of its prediction model.
As such, gesture recognition is achieved.



IV. RESULTS AND ANALYSIS

A. Experimental Setup

The experimental platform was formed by our developed
smart glove system and a workstation ThinkStation P520. The
goal was to have the trained ELM algorithm recognize in real
time the gestures a user of the smart glove system was exerting.
For this experiment, three users demonstrated the three gestures
(relaxed, fist, and pinch, as shown in Fig. 6) 50 times each and
one at a time. The trained algorithm would output the gesture it
believes is being displayed and the overseer would monitor
activity from the model.

Fig. 6. Relax, fist, and pinch gestures.

There exists a large number of hand gestures humans
conduct daily. When deciding on the gestures to be chosen for
this experiment, it was imperative to keep in mind the objective
of the project and its potential future uses. Ultimately, the three
typical gestures chosen were a relaxed state, a fist, and a pinch
as seen above in Fig. 6. Although future works can easily
include more.

Gesture 0, the resting palm, consists of minimal to no bent
of the strip sensors and no applied force to the FSR. Although
strip sensors measure the bend of the finger, it's best practice to
not try and spread the fingers too far either as it can slightly
alter results in the data stream. Gesture 1 is a standard fist. For
control purposes, the thumb with its attached FSR sensor rested
outside of the fist as clearly seen in Fig. 7. The final gesture
demonstrates a pinching motion modified so that one or both of
the pointer and middle fingers are acceptable.

B. Gesture Recognition Results and Analysis

Table I shows the accuracy rates of our gesture recognition
experiment for the right-hand glove. Three different users
modeled the gestures and the ELM model’s results were
recorded for every 50 predictions per gesture. The machine was
most confident with classifying gestures 1 and 2, fist and pinch,
respectively. For user one, the ELM recognized accurately a fist
gesture approximately 91.33% of the time. For the other users,
it yielded 100% accuracy. Furthermore, gesture 2, the pinch,
was the most accurate at 100% accuracy for all three users. The
relaxed gesture, on the other hand, produced poorer results. At
its best, the ELM accurately classified a relaxed state roughly
72.92% of the time. This is in contrast to a 52.62% accuracy
rate for its worst case.

Some explanations for these varying results could lie within
the definition of a neutral hand gesture. For this experiment, the
participants were instructed to relax their hands and have
minimal to no movement. As a matter of fact, for some this
meant nearly straight fingers and for others a slight bend to the

hand was visible. Although visibly minuscule, this distinction
could lead to varying data points from the strip sensors
specifically that could lead to errors in the model. A possible
solution could be to modify the gesture itself or train the model
with more data from different users. This way, the model can
be better equipped to recognize the relaxed hand gesture for
different users.

Table I. Gesture recognition results.

69.17%
52.62%

91.33%
100.00%

100.00%
100.00%

72.92%

100.00% 100.00%

V. APPLICATION IN HUMAN-ROBOT INTERACTION

A. Task Design

We validated the developed smart glove system in a human-
robot interactive context, which includes a collaborative robot,
the smart glove, a target object, and a shared workspace. The
robot used was the Franka Emika Panda, which is a robotic arm
with 7-Degrees of Freedom (DoF) [27, 34]. It is a robot that is
equipped with safety features that enable it to work closely with
humans in a cooperative environment. During the experiment
we tested 3 main cases:

(1) Controlling the gripper of the collaborative robot through
the smart glove;

(2) Robot learning from the glove user to pick up an object;

(3) Receiving an object delivered from the collaborative robot.

B. Results and Analysis

Fig. 7 presents the user who controls the gripper of the
collaborative robot through our developed smart glove system.
When the user’s hand is relaxed, the smart glove recognizes this
gesture state using the trained ELM model and tells the robot
via ROS. As shown in the first picture in Fig. 7, the robot opens
its gripper. In addition, once the pinch gesture is done, the robot
closes its gripper based on the received gesture information
from the smart glove. This kind of application would allow the
user wearing the smart glove to control the picking and
dropping of an object in human-robot collaborative tasks such
as product co-assembly.

Fig. 7. Controlling the gripper of the collaborative robot through the smart
glove.

Fig. 8 shows the results of the robot learning from the glove
user to pick up an object. When the user’s hand is pinching an
object, the collaborative robot successfully moves to pick up a
similar object from in front of it through the gesture recognition



results of the smart glove. This application would allow the user
to control the collaborative robot and have it perform the same
actions of the glove user in robot-assisted teleoperating tasks
such as remote-healthcare and remote-surgeries.

Fig. 8. Robot learning from the glove user to pick up an object.

In Fig. 9, when the user’s hand is receiving an object
delivered by the collaborative robot, the robot would release the
object. Indicating that it receives the user’s gesture information
that the smart glove has secured the object and it is safe to
release it. This application would allow the smart glove to work
in a collaborative environment with the robot such as human-
robot hand-over tasks in smart manufacturing.

Fig. 9. Receiving an object delivered from the collaborative robot.

After implementing the experiment and testing the three
typical cases. We found that the model was reliable in regard to
detecting the pinch gesture and controlling the robot was simple
and straightforward. However, we noticed that using the smart
glove with the robotic arm can lead to multiple different
uncertainties due to using the smart glove as a standalone
device. If the smart glove was implemented alongside other
technologies such as a web camera and video processing would
lead to a more fluent and accurate interaction in the human-
robot team.

VI. CONCLUSIONS AND FUTURE WORK

In this study, we have developed an Al-embedded and ROS-
compatible smart glove system to realize real-time human-robot
interaction in collaborative tasks. We have proposed an Extreme
Learning Machine (ELM)-based human gesture understanding
approach using the data from a set of strip and force sensors of
the smart glove and effectively run it through ROS. Three
typical baseline gestures have been designed and used for ELM
training and validation. The developed system and proposed
approach have been implemented in real-world human-robot
collaborative tasks with efficiency and success. To achieve a
higher accuracy of human gesture recognition for human-robot
interaction, we will continue to optimize the ELM training with

more collected data from diverse human users in our future
work. In addition, we will conduct more user studies to evaluate
the performance of the developed smart glove system in human-
robot interactive contexts.
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