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Earth's ecosystems are increasingly threatened by “hot drought,” which occurs when

cal, physiological, and ecological effects of drought by enhancing evaporative losses
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(VPD). Drought-induced reductions in gross primary production (GPP) exert a major

pherically drier conditions will amplify the effects of precipitation deficits on Earth's

Southwest experienced one of the most intense hot droughts on record, with record-

we use this natural experiment to evaluate the effects of hot drought on GPP and
further decompose those negative GPP anomalies into their constituent meteoro-
logical and hydrological drivers. We found a 122 Tg C (>25%) reduction in GPP below
the 2015-2019 mean, by far the lowest regional GPP over the Soil Moisture Active
Passive satellite record. Roughly half of the estimated GPP loss was attributable to

low SM (likely a combination of record-low precipitation and warming-enhanced
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1 | INTRODUCTION

Severe and prolonged droughts are among the costliest and deadli-
est natural disasters (Cook, 2019), causing reduced agricultural pro-
ductivity (Ault, 2020; Gupta et al., 2020) and extensive vegetation
mortality (Allen et al., 2015; Breshears et al., 2005, 2009). Although
meteorological droughts occur naturally due to internal variability
in the climate system, anthropogenic warming has steadily altered
baseline conditions toward higher frequency and intensity of “hot
droughts,” in which warmer and drier atmospheric conditions coin-
cide with precipitation deficits, substantially exacerbating losses of
soil moisture (SM; Williams et al., 2015, 2020) and amplifying dele-
terious effects on vegetation (Breshears et al., 2005, 2009). As an-
thropogenic warming continues over the next century, “hot drought”
events will likely become a new normal (Bradford et al., 2020; Cook
et al., 2015; Diffenbaugh et al., 2015).

Drought-induced reductions in the gross primary production (GPP)
of vegetation are major contributors to variation in the terrestrial
carbon sink, with arid and semiarid ecosystems contributing much of
this variability due to their large spatial extent (~40% of Earth's land
surface) and high sensitivity to climate (Ahlstrom et al., 2015; Poulter
etal., 2014). While dryland primary production is predominantly limited
by SM availability (Novick et al., 2016; Stocker et al., 2018), vapor pres-
sure deficit (VPD) also limits primary production as plants close stomata
to prevent excessive water loss and disruption of xylem water transport
(McDowell et al., 2008, 2016; Novick et al., 2016; Roby et al., 2020).

Because the saturation vapor pressure of the atmosphere increases
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evaporative depletion), but record-breaking VPD amplified the reduction of GPP, con-
tributing roughly 40% of the GPP anomaly. Both air temperature and VPD are very
likely to continue increasing over the next century, likely leading to more frequent and

intense hot droughts and substantially enhancing drought-induced GPP reductions.

drought, drylands, gross primary production (GPP), soil moisture, vapor pressure deficit,

exponentially with temperature, increases in VPD are expected with
warming (even if relative humidity were held constant). Anthropogenic
warming could therefore compound the effects of drought on GPP
through both reduced SM (enhanced by accelerated evaporative losses
from hotter and atmospherically drier conditions) and direct physiolog-
ical responses to high heat and VPD that exacerbate the loss of GPP.

The extended 21st century drought conditions in the U.S.
Southwest (hereafter “the Southwest”) are among the most extreme in
the instrumental record, largely attributable to anthropogenic warm-
ing (Williams et al., 2015, 2020) and comparable in severity, extent,
and duration to the decades-long “megadroughts” inferred from pa-
leoclimate proxies (Cook et al., 2016; Williams et al., 2020). However,
even by recent standards, the summer and autumn drought of 2020
in the Southwest was climatically exceptional (Figure 1). During July
through October, typically the wettest time of year in much of the re-
gion due to the influence of the North American Monsoon (Adams &
Comrie, 1997), roughly 20% of the western United States (areas west
of the 100th meridian) received record low precipitation, primarily
in the southwestern states of California, Arizona, Nevada, and Utah
(Figure 1a). Precipitation deficits of this magnitude would have caused
severe drought conditions on their own, but the 2020 drought also co-
incided with exceptional, record-breaking heat and VPD (Figure 1b,c),
consistent with expectations of anthropogenically driven increases in
the frequency and intensity of “hot drought” (Bradford et al., 2020;
Cook et al., 2015; Diffenbaugh et al., 2015).

Here, we quantify the GPP anomaly during the July-October
2020 hot drought across six drought-affected arid and semiarid
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FIGURE 1 (a) Total precipitation anomaly (% of normal), (b) mean maximum daily air temperature anomaly, and (c) mean maximum daily
vapor pressure deficit (VPD) anomaly during July-October 2020 relative to a 1981-2010 baseline. Anomalies were derived from 4 km
monthly PRISM climate group data (Daly et al., 2008). Areas outlined in black show where July-October precipitation was the lowest on
record (a), or air temperature (b) or VPD (c) were the highest on record relative to the full instrumental period (1895-2020)
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ecoregions of the Southwest using monthly data from eddy cova-
riance flux towers, optical and microwave satellite observations,
and meteorological data. To clarify the mechanisms of primary
production loss during hot drought, we use a combination of prin-
cipal component analysis (PCA), stepwise multiple regression, and
scenario differencing to empirically partition the GPP anomaly into
components driven by photosynthetically active radiation (PAR),
), and VPD. Since the 2020 drought was

driven by both record-low precipitation and record-high tempera-

SM, air temperature (T,
ture and VPD, it provides a unique natural experiment to examine
two questions:

1. How much was GPP in the Southwest reduced by the excep-
tional 2020 hot drought?

2. To what extent did record-breaking T ;. and VPD amplify drought
impacts on GPP?

Because hot droughts are likely to continue increasing in fre-
quency and intensity with further warming, determining the relative
balance of these drivers is essential for improving the represen-
tation of dryland carbon fluxes in mechanistic models (MacBean
et al., 2021) and incorporating climate change into assessments of
dryland ecosystem services (Scheiter et al., 2019).

2 | MATERIALS AND METHODS

2.1 | Gross primary production
To assess regional reduction of primary production and decompose
those anomalies into their meteorological and hydrological drivers,
we used daily 9 km GPP estimates from the Soil Moisture Active
Passive (SMAP) L4C product (Jones et al., 2017), which has been
operational since April 2015. The SMAP L4C algorithm is based on
light-use efficiency theory, in which GPP is proportional to PAR ab-
sorbed by the plant canopy (Song et al., 2013). The efficiency with
which absorbed PAR is converted to GPP varies by biome and is
limited by nonoptimal environmental conditions, with parameters
calibrated using global eddy covariance data (Jones et al., 2017). Like
many light-use efficiency models, the SMAP L4C model simulates
reductions of light-use efficiency in response to sub-optimal air tem-
perature and high VPD, but unlike most prior models, SMAP L4C
also includes both root zone (0-1 m depth) SM and frozen-ground
response functions based on the SMAP Level 4 Soil Moisture (L4SM)
product. SM is a critical driver of canopy structure and physiology in
dryland ecosystems (Novick et al., 2016; Smith et al., 2019; Stocker
et al., 2018), but prior to SMAP, the limited availability of SM obser-
vations at appropriate spatial and temporal scales prevented their
widespread use in light-use efficiency models (Smith et al., 2019;
Song et al., 2013).

Since SMAP L4C assumes positive responses of GPP to PAR, air
temperature, and SM, and negative responses to VPD, the modeled

responses of GPP to any given meteorological variable are deter-
mined both by: (1) how that variable affects the remotely sensed
vegetation index used to estimate light absorption and (2) the a priori
assumptions of the model regarding functional responses of vegeta-
tion to nonoptimal conditions. For example, if SMAP L4C includes
a direct positive response of GPP to SM, then any reduction in SM
during the drought will, by definition, negatively force GPP, though
the influence of the built-in response functions will be partly medi-
ated by how canopy light absorption responds to drought. To ad-
dress this partial circularity, we also used two alternative estimates
of (or proxies for) GPP that are largely independent of meteorologi-
cal inputs: eddy covariance estimates of GPP from nine sites distrib-
uted across California, Arizona, and New Mexico (Figure 2; Table S1)
and the satellite-based Contiguous Solar-Induced Fluorescence
(CSIF) product.

Eddy covariance estimates of GPP were derived from half-
hourly observations of net ecosystem exchange (NEE) of CO,.
Sudden but temporary changes in NEE, which can arise from ei-
ther biophysical processes (e.g., sudden changes in turbulence)
or instrument errors, were first filtered using a spike detection
method applied separately to daytime and nighttime observa-
tions (Papale et al., 2006). Using the REddyProc package (Wutzler
et al., 2018, 2020) in the R statistical computing environment (R
Core Team, 2021), we then used a seasonal friction velocity (u*
filter to exclude observations that occurred during periods of low
turbulence; gap-filled the missing half-hourly data using a look-up
table based on air temperature, radiation, and VPD; and parti-
tioned the NEE into its component fluxes (GPP and ecosystem res-
piration) using a nighttime partitioning method (Papale et al., 2006;
Reichstein et al., 2005). The half-hourly GPP estimates were then
summed to daily total GPP, with monthly GPP averaged from the
daily fluxes, excluding months where more than half of the daily
estimates were missing.

As an additional independent proxy for GPP, we used estimates
of solar-induced fluorescence (SIF) from CSIF (Zhang et al., 2018).
SIF represents the light re-emitted from chlorophyll during the light
reactions of photosynthesis, and both theory and observations indi-
cate that SIF is correlated with photosynthetic activity and directly
linked to both PAR absorbed by the plant canopy and light-use ef-
ficiency of vegetation (Porcar-Castell et al., 2014), especially when
integrated over relatively long periods at the canopy scale (Magney
et al., 2020). Compared with many other vegetation indices, SIF also
better captures seasonality and variability of dryland GPP (Smith
et al., 2018; Wang et al., 2022), though the linearity of the SIF-
GPP relationship may break down under extreme heat and drought
(Martini et al., 2022). The CSIF dataset was generated by training
and validating a neural network with clear-sky SIF retrievals from the
Orbiting Carbon Observatory-2 (OCO-2) and MODIS-derived nadir
bidirectional reflectance distribution adjusted surface reflectance
(MCD43C4). We aggregated the clear-sky CSIF from its 4-day, 0.05°
resolution to monthly, 9-km resolution to match the SMAP SM and
GPP data.
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FIGURE 2 Land cover of the study
area (derived from the Rangeland Analysis
V2 land cover product, with croplands
defined using the MODIS MCD12C1

land cover), with six major ecoregions
labeled and outlined in black: (a) cold
deserts, (b) Mediterranean California,

(c) warm deserts, (d) semiarid prairies,

(e) Upper Gila Mountains, and (f) Sierra
Madre piedmont. The nine AmeriFlux
eddy covariance towers used in this study
(Table S1) are shown in the inset and
color-coded by their dominant land cover.
Note that adjacent sites (SRG/SRM, Whs/
Wkg, and seg/Ses) were slightly offset
from each other to improve visibility
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2.2 | Meteorological data

For regional analysis, we used 9 km monthly root-zone (0-1 meter
depth) SM estimates (averaged from daily 0:00 UTC retrievals)
from SMAP L4SM (Reichle et al., 2019), which assimilates satellite-
observed L-band (1.41GHz) microwave brightness temperature
(sensitive to moisture in the upper layers of the soil and vegetation)
into a hydrological model forced with instrumental precipitation ob-
servations (Reichle et al., 2019). We also obtained gridded incom-
and VPD from
gridMET (Abatzoglou, 2013), which blends regional reanalysis data

ing shortwave radiation, minimum and maximum T,
with high-resolution surface meteorological data to derive daily me-
teorological estimates at high spatial resolution (4 km) for the conti-
nental United States. We assumed that PAR was a constant fraction

of incoming shortwave radiation, estimated mean T ;_as the average

air
of minimum and maximum air temperatures, and calculated monthly
averages from the daily data.

For analysis at the eddy covariance sites, we used tower-

measured daily mean T_. , incoming shortwave radiation, and VPD (all

air
averaged from half-hourly observations). We estimated root-zone
(0-30cm) SM using observations from time domain reflectometry
(TDR) probes in the soil profile. Since few of the sites have SM probes
below 30cm, our site-level estimates of root-zone SM are necessar-
ily shallower than the root zone defined by SMAP. The depths of the
TDR probes also vary across the nine sites, so we standardized the
root-zone SM estimates by taking a multi-layer weighted mean of the

TDR probes, where each probe was assumed to represent a distinct

layer of varying depths in the soil profile (Figure S1). Daily meteoro-
logical and SM observations were then averaged to monthly scale to
match the remaining datasets.

2.3 | Drivers of drought-induced gross primary
production anomalies

We assessed the influence of each driver variable on GPP during
the 2020 drought by fitting statistical models relating monthly
anomalies of the four drivers to monthly GPP anomalies (Humphrey
et al., 2021; Jung et al., 2017) and then using scenario differencing
to estimate the GPP anomaly attributable to each driver (Huntzinger
et al., 2017; Wei et al., 2014). The total GPP anomaly (AGPP) can
be conceptualized as the sum of the anomalies attributable to each
individual driver (Jung et al., 2017):

AGPP = AGPPpag + AGPPgy + AGPPr,, + AGPPypp, (1)

where AGPP, represents the GPP anomaly associated with each driver,
x. To partition observed AGPP into its constituent parts, we used mul-
tiple regression models fit individually for each tower and pixel. To best
constrain drought impacts on vegetation productivity, regression mod-
els were fit using the full period of record for each individual tower
(with varying start years; Table S1) and over the 2015-2020 period
for the satellite-based models, where the start year is constrained by
the beginning of the SMAP record in April 2015. As predictors in the
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regression models, we used each of the four driver variables and their
1-month prior lags (eight total variables). Since these drivers are inter-
correlated, we used PCA to reduce the variables to a set of leading
components, using only the first n PCs that collectively captured at
least 95% of the variance. Prior to the PCA, all driver variables were
first converted to deseasonalized monthly z-scores (i.e., standardized
anomalies relative to the 2015-2019 mean and standard deviation of
each month). Those leading PCs were then used as candidate predic-
tors in stepwise multiple regression models, with monthly GPP anom-
alies (relative to the 2015-2019 monthly mean GPP) as the response
variable. Forward- and backward-stepwise selection (using “step-
wiselm” in MATLAB) was performed using the Bayesian information
criterion (BIC), starting with linear terms for all predictors, with qua-
dratic terms allowed to enter the model if they passed the minimum
criterion for entry (change in BIC<0), and with any terms removed if
their inclusion increased the BIC by more than 0.01.

We calibrated the models using only months with T, >0°C to
exclude periods when productivity would be primarily temperature-
or energy-limited rather than water limited (typically during winter
months at higher elevations and latitudes); to ensure an adequate
number of observations for training and assessment, we only ana-
lyzed pixels with at least 20 months of T, >0°C. To estimate model
skill and uncertainty, we used bootstrapped model ensembles
(100-member ensembles at the gridded scale; 1000-member ensem-
bles at the eddy covariance sites), in which each model was trained
by randomly selecting (with replacement) N observations for model
calibration, where N is the number of records (i.e., monthly obser-
vations) in the full dataset. GPP anomalies were predicted for the
entire period of record, and model skill (R%) was calculated using the
random subset of observations that were not selected for calibration
of that ensemble member, which on average would be approximately
37% of the observations: e™®/N, where k is the number of samples
drawn from N observations and, in the case of bootstrapping, k = N.
For consistency across the full region, all pixel-level models within a
given member of the ensemble were calibrated and validated using
the same subset of observational time periods.

We used the calibrated models to estimate the total GPP anom-
aly expected due to all drivers collectively and to each driver individ-
ually using a scenario differencing approach (Table S2; Huntzinger
et al., 2017; Wei et al., 2014). Specifically, we simulated GPP anom-
alies under five scenarios, each of which sequentially allowed one
additional driver to vary while holding the others constant at their
mean value (which, for the z-score deseasonalization, is always zero;
Table S2). GPP anomalies attributable to each driver were then esti-
mated as the difference between the scenario in which that variable
was allowed to vary and the previous scenario (Table S2; Equations
S1-S4). With a purely linear model, the order in which variables enter
the model does not affect the partitioning of AGPP. However, when
nonlinear terms are included in the model, the variable order has a
small, but negligible, effect on the results (e.g., compare Figure S2
to Figure S3). We then estimated the total GPP anomaly attribut-
able to each driver during the 2020 drought by summing the mod-
eled monthly anomalies from Equations S1-S4 over the 4-month

July-October period. Confidence intervals on each term (at the 95%
level) were estimated by repeating this procedure with each member
of the bootstrapped model ensemble and calculating the 2.5th and
97.5th percentiles across the ensemble.

We calculated mean GPP anomalies (and their confidence in-
tervals) across six arid and semiarid ecoregions of the Southwest
(Figure 2; Omernik, 1987), as well as five dominant land cover
types derived from the 2020 Rangeland Analysis V2 dataset (Allred
et al., 2021; Jones et al., 2018): forest (230% tree cover), savanna
(10%-30% tree cover), shrubland (210% shrub cover and <10% tree
cover), annual-dominated grassland, and perennial-dominated grass-
land (Figure 2). We did the same for croplands in California's Central
Valley and in the Great Plains (mostly western Texas and Kansas),
both defined with the MODIS land cover product (MCD12C1; Sulla-
Menashe et al., 2019). We also calculated the total GPP anomaly (and
its component parts from Equations S1-54) across the whole region
by multiplying the GPP anomaly of each pixel by its areal coverage
(9000mx9000m = 81,000,000m?) and summing across all pixels.
We did the same for each member of the bootstrapped model en-
semble and estimated 95% confidence intervals using the 2.5th and

97.5th percentiles across the ensemble.

3 | RESULTS AND DISCUSSION

3.1 | Drought-induced reductions in primary
production

Across the dry ecoregions of the Southwest, GPP from the SMAP
L4C model was reduced by 122 Tg C (>25% reduction) during the
2020 drought compared with the 2015-2019 average of 452 Tg C
(Figure 3a). The total reduction of productivity across the region
far exceeded the typical range of variability previously estimated
by SMAP L4C (Figure 3a). From 2015-2019, July-October GPP var-
ied from roughly 410-480 Tg C, but GPP fell to only 330 Tg C dur-
ing the 2020 drought (Figure 3a), <75% of the mean GPP and a far
greater reduction than in 2018, when much of the Southwest also
experienced moderate to severe drought (Li et al., 2020). This is es-
pecially remarkable given that the baseline period itself falls within a
multi-decade period of relative dryness compared with 20th century
conditions (Williams et al., 2020). This reduction of vegetation pro-
duction could have direct economic consequences via loss of eco-
system services, including crop production and cattle grazing. For
example, the loss of productivity across southwestern shrublands
and grasslands was roughly equivalent to that needed to feed 47 mil-
lion cattle for a month (i.e., animal unit months; Allred et al., 2015).
Estimates of GPP from nine eddy covariance sites, extending
as far back as 2001, confirm significant reductions in GPP, with
all nine sites experiencing reduced GPP (ranging from 9% to 94%
reductions) compared with the 2015-2019 benchmark (Figure 4;
Table S3). However, the region-wide SMAP GPP anomaly (-122 Tg C)
likely underestimates the true effect of the 2020 hot drought: across
the nine eddy covariance sites, the SMAP L4C model substantially
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FIGURE 3 (a) Total July-October GPP across the Southwest over the SMAP record. The dashed line shows the overall mean July-
October GPP across the region from 2015-2019, and red text shows the 2020 GPP as a percentage of that mean (i.e., regional GPP in

2020 was 73% of the 2015-2019 mean GPP). (b) Overall GPP anomalies across all six ecoregions during July-October 2020 attributable

to each driver (bars), relative to a 2015-2019 baseline, and the proportion of the modeled decline in GPP attributable to each individual
driver (pie chart). The horizontal black line shows the total SMAP-based July-October 2020 GPP anomaly, and the colored bars show the
modeled anomalies (with 95% confidence intervals from the bootstrapped model ensemble) based on all variables (brown) and each variable
individually: PAR (dark purple), soil moisture (green), air temperature (yellow), and VPD (red)

underestimated the GPP anomaly relative to the tower-measured
GPP by about 40% on average (Figure S4; Tables S3 and S4).
Although this could partly reflect scale mismatches between SMAP
(81km? pixel) and the eddy covariance footprint (~1 km?), it is con-
sistent with widespread, systematic underestimation of interannual
carbon flux variability by remote sensing in dryland ecosystems
(Biederman et al., 2017; Smith et al., 2018; Stocker et al., 2019),
highlighting a need to improve representation of extreme events in
remote-sensing models.

The 2020 GPP was by far the lowest observed by SMAP in all
ecoregions except Mediterranean California, where negative GPP
anomalies were comparable with those observed in 2018 (Figure 5).
Likewise, all land-cover types experienced substantial reductions
in GPP during the 2020 drought compared with their 2015-2019
means (Figure S5), ranging from 10% reductions (croplands in the
Central Valley) to 33% reductions (shrubland). The drought-induced
reductions of productivity were particularly concentrated in the
relatively productive semiarid prairies and Sierra Madre piedmont,
where GPP anomalies averaged roughly -90g C m™2 during the 2020
drought, corresponding to 27% and 40% reductions (respectively)
in GPP relative to their July-October means (Figure 5e,g). The 2020
drought reduced GPP of warm and cold deserts by roughly 40-45g
Cm? compared with the 2015-2019 mean (Figure 5b,d), with warm
deserts losing nearly 40% of their mean productivity. Of the six
ecoregions, the GPP of Mediterranean California was least affected,

with anomalies averaging -27g C m™2 (Figure 5c), but summer and
early autumn precipitation provides only a small portion of overall
water supply in this region, so much of the vegetation productivity
either occurs outside of the July-October period or is supplemented

by irrigation in the Central Valley.

3.2 | Drivers of reduced primary production
during drought

While most of the reduced GPP during the 2020 Southwest drought
was attributable to low SM, those reductions were significantly am-
plified by high VPD (Figure 3b). The model based on all four factors
(PAR, SM, T, and VPD) underestimated the observed GPP anomaly
by about 25 Tg C (Figure 3b), suggesting either that unresolved vari-
ance in the model (Figure Sé) resulted in an underestimation of ex-
tremes or that the drought was severe enough to cause nonlinear or
structural change that was not captured in the model. However, of
the -97 Tg C (95% confidence interval: [-109, -80] Tg C) GPP anom-
aly predicted by the full model (AGPP,), =50 [-55, -44] Tg C was at-
tributable to SM effects (52% of the anomaly) and -37 [-42, -29] Tg
C was attributable to VPD effects (38% of the anomaly; Figure 3b),
indicating that drought effects on GPP were substantially and signif-
icantly amplified by record-breaking VPD. High T, also had a small
negative effect on GPP during the drought (-6 [-8, -3] Tg C), though
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it likely also had large indirect effects through increased saturation
vapor pressure. This is consistent with recent work showing wide-
spread evidence for increasing negative GPP extremes due to hot
drought (Gampe et al., 2021).

The amplification of soil-moisture induced reductions in
GPP by high VPD occurred across most of the individual ecore-
gions (Figure 6a-f and Figure S7; Table S5) and land cover types
(Figure 6g-m), with most of the GPP reduction attributable to low
SM (~50%-60% of the modeled GPP anomalies) but substantially
amplified by high VPD (~40% of the modeled GPP anomalies). Land

cover types with substantial woody components (forest, savanna,
and shrubland) experienced reductions in GPP of roughly 50-60g
Cm3 during the drought, driven mostly by low SM and enhanced
by high VPD (Figure 6g-i). In Mediterranean California, however,
most of the relatively small GPP anomaly was attributable to high
VPD (~90% of the modeled anomaly), with both SM and T, causing
smaller reductions (~15%-25% each of the modeled anomaly) and
with PAR partly offsetting losses of GPP (Figure 6b). The relatively
low SM effect in this region could be due to (i) the summer-dry
Mediterranean climate (opposite to the summer-wet majority of
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FIGURE 5 (a) Map of SMAP-based gross primary production (GPP) anomalies during the July-October 2020 drought relative to a
2015-2019 baseline, and (b-g) time series of annual July-October SMAP GPP for each ecoregion. Dashed horizontal lines indicate the mean
2015-2019 July-October GPP of each ecoregion, and red numbers show the 2020 July-October GPP as a percentage of the 2015-2019

mean in each ecoregion

the region) leading to consistently low baseline summer SM even
under non-drought conditions, making the SM anomaly during the
2020 drought comparable with normal conditions for that time of
year; (ii) the presence of deep-rooted trees capable of accessing
stores of deep subsurface moisture that buffer against drought
(McCormick et al., 2021; Miller et al., 2010); or (iii) irrigation in the
Central Valley, which supplements the SM but does not fully allevi-
ate the negative effects of VPD on plant function. For example, the
2020 GPP was ~50g C m™2 below average in Central Valley crop-
lands (Figure 6l and Figure S5f), mostly attributable to high VPD.
By contrast, croplands in the Great Plains had greater reductions
of productivity during the drought (exceeding ~100g Cm™2), mostly
due to low SM (Figure 6m), possibly reflecting more dependence
on summer rain.

GPP estimates from the eddy covariance sites confirm the am-
plification of drought-induced loss of productivity by exceptionally
high heat and VPD (Figures S2 and S3). Productivity decreased at
all nine sites during the 2020 drought, with anomalies ranging from
-10 to -265g C m™2 (Figure S2; Table S3). All sites experienced sig-
nificant reductions in GPP due to low SM, and those losses were
significantly (p <.05) exacerbated by high VPD at seven sites and,
to a lesser extent, by high T, at six sites. The relative effects of SM

versus VPD based on the SMAP L4C model were generally similar

to eddy covariance estimates, though SMAP either overestimated
the VPD effect or underestimated the SM effect at several sites
(compare Figures S2 and S8 and Tables S3 and S4). This agreement
corroborates the amplifying role of VPD during drought across the
region and suggests that the effects observed by SMAP L4C are not
mere artifacts of the model structure and assumptions. Independent,
machine-learning-based estimates of SIF derived from MODIS sur-
face reflectance (CSIF) also show reductions in plant activity attrib-
utable to both low SM (64% of the anomaly) and high VPD (27% of
the anomaly; Figures S7c,d, S9-5S11). However, the relative strength
of the VPD effect was smaller than in SMAP L4C and most eddy co-
variance sites, which may reflect deficiencies in the ability of satellite
optical reflectance to capture some of the underlying physiological
responses to drought, leading to underestimates of drought-induced
loss of productivity. Given that the primary vegetation influences
on surface reflectance are green leaf area and canopy structure,
which vary on relatively slow time scales comparable with variation
of SM, reflectance-based indices may not capture fast physiological
responses to atmospheric conditions. This may be especially true in
dryland ecosystems, where GPP can become decoupled from veg-
etation greenness during drought when many woody plants can
retain leaves even under severe moisture stress (Smith et al., 2018,
2019; Yan et al., 2019).
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4 | CONCLUSIONS

Air temperature and VPD have increased substantially across the
U.S. Southwest over the past century (Ficklin & Novick, 2017;
Williams et al., 2020; Zhang, Biederman, et al., 2021), and further
increases over the next century are very likely (Cook et al., 2014;
Ficklin & Novick, 2017). As a result, meteorological droughts are
superimposed on a hotter and atmospherically drier background
climate (Zhou, Williams, et al., 2019), which could substantially am-
plify the impacts of drought on ecosystems, both directly via physi-
ological impacts on vegetation (Grossiord et al., 2020) and indirectly
through greater soil water evaporation (Williams et al., 2020). In
2020, widespread reductions in GPP throughout the U.S. Southwest

coincided with a period of exceptional, record-breaking hot drought,
consistent with expectations for droughts in a warmer future. Here,
we show that the negative effects of SM on GPP during drought
were substantially amplified by the high VPD that is characteristic
of a hot drought.

The direct effects of VPD on GPP come largely via stomatal and
plant hydraulic responses. High VPD induces stomatal closure in part
to prevent excessive water loss and desiccation of plant leaves but
at the cost of reducing carbon uptake (Novick et al., 2016). However,
in some extreme cases, high air temperature can actually result in
increased stomatal conductance as plants attempt to shed excess
heat via transpiration, resulting in rapid desiccation and elevated
mortality risk (Marchin et al., 2022). High heat and VPD also increase
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the risk of hydraulic failure (McDowell et al., 2008) and shorten
the time to mortality (Adams et al., 2009; Allen et al., 2015; Duan
et al., 2018), with tall trees potentially being especially vulnerable
(McDowell & Allen, 2015). High VPD also indirectly affects GPP by
increasing losses of SM (Williams et al., 2020). For example, anthro-
pogenic trends in air temperature and humidity accounted for about
20%-25% of SM losses during the 2012-2014 California drought
(Williams et al., 2015) and nearly 50% of SM losses during the ex-
tended 2000-2018 drought in the Southwest (Williams et al., 2020).
Because high air temperature and VPD increase atmospheric evapo-
rative demand, much of the reduced SM during the 2020 Southwest
drought was likely enhanced by evaporative drying of soils. The
large observed reductions in GPP across the U.S. Southwest during
the July-October 2020 drought, therefore, likely represent an in-
tegrated response to the forcings of precipitation deficit, extreme
heat, and high VPD. Especially when combined with recent and pro-
jected changes in precipitation variability (Dannenberg et al., 2019;
Pendergrass et al., 2017; Zhang, Biederman, et al., 2021), increasing
frequency and severity of “hot drought” conditions under warming
could negatively affect ecosystem productivity from both ends of
the soil-plant-atmosphere continuum: not only does warming ex-
acerbate losses of SM, but direct responses of plant hydraulics and
physiology to high VPD restrict canopy conductance and carbon
uptake.

Because our regression-based modeling approach included both
SM and VPD as predictors, we expect that our quantification of the
VPD and SM influences on the GPP anomaly mostly captured di-
rect rather than indirect effects. However, while we attempted to
separate the effects of SM, air temperature, and VPD, they are all
coupled and difficult to disentangle, especially at longer time scales
(Humphrey et al., 2021; Novick et al., 2016; Zhou, Zhang, et al., 2019).
In addition to the influence of VPD on SM, for example, SM affects
VPD: decreased SM reservoirs depress evaporative cooling, which
results in higher surface air temperature, lower humidity, and, con-
sequently, higher VPD (Seneviratne et al., 2013; Yin et al., 2014;
Zhou, Williams, et al., 2019). Our combined use of deseasonaliza-
tion (which reduces the correlation between each variable resulting
from similarities in their seasonal cycles), PCA, and stepwise variable
selection was designed to mitigate uncertainties arising from their
collinearity, though we note that varying model structures across
sites resulting from the combined use of PCA and stepwise selec-
tion could impose their own uncertainties on the pooled anomaly
attribution. The SMAP GPP estimates could also overestimate VPD
effects due to the inclusion of direct, a priori VPD responses in the
algorithm. However, estimates of GPP from both eddy covariance
and CSIF, which are largely independent of meteorological inputs
and do not assume any functional relationship between GPP and
meteorological drivers, also show large negative effects of VPD on
carbon uptake during drought, albeit of a slightly smaller magnitude
than SMAP L4C.

Decreased GPP associated with hot drought may be partly off-
set by expected increases in plant water-use efficiency due to ele-
vated atmospheric CO, (De Kauwe et al., 2021; Walker et al., 2021).
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Anthropogenic increases in atmospheric CO, have enhanced both
the global GPP and the amount of carbon taken up per unit water
loss (water-use efficiency). However, the extent to which enhanced
CO, will reduce plant water use and ameliorate water stress during
drought is unclear and contested (De Kauwe et al., 2021), with some
evidence suggesting that CO, fertilization has only a minimal benefit
during drought (Obermeier et al., 2017; Reich et al., 2014; Walker
et al., 2021) and that increases in leaf area from CO, fertilization can
actually increase plant susceptibility to drought (Duan et al., 2018;
Zhang, Keenan, & Zhou, 2021).
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