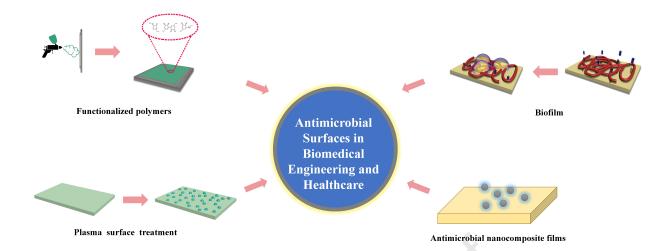
Science-based strategies of antibacterial coatings with bactericidal properties for biomedical and healthcare settings

Rakesh Pemmada, Aishwarya Shrivastava, Madhusmita Dash, Kuiyan Cui, Prasoon Kumar, Seeram Ramakrishna, Yubin Zhou, Vinoy Thomas, Himansu Sekhar Nanda

PII: S2468-4511(22)00075-7

DOI: https://doi.org/10.1016/j.cobme.2022.100442

Reference: COBME 100442

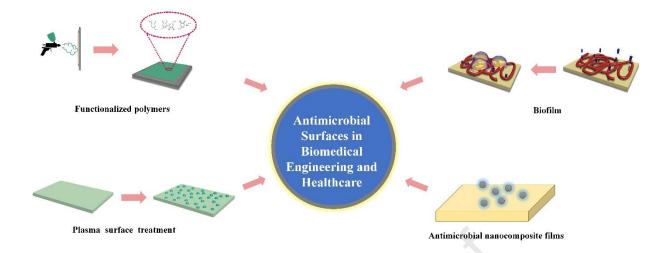

To appear in: Current Opinion in Biomedical Engineering

Received Date: 5 February 2022
Revised Date: 22 November 2022
Accepted Date: 30 November 2022

Please cite this article as: R. Pemmada, A. Shrivastava, M. Dash, K. Cui, P. Kumar, S. Ramakrishna, Y. Zhou, V. Thomas, H.S. Nanda, Science-based strategies of antibacterial coatings with bactericidal properties for biomedical and healthcare settings, *Current Opinion in Biomedical Engineering*, https://doi.org/10.1016/j.cobme.2022.100442.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Elsevier Inc. All rights reserved.


Science-based strategies of antibacterial coatings with bactericidal properties

2 for biomedical and healthcare settings

- 3 Rakesh Pemmada^{1,2}, Aishwarya Shrivastava^{1,3}, Madhusmita Dash⁴, Kuiyan Cui⁵, Prasoon Kumar⁶,
- 4 Seeram Ramakrishna⁷, Yubin Zhou⁵, *, Vinoy Thomas², *, Himansu Sekhar Nanda^{1, 3,8}, *
- ¹Biomedical Engineering and Technology Lab, Discipline of Mechanical Engineering, PDPM
- 6 Indian Institute of Information Technology Design and Manufacturing Jabalpur, , Madhya Pradesh
- 7 482005, India
- 8 ²Department of Materials Science and Engineering, University of Alabama at Birmingham,
- 9 Birmingham, AL 35294, USA
- ³International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of
- 11 Information Technology Design and Manufacturing Jabalpur, Dumna Airport Road, Jabalpur
- 12 482005, Madhya Pradesh, India
- ⁴School of Minerals, Metallurgical and Materials Engineering, Indian Institute of Technology
- 14 Bhubaneswar, Arugul, Odisha 752050, India
- ⁵Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China
- 17 ⁶Biodesign and Medical device laboratory, Department of Biotechnology and Medical
- Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
- ⁷Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, Faculty of
- 20 Engineering, National University of Singapore, Singapore 117576, Singapore
- 21 ⁸Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, USA

22 Corresponding authors:

- 23 Prof. Yubin Zhou^{5, *}: <u>zybresearch@126.com</u> (YZ), Tel: +86-0769-22896561
- 24 Prof. Vinoy Thomas^{2,*}: <u>vthomas@uab.edu</u> (VT), Tel: +1 (205) 975-4098
- Prof. Himansu Sekhar Nanda^{1, 3,8,*}: himansu@iiitdmj.ac.in (HSN), Tel: +91-761-2794429
- 26 Abstract
- 27 Contamination transmission in biomedical and healthcare settings is a significant challenge due to
- 28 inadequate microbiological protection from anti-infection agents and disinfectants. Antimicrobial
- 29 surfaces have been used as a current hygiene method to combat the growing microbes.
- 30 Interestingly, several approaches have been developed to block biofilm formation by integrating
- 31 the biocidal agents. Currently, the primary focus is on creating a contact-killing surface or a surface
- that may reduce the microbial load to a level below threshold. This review focuses on introduction
- of antimicrobials into the surfaces through various science-based strategies for reducing the
- 34 bacterial contamination within different medical services environment. This incorporates
- 35 effectively settled methods, and strategies consolidating inorganic and natural biocides with
- 36 bactericidal properties into the polymer matrix and surface coatings to reduce the bacterial
- 37 contamination.
- 38 **Keywords:** Biomedical; polymers; biocides; coatings; surface modification; bactericidal;
- 39 antimicrobial
- 40 Graphical abstract

1. Introduction

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

The quality of life is gradually improving as a result of advanced surgical procedures and the implantation of biomedical devices [1]. Currently, implants find their applications in various parts of the body like orthopedic, cardiovascular, dental, and many others. To develop these implants, diverse materials have been studied such as metals, metallic alloys, ceramics, polymers, polymer composites, and others [2]. Healthcare systems assay to limit the contamination hazard on these temporary implants by taking preventive measures at regular intervals [3]. These safeguard substitution plans decree appreciable expenses to medical and healthcare systems. Enhanced methodologies in sterilization have much diminished the recurrence of the initial phase contaminations in implants. The prevalence of diseases that developed after several weeks or months after surgery poses to be a major problem. Such crucial diseases might have occurred by the planktonic microscopic organisms coursing in the vascular framework. Regardless of the significant attempts in fabricating implantable biomedical devices, bacterial diseases persist due to bacterial attachment and their growth on the surfaces [4]. In fact, bacterial adhesion on the implants is regarded as one of the most significant global healthcare challenges, owing to its risk of severe hazardous infections.

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

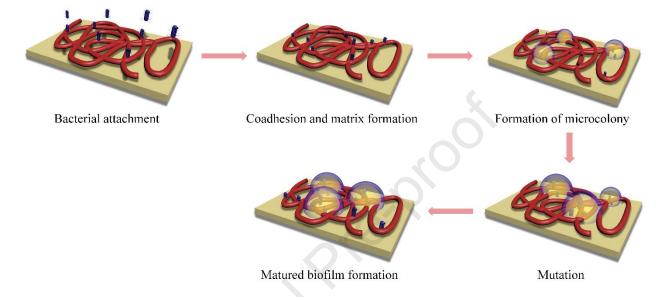
78

79

80

To reduce pathogenic bacteria-associated complications, bacterial adherence and colonization on the implants and devices should be considerably reduced. Many researchers focused on engineering the surface chemistry of the materials by making a hostile environment for bacterial adhesion and growth creating an antibacterial surface [5]. Generally, the antibacterial surfaces on the implants can be achieved by precise release of antibacterial agents, maintaining a bactericidal or antifouling surface using contact killing strategies [6]. Antibacterial coatings or antifouling polymers were also used as antibacterial strategies to mitigate the bacterial colonization. Several surface coatings have been developed for implants and devices using embedded antimicrobial nanoparticles, functionalized polymers, and inorganic-organic hybrid materials [7]. The bacterial species are usually targeted with the functional molecules through antifouling surfaces with antibacterial agents [8]. Due to the advantages of chemical modification, diverse materials are being employed with relatively lower fabrication costs. Although functional coatings demonstrate promising features, they usually undergo severe challenges like drug resistance, delamination, and hydrolytic degradation. Biomimetics has influenced materials science and engineering to aid the fabrication of advanced materials to mimic the native function of tissues or organs [9]. Some of the natural surfaces that show excellent antimicrobial properties prevent bacterial adhesion [10]. Apart from the natural surfaces, biomimicking can create the synthetic structures that mimic the surfaces with an antibacterial effect[11].

Hospital patients are at risk of communicable diseases in addition to the infectious disorders caused by microbes. Numerous individuals get sick while receiving the medical care as a result of microorganisms found in the hospital settings, on the medical staff, or on medical equipment. Nosocomial infection usually affects the patients and deteriorate their health and well being. The implementation of successful antimicrobial coatings can reduce the morbidity of nosocomial


infections caused due to the use of percutaneous, interventional, and implanted medical devices such as implantable cardioverter defibrillators, coronary stents, artificial hips, and contact lenses [12][13][14]

This review provides an expansive outline on bacterial contamination in the healthcare settings and the use of antibacterial strategies to mitigate those issues. Functionalized polymers, antimicrobial nanoparticle, and plasma surface modification as some of the science-based strategies are innately concentrated. It also provides an overview of most recent developments on antibacterial coatings, including the mechanism(s) by which the key component of the coating inhibits the growth of the biofilm formation. The article ends with a viewpoint on strategies implemented for biomedical and healthcare settings to protect from bacterial infections creating an antibacterial coating with bactericidal properties.

2. Development of biofilm

A biofilm is a cluster of microbial communities of the cells that are attached to a surface and embedded in a self-secreted matrix. This extracellular matrix consists mainly of the insoluble polysaccharides like alginate, proteins, lipids, flagella, pili, and eDNA [15]. Bacterial adhesion to a surface is dependent upon the surface topography and roughness. The variables affecting this adhesion and biofilm formation are electrostatic interactions, van der waals forces, hydrophobicity, and steric hindrance [16]. After adhering to a surface irreversibly, the microscopic organisms start to increase their number, co-exist, and produce an insoluble network of exopolymers to form the microcolonies. The development of a full-grown biofilm takes place, when the microcolonies are infiltrated by another microbial species. Such mature biofilms present a threat to the host because the microorganisms enclosed inside have the potential to detach and transmit the infections [17].

The development of a mature biofilm is a complex process, which includes an initial irreversible attachment, maturation I and II and finally, dispersion as shown in the **Figure 1** [18].

Figure 1. Schematic showing the development of a mature biofilm. Adapted with the permission from [18].

Biofilms shield singular cells from hostile factors like antimicrobial agents, supplemental limitations, and immunologic protection frameworks. Cells in a biofilm are contrasted in their genotypic and phenotypic expression from those of freely the suspended cells and these distinctions make them firmly resistant to antibiotics [19]. Aside from the immunity presented by the matrix, microbes in biofilms can utilize other survival mechanisms to dodge the host immune systems. These microbes can remain dormant and hidden from immune system and cause local tissue harm, which may later lead to acute infection. Inside a biofilm, the microscopic organisms can adjust to an absence of oxygen environment (anoxia) and supplement limitation by displaying altered metabolism, protein production, and gene expression, which may lead to lower the

metabolic rates and diminish the rates of cell division. These transformations make the microbes more resistant to antimicrobial treatments by reducing the requirements for cellular functions that the antimicrobials meddle with or by inactivating the antimicrobial targets. Synchronous enactment of both natural and acquired immune responses in the host may happen during the biofilm contamination. Neither of them can kill the biofilm organism. Instead, they cause a definitive increase in the collateral tissue damage. In this way, the diseases related with biofilms are extremely persistent diseases grow gradually, rarely get resolved by the host's immune system, and respond inconsistently to antimicrobial treatments [20]. In fact, they are more challenging than the planktonic cells and have turned into a major cause of deaths around the world. Predoi et al. [21] used chemical co-precipitation method to produce cerium doped hydroxyapatite (Ce-HAp) powder $Ca_{10-x}Ce_x(PO_4)_6(OH_{)2}$ coatings with x = 0.05 (5Ce-HAp). The results of the antimicrobial experiments demonstrated that the examined microbial strains of *E. coli* were successfully prevented from forming colonies using 5Ce-HAp coatings and solutions.

The simplest biofilm preventive measures have aimed to eliminate adhering microbes (antimicrobial) or to prevent microbial adhesion (antifouling). The excessive use of the antibiotics has led to the development of several pathogens that are resistant to antibiotics. Thus, antimicrobial therapy is becoming an increasingly challenging task to counter the contamination and infection. Hence, alternative strategies need to come up to tackle these problems.

3. Antibacterial surfaces for biomedical and healthcare settings

Desired biomaterials should possess certain biological properties that are related to the surface characteristics like biocompatibility, biodegradability, non-cytotoxic and anti-infective properties. The conventional understanding of surface interaction of bacterial pathogens can significantly affect the development of novel biomaterial-based implants. Bacterial cell adhesion and

141

142

143

144

145

146

147

148

149

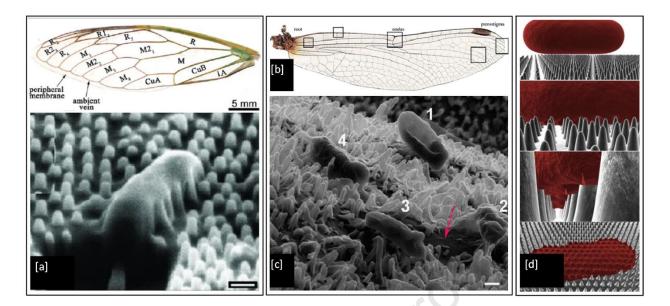
150

151

152

153

154


155

156

157

158

proliferation can be controlled by engineering their surface properties. To prevent the development of biofilms on the surfaces of biomaterials, a surface must be capable of preventing bacteria's initial adhesion, eliminating any bacteria that have managed to penetrate the anti-adhesion barrier, and removing any dead bacteria that is present over the surface. It is crucial to comprehend the formation of these biofilms in detail. Excellent substrates for bacterial adhesion, colonization, and ultimately the biofilm formation are the biomaterials with coarse or permeable surfaces. Figure 2 illustrates the cicada (2a) and dragonfly (2b and 2c) wings in which an individual gram-negative bacteria (P. aeruginosa, B. catarrhalis, E. coli, and P fluorescens) have been observed to sink and spread between nanopillars of the wing surfaces. Cell susceptibility did not appear to be influenced by the shape of the cells. The physical nanoprotrusions on the wing surface can harm and stretch microbial cells, which causes them to lyse and die [22][23][24]. This can give rise to the attachment and mechanical rupture of the bacterial cell wall, resulting in cell death within 20 minutes[25]. Dragonfly wings have also been found to fight gram-negative and gram-positive bacteria. The capillary design of the dragonfly wing nanoprotrusions causes increased cell wall stress and deformation, resulting the cell wall rupture and subsequent cytosol fluid leakage as shown in the areas marked with red color of figure 2c. To demonstrate the surface interaction, a typical (cicada wing) spatiotemporal 3D model for nanopillar and bacterial cell interaction is presented in figure 2d.

Figure 2. (a) Cicada forewing structural physiology and SEM image of a *P. aeruginosa* cell sliding between the nanopillars on the wing surface, (b) Common sand dragonfly wing images from optical microscope, (c) *E. coli* bacteria captured by SEM adhering to a dragonfly wing's uncoated nanopillar surface in various stages (the bacteria attachment are marked by numbers 1, 2, 3 and 4) of death, with a red arrow highlighting the darker portion induced by cellular extravasation overflowing the nanopillars, and (d) 3D spatiotemporal model of cicada wing nanopillar interactions with rod-shaped bacterial cells. Adapted with the permission from [26].

Based on a near-infrared (NIR)-responsive organic/inorganic hybrid coating made up of gold nanorods and polyethylene glycol (PEG), Zhao et al. [27] developed a functionalized polyurethane surface (PU-Au-PEG) with antifouling and photothermal bactericidal capabilities. Under 808 nm NIR irradiation, the PU-Au-PEG demonstrated significant photothermal bactericidal capabilities, particularly against the multidrug-resistant bacteria, and demonstrated a high efficiency to resist the bacterial adhesion. Superhydrophobic surfaces can maintain optimum air pockets in microstructures to reduce the amount of water droplet contact with the materials and avoid microbial contamination[28]. Strong interactions between hydrophilic materials on the water and

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

the surface results in the formation of super hydrophilic anti-adhesion surfaces. Most antibacterial surfaces perform two or more functions simultaneously killing and resistance or release. However, the bacterial resistance and biocompatibility frequently conflict with one another. Therefore, it is necessary to improve the composition of the surface to achieve an optimal performance. To induce the bacterial release, most antibacterial surfaces use non-specific external stimuli (including temperature, light, and salt ions)[29]. It is necessary to focus on the development of antibacterial surfaces with self-stimulating capability by using endogenous triggers with biological specificity to boost the material surface efficiency. Chemical modification drives most of the bactericidal strategies. On the other hand, regulating bacterial adhesion also depends on the inclusion of surface microscale topographical factors. By manipulating the surface topography, surface chemistries, and mechanical properties, polymers with multiple length scales can be combined into various molecular and supramolecular structures, leading to the production of antimicrobial surfaces that can be used in a range of biomedical applications [30]. In accordance with how the bacteria are eradicated, bactericidal surfaces can be divided into two categories: contact-based surfaces and release-based surfaces. Recently, the antibacterial surface with dual functionality has received a lot of attention. Antibacterial coatings may reduce bacterial colonization and as a result the frequency of healthcare-associated infections could be minimized. Antibacterial coatings either limit the growth of bacteria through antifouling coatings or eliminate the bacteria that are already adhered to the surface with the help of bactericidal coatings. Any bacteria that can adhere to an antifouling coating will grow, but on the surfaces with bactericidal coatings, the accumulation of dead bacteria and other debris leaves the room for new microorganisms to colonize [31]. It is crucial to design an antibacterial coating specifically for the application for which it is intended, both in terms of the coating's effectiveness and durability over the intended period of application.

For instance, orthopedic implant's osseointegration may be severely impacted by the antifouling coatings, and high concentrations of cationic bactericidal polymers that may cause the hemolysis and platelet activation in a blood-contacting environment[32]. It is reasonable to assume that various biomedical applications will necessitate differing ideal ratios of bactericidal and antifouling components in the coating in order to achieve a high performance.

3. Science based strategies for antibacterial surface

3.1 Functionalized polymers as surface coatings

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

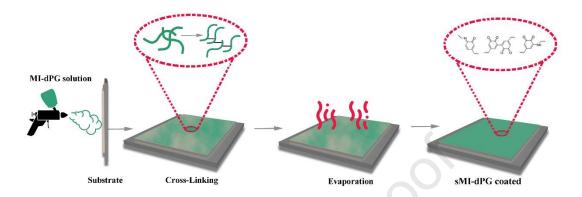
213

214

215

216

217

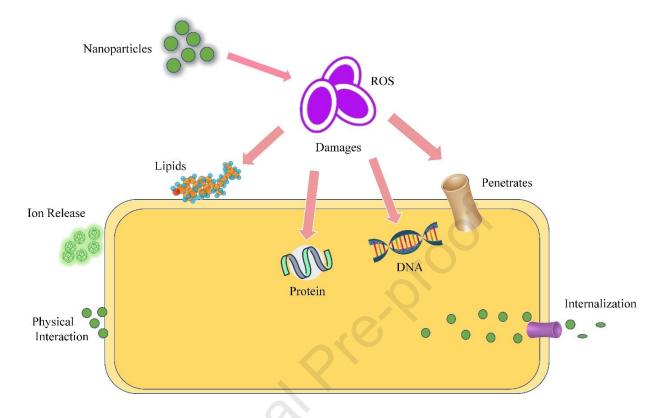

218

219

220

Bacterial adhesion and colonization take place when the surface of the implants is covered by the proteins adsorbed on to their surfaces. The antibacterial surface can be optimized by implementing the antifouling properties that repel these proteins from the surfaces. Clinical contaminants present one of the main impediments related to the implantation of any biomaterial after a medical procedure. Chua et al. [33] explored the utilization of polyelectrolyte multilayers (PEMs) involving hyaluronic acid (HA) and chitosan (CH) to give antibacterial properties on titanium (Ti) substrate. Yazici et al. [34] designed an engineered chimeric peptides with freely displayed antimicrobial domains as an antibacterial surface for application in orthopedic implants. Christoph et al. [35] developed a mussel polymer-based substrate-independent spray coating method for modifying the substrate using mussel-inspired dendritic polyglycerol (MI-dPG). This is a straightforward strategy for setting up a superhydrophobic, water-repellent coating by coformulation of the mussel-inspired spray coating with hydrophobic nanoparticles. Silver nanoparticles (AgNPs) were embedded on to the surface via a post-functionalization technique to boost the antibacterial properties. Wang et al. [36] developed a functional polyurethane composition (UP-C12-50-T) using the blend of hybrid soft block polyurethane and a traditional biomedical grade polyurethane (Tecoflex). Human mesenchymal stem cell (MSC) growth next to

and under UP-C12-50-T-10 revealed an outstanding biocompatibility and antibacterial properties with *E. coli* and *S. epidermidis*.


Figure 3. Schematic representation of the mussel-inspired dendritic polyglycerol (MI-dPG) spray coating. Adapted with the permission from [35].

Like the regular proteins, the synergistic impact of the catechol and amine functionalities is also liable for solid attachment to the substrate (**Figure 3**). The multivalent and dendritic polyglycerol platform of the MI-dPG upgrades the surface after crosslinking of the coating and proves as an important coating technology to fight against the implant-related infection [37]. Due to its high corrosion resistance, mechanical strength, and good biocompatibility, Ti is generally used in orthopedic and dentistry implant prostheses [38]. However, the protein adsorption and bacterial fouling post implantation are some of the issues of these implants. The bacterial fouling on a superficial level of implants might cause critical problems and makes the bacterial panels tolerant [39]. Therefore, in order to prevent the biofilm development and bacterial fouling on Tibased implantable clinical devices, several procedures are implemented [40]. Several antibacterial coatings have been accounted for by utilizing the antimicrobial silver [41], peptides [42], photodynamic agents [43], and cationic polymers [44].

The surfaces with unique properties such as superhydrophilicity or super hydrophobicity display microbial resistance through their antifouling component. Generally, a boundary is created between these surfaces to block direct contact between the surfaces and the microbes. Superhydrophilicity can be accomplished by covering the surface using nanostructures or covering of hydrophobic surfaces with a hydrophilic material [45]. The hydrophobic nature of certain polymers like polycaprolactone (PCL), Poly(lactic acid) (PLA), polystyrene (PS), which are exposed with organic frameworks, have shown high vulnerability for bacterial biofilm development. The hydrophobicity of these polymer surfaces are adjusted by different surface modifications techniques, like chemical etching, acid treatment, leaching, and others to overcome the bacterial adhesion [46].

3.2 Composite films with antimicrobial nanoparticles

Antibacterial nanoparticles are the materials with an inbuilt capability of fighting against microbes. These nanoparticles are used as various carriers for other biocidal agents [47]. The benefits of these nanoparticles are higher surface-to-volume ratio which can maintain optimized antibacterial efficacy because of their ultra-size and the possibility to functionalize with various other biomolecules [48]. The nanoparticles are proved to offer antimicrobial properties to various biomedical implants, some of the mechanisms such as reactive oxygen species (ROS), dissolved metal ions, physical interaction, internalization into the cells are shown in **figure 4** [49].

Figure 4 The mechanism of action of antibacterial metal nanoparticles in a composite film. Adapted with the permission from [49]

These nanoparticles do not act like standard antibiotics. Instead, they directly trigger the responses that create a communication with the cell wall of bacteria pertaining to the prevention of biofilm formation[50]. The AgNPs are viewed as one of the best antibacterial agents amongst the metal nanoparticles[51]. The cell membrane disruption of the bacterial cells is caused by the adsorption of AgNPs leading to a depolarization of the bacterial cell wall. ATP production and DNA replication are hindered by the ROS generated by the infiltration of AgNPs. [52].

Composite films with AgNPs could offer an excellent antibacterial property to the surface. Favia et al. [53] considered the plasma-deposition of silver containing polyethyleneoxide (PEO)-like coatings as an antibacterial surface. Actinometry revealed a correlation between the amount

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

of silver (Ag) embedded in the coatings and sputtered in the discharge, which could be used to control the in situ deposition. By spray-coating hydrophobic silica sol and copper oxide (CuO) nanoparticles, Ren et al. [54] developed a transparent and superhydrophobic bactericidal coating. The superhydrophobic properties of the formulation prevented Escherichia coli and E. coli from adhering to it by up to 3.2 log cells/cm² as compared to a bare glass. Furthermore, the live/dead staining results demonstrated that the coating's performance against E. coli was outstanding when applied as prepared. Zaporojtchenko et al. [55] used co-sputtering of noble metals with polytetrafluorethylene (PTFE) to create antibacterial metal/polymer nanocomposite coating with thin metallic rich surface layer. The S. aureus and S. epidermidis were utilized as test microbes for evaluation of antibacterial efficacy of these surfaces. 1% of gold (Au) could substantially increase the release rate of Ag⁺ ions. Ag is more dynamic than Au, and the presence of Au improves Ag⁺ particle arrangement. The functional parameters such as power, and pressure applied to the magnetrons control the properties of the nanocomposite films. Beier et al. [56] used atmospheric pressure plasma chemical vapor deposition (APCVD) to synthesize the antibacterial thin films. The results of antibacterial test using E. coli showed that the coatings could have an excellent antibacterial effect. In a study employing APCVD and sol-gel technology, Gerullis et al. [57] examined the structural morphology, elemental composition, and antibacterial characteristics of zink (Zn), Ag and Cu incorporated thin silicon oxide (SiO₂) films deposited on wood polymer composites (WPC). BacTiter-Glo® tests revealed that Zn), Ag and Cu-containing layers had substantial bactericidal effects against E. coli. Dudek et al. [58] introduced a method to enhance the antibacterial performance of the Nickel-titanium (NiTi) alloy to prolong its effectiveness for healthcare application. The colloidal suspension of 450nm particle size of tricalcium phosphate (TCP) and the Ag/SiO₂ nanocomposite could produce structurally distinctive calcium

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

phosphosilicate coating via electrophoretic deposition (EPD). Deng et al. [59] demonstrated a single-step fabrication of antibacterial nanocomposite thin film with imbedded AgNPs. The APCVD technique was used to feed AgNPs directly into the discharge zone. Antibacterial tests over these films using E. coli and S. aureus demonstrated an excellent antibacterial property and the method can be used to overcome the issues of device related contamination. Wiesenmueller et al. [60] developed a method to create a cytocompatible and antibacterial coating with long-term antibacterial effect. The results indicated the tunable release of Ag is necessary to maintain appropriate cytocompatibility and superior antibacterial activity of the modified surface. Ag-free top layer was deposited on an Ag-rich base layer, which resulted a better control over Ag⁺ release behavior. Here, the Ag-rich layer serves as an Ag-repository and the burst-release of Ag⁺ ions from the Ag-reservoir is prevented by the top layer that acts as a diffusion barrier. The nanocomposite films were tested using NIH3T3 mammalian cell line as well as Gram-negative (P. aeruginosa) and Gram-positive (S. aureus) bacterial strains. The results demonstrated a tunable and log-term antimicrobial activity of the films, while retaining an appropriate cytocompatibility over testing duration. Pollini et al. [61] introduced stereolithographic synthesis of antimicrobial composites made of HAp for dental applications. Up to 5% filler content resulted in an increase in flexural strength of the composites. In comparison to the neat samples, the inclusion of uniformly distributed commercial HAp decreased the bacterial (S. aureus, Escherichia coli) and fungal (C. albicans) growth in a dose-dependent manner. Nataliya et al. [62] used wet chemical method to generate gelatin nanofibers (GNF) with zinc oxide (ZnO) composites (GNF@ZnO composites). The GNF@ZnO composites demonstrated antibacterial activity against P. fluorescence and S. aureus.

The intrinsic antibacterial properties of metal and metal oxide nanoparticles could be used to control the bactericidal effectiveness of the composite films. These composite films with nanobiocides could be used for implant or catheter coatings and wound dressings for controlling the bacterial infection.

3.3 Antibacterial surfaces through plasma surface modification

315

316

317

318

319

320

321

322

323

324

325

326

327

328

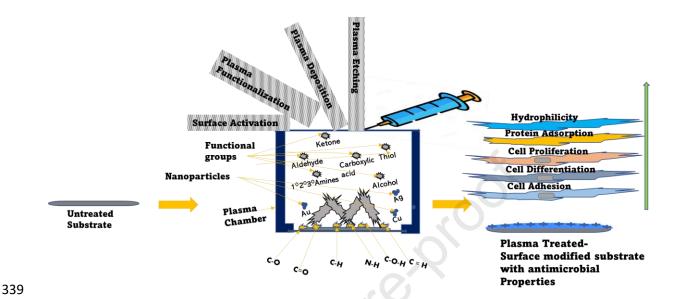
329

330

331

332

333


334

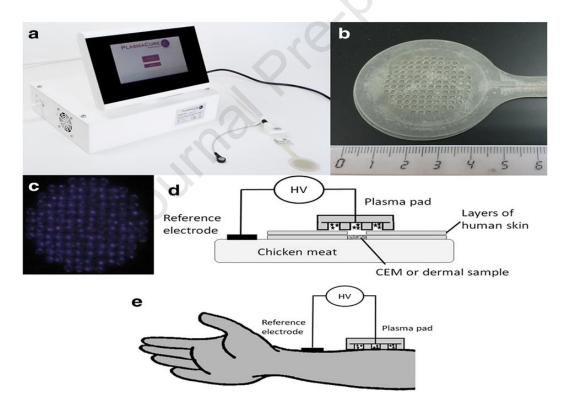
335

336

Low temperature plasma (LTP) is a quick and effective disinfection method unrestricted by bacterial resistance mechanisms. Hence, it offers a novel approach to overcome the medication resistance. Using LTP surface modification technique, antibacterial surface and coating have been developed in a number of ways [63]. The plasma surface treatment creates the surface functionalities (anchoring sites for loading various antimicrobials) and subsequent grafting of antibacterial polymers/peptides. The design and creation of such surfaces that either prevent bacterial adhesion or resist biofilm formation are the major research strategies. The surface functionalization using ammonia plasma or amine plasma are considered as the most appropriate plasma surface treatment strategies, which are quite like cationic disinfectants (contact-killing by forming quaternary ammonium salts). The plasma surface modification has been extensively studied for engineering anti-biofouling surfaces. Further, for some of the polymers, the shelf-life of plasma modified surface is restricted by the issue of surface ageing (hydrophobic recuperation) after plasma treatment [64]. The deposition of antibacterial nanocomposite films on a surface can generate the desired antimicrobial activity. Generally, in these films (polymer matrix filled with the nanoparticles) can be prepared utilizing the plasma-sputtering of a bulk metal to directly incorporate the nanoparticles into the polymer [65]. The plasma electrolytic oxidation of metal implants and plasma enhanced reduction of metals (Ag, Au, Cu etc.) directly onto polymer

membranes were reported by our collaborative team at UAB [66]. The common plasma process methodology of different biomaterial surface is shown in the **figure 5.**

Figure 5: Surface activation of biomaterials through plasma and impact of modified surface to cell behavior [67]


In recent years, plasma surface modification technologies have been used as a tool to create a variety of antibacterial surfaces. Despax et al. [68] investigated Ag-containing plasma polymerized siloxane films. The hexamethyldisiloxane (HMDSO) mass stream rate was used to screen the balance between the Ag sputtering and plasma polymerization. Under various plasma process conditions, the nanocomposite films had their Ag content ranging from 0-32.5%. Peter et al. [69] developed nanocomposite materials with an Ag nanocluster and a SiOxCyHz-polymer matrix. A gas aggregation cluster source (GAS) could produce Ag nanoclusters with sizes ranging from 2-20 nm, and typically it could deposit them quickly through a concentrated pulse. In order to incorporate antibacterial characteristics, Spange et al.[70] functionalized the wound dressings employing APCVD method. The functionalized dressings demonstrated a very strong antibacterial effect against *S. aureus* and *K. pneumoniae*, via direct contact killing mechanism. Kuzminova et

al. [71] fabricated silver nanoparticle-based antibacterial nanocomposite coatings using GAS of AgNPs and plasma enhanced-CVD (PECVD) of the matrix material. The quantity of AgNPs as well as matrix material characteristics (chemical composition or wettability) could be modulated when GAS and PECVD were used. This further impacts the Ag⁺ release kinetics, which determines how effectively the composites kill the microbes. Blanchard et al. [72] developed plasma-polymerized HMDSO (ppHMDSO) film in which the retention of carbon groups is reduced by the addition of oxygen (O₂), resulting the formation of a more inorganic, hydrophilic ppSiOx film. The developed films could be investigated for their antibacterial properties. Deng et al. [73] [74] developed the method to deposit AgNPs over the polyethylene terephthalate (PET) matrix using the air pressure deposition method. AgNPs could be uniformly immobilized on the PET surface and the thickness of the deposition could control the release of AgNPs and the antibacterial properties of the PET film.

3.4 Plasma-assisted surface grafting of antibacterial components

LTP could be used as a pre-treatment step to modify the material or fabric surfaces for subsequent grafting. Chang et al. [75] used plasma pre-treatment to accelerate chitosan grafting on polyester surfaces. The textures were first activated on the surface using argon/oxygen (Ar/O₂) dielectric barrier discharge (DBD) plasma before being exposed to the atmosphere for oxidation. The fabrics were immersed in chitosan solvent for chitosan grafting. The grafted surface exhibited a better biocompatibility with fibroblast cells and antibacterial efficacy against *B. subtilis and S. aureus*. Karam et al. [76] altered the polyethylene by using Ar/O₂ plasma, nitrogen (N₂) plasma and plasma-induced grafting of acrylic acid (AA) to examine the determining factors for adsorption. As a reactive layer for the immobilization of antibacterial nisin peptide on steel surfaces, Duday et al. [77] utilized the plasma polymerized organosilicon coatings to create antibacterial Ag-

stacked cotton/polyester textures. Kostic et al. [78] treated the raw fabrics with air DBD plasma prior to submerge in an aqueous silver nitrate (AgNO₃) solution. The fabric could absorb Ag⁺ to its surface and the adsorption to the textures was impacted by the treatment time and aging time. In addition to the utilization of plasma-engineered surfaces for antibacterial strategies (bactericidal-agent release surfaces, contact-killing surfaces, and anti-biofouling surfaces), plasma-active antibacterial surfaces are gaining much attention due to the emergence of portable cold atmospheric plasma systems [79]. In order to treat chronic wounds, Boekema et al. [80] created an atmospheric pressure surface plasma generator and established it's *in vitro* and *in vivo* reliability and efficacy in bacterial cell reduction (**Figure 6**).

Figure 6. Antibacterial and safety test of a flexible cold atmospheric plasma device for chronic wound healing. **a.** The plasma device consisting of the plasma driving unit (plasma pulser) and plasma pad; **b.** plasma pad with scale in cm. Plasma pad showing the side with prefabricated holes

that is in contact with the skin; **c.** plasma is generated in the small holes; **d.** schematic diagram of device for the treatment of samples on chicken meat as a support layer; layers of human skin (0.7 mm) were used to increase the distance between sample and plasma; **e.** schematic diagram of device (HV: high voltage; CEM: collagen elastin matrix). (Adapted from [80])

4. Conclusion and future scope

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

The engineered strategies for creating an antibacterial surface with bactericidal properties using functionalized polymeric coatings, nanoparticle and plasma-based surface modification are discussed. It is witnessed in most of the developments that the biofilm development may be restricted by restraining introductory attachment of the bacteria. The current research endeavors are coordinated towards the killing or diminishing bacterial colonies on implants and medical devices through the bactericidal properties of the surface. It is important to note that antibacterial agent release in general, are neither a remedy nor a guaranteed method. Instead, they need to be considered carefully as a component of a coordinated effort to reduce established risk factors for pathogenic bacteria. However, several significant obstacles need to be addressed before releasebased coatings can be effectively used to combat the infections. The duration and kinetics of antibacterial administration varies depending on the application. First- or second-order kinetics govern the typical release patterns that are in use today, which typically involve an initial release followed by a decreasing downstream dispersion that lasts anywhere from a few hours to several days. An antibacterial antibiotic that releases quickly and in a high dose could initially seem favorable. It offers antibacterial defense throughout the early postoperative period, which is thought to pose the greatest risk of infection and prevents bacterial resistance emergence. The long-term release is often required in cases of revision or second surgery, as the tissues around the primary implant are regularly contaminated. Currently, it is extremely difficult to create the

coatings that keep released antibacterial component levels within the therapeutic window, sufficient to kill bacteria but low enough to prevent harm to eukaryotes. Therefore, creative methods are required to manage and expand the release kinetics to provide new products or services. Although, there have been many documented antibacterial techniques in the literature, only a limited platforms have reached clinical testing and use. The inadequacy of realistic *in vivo* settings in most of the current *in vitro* testing protocols for antibacterial materials is still a crucial factor responsible for the failure of translational success. The current status and the future challenges presented in this review will assist the researchers to foster the study and development of advanced antibacterial coatings for biomedical and clinical settings.

Funding and Acknowledgement

HSN acknowledge the funding support from start-up-research grant (SRG/2019/001504) from Science and Engineering Research Board, Department of Science and Technology (DST), Government of India. YZ acknowledge the support from Guangdong Basic and Applied Basic Research Foundation (2019A1515111112), Guangdong Basic and Applied Basic Research Foundation (2021A1515011831), funds for PhD Researchers of Guangdong Medical University in 2021 (4SG21237G) and discipline Construction Project of Guangdong Medical University (4SG21277P). RP and VT acknowledge US. National Science Foundation funding support through NSF EPSCOR OIA-2148653 for "Future Technologies Enabled by Plasma Process". All opinions presented here are solely those of the authors and do not necessarily reflect the opinions of funding agencies.

Author contributions

- 433 All the authors listed have made a substantial, direct, and intellectual contribution to the work and
- approved for its publication.

435 Conflict of Interest:

- The authors declare that the research was conducted in the absence of any commercial or financial
- relationships that could be construed as a potential conflict of interest.

438 References:

- Papers of special interest (*) and outstanding interest (**)
- 440 1. Wyss UP: Improving the Quality of Life of Patients With Medical Devices by a Timely
- Analysis of Adverse Events. Front Med 2019, 6.
- 442 2. Saini M: Implant biomaterials: A comprehensive review. World J Clin Cases 2015, 3:52.
- 3. Church D, Elsayed S, Reid O, Winston B, Lindsay R: Burn wound infections. Clin
- 444 *Microbiol Rev* 2006, 19:403–434.
- 445 4. Song B, Zhang E, Han X, Zhu H, Shi Y, Cao Z: Engineering and Application Perspectives
- on Designing an Antimicrobial Surface. ACS Appl Mater Interfaces 2020, 12:21330–
- 447 21341.
- 448 5. Anselme K, Davidson P, Popa AM, Giazzon M, Liley M, Ploux L: The interaction of cells
- and bacteria with surfaces structured at the nanometre scale. *Acta Biomater* 2010, 6:3824
- 450 3846.
- 6. Cloutier M, Mantovani D, Rosei F: Antibacterial Coatings: Challenges, Perspectives, and
- 452 Opportunities. *Trends Biotechnol* 2015, 33:637–652.
- 453 7. Banerjee I, Pangule RC, Kane RS: Antifouling coatings: Recent developments in the
- design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv
- 455 *Mater* 2011, 23:690–718.

- 456 8. Ahmed W, Zhai Z, Gao C: Adaptive antibacterial biomaterial surfaces and their
- applications. *Mater Today Bio* 2019, 2.
- 458 9. Zorlutuna P, Annabi N, Camci-Unal G, Nikkhah M, Cha JM, Nichol JW, Manbachi A,
- Bae H, Chen S, Khademhosseini A: Microfabricated biomaterials for engineering 3D
- 460 tissues. Adv Mater 2012, 24:1782–1804.
- 461 10. Mi G, Shi D, Wang M, Webster TJ: Reducing Bacterial Infections and Biofilm Formation
- Using Nanoparticles and Nanostructured Antibacterial Surfaces. *Adv Healthc Mater* 2018,
- 463 7.
- 464 11. Zou P, Chen WT, Sun T, Gao Y, Li LL, Wang H: Recent advances: Peptides and self-
- assembled peptide-nanosystems for antimicrobial therapy and diagnosis. *Biomater Sci*
- 466 2020, 8:4975–4996.
- 467 12. Baddour LM, Epstein AE, Erickson CC, Knight BP, Levison ME, Lockhart PB, Masoudi
- 468 FA, Okum EJ, Wilson WR, Beerman LB, et al.: Update on cardiovascular implantable
- electronic device infections and their management: A scientific statement from the
- american heart association. *Circulation* 2010, 121:458–477.
- 471 13. Elbardissi AW, Aranki SF, Sheng S, O'Brien SM, Greenberg CC, Gammie JS: Trends in
- isolated coronary artery bypass grafting: An analysis of the Society of Thoracic Surgeons
- adult cardiac surgery database. *J Thorac Cardiovasc Surg* 2012, 143:273–281.
- 474 14. Zmistowski B, Casper DS: Periprosthetic Joint Infection Increases the Risk. 2013,
- 475 15. Muñoz-Bonilla A, Fernández-García M: Polymeric materials with antimicrobial activity.
- 476 *Prog Polym Sci* 2012, 37:281–339.
- 477 16. Rathinam NK, Sani RK, Gupta P, Pruthi PA, Pruthi V: Role of Exopolysaccharides in
- 478 Biofilm Formation. *ACS Symp Ser* 2019, 1323:17–57.

- 479 17. Ribeiro SM, Felício MR, Boas EV, Gonçalves S, Costa FF, Samy RP, Santos NC, Franco
- OL: New frontiers for anti-biofilm drug development. *Pharmacol Ther* 2016, 160:133–
- 481 144.
- 482 18. Koning JW: Interactions Between Streptococcus mutans and Veillonella dispar. 2010,
- 483 19. Jucker BA, Harms H, Zehnder AJB: Adhesion of the positively charged bacterium
- Stenotrophomonas (Xanthomonas) maltophilia 70401 to glass and teflon. *J Bacteriol*
- 485 1996, 178:5472–5479.
- 486 20. Tuson HH, Weibel DB: Bacteria-surface interactions. *Soft Matter* 2013, 9:4368–4380.
- 487 21.* Predoi, Daniela, Simona Liliana Iconaru, Mihai Valentin Predoi, Andreea Groza, Sofia
- 488 Gaiaschi, Krzysztof Rokosz, Steinar Raaen et al. "Development of cerium-doped
- hydroxyapatite coatings with antimicrobial properties for biomedical applications."
- 490 *Coatings* 10, no. 6 (2020): 516.
- Predoi et al. developped Cerium doped hydroxyapatite (Ce-HAp) powder
- 492 $Ca_{10-x}Ce_x(PO_4)_6(OH)_2$ coatings with x = 0.05 (5Ce-HAp) using chemical co-precipitation
- method at room temperature. The powder in suspesion and coating could demonostrate
- antimicrobial acticity against *E. Coli*.
- 495 22. Ivanova EP, Hasan J, Webb HK, Gervinskas G, Juodkazis S, Truong VK, Wu AHF, Lamb
- 496 RN, Baulin VA, Watson GS, et al.: Bactericidal activity of black silicon. *Nat Commun*
- 497 2013, 4:1–7.
- 498 23. Kelleher SM, Habimana O, Lawler J, O'reilly B, Daniels S, Casey E, Cowley A: Cicada
- Wing Surface Topography: An Investigation into the Bactericidal Properties of
- Nanostructural Features. ACS Appl Mater Interfaces 2016, 8:14966–14974.
- 501 24. Bandara CD, Singh S, Afara IO, Wolff A, Tesfamichael T, Ostrikov K, Oloyede A:

- Bactericidal Effects of Natural Nanotopography of Dragonfly Wing on Escherichia coli.
- 503 *ACS Appl Mater Interfaces* 2017, 9:6746–6760.
- 504 25. Ivanova EP, Hasan J, Webb HK, Truong VK, Watson GS, Watson JA, Baulin VA,
- Pogodin S, Wang JY, Tobin MJ, et al.: Natural bactericidal surfaces: Mechanical rupture
- of pseudomonas aeruginosa cells by cicada wings. *Small* 2012, 8:2489–2494.
- 507 26. Birkett M, Dover L, Cherian Lukose C, Wasy Zia A, Tambuwala MM, Serrano-Aroca Á:
- Recent Advances in Metal-Based Antimicrobial Coatings for High-Touch Surfaces. *Int J*
- 509 *Mol Sci* 2022, 23.
- 510 27. Zhao YQ, Sun Y, Zhang Y, Ding X, Zhao N, Yu B, Zhao H, Duan S, Xu FJ: Well-
- Defined Gold Nanorod/Polymer Hybrid Coating with Inherent Antifouling and
- Photothermal Bactericidal Properties for Treating an Infected Hernia. ACS Nano 2020,
- 513 14:2265–2275.
- 514 28. Chan Y, Wu XH, Chieng BW, Ibrahim NA, Then YY: Superhydrophobic nanocoatings as
- intervention against biofilm-associated bacterial infections. *Nanomaterials* 2021, 11:1–33.
- 516 29. Wei T, Yu Q, Chen H: Responsive and Synergistic Antibacterial Coatings: Fighting
- against Bacteria in a Smart and Effective Way. *Adv Healthc Mater* 2019, 8:1–24.
- 518 30. Yu Q, Wu Z, Chen H: Dual-function antibacterial surfaces for biomedical applications.
- 519 *Acta Biomater* 2015, 16:1–13.
- 520 31. Li D, Zheng Q, Wang Y, Chen H: Combining surface topography with polymer
- 521 chemistry: Exploring new interfacial biological phenomena. *Polym Chem* 2014, 5:14–24.
- 522 32. Costerton JW, Stewart PS, Greenberg EP: Bacterial biofilms: A common cause of
- 523 persistent infections. *Science* (80-) 1999, 284:1318–1322.
- 524 33. Chua PH, Neoh KG, Shi Z, Kang ET: Structural stability and bioapplicability assessment

525		of hyaluronic acid-chitosan polyelectrolyte multilayers on titanium substrates. J Biomed
526		Mater Res - Part A 2008, 87:1061–1074.
527	34.	Yazici H, O'Neill MB, Kacar T, Wilson BR, Oren EE, Sarikaya M, Tamerler C:
528		Engineered Chimeric Peptides as Antimicrobial Surface Coating Agents toward Infection-
529		Free Implants. ACS Appl Mater Interfaces 2016, 8:5070–5081.
530	35.**	Schlaich C, Li M, Cheng C, Donskyi IS, Yu L, Song G, Osorio E, Wei Q, Haag R:
531		Mussel-Inspired Polymer-Based Universal Spray Coating for Surface Modification: Fast
532		Fabrication of Antibacterial and Superhydrophobic Surface Coatings. Adv Mater
533		Interfaces 2018, 5.
534		Christoph et al. developped a straightforward strategy for setting up a superhydrophobic,
535		water-repellent antibacterial coating using the coformulation of the mussel-inspired spray
536		coating and silver nanoparticles.
537	36.*	Wang C, Zolotarskaya O, Ashraf KM, Wen X, Ohman DE, Wynne KJ: Surface
538		Characterization, Antimicrobial Effectiveness, and Human Cell Response for a
539		Biomedical Grade Polyurethane Blended with a Mixed Soft Block PTMO-Quat/PEG
540		Copolyoxetane Polyurethane. ACS Appl Mater Interfaces 2019, 11:20699–20714.
541		Wang et al. developed an unique blend of hybrid soft block polyurethane and a traditional
542		biomedical grade polyurethane (Tecoflex) which is non cytotoxic and an strong antibacterial
543		against E. coli and S. epidermidis.
544	37.	Hickok NJ, Shapiro IM, Chen AF: The Impact of Incorporating Antimicrobials into
545		Implant Surfaces. J Dent Res 2018, 97:14–22.
	20	
546	38.	Liao H, Miao X, Ye J, Wu T, Deng Z, Li C, Jia J, Cheng X, Wang X: Falling Leaves
547		Inspired ZnO Nanorods-Nanoslices Hierarchical Structure for Implant Surface

- Modification with Two Stage Releasing Features. ACS Appl Mater Interfaces 2017,
- 9:13009–13015.
- 39. Xu LQ, Pranantyo D, Neoh KG, Kang ET, Teo SLM, Fu GD: Synthesis of catechol and
- zwitterion-bifunctionalized poly(ethylene glycol) for the construction of antifouling
- surfaces. *Polym Chem* 2016, 7:493–501.
- 553 40. Zander ZK, Becker ML: Antimicrobial and Antifouling Strategies for Polymeric Medical
- Devices. ACS Macro Lett 2018, 7:16–25.
- He J, Chen J, Hu G, Wang L, Zheng J, Zhan J, Zhu Y, Zhong C, Shi X, Liu S, et al.:
- Immobilization of an antimicrobial peptide on silicon surface with stable activity by click
- 557 chemistry. *J Mater Chem B* 2017, 6:68–74.
- 558 42. Khachatryan G, Khachatryan K, Grzyb J, Fiedorowicz M: Formation and properties of
- hyaluronan/nano Ag and hyaluronan-lecithin/nano Ag films. *Carbohydr Polym* 2016,
- 560 151:452–457.
- 561 43. Zhu Y, Xu C, Zhang N, Ding X, Yu B, Xu FJ: Polycationic Synergistic Antibacterial
- Agents with Multiple Functional Components for Efficient Anti-Infective Therapy. Adv
- 563 Funct Mater 2018, 28.
- 564 44. Guo J, Xu Q, Zheng Z, Zhou S, Mao H, Wang B, Yan F: Intrinsically Antibacterial
- Poly(ionic liquid) Membranes: The Synergistic Effect of Anions. ACS Macro Lett 2015,
- 566 4:1094–1098.
- 567 45. Benčina M, Mavrič T, Junkar I, Bajt A, Krajnović A, Lakota K, Žigon P, Sodin-Šemrl S,
- Kralj-Iglič V, Iglič A: The Importance of Antibacterial Surfaces in Biomedical
- Applications. Adv Biomembr Lipid Self-Assembly 2018, 28:115–165.
- 570 46. Pearson HA, Urban MW: Simple click reactions on polymer surfaces leading to

- antimicrobial behavior. *J Mater Chem B* 2014, 2:2084–2087.
- 572 47. Rajapaksha RDAA: Self-assembling smart materials for biomaterials applications.
- 573 Elsevier Ltd; 2020.
- 574 48. Gold K, Slay B, Knackstedt M, Gaharwar AK: Antimicrobial Activity of Metal and
- Metal-Oxide Based Nanoparticles. *Adv Ther* 2018, 1:1–15.
- 576 49. Yang X, Chung E, Johnston I, Ren G, Cheong YK: Exploitation of antimicrobial
- 577 nanoparticles and their applications in biomedical engineering. *Appl Sci* 2021, 11.
- 578 50. Lebeaux D, Ghigo J-M, Beloin C: Biofilm-Related Infections: Bridging the Gap between
- 579 Clinical Management and Fundamental Aspects of Recalcitrance toward Antibiotics.
- 580 *Microbiol Mol Biol Rev* 2014, 78:510–543.
- 51. Varier KM, Gudeppu M, Chinnasamy A, Thangarajan S, Balasubramanian J, Li Y,
- Gajendran B: *Nanoparticles: Antimicrobial Applications and Its Prospects*. 2019.
- 583 52. Kumar R, Howdle S, Münstedt H: Polyamide/silver antimicrobials: Effect of filler types
- on the silver ion release. J Biomed Mater Res Part B Appl Biomater 2005, 75:311–319.
- 585 53. Favia P, Vulpio M, Marino R, D'Agostino R, Mota RP, Catalano M: Plasma-deposition of
- Ag-containing polyethyleneoxide-like coatings. *Plasmas Polym* 2000, 5:1–14.
- 54.** Ren T, Yang M, Wang K, Zhang Y, He J: CuO Nanoparticles-Containing Highly
- Transparent and Superhydrophobic Coatings with Extremely Low Bacterial Adhesion and
- Excellent Bactericidal Property. ACS Appl Mater Interfaces 2018, 10:25717–25725.
- Using spray-coating of hydrophobic silica sol and CuO nanoparticles, Ren et al. [54]
- developed a transparent and superhydrophobic antibacterial coating against *Escherichia*
- 592 *coli* and *E. coli*.
- 593 55. Zaporojtchenko V, Podschun R, Schürmann U, Kulkarni A, Faupel F: Physico-chemical

and antimicrobial properties of co-sputtered Ag-Au/PTFE nanocomposite coatings. 594 Nanotechnology 2006, 17:4904-4908. 595 Beier O, Pfuch A, Horn K, Weisser J, Schnabelrauch M, Schimanski A: Low temperature 596 56. deposition of antibacterially active silicon oxide layers containing silver nanoparticles, 597 prepared by atmospheric pressure plasma chemical vapor deposition. Plasma Process 598 599 Polym 2013, 10:77–87. Gerullis S, Pfuch A, Spange S, Kettner F, Plaschkies K, Küzün B, Kosmachev P V., 600 Volokitin GG, Grünler B: Thin antimicrobial silver, copper or zinc containing SiOx films 601 on wood polymer composites (WPC) applied by atmospheric pressure plasma chemical 602 vapour deposition (APCVD) and sol-gel technology. Eur J Wood Wood Prod 2018, 603 76:229–241. 604 Using APCVD and sol-gel technology, Gerullis et al. examined the structural morphology, 605 elemental composition, and antibacterial characteristics of Zn, Ag and Cu-incorporated thin 606 functional silicon oxide (SiO₂) films deposited on wood polymer composites (WPC). 607 BacTiter-Glo® tests revealed that Zn, Ag and Cu-containing layers had substantial 608 bactericidal effects against E. coli. 609 Dudek K, Dulski M, Losiewicz B: Functionalization of the NiTi shape memory alloy 610 58. surface by HAp/SiO2/Ag Hybrid coatings formed on SiO2-TiO2 glass interlayer. 611 Materials (Basel) 2020, 13. 612 613 59. Deng X, Leys C, Vujosevic D, Vuksanovic V, Cvelbar U, De Geyter N, Morent R, Nikiforov A: Engineering of composite organosilicon thin films with embedded silver 614 nanoparticles via atmospheric pressure plasma process for antibacterial activity. Plasma 615 616 Process Polym 2014, 11:921–930.

- 617 60. Wiesenmueller S, Cierniak P, Juebner M, Koerner E, Hegemann D, Mercer-Chalmers
- Bender K: Tailored antimicrobial activity and long-term cytocompatibility of plasma
- polymer silver nanocomposites. *J Biomater Appl* 2018, 33:327–339.
- 620 61.** Makvandi P, Esposito Corcione C, Paladini F, Gallo AL, Montagna F, Jamaledin R,
- Pollini M, Maffezzoli A: Antimicrobial modified hydroxyapatite composite dental bite by
- stereolithography. *Polym Adv Technol* 2018, 29:364–371.
- Pollini et al. [61] introduced the stereolithographic synthesis of antimicrobial composites
- made of hydroxyapatite (HAp) for dental applications. The inclusion of commercial micro
- HAp decreased bacterial and fungal growth in a dose-dependent manner.
- 626 62.** Babayevska N, Przysiecka Ł, Nowaczyk G, Jarek M, Järvekülg M, Kangur T, Janiszewska
- E, Jurga S, Iatsunskyi I: Fabrication of gelatin-zno nanofibers for antibacterial
- applications. *Materials (Basel)* 2021, 14:1–12.
- Nataliya et al. used a wet chemical method to generate GNF@ZnO composites as an
- antibacterial formulation against *P. fluorescence* and *S. aureus*.
- 631 63. Trimukhe AM, Pandiyaraj KN, Tripathi A, Melo JS, Deshmukh RR: *Plasma surface*
- 632 *modification of biomaterials for biomedical applications*. 2017.
- 633 64. Nikiforov A, Deng X, Xiong Q, Cvelbar U, Degeyter N, Morent R, Leys C: Non-thermal
- plasma technology for the development of antimicrobial surfaces: A review. J Phys D
- 635 *Appl Phys* 2016, 49.
- 636 65. Sardella E, Favia P, Gristina R, Nardulli M, d'Agostino R: Plasma-aided micro- and
- 637 nanopatterning processes for biomedical applications. *Plasma Process Polym* 2006,
- 638 3:456–469.
- 639 66. Tucker BS, Aliakbarshirazi S, Vijayan VM, Thukkaram M, De Geyter N, Thomas V:

- Nonthermal plasma processing for nanostructured biomaterials and tissue engineering
- scaffolds: A mini review. *Curr Opin Biomed Eng* 2021, 17:100259.
- 642 67. Hartl H, Li W, Michl TD, Anangi R, Speight R, Vasilev K, Ostrikov KK, MacLeod J:
- Antimicrobial adhesive films by plasma-enabled polymerisation of m-cresol. *Sci Rep*
- 644 2022, 12:1–10.
- 645 68. Despax B, Raynaud P: Deposition of "polysiloxane" thin films containing silver particles
- by an RF asymmetrical discharge. *Plasma Process Polym* 2007, 4:127–134.
- 647 69. Peter T, Rehders S, Schürmann U, Strunskus T, Zaporojtchenko V, Faupel F: High rate
- deposition system for metal-cluster/SiOxCy Hz-polymer nanocomposite thin films. J
- Nanoparticle Res 2013, 15.
- 650 70. Spange S, Pfuch A, Wiegand C, Beier O, Hipler UC, Grünler B: Atmospheric pressure
- plasma CVD as a tool to functionalise wound dressings. J Mater Sci Mater Med 2015,
- 652 26:1–9.
- 653 71.* Kuzminova A, Beranová J, Polonskyi O, Shelemin A, Kylián O, Choukourov A,
- Slavínská D, Biederman H: Antibacterial nanocomposite coatings produced by means of
- gas aggregation source of silver nanoparticles. *Surf Coatings Technol* 2016, 294:225–230.
- Kuzminova et al. fabricated silver nanoparticle-based antibacterial nanocomposite coatings
- using GAS of AgNPs and PECVD. The quantity of AgNPs as well as matrix material
- characteristics (chemical composition or wettability) could be modulated to modify the Ag⁺
- release kinetics, which determines the efficiency of antibacterial activity.
- 660 72. Blanchard NE, Naik V V., Geue T, Kahle O, Hegemann D, Heuberger M: Response of
- Plasma-Polymerized Hexamethyldisiloxane Films to Aqueous Environments. *Langmuir*
- 662 2015, 31:12944–12953.

- 663 73. Deng X, Nikiforov A, Vujosevic D, Vuksanovic V, Mugoša B, Cvelbar U, De Geyter N,
- Morent R, Leys C: Antibacterial activity of nano-silver non-woven fabric prepared by
- atmospheric pressure plasma deposition. *Mater Lett* 2015, 149:95–99.
- 666 74. Deng X, Yu Nikiforov A, Coenye T, Cools P, Aziz G, Morent R, De Geyter N, Leys C:
- Antimicrobial nano-silver non-woven polyethylene terephthalate fabric via an atmospheric
- pressure plasma deposition process. *Sci Rep* 2015, 5:1–10.
- 669 75. Chang Y Bin, Tu PC, Wu MW, Hsueh TH, Hsu SH: A study on chitosan modification of
- polyester fabrics by atmospheric pressure plasma and its antibacterial effects. *Fibers*
- 671 *Polym* 2008, 9:307–311.
- 672 76. Karam L, Jama C, Mamede AS, Fahs A, Louarn G, Dhulster P, Chihib NE: Study of nisin
- adsorption on plasma-treated polymer surfaces for setting up materials with antibacterial
- 674 properties. *React Funct Polym* 2013, 73:1473–1479.
- 675 77. Duday D, Vreuls C, Moreno M, Frache G, Boscher ND, Zocchi G, Archambeau C, Van
- De Weerdt C, Martial J, Choquet P: Atmospheric pressure plasma modified surfaces for
- immobilization of antimicrobial nisin peptides. *Surf Coatings Technol* 2013, 218:152–161.
- 678 78. Kostić M, Radić N, Obradović BM, Dimitrijević S, Kuraica MM, Škundrić P: Silver-
- loaded cotton/polyester fabric modified by dielectric barrier discharge treatment. *Plasma*
- 680 *Process Polym* 2009, 6:58–67.
- 79. Theinkom F, Singer L, Cieplik F, Cantzler S, Weilemann H, Cantzler M, Hiller KA,
- Maisch T, Zimmermann JL: Antibacterial efficacy of cold atmospheric plasma against
- Enterococcus faecalis planktonic cultures and biofilms in vitro. *PLoS One* 2019, 14:1–15.
- 80. Boekema B, Stoop M, Vlig M, van Liempt J, Sobota A, Ulrich M, Middelkoop E:
- Antibacterial and safety tests of a flexible cold atmospheric plasma device for the

stimulation of wound healing. Appl Microbiol Biotechnol 2021, 105:2057–2070.

Declaration of interests

☑ The authors declare that they have no known competing financial interests or personal relationships hat could have appeared to influence the work reported in this paper.
□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: