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Abstract

Contamination transmission in biomedical and healthcare settings is a significant challenge due to
inadequate microbiological protection from anti-infection agents and disinfectants. Antimicrobial
surfaces have been used as a current hygiene method to combat the growing microbes.
Interestingly, several approaches have been developed to block biofilm formation by integrating
the biocidal agents. Currently, the primary focus is on creating a contact-killing surface or a surface
that may reduce the microbial load to a level below threshold. This review focuses on introduction
of antimicrobials into the surfaces through various science-based strategies for reducing the
bacterial contamination within different medical services environment. This incorporates
effectively settled methods, and strategies consolidating inorganic and natural biocides with
bactericidal properties into the polymer matrix and surface coatings to reduce the bacterial
contamination.

Keywords: Biomedical; polymers; biocides; coatings; surface modification; bactericidal,

antimicrobial
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1. Introduction
The quality of life is gradually improving as a result of advanced surgical procedures and the
implantation of biomedical devices [1]. Currently, implants find their applications in various parts
of the body like orthopedic, cardiovascular, dental, and many others. To develop these implants,
diverse materials have been studied such as metals, metallic alloys, ceramics, polymers, polymer
composites, and others [2]. Healthcare systems assay to limit the contamination hazard on these
temporary implants by taking preventive measures at regular intervals [3]. These safeguard
substitution plans decree appreciable expenses to medical and healthcare systems. Enhanced
methodologies in sterilization have much diminished the recurrence of the initial phase
contaminations in implants. The prevalence of diseases that developed after several weeks or
months after surgery poses to be a major problem. Such crucial diseases might have occurred by
the planktonic microscopic organisms coursing in the vascular framework. Regardless of the
significant attempts in fabricating implantable biomedical devices, bacterial diseases persist due
to bacterial attachment and their growth on the surfaces [4]. In fact, bacterial adhesion on the
implants is regarded as one of the most significant global healthcare challenges, owing to its risk

of severe hazardous infections.
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To reduce pathogenic bacteria-associated complications, bacterial adherence and
colonization on the implants and devices should be considerably reduced. Many researchers
focused on engineering the surface chemistry of the materials by making a hostile environment for
bacterial adhesion and growth creating an antibacterial surface [5]. Generally, the antibacterial
surfaces on the implants can be achieved by precise release of antibacterial agents, maintaining a
bactericidal or antifouling surface using contact killing strategies [6]. Antibacterial coatings or
antifouling polymers were also used as antibacterial strategies to mitigate the bacterial
colonization. Several surface coatings have been developed for implants and devices using
embedded antimicrobial nanoparticles, functionalized polymers, and inorganic-organic hybrid
materials [7]. The bacterial species are usually targeted with the functional molecules through
antifouling surfaces with antibacterial agents [8]. Due to the advantages of chemical modification,
diverse materials are being employed with relatively lower fabrication costs. Although functional
coatings demonstrate promising features, they usually undergo severe challenges like drug
resistance, delamination, and hydrolytic degradation. Biomimetics has influenced materials
science and engineering to aid the fabrication of advanced materials to mimic the native function
of tissues or organs [9]. Some of the natural surfaces that show excellent antimicrobial properties
prevent bacterial adhesion [10]. Apart from the natural surfaces, biomimicking can create the

synthetic structures that mimic the surfaces with an antibacterial effect[11].

Hospital patients are at risk of communicable diseases in addition to the infectious disorders
caused by microbes. Numerous individuals get sick while receiving the medical care as a result of
microorganisms found in the hospital settings, on the medical staff, or on medical equipment.
Nosocomial infection usually affects the patients and deteriorate their health and well being. The

implementation of successful antimicrobial coatings can reduce the morbidity of nosocomial
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infections caused due to the use of percutaneous, interventional, and implanted medical devices
such as implantable cardioverter defibrillators, coronary stents, artificial hips, and contact lenses

[12][13][14]

This review provides an expansive outline on bacterial contamination in the healthcare settings
and the use of antibacterial strategies to mitigate those issues. Functionalized polymers,
antimicrobial nanoparticle, and plasma surface modification as some of the science-based
strategies are innately concentrated. It also provides an overview of most recent developments on
antibacterial coatings, including the mechanism(s) by which the key component of the coating
inhibits the growth of the biofilm formation. The article ends with a viewpoint on strategies
implemented for biomedical and healthcare settings to protect from bacterial infections creating

an antibacterial coating with bactericidal properties.

2. Development of biofilm
A biofilm is a cluster of microbial communities of the cells that are attached to a surface and
embedded in a self-secreted matrix. This extracellular matrix consists mainly of the insoluble
polysaccharides like alginate, proteins, lipids, flagella, pili, and eDNA [15]. Bacterial adhesion to
a surface is dependent upon the surface topography and roughness. The variables affecting this
adhesion and biofilm formation are electrostatic interactions, van der waals forces, hydrophobicity,
and steric hindrance [16]. After adhering to a surface irreversibly, the microscopic organisms start
to increase their number, co-exist, and produce an insoluble network of exopolymers to form the
microcolonies. The development of a full-grown biofilm takes place, when the microcolonies are
infiltrated by another microbial species. Such mature biofilms present a threat to the host because

the microorganisms enclosed inside have the potential to detach and transmit the infections [17].
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The development of a mature biofilm is a complex process, which includes an initial irreversible

attachment, maturation I and II and finally, dispersion as shown in the Figure 1 [18].

Bacterial attachment Coadhesion and matrix formation

Matured biofilm formation Mutation

Figure 1. Schematic showing the development of a mature biofilm. Adapted with the permission

from [18].

Biofilms shield singular cells from hostile factors like antimicrobial agents, supplemental
limitations, and immunologic protection frameworks. Cells in a biofilm are contrasted in their
genotypic and phenotypic expression from those of freely the suspended cells and these
distinctions make them firmly resistant to antibiotics [19]. Aside from the immunity presented by
the matrix, microbes in biofilms can utilize other survival mechanisms to dodge the host immune
systems. These microbes can remain dormant and hidden from immune system and cause local
tissue harm, which may later lead to acute infection. Inside a biofilm, the microscopic organisms
can adjust to an absence of oxygen environment (anoxia) and supplement limitation by displaying

altered metabolism, protein production, and gene expression, which may lead to lower the
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metabolic rates and diminish the rates of cell division. These transformations make the microbes
more resistant to antimicrobial treatments by reducing the requirements for cellular functions that
the antimicrobials meddle with or by inactivating the antimicrobial targets. Synchronous
enactment of both natural and acquired immune responses in the host may happen during the
biofilm contamination. Neither of them can kill the biofilm organism. Instead, they cause a
definitive increase in the collateral tissue damage. In this way, the diseases related with biofilms
are extremely persistent diseases grow gradually, rarely get resolved by the host’s immune system,
and respond inconsistently to antimicrobial treatments [20]. In fact, they are more challenging than
the planktonic cells and have turned into a major cause of deaths around the world. Predoi et al.
[21] used chemical co-precipitation method to produce cerium doped hydroxyapatite (Ce-HAp)
powder Caio—xCex(PO4)s(OH)2 coatings with x = 0.05 (5Ce-HAp). The results of the antimicrobial
experiments demonstrated that the examined microbial strains of E. coli were successfully

prevented from forming colonies using 5Ce-HAp coatings and solutions.

The simplest biofilm preventive measures have aimed to eliminate adhering microbes
(antimicrobial) or to prevent microbial adhesion (antifouling). The excessive use of the antibiotics
has led to the development of several pathogens that are resistant to antibiotics. Thus, antimicrobial
therapy is becoming an increasingly challenging task to counter the contamination and infection.

Hence, alternative strategies need to come up to tackle these problems.

3. Antibacterial surfaces for biomedical and healthcare settings
Desired biomaterials should possess certain biological properties that are related to the surface
characteristics like biocompatibility, biodegradability, non-cytotoxic and anti-infective properties.
The conventional understanding of surface interaction of bacterial pathogens can significantly

affect the development of novel biomaterial-based implants. Bacterial cell adhesion and
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proliferation can be controlled by engineering their surface properties. To prevent the development
of biofilms on the surfaces of biomaterials, a surface must be capable of preventing bacteria's initial
adhesion, eliminating any bacteria that have managed to penetrate the anti-adhesion barrier, and
removing any dead bacteria that is present over the surface. It is crucial to comprehend the
formation of these biofilms in detail. Excellent substrates for bacterial adhesion, colonization, and
ultimately the biofilm formation are the biomaterials with coarse or permeable surfaces. Figure 2
illustrates the cicada (2a) and dragonfly (2b and 2¢) wings in which an individual gram-negative
bacteria (P. aeruginosa, B. catarrhalis, E. coli, and P fluorescens) have been observed to sink and
spread between nanopillars of the wing surfaces. Cell susceptibility did not appear to be influenced
by the shape of the cells. The physical nanoprotrusions on the wing surface can harm and stretch
microbial cells, which causes them to lyse and die [22][23][24]. This can give rise to
the attachment and mechanical rupture of the bacterial cell wall, resulting in cell death within 20
minutes[25]. Dragonfly wings have also been found to fight gram-negative and gram-positive
bacteria. The capillary design of the dragonfly wing nanoprotrusions causes increased cell wall
stress and deformation, resulting the cell wall rupture and subsequent cytosol fluid leakage as
shown in the areas marked with red color of figure 2¢. To demonstrate the surface interaction, a
typical (cicada wing) spatiotemporal 3D model for nanopillar and bacterial cell interaction is

presented in figure 2d.
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Figure 2. (a) Cicada forewing structural physiology and SEM image of a P. aeruginosa cell sliding
between the nanopillars on the wing surface, (b) Common sand dragonfly wing images from
optical microscope, (¢) E. coli bacteria captured by SEM adhering to a dragonfly wing's uncoated
nanopillar surface in various stages (the bacteria attachment are marked by numbers 1, 2, 3 and 4)
of death, with a red arrow highlighting the darker portion induced by cellular extravasation
overflowing the nanopillars, and (d) 3D spatiotemporal model of cicada wing nanopillar

interactions with rod-shaped bacterial cells. Adapted with the permission from [26].

Based on a near-infrared (NIR)-responsive organic/inorganic hybrid coating made up of gold
nanorods and polyethylene glycol (PEG), Zhao et al. [27] developed a functionalized polyurethane
surface (PU-Au-PEG) with antifouling and photothermal bactericidal capabilities. Under 808 nm
NIR irradiation, the PU-Au-PEG demonstrated significant photothermal bactericidal capabilities,
particularly against the multidrug-resistant bacteria, and demonstrated a high efficiency to resist
the bacterial adhesion. Superhydrophobic surfaces can maintain optimum air pockets in
microstructures to reduce the amount of water droplet contact with the materials and avoid

microbial contamination[28]. Strong interactions between hydrophilic materials on the water and
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the surface results in the formation of super hydrophilic anti-adhesion surfaces. Most antibacterial
surfaces perform two or more functions simultaneously killing and resistance or release. However,
the bacterial resistance and biocompatibility frequently conflict with one another. Therefore, it is
necessary to improve the composition of the surface to achieve an optimal performance. To induce
the bacterial release, most antibacterial surfaces use non-specific external stimuli (including
temperature, light, and salt ions)[29]. It is necessary to focus on the development of antibacterial
surfaces with self-stimulating capability by using endogenous triggers with biological specificity
to boost the material surface efficiency. Chemical modification drives most of the bactericidal
strategies. On the other hand, regulating bacterial adhesion also depends on the inclusion of surface
microscale topographical factors. By manipulating the surface topography, surface chemistries,
and mechanical properties, polymers with multiple length scales can be combined into various
molecular and supramolecular structures, leading to the production of antimicrobial surfaces that
can be used in a range of biomedical applications [30]. In accordance with how the bacteria are
eradicated, bactericidal surfaces can be divided into two categories: contact-based surfaces and
release-based surfaces. Recently, the antibacterial surface with dual functionality has received a
lot of attention. Antibacterial coatings may reduce bacterial colonization and as a result the
frequency of healthcare-associated infections could be minimized. Antibacterial coatings either
limit the growth of bacteria through antifouling coatings or eliminate the bacteria that are already
adhered to the surface with the help of bactericidal coatings. Any bacteria that can adhere to an
antifouling coating will grow, but on the surfaces with bactericidal coatings, the accumulation of
dead bacteria and other debris leaves the room for new microorganisms to colonize [31]. It is
crucial to design an antibacterial coating specifically for the application for which it is intended,

both in terms of the coating's effectiveness and durability over the intended period of application.
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For instance, orthopedic implant’s osseointegration may be severely impacted by the antifouling
coatings, and high concentrations of cationic bactericidal polymers that may cause the hemolysis
and platelet activation in a blood-contacting environment[32]. It is reasonable to assume that
various biomedical applications will necessitate differing ideal ratios of bactericidal and

antifouling components in the coating in order to achieve a high performance.

3. Science based strategies for antibacterial surface

3.1 Functionalized polymers as surface coatings

Bacterial adhesion and colonization take place when the surface of the implants is covered by the
proteins adsorbed on to their surfaces. The antibacterial surface can be optimized by implementing
the antifouling properties that repel these proteins from the surfaces. Clinical contaminants present
one of the main impediments related to the implantation of any biomaterial after a medical
procedure. Chua et al. [33] explored the utilization of polyelectrolyte multilayers (PEMs)
involving hyaluronic acid (HA) and chitosan (CH) to give antibacterial properties on titanium (T1)
substrate. Yazici et al. [34] designed an engineered chimeric peptides with freely displayed
antimicrobial domains as an antibacterial surface for application in orthopedic implants. Christoph
et al. [35] developed a mussel polymer-based substrate-independent spray coating method for
modifying the substrate using mussel-inspired dendritic polyglycerol (MI-dPG). This is a
straightforward strategy for setting up a superhydrophobic, water-repellent coating by
coformulation of the mussel-inspired spray coating with hydrophobic nanoparticles. Silver
nanoparticles (AgNPs) were embedded on to the surface via a post-functionalization technique to
boost the antibacterial properties. Wang et al. [36] developed a functional polyurethane
composition (UP-C12-50-T) using the blend of hybrid soft block polyurethane and a traditional

biomedical grade polyurethane (Tecoflex). Human mesenchymal stem cell (MSC) growth next to
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and under UP-C12-50-T-10 revealed an outstanding biocompatibility and antibacterial properties

with E. coli and S. epidermidis.

MI-dPG solution

%
o

Substrate Cross-Linking Evaporation sMI1-dPG coated

Figure 3. Schematic representation of the mussel-inspired dendritic polyglycerol (MI-dPG) spray

coating. Adapted with the permission from [35].

Like the regular proteins, the synergistic impact of the catechol and amine functionalities
is also liable for solid attachment to the substrate (Figure 3). The multivalent and dendritic
polyglycerol platform of the MI-dPG upgrades the surface after crosslinking of the coating and
proves as an important coating technology to fight against the implant-related infection [37]. Due
to its high corrosion resistance, mechanical strength, and good biocompatibility, Ti is generally
used in orthopedic and dentistry implant prostheses [38]. However, the protein adsorption and
bacterial fouling post implantation are some of the issues of these implants. The bacterial fouling
on a superficial level of implants might cause critical problems and makes the bacterial panels
tolerant [39]. Therefore, in order to prevent the biofilm development and bacterial fouling on Ti-
based implantable clinical devices, several procedures are implemented [40]. Several antibacterial
coatings have been accounted for by utilizing the antimicrobial silver [41], peptides [42],

photodynamic agents [43], and cationic polymers [44].
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The surfaces with unique properties such as superhydrophilicity or super hydrophobicity
display microbial resistance through their antifouling component. Generally, a boundary is created
between these surfaces to block direct contact between the surfaces and the microbes.
Superhydrophilicity can be accomplished by covering the surface using nanostructures or covering
of hydrophobic surfaces with a hydrophilic material [45]. The hydrophobic nature of certain
polymers like polycaprolactone (PCL), Poly(lactic acid) (PLA), polystyrene (PS), which are
exposed with organic frameworks, have shown high vulnerability for bacterial biofilm
development. The hydrophobicity of these polymer surfaces are adjusted by different surface
modifications techniques, like chemical etching, acid treatment, leaching, and others to overcome

the bacterial adhesion [46].

3.2 Composite films with antimicrobial nanoparticles

Antibacterial nanoparticles are the materials with an inbuilt capability of fighting against microbes.
These nanoparticles are used as various carriers for other biocidal agents [47]. The benefits of
these nanoparticles are higher surface-to-volume ratio which can maintain optimized antibacterial
efficacy because of their ultra-size and the possibility to functionalize with various other
biomolecules [48]. The nanoparticles are proved to offer antimicrobial properties to various
biomedical implants, some of the mechanisms such as reactive oxygen species (ROS) , dissolved

metal ions, physical interaction, internalization into the cells are shown in figure 4 [49].
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Figure 4 The mechanism of action of antibacterial metal nanoparticles in a composite film.

Adapted with the permission from [49]

These nanoparticles do not act like standard antibiotics. Instead, they directly trigger the responses
that create a communication with the cell wall of bacteria pertaining to the prevention of biofilm
formation[50]. The AgNPs are viewed as one of the best antibacterial agents amongst the metal
nanoparticles[51]. The cell membrane disruption of the bacterial cells is caused by the adsorption
of AgNPs leading to a depolarization of the bacterial cell wall. ATP production and DNA

replication are hindered by the ROS generated by the infiltration of AgNPs. [52].

Composite films with AgNPs could offer an excellent antibacterial property to the surface.
Favia et al. [53] considered the plasma-deposition of silver containing polyethyleneoxide (PEO)-

like coatings as an antibacterial surface. Actinometry revealed a correlation between the amount
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of silver (Ag) embedded in the coatings and sputtered in the discharge, which could be used to
control the in situ deposition. By spray-coating hydrophobic silica sol and copper oxide (CuO)
nanoparticles, Ren et al. [54] developed a transparent and superhydrophobic bactericidal coating.
The superhydrophobic properties of the formulation prevented Escherichia coli and E. coli from
adhering to it by up to 3.2 log cells/cm? as compared to a bare glass. Furthermore, the live/dead
staining results demonstrated that the coating's performance against E. coli was outstanding when
applied as prepared. Zaporojtchenko et al. [55] used co-sputtering of noble metals with
polytetrafluorethylene (PTFE) to create antibacterial metal/polymer nanocomposite coating with
thin metallic rich surface layer. The S. aureus and S. epidermidis were utilized as test microbes for
evaluation of antibacterial efficacy of these surfaces. 1% of gold (Au) could substantially increase
the release rate of Ag” ions. Ag is more dynamic than Au, and the presence of Au improves Ag"
particle arrangement. The functional parameters such as power, and pressure applied to the
magnetrons control the properties of the nanocomposite films. Beier et al. [56] used atmospheric
pressure plasma chemical vapor deposition (APCVD) to synthesize the antibacterial thin films.
The results of antibacterial test using E. coli showed that the coatings could have an excellent
antibacterial effect. In a study employing APCVD and sol-gel technology, Gerullis et al. [57]
examined the structural morphology, elemental composition, and antibacterial characteristics of
zink (Zn), Ag and Cu incorporated thin silicon oxide (Si0z2) films deposited on wood polymer
composites (WPC). BacTiter-Glo® tests revealed that Zn), Ag and Cu-containing layers had
substantial bactericidal effects against E. coli. Dudek et al. [58] introduced a method to enhance
the antibacterial performance of the Nickel-titanium (NiTi) alloy to prolong its effectiveness for
healthcare application. The colloidal suspension of 450nm particle size of tricalcium phosphate

(TCP) and the Ag/SiO2 nanocomposite could produce structurally distinctive calcium
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phosphosilicate coating via electrophoretic deposition (EPD). Deng et al. [59] demonstrated a
single-step fabrication of antibacterial nanocomposite thin film with imbedded AgNPs. The
APCVD technique was used to feed AgNPs directly into the discharge zone. Antibacterial tests
over these films using E. coli and S. aureus demonstrated an excellent antibacterial property and
the method can be used to overcome the issues of device related contamination. Wiesenmueller et
al. [60] developed a method to create a cytocompatible and antibacterial coating with long-term
antibacterial effect. The results indicated the tunable release of Ag is necessary to maintain
appropriate cytocompatibility and superior antibacterial activity of the modified surface. Ag-free
top layer was deposited on an Ag-rich base layer, which resulted a better control over Ag" release
behavior. Here, the Ag-rich layer serves as an Ag-repository and the burst-release of Ag" ions from
the Ag-reservoir is prevented by the top layer that acts as a diffusion barrier. The nanocomposite
films were tested using NIH3T3 mammalian cell line as well as Gram-negative (P. aeruginosa)
and Gram-positive (S. aureus) bacterial strains. The results demonstrated a tunable and log-term
antimicrobial activity of the films, while retaining an appropriate cytocompatibility over testing
duration. Pollini et al. [61] introduced stereolithographic synthesis of antimicrobial composites
made of HAp for dental applications. Up to 5% filler content resulted in an increase in flexural
strength of the composites. In comparison to the neat samples, the inclusion of uniformly
distributed commercial HAp decreased the bacterial (S. aureus, Escherichia coli) and fungal (C.
albicans) growth in a dose-dependent manner. Nataliya et al. [62] used wet chemical method to
generate gelatin nanofibers (GNF) with zinc oxide (ZnO) composites (GNF@ZnO composites).
The GNF@ZnO composites demonstrated antibacterial activity against P. fluorescence and S.

aureus.
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The intrinsic antibacterial properties of metal and metal oxide nanoparticles could be used
to control the bactericidal effectiveness of the composite films. These composite films with
nanobiocides could be used for implant or catheter coatings and wound dressings for controlling

the bacterial infection.

3.3 Antibacterial surfaces through plasma surface modification

Low temperature plasma (LTP) is a quick and effective disinfection method unrestricted by
bacterial resistance mechanisms. Hence, it offers a novel approach to overcome the medication
resistance. Using LTP surface modification technique, antibacterial surface and coating have been
developed in a number of ways [63]. The plasma surface treatment creates the surface
functionalities (anchoring sites for loading various antimicrobials) and subsequent grafting of anti-
bacterial polymers/peptides. The design and creation of such surfaces that either prevent bacterial
adhesion or resist biofilm formation are the major research strategies. The surface functionalization
using ammonia plasma or amine plasma are considered as the most appropriate plasma surface
treatment strategies, which are quite like cationic disinfectants (contact-killing by forming
quaternary ammonium salts). The plasma surface modification has been extensively studied for
engineering anti-biofouling surfaces. Further, for some of the polymers, the shelf-life of plasma
modified surface is restricted by the issue of surface ageing (hydrophobic recuperation) after
plasma treatment [64]. The deposition of antibacterial nanocomposite films on a surface can
generate the desired antimicrobial activity. Generally, in these films (polymer matrix filled with
the nanoparticles) can be prepared utilizing the plasma-sputtering of a bulk metal to directly
incorporate the nanoparticles into the polymer [65]. The plasma electrolytic oxidation of metal

implants and plasma enhanced reduction of metals (Ag, Au, Cu etc.) directly onto polymer
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membranes were reported by our collaborative team at UAB [66]. The common plasma process

methodology of different biomaterial surface is shown in the figure 5.
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Figure 5: Surface activation of biomaterials through plasma and impact of modified surface to

cell behavior [67]

In recent years, plasma surface modification technologies have been used as a tool to create
a variety of antibacterial surfaces. Despax et al. [68] investigated Ag-containing plasma
polymerized siloxane films. The hexamethyldisiloxane (HMDSO) mass stream rate was used to
screen the balance between the Ag sputtering and plasma polymerization. Under various plasma
process conditions, the nanocomposite films had their Ag content ranging from 0-32.5%. Peter et
al. [69] developed nanocomposite materials with an Ag nanocluster and a SiOxCyHz-polymer
matrix. A gas aggregation cluster source (GAS) could produce Ag nanoclusters with sizes ranging
from 2-20 nm, and typically it could deposit them quickly through a concentrated pulse. In order
to incorporate antibacterial characteristics, Spange et al.[70] functionalized the wound dressings
employing APCVD method. The functionalized dressings demonstrated a very strong antibacterial

effect against S. aureus and K. pneumoniae, via direct contact killing mechanism. Kuzminova et
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al. [71] fabricated silver nanoparticle-based antibacterial nanocomposite coatings using GAS of
AgNPs and plasma enhanced-CVD (PECVD) of the matrix material. The quantity of AgNPs as
well as matrix material characteristics (chemical composition or wettability) could be modulated
when GAS and PECVD were used. This further impacts the Ag” release kinetics, which determines
how effectively the composites kill the microbes. Blanchard et al. [72] developed plasma-
polymerized HMDSO (ppHMDSO) film in which the retention of carbon groups is reduced by the
addition of oxygen (Oz), resulting the formation of a more inorganic, hydrophilic ppSiOx film.
The developed films could be investigated for their antibacterial properties. Deng et al. [73] [74]
developed the method to deposit AgNPs over the polyethylene terephthalate (PET) matrix using
the air pressure deposition method. AgNPs could be uniformly immobilized on the PET surface
and the thickness of the deposition could control the release of AgNPs and the antibacterial
properties of the PET film.

3.4 Plasma-assisted surface grafting of antibacterial components

LTP could be used as a pre-treatment step to modify the material or fabric surfaces for subsequent
grafting. Chang et al. [75] used plasma pre-treatment to accelerate chitosan grafting on polyester
surfaces. The textures were first activated on the surface using argon/oxygen (Ar/O2) dielectric
barrier discharge (DBD) plasma before being exposed to the atmosphere for oxidation. The fabrics
were immersed in chitosan solvent for chitosan grafting. The grafted surface exhibited a better
biocompatibility with fibroblast cells and antibacterial efficacy against B. subtilis and S. aureus.
Karam et al. [76] altered the polyethylene by using Ar/O2 plasma, nitrogen (N2) plasma and
plasma-induced grafting of acrylic acid (AA) to examine the determining factors for adsorption.
As a reactive layer for the immobilization of antibacterial nisin peptide on steel surfaces, Duday

et al. [77] utilized the plasma polymerized organosilicon coatings to create antibacterial Ag-
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stacked cotton/polyester textures. Kostic et al. [78] treated the raw fabrics with air DBD plasma
prior to submerge in an aqueous silver nitrate (AgNO3) solution. The fabric could absorb Ag" to
its surface and the adsorption to the textures was impacted by the treatment time and aging time.
In addition to the utilization of plasma-engineered surfaces for antibacterial strategies
(bactericidal-agent release surfaces, contact-killing surfaces, and anti-biofouling surfaces),
plasma-active antibacterial surfaces are gaining much attention due to the emergence of portable
cold atmospheric plasma systems [79]. In order to treat chronic wounds, Boekema et al. [80]
created an atmospheric pressure surface plasma generator and established it's in vitro and in vivo

reliability and efficacy in bacterial cell reduction (Figure 6).

d
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electrode f T
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Layers of
IEE /human skin

Reference

electrode Plasma pad

Figure 6. Antibacterial and safety test of a flexible cold atmospheric plasma device for chronic
wound healing. a. The plasma device consisting of the plasma driving unit (plasma pulser) and

plasma pad; b. plasma pad with scale in cm. Plasma pad showing the side with prefabricated holes
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that is in contact with the skin; ¢. plasma is generated in the small holes; d. schematic diagram of
device for the treatment of samples on chicken meat as a support layer; layers of human skin (0.7
mm) were used to increase the distance between sample and plasma; e. schematic diagram of

device (HV: high voltage; CEM: collagen elastin matrix). (Adapted from [80])

4. Conclusion and future scope
The engineered strategies for creating an antibacterial surface with bactericidal properties using
functionalized polymeric coatings, nanoparticle and plasma-based surface modification are
discussed. It is witnessed in most of the developments that the biofilm development may be
restricted by restraining introductory attachment of the bacteria. The current research endeavors
are coordinated towards the killing or diminishing bacterial colonies on implants and medical
devices through the bactericidal properties of the surface. It is important to note that antibacterial
agent release in general, are neither a remedy nor a guaranteed method. Instead, they need to be
considered carefully as a component of a coordinated effort to reduce established risk factors for
pathogenic bacteria. However, several significant obstacles need to be addressed before release-
based coatings can be effectively used to combat the infections. The duration and kinetics of
antibacterial administration varies depending on the application. First- or second-order kinetics
govern the typical release patterns that are in use today, which typically involve an initial release
followed by a decreasing downstream dispersion that lasts anywhere from a few hours to several
days. An antibacterial antibiotic that releases quickly and in a high dose could initially seem
favorable. It offers antibacterial defense throughout the early postoperative period, which is
thought to pose the greatest risk of infection and prevents bacterial resistance emergence. The
long-term release is often required in cases of revision or second surgery, as the tissues around the

primary implant are regularly contaminated. Currently, it is extremely difficult to create the
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coatings that keep released antibacterial component levels within the therapeutic window,
sufficient to kill bacteria but low enough to prevent harm to eukaryotes. Therefore, creative
methods are required to manage and expand the release kinetics to provide new products or
services. Although, there have been many documented antibacterial techniques in the literature,
only a limited platforms have reached clinical testing and use. The inadequacy of realistic in vivo
settings in most of the current in vitro testing protocols for antibacterial materials is still a crucial
factor responsible for the failure of translational success. The current status and the future
challenges presented in this review will assist the researchers to foster the study and development

of advanced antibacterial coatings for biomedical and clinical settings.
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