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Abstract

As a superfamily of multifunctional enzymes that is mainly associated with xenobiotic adaptation, glutathione
S-transferases (GSTs) facilitate insects’ survival under chemical stresses in their environment. GSTs confer
xenobiotic adaptation through direct metabolism or sequestration of xenobiotics, and/or indirectly by
providing protection against oxidative stress induced by xenobiotic exposure. In this article, a comprehensive
overview of current understanding on the versatile functions of insect GSTs in detoxifying chemical compounds
is presented. The diverse structures of different classes of insect GSTs, specifically the spatial localization and
composition of their amino acid residues constituted in their active sites are also summarized. Recent
availability of whole genome sequences of numerous insect species, accompanied by RNA interference, X-ray
crystallography, enzyme kinetics and site-directed mutagenesis techniques have significantly enhanced our
understanding of functional and structural diversity of insect GSTs.
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Introduction

Insects constitute the largest class of animals
encompassing about 53% of all living species on our
planet [1]. Many of these species (about 45%) are
herbivores by partly or completely feeding on plants
and represent a significant proportion of pests or
pollinators for economically important crops.
Annually, the economic association of these
herbivores with food production in the U.S. exceeds
$50 billion [1, 2]. The arms race between plants and
insect herbivores have driven their coevolution for
hundreds of millions of years. To defend against
insect herbivores, plants produce a wide range of
chemical compounds, such as terpenoids, alkaloids,
anthocyanins, glucosinolates, phenols, quinones,
plant protease inhibitors (PIs), and herbivore-induced
plant volatiles (HIPVs). These chemicals -either
directly reduce herbivores fitness or indirectly attract
herbivores’ natural enemies and enhance the
effectiveness of their natural enemies [3, 4]. In
response, herbivores have simultaneously developed
countermeasures against plant defense compounds

[5]. Such adaptive capability has been proposed to be
co-opted by herbivore arthropod pests for pesticide
resistance when they are exposed to the pressure of
recently introduced synthetic pesticides [6-8]. The
similarities in modes of action between various
naturally occurring chemical substances released by
plants and synthetic pesticides further supports the
possible linkage between host plant adaptation and
currently prevailed pesticide resistance [9]. In fact,
more than 50% of all agrochemicals are natural
products or derived from natural products [10-12].

The xenobiotic adaptation in arthropods evolves
through multiple mechanisms (Figure 1) [13, 14],
including reduced penetration through the cuticle,
behavioral avoidance [15, 16], microbiome-mediated
detoxification [17-20], enhanced metabolic detoxifi-
cation [21-25], enhanced sequestration or excretion
[13, 19, 26, 27], and target site insensitivity [28-32].
Among them, enhanced metabolic detoxification and
target site insensitivity are the most common
mechanisms [5, 33-35].
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There are several categories of enzymes involved
in the metabolism of lipophilic xenobiotics and their
conversions into less toxic compounds exhibiting
increased hydrophilicity (Figure 2). The major
enzyme superfamilies comprise cytochrome P450
monooxygenases (P450s), glutathione S-transferases
(GSTs), carboxylesterases (COEs), ATP-binding
cassette (ABC) transporters, and UDP-glycosyl-
transferases (UGTs) [5, 26, 36-39] (Figure 2). In
general, three phases of metabolic detoxification of
xenobiotics have been often described in the
literature. Phase I detoxification includes oxidation,
reduction, and hydrolysis of lipophilic substances
carried out by a variety of enzymes. Phase Il reactions
involve conjugation of hydrophilic compounds (i.e.
glutathione) to xenobiotics and/or phase I products to
produce more hydrophilic products. In Phase III,
products of phases I and/or II are excreted from cells
by multidrug resistance proteins and other ABC
transporters [37]. Among metabolic detoxification
enzymes, GST is a family of multifunctional enzymes
that are ubiquitously present in eukaryotes and
prokaryotes, playing an important role in the
detoxification of numerous endogenous and
exogenous compounds. As phase Il enzymes, GSTs
detoxify chemical compounds through -catalyzing
nucleophilic attack by the thiol group in reduced
glutathione (GSH) on a wide range of electrophilic
substrates [37, 40, 41]. These substrates can be plant
allelochemicals, pesticides, environmental pollutants,
or byproducts of oxidative stress [40, 42]. GSTs are
also involved in the phase I detoxification process
such as dehydrochlorination of 1,1,1-Trichloro-2,2-
bis(p-chlorophenyl) ethane (DDT) to less toxic
1,1-Dichloro-2,2-bis(p-chlorophenyl) ethylene (DDE)
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Figure 1. Graphic representation of the xenobiotic adaptations in arthropods that have evolved through
different mechanisms. The thickness of the blue arrows represents the concentration of xenobiotics.

[22, 43, 44]. In addition, GSTs may participate in the
passive non-catalytic binding of substrates and
sequestration, which prevents the binding of
xenobiotics to their target proteins [45-48].

Besides triggering a sequence of events that
cause toxic outcomes, exposure to xenobiotics leads to
induced oxidative stress, generating an over
production of reactive oxygen species (ROS) [49] and
consequently triggering oxidative damage to
macromolecules such as proteins, lipids, and nucleic
acids [50, 51]. To cope with oxidative stress, arthro-
pods evolve antioxidant enzymes for removing excess
ROS to maintain intracellular redox homeostasis and
avoid oxidative damage. These antioxidant enzymes
include GSTs, catalases, superoxide dismutases,
thioredoxins, glutathione peroxidases, glutaredoxins
and thioredoxin peroxidases [52, 53] (Figure 2). Insect
GSTs not only are involved in xenobiotic conjugation
but also play roles in protection against oxidative
stress caused by exposure to pesticides [46], plant
allelochemicals [54], as well as various other abiotic
factors [55, 56]. Recent reviews had summarized
functions of insect GSTs in insecticide resistance [22,
57]. Therefore, the current review focuses on the
structural and functional divergence of GST enzymes
in arthropods and their potential roles in xenobiotic
adaptation.

Classification of GSTs

In eukaryotes and aerobic prokaryotes, GSTs are
grouped into at least four major protein families:
cytosolic GSTs, mitochondrial GSTs, microsomal
GSTs, and bacterial Fosfomycin-resistance proteins
[40, 42, 58-59]. Mitochondrial GSTs are known as the
kappa class in mammals and are mostly found in the
mitochondrial matrix [60] and peroxi-
somes [61]. Research has indicated that
mitochondrial GSTs in humans play
important roles in the detoxification of
lipid peroxide and lipid metabolism [61].
Microsomal GSTs belong to the MAPEG
family (membrane-associated proteins in
eicosanoid and glutathione metabolism),
which play a significant role in the
reduction of lipid peroxidation and
xenobiotic detoxification [62, 63]. In
contrast to mitochondrial and micro-
somal GSTs, cytosolic GSTs are present in
the cytoplasm and are soluble [44]. Both
microsomal and cytosolic GSTs are found
in arthropod species; however, the gene
numbers in microsomal GSTs are fewer
than the cytosolic GSTs (Table 1) [62, 64,
65]. Moreover, cytosolic GSTs, which are

typically 200-250 amino acids in length,
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form homo- or hetero-dimers, whereas microsomal
GSTs are smaller (nearly 150 amino acids) and form
trimers [62, 66]. Arthropod cytosolic GSTs are
classified into several classes according to the
sequence similarities and structural properties: Delta,
Epsilon, Omega, Sigma, Theta, Zeta, and unclassified
classes (Table 1). Among these classes, Omega, Sigma,
Theta, and Zeta classes are identified in most
metazoans [67] and some aerobic prokaryotes [58, 68].
Epsilon and Delta classes are insect-specific [62, 69].
These two classes of cytosolic GSTs have undergone
species-specific gene expansion to a great extent [41,
64, 65]. It was hypothesized that such expansion
might have occurred during adaptation to
environmental selection pressure. This expansion or
duplication of genes resulted in sequence variations
that expanded substrate functionality and/or
responses to environmental stresses [62, 70, 71].
Arthropod cytosolic GSTs are mainly involved in
xenobiotic adaptation. With genomes of arthropod
species available, gene number variation in each class
of cytosolic GSTs has been observed in different
species (Table 1). It has been hypothesized that a
smaller number of cytosolic GST genes in the
European honey bee (Aphis mellifera) than in other
insect species might be associated with pesticide
sensitivity and reduction in vitality [72]. Besides,
predator  Orius  laevigatus, —monophagous or
oligophagous agricultural pests Nilaparvata lugens and
Diaphorina citri possess a low number of Delta,
Epsilon, and total GSTs in their genomes (Table 1).
The deficit in the number of GST genes is likely due to
the low degree of exposure to xenobiotics in their

natural environment.

General structure of cytosolic GSTs

Typically, cytosolic GSTs are hetero- or
homo-dimeric proteins and are about 23-30 kDa per
monomer. It has been proposed that heterodimer
formation is restricted to both subunits being from the
same class due to dimer interface compatibility
interactions. Crystallographic evidence shows that
homodimer subunits are related by a two-fold
symmetry axis (Figure 3A&B) [73]. Each monomer of
a cytosolic GST is composed of an N-terminal domain
(domain I) and C-terminal domain (domain II).
N-terminal domain has P strands and a helices, and
the C-terminal domain consists of helices [42, 62, 74].
Domain 1 exhibits the structurally conserved
thioredoxin-like fold motif BaPappa (Figure 3A&C)
[44, 68, 75]. The N-terminal domain I is connected to
the C-terminal domain II by a linker loop region
consisting of around 10 amino acids [42, 62, 76]. The
C-term domain II consists of 4-8 helices depending on
the GST class [42, 62, 73, 76]. One of the striking
features of GST is that each subunit has two
ligand-binding sites - “G” site and “H” site (Figure 3),
which together constitute the catalytic active site [62,
77]. The G-site is more hydrophilic and exhibits a
higher degree of sequence conservation within GST
families than the H-site [42]. The G-site is
predominantly contained in the N-terminal domain
and binds GSH and primes the thiol sulfur for
nucleophilic attack on an electrophilic substrate
[77-79]. In contrast, the hydrophobic H-site is
predominantly contained in the C-terminal domain

Lipophilic Hydrophilic
Cytochrome P450s P GSTs, UDP- pro ucts
Esterases glycosyltransferases
Glutathione S-transferases
(GSTs)
ABC ABC
Oxidative stress transporters PHASE Il transporters
(ROS)
Cytochrome P450s, GSTs,
Catalases, Superoxide dismutases, EXCRETION EXCRETION
Thioredoxins, Peroxidases, etc.
Molecular damage i.c. Lipid
peroxidation and ultimately cell death
Figure 2. Schematic illustrating the process of xenobiotic metabolism, which encompasses three phases |, Il, Ill (Adopted from [137]) as well as xenobiotic induced oxidative

stress and molecular damage.
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adjacent to the G-site and binds electrophilic
substrates [62, 80]. The amino acid residues that make
up the H-site are involved in recognizing and binding
various exogenous and endogenous compounds and
positioning their electrophilic centers for attack by the
nucleophilic GSH.

G-site

The type and position of amino acids in the
active site of GSTs (G-site and H-site) play important
roles in substrate binding affinity and -catalytic
function [74]. It is thus important to make a
comparison among different GSTs to understand their
evolution and functions in the detoxification of
diverse chemical substrates. With the aid of X-ray
crystallography and  site-directed mutagenesis
techniques, the roles of GST active site amino acid
residues were identified and evaluated [62, 81]. In
Anopheles dirus, a delta GST GSTD3-3 (PDB: 1JLV),
G-site residues Ser-9, Pro-11, Leu-33, His-38, His-50,
Cys-51, Ille-52, Pro-53, Glu-64, Ser-65, Arg-66, and
Met-101 are within a 4.0 A distance cutoff of GSH
(Figure 3C) [82, 83]. Among them, the Ser-65 residue
was generally conserved across all GST classes. Ser-65
forms a hydrogen bond with the GSH y-glutamyl

carboxylate [80, 83]. Additionally, Ile-52 and Glu-64
were generally maintained as either hydrophobic or
polar residues across GST classes [82]. The Ile-52
backbone amide forms a hydrogen bond with the
backbone carbonyl of the GSH cysteinyl group and
Glu-64 forms a salt-bridge with the amino group of
y-glutamyl moiety of GSH. In delta and epsilon GSTs,
His-38 is maintained in most cases as a polar or
charged residue and His-50 is conserved as part of an
NPQHTVPTL motif. His-38 and His-50 are located
within polar interaction distance of the glycyl
carboxylate moiety of GSH [80, 84, 85]. Ser-9 is
conserved in epsilon, delta, theta, and unclassified
GSTs and works to stabilize the GSH thiolate through
a hydrogen bonding interaction [42, 73, 80, 83, 84, 86].
In a zeta class GST of Homo sapiens, the GSH thiolate is
stabilized by interaction with Cys-16, Ser-15, GIn-111,
and Ser-14 [73]. In omega GSTs, BmGST-O Cys-38 is
located adjacent to the GSH thiolate and dmGST-S1
Tyr-54 plays a major role in stabilizing the GSH
thiolate [76, 87]. The remaining amino acids that make
up the core of the G-site are more variable across GSTs
but are thought to aid in the positioning of GSH in the
G-Site [84].

Domain Il

linker loop

Domain |

Figure 3. Structures of representative insect cytosolic GSTs. A. Ribbon diagram of Drosophila melanogaster dmGSTD1 (PDB: 3MAK). In subunit 1, the N-terminal domain |
helices are shown in dark blue, and B-strands are shown in red, and the C-terminal domain Il helices are shown in light blue. In subunit 2 the domain | helices are dark cyan
B-strands are orange, and the domain Il helices are light cyan. Glutathione is colored by the element and is shown in ball and stick format. B. Dimer (left) and monomer (right)
ribbon diagrams of dmGSTD|1 (PDB: 3MAK) overlayed with lipophilic surface representation. C. Secondary structure map of Anopheles dirus GSTD3-3 (PDB: 1JLV). Domain |
helices are shown in dark blue and beta strands are shown in red. Domain Il helices are shown in light blue. Loop regions for both domains | and Il are shown in grey. The link
region loop is dashed. Ribbon and surface diagrams were generated with UCSF ChimeraX.
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Table 1. GST gene number in diverse species across six insect orders

Order Name Type Delta Epsilon Omega Sigma Theta Zeta Unclassified Microsomal Total Reference
Coleoptera  Leptinotarsa Pest (Oligophagous) 3 10 5 4 4 1 2 1 30 [66]
decemlineata
Tribolium castenaum  Pest (Polyphagous) 3 19 7 1 1 2 5 41 [64]
Diptera Aedes aegypti Pest (Oligophagous) 8 1 1 1 3 - 26 [138]
Anopheles gambiae  Pest (Sanguivorous, 12 8 1 1 2 1 3 3 31 [72]
Oligophagous)
Bactrocera dorsalis  Pest (Polyphagous) 4 8 0 1 1 1 - 17 [139]
Chironomus riparius ~ Pest (Sanguivorous, 3 1 1 4 1 1 2 - 13 [140]
Oligophagous)
Culex Pest (Sanguivorous, 14 9 1 1 6 0 4 5 40 [141]
quinquefasciatus Oligophagous)
Drosophila Pest (Polyphagous) 11 14 5 1 4 2 0 1 38 [72,149]
melanogaster
Hemiptera  Bemisia tabaci Pest (Polyphagous) 14 0 1 6 0 2 - 2 25 [142]
Diaphorina citri Pest (Oligophagous) 2 2 0 3 0 0 1 2 11 [142]
Muyzus persicae Pest (Polyphagous) 8 0 0 8 2 0 0 2 21 [143]
Nilaparvata lugens ~ Pest (Monophagous) 2 1 1 3 1 1 0 2 11 [144]
Orius laevigatus Predator (Polyphagous) 1 0 2 16 1 1 0 3 24 [145]
Homoptera  Acyrthosiphon pisum Pest (Oligophagous) 10 0 2 6 2 0 0 2 22 [144]
Hymenoptera Apis mellifera Pollinator (polyphagous) 1 0 1 4 1 1 0 2 10 [72]
Nasonia vitripennis ~ Parasitoid (Monophagous) 5 0 2 8 3 1 0 - 19 [146]
Lepidoptera  Bombyx mori Economic (Monophagous) 4 8 4 2 1 2 2 - 23 [147]
Plutella xylostella Pest (Oligophagous) 5 5 5 2 1 2 2 - 22 [65]
Spodoptera litura Pest (Polyphagous) 5 21 3 7 1 5 3 2 47 [148]

-: There is no known gene in these classes.

H-site

In the GST H-site, the amino acids that
contribute to the binding of multiple substrates
ultimately facilitate the tolerance that an organism
exhibits in a specific stress environment. Amino acid
mutations in the H-site can significantly alter the
catalytical activity of GST enzymes towards their
substrates [88, 89]. However, the sequence variability
in GST active sites across species and enzyme families
result in differing enzyme activities for various
substrates [58]. In contrast to the G-site that binds
GSH across GST classes, the H-sites that bind various
substrates have distinct variations in amino acid
sequence and structural conformation [90]. While the
G-site is more hydrophilic in nature compared to the
H-site, the extent of hydrophobicity of the H-site
varies across GST classes and amongst individual
GSTs [77, 78, 91].

In general, hydrophilic amino acids contribute to
the formation of a hydrophobic pocket in the H-site
adjacent to the GSH-binding site (Figure 3B&C) [80,
85]. In Anopheles gambiae, residues in the H-site of
AgGSTe2 were presumptively responsible for DDT
binding and they were mostly hydrophobic residues
[84]. In Plutella xylostella, the amino acids Phe-9,
Pro-10, Ile-11, Leu-14, Gly-49, Pro-52, Ala-100, and
Tyr-107 are the putative H-site residues in a sigma
class GST, PxGSTo [77]. Site-directed mutagenesis and
inhibition assays revealed that Phe-9 is potentially an
important residue for the binding of the inhibitor
S-hexyl glutathione (GTX) [77]. In Blattella germanica,

Tyr-107, Tyr-115, Phe-119, and Phe-206 constitute the
H-site of BgGSTD1. Purified BgGSTD1 had the
highest cumene peroxidase activity among insect
GSTs reported at that time that played a vital role in
defending against oxidative stress [92]. Studies have
shown that the H-sites of different classes of GSTs are
dissimilar. Diverse H-sites allow for binding and
catalytic activity towards a wider range of xenobiotic
substrates [93]. Despite lifetime exposure to a wide
variety of toxic chemicals, the presence of multiple
GST classes with diverse substrate specificities
facilitates an organism adaptation to adverse
environments.

Functions of insect GSTs in host plant
adaptation and pesticide resistance

Many studies have found that plant
allelochemicals are inducers of phase II detoxification
enzymes in herbivorous arthropods [5-7]. In
Choristoneura fumiferana, the expression of CfGST was
induced by balsam fir foliage and other multiple
stresses suggesting its potential role in xenobiotic
detoxification [94]. The isothiocyanates produced
from the breakdown of glucosinolates by the action of
the enzyme myrosinase [95] are highly electrophilic, a
property of a compound that makes it readily
available for the nucleophilic GSH when in the
presence of GST [96]. Gonzalez et al. reported that the
expression of GSTD2 in Drosophila melanogaster was
significantly higher in the taste organs (labellum and
forelegs) when exposed to an isothiocyanate,
insecticidal compounds naturally present in
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cruciferous plants [91]. In addition, the mechanism of
detoxification by GSTD2 was revealed via its strong
affinity towards isothiocyanate and catalysis of the
conjugation between GSH and isothiocyanate. Zou
and others showed that glucosinolate and xanthotoxin
present in Brassica juncea stimulated the expression of
GSTE1 in the midgut of Spodoptera littoralis larvae after
feeding. The conjugation activity towards these
allelochemicals was reduced when suppressing
GSTET1 gene expression via RNA interference (RNAI),
suggesting a role for GSTE1 in host plant adaptation
[97]. In the Hessian fly, Mayetiola destructor, feeding on
wheat varieties led to increased production of
deterrent allelochemicals and the consequent
upregulation of delta class GST genes [98]. The
enhanced expression of MdesGST-1 (Delta group) in
the midgut and fat body of Hessian fly larvae might
explain its involvement in the detoxification of plant
defense compounds such as flavonoids and
scavenging endogenous ROS. Indeed, based on
evidence from GST activity and RNAI studies, three
GSTs are thought to have contributed to the
adaptation of N. lugens to the host rice plant
allelochemical (gramine) [99]. Recently, Ma et al.
identified two Lymantria dispar GST genes, LdGSTe4
and LdGSTol induced by host poplar allelochemicals.
After silencing these two GST genes individually, the
adaptation of L. dispar to host poplar allelochemicals
was depleted [100].

Plant volatile compounds play roles in host
selection by insects. For example, herbivore-induced
plant volatile compounds could serve as repellents of
some insects and reduce their activities, which is
termed allelochemical nonpreference [4]. Even for the
adapted herbivore species, these volatile compounds
can cause direct physiological damage to herbivores
due to their neurotoxic properties at high
concentrations [101, 102]. As odorant degrading
enzymes (ODEs), GSTs play an important role in
chemoreception for the adaptation to host plant
volatiles and termination of stimulation from signals
(i.e., sex pheromones and plant volatiles). Antenna
expressed GSTs present in the sensillar lymph of
insect antennae, function in signal termination and
odorant clearance, enhancing olfactory and neuron
sensitivity [103-106]. In Manduca sexta, an antenna
specific GST, GST-msolfl is expressed in the
sex-pheromone-sensitive sensilla and can modify
trans-2-hexenal, a plant derived green leaf aldehyde,
suggesting its dual role in protecting sphinx moth
olfactory system from harmful xenobiotics and
pheromone inactivation [107]. Likewise, in male silk
moth (Bombyx mori), the antennae specific BmGSTD4
had high GSH-conjugating activity towards
1-chloro-2, 4-dinitrobenzene (CDNB), indicating its

potential role in the metabolism of xenobiotics [108].
Recently, the antenna expressed GmolGSTD1 was
found to exhibit high degradation activity to both the
sex pheromone ((Z)-8-dodecenyl alcohol) and the host
plant volatile butyl hexanoate in Grapholita molesta
[109]. Most recently, the high abundance of a delta
GST, SzeaGSTdl in Sitophilus zeamais antennae,
inhibition of SzeaGSTdl catalytic activity by capryl
alcohol, along with the degradation of capryl alcohol
by recombinant SzeaGSTdl were observed [110].
Since capryl alcohol is a volatile component generated
during grain storage, the inhibitory effects and
degradation of capryl alcohol by the antenna specific
SzeaGSTd1 suggest its functions in locating food and
favorable oviposition site locations [110].

As phase Il detoxification enzymes, arthropod
GSTs confer pesticide resistance through direct
metabolism or sequestration of pesticides and
indirectly by providing protection against oxidative
stress induced by synthetic pesticides [22]. In
Rynchophorus phoenicis, the enhanced glutathione
transferase activity was associated with degradation
of dichlorvos, an organophosphate insecticide [111].
Yu and Killiny reported upregulation of DcGSTe2 and
DcGSTd1 in the Asian citrus psyllid (Di. citri) when
exposed to thiamethoxam and fenpropathrin
treatment. Silencing of these GST genes enhanced
mortality of Asian citrus psyllid [112]. In Tetranychus
cinnabarinus, GST TcGSTmO02 was overexpressed in a
cyflumetofen resistant strain compared to a suscep-
tible one. The activity of recombinant TcGSTm02
could be inhibited by cyflumetofen and the enzyme
catalyzed the conjugation of GSH to cyflumetofen
[113]. Recently, RNAi-mediated knockdown of four
overexpressed GST genes in the imidacloprid
resistant N. lugens resulted in increased sensitivities to
the insecticide, suggesting the roles of these GSTs in
imidacloprid resistance of N. lugens [114]. One P.
xylostella  GST, GSTul upregulated in several
chlorantraniliprole-resistant P. xylostella strains was
confirmed to contribute to chlorantraniliprole
resistance [115]. In that study, GSTul was suggested
to be regulated by a novel noncoding RNA-mediated
pathway [115]. In Locusta migratoria, LmGSTE4 was
found to metabolize malathion and DDT. However,
insecticide bioassay showed that after suppression by
RNAI, L. migratoria insect mortality was increased in
malathion treated insects but not in deltamethrin- or
DDT-treated insects [116]. Most recently, 25 GST
genes including 22 cytosolic and 3 microsomal genes
were identified in insecticide resistance to
lambda-cyhalothrin in Cydia pomonella. Among these
GSTs, recombinant CpGSTdl, CpGSTd3, CpGSTe3,
and CpGSTs2 could bind and metabolize
lambda-cyhalothrin, however, no metabolites were
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detected. Therefore, the authors suggested that the
involvement of these GSTs in lambda-cyhalothrin
resistance might be through sequestration [117].

Functions of insect GSTs in defense of
xenobiotics induced oxidative stress

Eukaryotic cells have evolved to respond against
a range of environmental stresses. Oxidative stress is a
compromised state for the lipidic cell membrane due
to its peroxidation by different free radicals. Pesticides
produce oxidative stress in the cell, which in turn
generates several ROS free radicals [50]. Free radicals
are atoms or molecules with unpaired electrons [118].
In the quest for electronic stability, free radicals attack
other molecules to stabilize their electronic state and
thereby alter chemical structures and disrupt
biomolecular functions [50, 118]. A buildup of ROS
such as HyO» (hydrogen peroxide) and O:-
(superoxide anion) can lead to changes in metal
homeostasis or oxidation states of protein metal
complexes, such as the release of Fe from ferratin or
the reduction of iron in cytochrome C [119].
Additionally, exposure to ROS can lead to
modifications that cause genomic DNA mutations,
negatively affect protein activity, damage cellular
membranes, and eventually leading to cell death.
Evolutionarily, GSH has been one of the key
nucleophilic chemicals in living organisms that
convert a range of electrophilic compounds into a less
toxic form [120, 121]. In the case of redox stress, two
molecules of GSH reduce one molecule of hydrogen
peroxide in the presence of glutathione peroxidases,
generating one molecule of glutathione disulfide
(GSSG), an oxidized form of GSH, and two molecules
of water [122, 123]. The glutathione peroxidase, which
is responsible for protecting lipids and proteins from
oxidation, is regulated by the essential trace metal
element Selenium (Se) [124]. The Se-dependent
glutathione peroxidase metabolizes hydrogen
peroxides and hydroperoxides [40, 125]. In the
absence of Se, GST performs glutathione peroxidase
activity mostly towards organic hydroperoxides [121,
126, 127]. Once GSSG is formed, flavin adenine
dinucleotide (FAD)-dependent enzyme glutathione
reductase transfers electrons from NADPH,
regenerating two molecules of GSH [121].

Many Se-independent peroxidase reactions
performed by GSTs in insects have been reported. In
Dr. melanogaster, DmGSTS1-1 exhibited glutathione
peroxidase activity towards cumene hydroperoxide
(CHP, oxidative stress inducer). Since DmGSTS1-1
was highly expressed in the flight muscle, the
localization of the corresponding GST enzyme might
provide a protective role against oxidative stress
generated from mitochondrial respiration [128].

Similarly, Sawicki and others found six delta class
GST genes (GSTD1, GSTD2, GSTD3, GSTD7, GSTD9,
and GSTD10), one epsilon class GST (GSTE1), and one
sigma class GST gene (GSTS1) in Dr. melanogaster that
could conjugate 4-hydroxynonenal (4-HNE), an
electrophilic end-product of lipid peroxidation [129].
The role of GSTs in attenuating pyrethroid-induced
oxidative stress, which conferred insecticide
resistance in the rice brown planthopper (N. lugens)
was highlighted by Vontas et al. [46]. It was reported
that the increase in GST-based peroxidase activity and
the increased amount of GSH indicated the role of
GST in reducing the damage from pesticide-induced
oxidative stress. Zhang and others showed GSTO2 in
Apis cerana cerana had peroxidase activity toward CHP
and t-butylhydroperoxide [130]. Similarly, a defen-
sive role against oxidative stress by RpGSTO1
towards different concentrations of CHP was
observed in the bird cherry-oat aphid, Rhopalosiphum
padi [131]. The GST antioxidant role has also been
highlighted in an urban pest, the German cockroach
B. germanica. Cockroaches exhibited high GSTD1
peroxidase activity against CHP, indicating a role in
insecticide metabolism and reduction of redox stress
[92]. Similarly, GSTE1-1 in both DDT resistance and
susceptible An. gambia, showed peroxidase activity
with CHP but was unable to perform dehydro-
chlorination activity. The opposite result was
obtained for GSTE2-2, indicating these two GSTs play
an important role in gaining resistance to DDT via
conjugation and peroxidase activity, respectively [49].
In two-week-old adults of Ap. cerana cerana, the
expression of AccGSTS1 was high when exposed to
various environmental stressors such as temperature
(cold and heat shock), heavy metal (HgCl,), pesticides
(phoxim, cyhalothrin, and acaricide), H>O,, and
ultraviolet [45] radiation which are known for their
property to generate oxidative stress [55]. The
researchers observed dose-dependent removal of
H>O,, indicating AccGSTS1 functions in the
elimination of oxidative stress [55]. A similar result
was obtained for AccGSTZ1 in Ap. cerana cerana when
exposed to varying temperatures and HO,,
suggesting a protective function against oxidative
stress [132].

During evolution, insects have adapted to
stresses posed by plant-derived toxic chemicals.
When feeding on plant species in the Apiaceae or
Rutaceae families, which contain furanocoumarin- a
toxic photoactive pro-oxidant, Papilio polyxenes
exhibited significantly higher GST-mediated peroxi-
dase activity. This is indicative of an insect adaptive
mechanism against oxidative stress generated by the
plant-derived toxic chemical substances [54, 133],
suggesting many GSTs are responsible for protecting
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tissues and reducing the mortality rate of insects
caused by oxidative stress. There are also some cases
where specific GSTs are not able to conduct
peroxidase activity, such as theta class GSTs [134,
135]. Interestingly, some insects do not have
Se-dependent glutathione peroxidases or have
enzymes with limited expression and/or activity [49,
54, 127, 136]. Finding evidence on how insects
eliminate oxidative stress in the absence of
Se-dependent glutathione peroxidase for survival or
adaptations to environmental stressors is the direction
of future research.

Conclusions

GSTs play a vital role in detoxifying or
metabolizing a diverse range of chemical compounds,
of xenobiotic or endobiotic origin. GST mediated
detoxification is critical for adaptation against
xenobiotics including plant allelochemicals and
synthesized pesticides. GSTs confer adaptation to a
diverse range of xenobiotics through metabolism or
sequestration of chemicals and protection against
chemical induced oxidative stress. The key to the
diverse roles of different classes of GSTs is due to their
structure, specifically the composition and spatial
localization of amino acid residues composed in the
enzymatic active sites. Through a combination of
arthropod structural biology, enzyme kinetics and
site-directed mutagenesis techniques, our under-
standing of such diversity in GST structural and
functional complexity can be improved.
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