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Abstract

Semi-quantum key distribution (SQKD) protocols attempt to establish a shared secret

key between users, secure against computationally unbounded adversaries. Unlike

standard quantum key distribution protocols, SQKD protocols contain at least one

user who is limited in their quantum abilities and is almost “classical” in nature. In

this paper, we revisit a mediated semi-quantum key distribution protocol, introduced by

Massa et al. (Experimental quantum cryptography with classical users, 2019. arXiv

preprint arXiv:1908.01780), where users need only the ability to detect a qubit, or

reflect a qubit; they do not need to perform any other basis measurement; nor do they

need to prepare quantum signals. Users require the services of a quantum server which

may be controlled by the adversary. In this paper, we show how this protocol may be

extended to improve its efficiency and also its noise tolerance. We discuss an extension

which allows more communication rounds to be directly usable; we analyze the key-

rate of this extension in the asymptotic scenario for a particular class of attacks and

compare with prior work. Finally, we evaluate the protocol’s performance in a variety

of lossy and noisy channels.

Keywords Quantum key distribution · Semi-quantum cryptography · Security ·
Information theory

1 Introduction

Semi-quantum key distribution (SQKD) allows two parties, Alice and Bob, to estab-

lish a shared secret key that is secure against computationally unbounded adversaries.

Unlike standard quantum key distribution, with SQKD, at least one party is restricted

to being “classical” in nature—namely, at least one party is restricted to operating in
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a single, publicly known, basis, or to disconnecting from the quantum channel and

reflecting all qubits back to the sender. This limited “classical” party is not permitted

to measure or send qubits in arbitrary bases. Semi-quantum key distribution was intro-

duced originally in 2007 in [1] and, since then, has led to a growing area of research

interest with new protocols and security proofs for both QKD [2–11] and alternative

cryptographic primitives such as secret sharing [12–14], secure direct communication

[15–19], private comparison [20, 21], and secure identification protocols [22, 23]. It

is also experimentally realizable [24, 25]. For a general survey of semi-quantum cryp-

tography, the reader is referred to [26], while for a general survey of QKD, the reader

is referred to [27–29].

Recently, a form of mediated semi-quantum key distribution (M-SQKD) protocol

(a model originally introduced in [30]) was developed in [24]. Here, two parties wish

to establish a shared secret key; however, these parties are only able to detect the pres-

ence of a photon, or to reflect a photon back to a sender. They cannot even prepare new

quantum signals. Clearly, such a protocol cannot be secure (or even correct) without

the help of a third-party who is capable of performing some alternative quantum oper-

ations. This third-party, called a quantum server, is responsible for creating the initial

quantum state, and later performing a particular quantum measurement and reporting

the outcome. This protocol was also experimentally implemented. Interestingly, as

proven in [24], the server need not be trusted and may in fact be adversarial; security

is still possible even though users are so restricted. A variant of this protocol was

shown to be partially device independent in [10].

The protocol described in [24] (which we call here MZ-M-SQKD19 as it is a Mach-

Zehnder-based Mediated SQKD protocol developed in 2019) though proven secure in

the finite-key setting under practical device constraints (e.g., imperfect detectors and

weak coherent sources) and collective attacks, was inefficient. Under ideal scenarios,

the key-rate of the protocol was only 1/8 meaning that 8 qubits were required to distill

1 secret key bit assuming no noise or loss (if there is noise and/or loss, the key-rate, of

course, drops even more). This inefficiency is due to the fact that users must discard

numerous rounds and only use particular rounds where things “go right” (namely, a

random measurement from the server produces the right outcome).

In this work, we revisit this original protocol of [24] and extend it to increase

its efficiency. We also demonstrate that our extension can increase the protocol’s

noise tolerance. Our work is primarily concerned with improving the efficiency of this

original protocol and, to evaluate, we conduct an information theoretic proof of security

assuming single photons and lossy channels, though assuming an adversarial server.

We compute the protocol’s key-rate in the asymptotic scenario under a particular form

of i.i.d. attack. Our extension adds a potential second “sub-round” for every protocol

round; this greatly complicates the security analysis and our methods may be useful in

other (S)QKD protocols. Importantly, our methods in improving the efficiency of this

M-SQKD protocol may be useful to other experimentally realizable semi-quantum

protocols, such as [8, 9] as we show how previously discarded events may be utilized

in the semi-quantum model, through careful use of a second sub-round. Finally, we

evaluate the protocol’s performance in a variety of scenarios including noisy and lossy

channels and adversarial servers.
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2 Notation and preliminaries

Given a quantum state ρA (a Hermitian positive semi-definite operator of unit trace)

acting on some Hilbert space HA. We write H(A)ρ to mean the von Neumann entropy

of the system. Namely H(A)ρ = −tr(ρA log ρA), where all logarithms in this paper

are base two unless otherwise specified. Given a bipartite state ρAE , we write H(A|E)ρ
to be the conditional von Neumann entropy, namely H(A|E)ρ = H(AE)ρ − H(E)ρ .

If both systems are classical, then H(A|E)ρ is the Shannon entropy (in which case

we will often forgo writing the subscript when there is no ambiguity). We use h(x)

to mean the binary Shannon entropy, namely h(x) = −x log x − (1 − x) log(1 − x).

Given a pure state |ψ〉, we write:

[ψ] = |ψ〉 〈ψ | .

In general, QKD protocols (semi-quantum or otherwise) will first utilize the quan-

tum channel and authenticated classical channel to establish a raw key of size N bits;

this process requires sending M ≥ N qubits (in general, N = pacc M , where pacc is

the probability that a round is “accepted” and not discarded by users). These raw keys

are classical bit strings, one held by Alice and another by Bob, which are partially

correlated and partially secret. Following this, an error correction protocol and pri-

vacy amplification protocol are run, establishing a final secret key of size ℓ bits. Two

important metrics for any QKD protocol are its key rate r = ℓ/N and its effective key

rate r ′ = ℓ/M . In the asymptotic scenario, where M → ∞, and assuming collective

attacks, we may use the Devetak–Winter keyrate equation [31, 32] to evaluate these

rates leading to:

r = H(A|E)ρ − H(A|B) (1)

The effective key-rate, r ′, is typically found by relating the number of qubits sent to

the size of the raw key (e.g., if N = pacc M , then r ′ = paccr ). Above, ρAB E is the

state of the system modeling a single quantum communication round, conditioned on

it being accepted (i.e., conditioned on it leading to a raw key bit being generated).

To actually compute the key-rate, we will therefore need a bound on the entropy

H(A|E)ρ and H(A|B). The latter is typically easy to compute directly since it is

a function of Alice and Bob only (who, through standard sampling arguments, may

fully know their joint AB distribution and thus evaluate H(A|B) directly). Bounding

the quantum entropy H(A|E)ρ is the more difficult challenge and usually the key

ingredient in any security proof. For that, we will later use the following result from:

[33]:

Theorem 1 (From [33] though generalized for our application here) Given a quantum

state ρAE of the form:

ρAE =
1

N
[0]A ⊗

(

m
∑

i=0

[Ei]

)

+
1

N
[1]A ⊗

(

m
∑

i=0

[Fi]

)

, (2)
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then for every 0 ≤ m′ ≤ m it holds that:

H(A|E)ρ ≥
m′
∑

i=0

(

〈Ei |Ei 〉 + 〈Fi |Fi 〉
N

)

·
(

h

(

〈Ei |Ei 〉
〈Ei |Ei 〉 + 〈Fi |Fi 〉

)

− h(λi )

)

, (3)

with:

λi =
1

2

(

1 +
√

(〈Ei |Ei 〉 − 〈Fi |Fi 〉)2 + 4|〈Ei |Fi |Ei |Fi 〉|2
〈Ei |Ei 〉 + 〈Fi |Fi 〉

)

. (4)

Note that the states |Ei 〉 and |Fi 〉 may be arbitrary states (not necessarily normalized

nor orthogonal) in Eve’s ancilla.

Note that the above is a slight generalization of the theorem as presented in [33]; for

a proof that this indeed follows, the reader is referred to [34]. In particular, the above

theorem says that, given a classical-quantum state ρAE of the form described above,

namely where Eve’s system is the sum of rank one operators, then the entropy can be

computed if one has information on the inner product of the various states in Eve’s

ancilla. Note that the ordering of the sum for Eve’s system does not actually matter—

any “pairing” of E and F states will give a lower bound. Some pairings, however,

produce more optimal lower bounds. Note that it holds that any classical-quantum

state may actually be represented in the above manner and so the above theorem can

be used for any collective attack analysis.

3 The protocol

We now describe the protocol in detail. We assume that a two way quantum channel

connects the server (C) to Alice and Bob. In the ideal scenario, this should constitute

a folded Mach–Zehnder interferometer; however, since the server may be adversarial,

we do not assume this in our security proof later. An authenticated classical channel

connects Alice and Bob; an unauthenticated classical channel connects the server to

Alice and Bob. See Fig. 1. We will call our protocol here MZ-M-SQKD19-ext (to

distinguish from the original one in [24] which we extend and which, as mentioned,

we refer to as MZ-M-SQKD19).

We introduce the protocol assuming an honest server for clarity, however will

later prove security against a potentially corrupt server. The protocol consists of N

independent rounds, each round consists of two sub-rounds with the second sub-round

only being used in certain circumstances. The original protocol from [24] consists only

of the first sub-round; our extension here adds this second sub-round in an effort to

improve efficiency. A single round consists of the following process:

1. The server C prepares a quantum state of the form 1√
2
(|0〉 + |1〉), with |0〉 repre-

senting a photon traveling to Alice and |1〉 representing a photon traveling to Bob.

Such a state may be created by sending a single photon through a beamsplitter in

a Mach–Zehnder interferometer. See Fig. 1.
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Fig. 1 Left: High-level diagram of the protocol assuming an honest server. The server should send a single

photon through a beamsplitter causing the qubit to travel towards Alice and Bob in a superposition. Alice

and Bob may independently choose to Reflect or Measure. If Reflect, the signal is sent directly

back to the server; otherwise, if Measure, the signal is routed to a photon detector. Note that Alice and

Bob cannot create new quantum systems. The server, on return, should pass the signal through a second

beamsplitter and report which of the two detectors (if any) received a signal. The key is derived from

users choices—in particular, when users choose opposite actions. Right: In our security analysis, we do not

assume an honest server. Instead the server is potentially adversarial and so we cannot assume the server

is actually implementing the interferometer, as is specified by the protocol. We do assume ideal single

photons, however, in our analysis. See Sect. 4 for more details on our security model

2. Alice and Bob, independently, choose to Reflect or Measure. If Measure,

the photon is routed to a photon detector; otherwise, it is routed back to the server.

If a party choosesMeasure and detects the photon, they will later signal to discard

this round. Otherwise, if the measuring party does not detect the photon, Alice will

use the raw-key encoding scheme that a choice of Reflect means a key-bit of 0

and Measure means a key-bit of 1; Bob will use the opposite encoding scheme.

The goal of the protocol, at this point, is for Alice and Bob to guess at the action of

the other party without the server (or another third-party adversary) determining

what choice was actually made. Notably, it is the actions of the parties that dictate

their raw key, not an actual measurement outcome.

3. The server will pass the returning signal through the second half of the interfer-

ometer (again, see Fig. 1) and report the measurement outcome, either “0,” “1,” or

“vac.” Here the message “vac” is used to indicate that the server did not detect

a photon (i.e., the server detected the vacuum state). Normally, if both parties

choose Reflect, the interferometer should be calibrated so that the message “0”

is always sent. Of course natural noise (or adversarial interference) will alter this

and any other value will be considered noise that must be taken into account when

deriving the key rate.

4. If the server sends the message “vac”, then Alice and Bob discard this round and

repeat from step 1 with a new round; if the server sends the message “1” then Alice
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Table 1 The possible outcomes

of a single sub-round of the

protocol under analysis

assuming ideal conditions and

an honest server

A B Akey Bkey C’s message

Reflect Measure 0 0 “0”, “1”, or “vac”

Measure Reflect 1 1 “0”, “1”, or “vac”

Reflect Reflect 0 1 “0”

Measure Measure 1 0 “vac”

This table applies to both the original MZ-M-SQKD19 and our exten-

sion here. Alice and Bob’s keys are derived from their actions. Note

that, whenever the server sends the message “1,” users can be certain

they chose opposite actions, thus the need to reverse the action-to-key

encoding for Alice and Bob. In the original protocol, any other message

from the server was discarded as it was inconclusive for users. Here,

we propose an extension so that whenever the server sends the message

“0,” users run a second sub-round where they flip their actions. This

second sub-round is discarded only if the server sends the message

“vac” or users detect the photon in a measurement. See text for greater

explanation

and Bob use this round to contribute towards their raw key and users are finished

with this round, proceeding to the next (starting above at step 1). Ideally, if the

server sends the message “1,” users can be certain they chose opposite actions. See

Table 1.

5. Extension: Otherwise, if the server sends the message “0”, then parties will begin

Sub-Round 2. The server will repeat the above process (from step 1) but Alice and

Bob will invert their action choice. In this sub-round, when the server sends its

second message, they will reject this entire round only if the server sends “vac”—

otherwise, if the server sends the message “0” or “1”, they will use this round to

contribute towards their raw key. In particular, they will use the encoding chosen

in sub-round 1.

Note that, importantly, Alice and Bob’s choice of actions are independently chosen

each round; however if the second sub-round is used, their actions depend on their

choice in the first sub-round.

After the completion of a round (which may consist of both sub-rounds or just the

first sub-round depending on the server’s message), the protocol repeats with a new

round. Following the completion of a sufficient number of rounds (in this paper we

will consider the asymptotic scenario where the number of rounds goes to infinity),

Alice and Bob will disclose a random subset of all measurement outcomes and choices

to perform parameter estimation. In particular, users will choose a random subset and

disclose all actions and results on those rounds chosen. Any key material from those

rounds chosen for parameter estimation are, of course, discarded. Following this,

assuming the error rate is “low enough” (to be discussed), they will perform an error

correction and privacy amplification process to distill their final secret key.

We comment that this protocol extends the original MZ-M-SQKD19 protocol from

[24] by adding the additional sub-round 2. That is, the original protocol consisted of

steps 1–4 above; our extension adds the additional step 5, repeating the above for a

second sub-round The original protocol would reject any round where the server did
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not send the message “1.” Our protocol extension here, by utilizing a second sub-round

where users flip their action choice, allows for the potential contribution of message

“0” to be used towards the raw key. As we show later, this extension can greatly

improve the secret key generation rate of this protocol, even when counting for the

potential need to send two photons on a single round (i.e., even the effective key rate

is improved with our extension). Interestingly, our extension also improves the noise

tolerance of the protocol as we show later.

It is clear that our protocol is correct—namely, in the absence of noise and if the

server is honest, then Alice and Bob will agree on the same raw-key. Indeed, under

ideal conditions, the only time the server can send the message “1” is if one of Alice or

Bob, but not both, chose Measure and the measuring party did not detect the photon.

Furthermore, in this event, it is always clear to users that the other party choose the

opposite action. Now, in the event the server sends the message “0” on sub-round 1,

it is not immediately clear to parties whether they choose opposite actions or if both

parties choose Reflect (see Table 1). Thus, the original protocol [24] discarded this

event leading to waste. Our extension, by utilizing a second sub-round where users flip

their actions can potentially salvage these rounds by having the server send a second

qubit and parties flipping their action choices. Note that, the ambiguity of a message

“0” arises only if both parties choose Reflect (in which case the server will always

send “0” in ideal conditions). Thus, by flipping their actions in this case, both parties,

in sub-round 2 will choose Measure causing the server to always send the message

“vac” (ideally) in which case parties discard the round. However, if one party chose

Measure and the other chose Reflect, in the next sub-round they will choose

Reflect and Measure, respectively; thus, any message of “0” or “1” by the server

in this second sub-round lets parties know they are choosing opposite actions without

ambiguity, thus leading to a correlation for their key.

The reader may now wonder if this is really more efficient than the original protocol

in terms of number of photons sent since, for some rounds, two photons are required.

We show later that our protocol, even with adversarial noise, can be more efficient

than the original.

4 Security analysis

The goal of this section is to compute a bound on the key-rate of our protocol. From

Eq. 1, this involves, primarily, computing a bound on the von Neumann entropy of the

system. To do this, we must first model a single round of the protocol, conditioning

on a key-generation event (from which H(A|E) must be computed). In our security

analysis, we will assume single qubits and lossy channels—that is, we do not consider

multi-photon events. These are important to consider, of course, and though considered

for the original protocol [24], we only consider single qubits and lossy channels here in

order to demonstrate how improvements may be made to the protocol in theory, leaving

practical issues as interesting future work. We will also consider only i.i.d. attacks

on each sub-round. In particular, each sub-round will consist of the same (potentially

probabilistic) attack operation. In general, this is weaker than a collective attack which

would have the second sub-round attack dependent on the first. However, we feel that
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analyzing security even in this case is still a notable contribution and furthermore,

if one were to consider the multi-mediated SQKD model introduced in [34], or a

variant of the protocol where users “shuffle” individual rounds into appropriate sub-

rounds when needed, then it is equivalent to a general collective attack. Analyzing full

collective attacks for a single server without this shuffling process would be interesting

future work (though out of scope for this paper), and our method below may serve as

a foundation for such an analysis.

Finally, we note that any third party adversary attack may be “absorbed” into an

adversarial server’s attack. Thus, in our security analysis, we only consider adversarial

servers—any third party adversary’s attack will be analyzed also as a consequence.

Because of this, we actually consider the server to be only adversary and call the

server, in this case, Eve.

Based on these assumptions, the server will begin the protocol by sending a state

of the form:

|φ0〉 = α |0, c0〉 + β |1, c1〉 + γ |v, cv〉 (5)

Note that the α, β, and γ may be real numbers as any alternative phase may simply

be absorbed into the corresponding |ci 〉 ancilla state. Above, |0〉 represents a sin-

gle photon traveling towards Alice; |1〉 represents a photon traveling towards Bob;

and |v〉 represents a vacuum state. The |ci 〉 states are arbitrary ancilla states that the

(adversarial) server may use to attempt to extract information later. If Alice chooses to

Measure, then, with probability α2, Alice observes the photon and, ultimately, the

round will be discarded. Otherwise, with probability 1 − α2, Alice does not observe

the photon in which case it collapses to (β |1, c1〉+γ |v, cv〉)/
√

1 − α2. This will then

be the state that returns to the server. If Bob chooses Measure, similar identities may

be derived. Of course if both parties choose Measure and neither detect the photon,

then it collapses to |v, cv〉, an event that happens with probability γ 2.

Following Alice and Bob’s actions, a quantum signal, or a vacuum state, returns

to Eve. From this, she may apply any quantum operation; however, she must send a

classical message to Alice and Bob. We may assume that this message is the same to

both parties (that is, Eve does not send one message to Alice and a different message to

Bob on a single round)—this is easily enforced by having Alice forward all messages

she receives from the server directly to Bob over the authenticated channel and any

discrepancies will cause Bob to signal to abort the protocol.

As shown in [24, 30], the most general way to model such an attack is through a

quantum instrument [35] which, using standard techniques [36], may be dilated to a

unitary operator. This attack, as shown in [30], then consists of Eve taking the return

signal, applying an isometry U mapping it to a state living in some Hilbert space

Hcl ⊗ HE , where in this case Hcl is spanned by {|0〉 , |1〉 , |v〉} where these three

basis states represent the three possible messages Eve could send to Alice and Bob.

Following the application of U to the returned signal, Eve measures the cl register—

the outcome determines the message she sends to the parties, while the post measured

E portion represents her ancilla in this event. For a proof that this is identical to a

general quantum instrument attack, see [30].
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More formally, Eve’s second attack is an isometry (which may, subsequently, be

dilated to a unitary operator, though we do not require this detail in this section):

U : HT ⊗ HE0 → Hcl ⊗ HE , (6)

where HT is the “Transit” register modeling the traveling qubit (this is three dimen-

sional spanned by |vac〉 , |0〉, and |1〉) and HE0 is Eve’s (the adversarial server’s)

initial private ancilla (storing the |ci 〉 states used in the initial state, Eq. 5). This is

mapped into the Hilbert space modeling the classical message sent (spanned by |0〉,
|1〉, and |v〉) along with a new, enlarged, private ancilla for Eve (the server). Note that

the original qubit is “absorbed” into this new ancilla allowing Eve maximum ability

to attempt to extract useful information later. In particular, this takes into account that

the server may not be performing an honest measurement at the end of the protocol

round.

Without loss of generality, we may describe the action of this attack operator on

basis states using the following notation:

U |0, c0〉 = |0〉cl |e0〉E + |1〉cl |e1〉E + |v〉cl |ev〉E

U |1, c1〉 = |0〉cl | f0〉E + |1〉cl | f1〉E + |v〉cl | fv〉E

U |v, cv〉 = |0〉cl |g0〉E + |1〉cl |g1〉E + |v〉cl |gv〉E (7)

Note that, in the following text, we often forgo writing the subscripts in the above

states. Also note that U ’s action on basis states differing from those appearing on the

left-hand side of the above expressions may be arbitrary as such states never show up

in the analysis.

There are four main paths which can lead to a key being distilled based on the

choices of Alice and Bob. Consider, first, the case when Alice and Bob both choose

Reflect (in which case, should the round be accepted and not rejected, Alice will

have a key-bit of 0 and Bob a key-bit of 1—note this is an error event and so, ideally, the

probability of it being discarded should be one or close to one). We trace the protocol’s

execution in this event in order to derive a density operator describing the state of Alice,

Bob, and Eve’s registers in this case along with any public communication sent. Of

course, as we only care about cases that lead to a key bit being distilled, we condition

on events leading to a successful key generation event. In the first sub-round, since

both parties choose Reflect, the state returns to the server unchanged, namely the

state returning is |ψ0〉. Note that, as is normal in QKD security proofs, we assume

all noise is caused by the adversary’s attack and that, in fact, the adversary replaces

the noisy quantum channel with a perfect channel, allowing her to “hide” within the

natural noise. Thus, in the event both parties choose Reflect, the state returning is

unchanged. Eve at this point applies U evolving the state to:

U |ψ0〉 = |0〉cl (α |e0〉 + β | f0〉 + γ |g0〉)
+ |1〉cl (α |e1〉 + β | f1〉 + γ |g1〉)
+ |v〉cl (α |ev〉 + β | fv〉 + γ |gv〉).
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Now, the protocol discards the round if the server sends the message “v” while, if the

server sends the message “1” they will use this round immediately and proceed to the

next round. In this case, the state of the system is:

[01]AB ⊗
(

[1]cl ⊗ P (α |e1〉 + β | f1〉 + γ |g1〉) ⊗ [ν0] + σreject

)

where, above, [ν0] is some state in Eve’s ancilla used by her when the second sub-

round is not used (without loss of power to Eve, this is a pure state) and σreject is the

state of the system in the case that Alice and Bob signal to discard this round (this

state will later be projected out when we condition on this round’s acceptance and so

we do not bother to derive what it is). We also define P(|z〉) = [z] to simplify the

expressions.

Finally, if the server sends the message “0” parties run the second sub-round,

flipping their actions to Measure. In this case, as discussed in our security model,

Eve prepares, for sub-round 2, the same state as before, sending |ψ0〉. Alice and Bob

both then Measure and discard if they see a photon. Thus, focusing on the part of the

state that will ultimately not be rejected (in particular, Alice and Bob do not observe

the photon when it arrives, thus causing the state to collapse to |v, cv〉 then returning

to Eve), we find the final state for Alice, Bob, and Eve to be:

[01]AB ⊗ ([1]cl ⊗ P (α |e1〉 + β | f1〉 + γ |g1〉) ⊗ ν0

+[0]cl ⊗ P(α |e0〉 + β | f0〉 + γ |g0〉) ⊗
[

[0]cl [g0] + [1]cl [g1]
]

+ σreject),

where the AB registers are used to store Alice and Bob’s classical raw key choice. Note

that |ν0〉 is a state in the Hilbert space used to model the classical message and Eve’s

ancilla in the second sub-round assuming that sub-round is not used. Using similar

techniques, one may trace the protocol for the other three cases of actions, leading to

the following results (ignoring any “reject” states which, of course, appear in all the

cases below):

[10]AB ⊗ ([1]cl [g1] ⊗ [ν0]
+ [0]cl ⊗ [g0] ⊗ [[1]cl ⊗ P(α |e1〉 + β | f1〉 + γ |g1〉) + [0]cl ⊗ P(α |e0〉 + β | f0〉 + γ |g0〉)])

[00]AB ⊗ ([1]cl ⊗ P (α |e1〉 + γ |g1〉) ⊗ [ν0]
+ [0]cl ⊗ P(α |e0〉 + γ |g0〉) ⊗

[

[0]cl ⊗ P(β | f0〉 + γ |g0〉) + [1]cl ⊗ P(β | f1〉 + γ |g0〉)
]

[11]AB ⊗ ([1]cl ⊗ P (β | f1〉 + γ |g1〉) ⊗ [ν0]
+ [0]cl ⊗ P(β | f0〉 + γ |g0〉) ⊗

[

[0]cl ⊗ P(α |e0〉 + γ |g0〉) + [1]cl ⊗ P(α |e1〉 + γ |g0〉)
]

To clean up the resulting density operator, we introduce the following notation:

|r1〉 = α |e1〉 + β | f1〉 + γ |g1〉
|r0〉 = α |e0〉 + β | f0〉 + γ |g0〉
|s1〉 = β | f1〉 + γ |g1〉
|s0〉 = β | f0〉 + γ |g0〉
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|t1〉 = α |e1〉 + γ |g1〉
|t0〉 = α |e0〉 + γ |g0〉 (8)

Using this, we derive the following density operator ρAB E which models the entire

joint state of the protocol conditioning on the round not being rejected (i.e., we now

project out the “reject” states above and re-normalize):

ρAB E =
1

N
[00]AB ⊗ ([1, t1,ν0] + [0, t0, 0, s0] + [0, t0, 1, s1])

+
1

N
[11]AB ⊗ ([1, s1,ν0] + [0, s0, 0, t0] + [0, s0, 1, t1])

+
1

N
[01]AB ⊗ ([1, r1,ν0] + [0, r0, 0, g0] + [0, r0, 1, g1])

+
1

N
[10]AB ⊗ ([1, g1,ν0] + [0, g0, 0, r0] + [0, g0, 1, r1]) (9)

where N is the normalization term:

N = 〈t1|t1〉 + 〈t0|t0〉〈s0|s0〉 + 〈t0|t0〉〈s1|s1〉
+ 〈s1|s1〉 + 〈s0|s0〉〈t0|t0〉 + 〈s0|s0〉〈t1|t1〉
+ 〈r1|r1〉 + 〈r0|r0〉〈g0|g0〉 + 〈r0|r0〉〈g1|g1〉
+ 〈g1|g1〉 + 〈g0|g0〉〈r0|r0〉 + 〈g0|g0〉〈r1|r1〉. (10)

Our goal is to compute H(A|E)ρ . Applying Theorem 1 and simplifying the resulting

expression yields:

H(A|E)ρ ≥
〈t1|t1〉 + 〈s1|s1〉

N

[

H

(

〈t1|t1〉
〈t1|t1〉 + 〈s1|s1〉

)

− H(λ1)

]

+
2〈t0, s0|t0, s0〉

N
[1 − H(λ2)]

+
〈t0, s1|t0, s1〉 + 〈s0, t1|s0, t1〉

N

[

H

(

〈t0, s1|t0, s1〉
〈t0, s1|t0, s1〉 + 〈s0, t1|s0, t1〉

)

− H(λ3)

]

+
〈r1|r1〉 + 〈g1|g1〉

N

[

H

(

〈r1|r1〉
〈r1|r1〉 + 〈g1|g1〉

)

− H(λ4)

]

+
2〈r0, g0|r0, g0〉

N
[1 − H(λ5)]

+
〈r0, g1|r0, g1〉 + 〈g0, r1|g0, r1〉

N

[

H

(

〈r0, g1|r0, g1〉
〈r0, g1|r0, g1〉 + 〈g0, r1|g0, r1〉

)

− H(λ6)

]

(11)

where:

λ1 =
1

2

(

1 +
√

(〈t1|t1〉 − 〈s1|s1〉)2 + 4|〈t1|s1〉|2

(〈t1|t1〉 + 〈s1|s1〉)

)
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λ2 =
1

2

(

1 +
|〈t0, s0|s0, t0〉|
〈t0, s0|t0, s0〉

)

λ3 =
1

2

(

1 +
√

(〈t0, s1|t0, s1〉 − 〈s0, t1|s0, t1〉)2 + 4|〈t0, s1|s0, t1〉|2

(〈t0, s1|t0, s1〉 + 〈s0, t1|s0, t1〉)

)

λ4 =
1

2

(

1 +
√

(〈r1|r1〉 − 〈g1|g1〉)2 + 4|〈r1|g1〉|2
(〈r1|r1〉 + 〈g1|g1〉)

)

λ5 =
1

2

(

1 +
|〈r0, g0|r0, g0〉|
〈r0, g0|r0, g0〉

)

λ6 =
1

2

(

1 +
√

(〈r0, g1|r0, g1〉 − 〈g0, r1|g0, r1〉)2 + 4|〈r0, g1|g0, r1〉|2

(〈r0, g1|r0, g1〉 + 〈g0, r1|g0, r1〉)

)

We must now show how those inner products appearing in the above expression

may be bounded through observable quantities (i.e., through the probabilities of certain

observable events occurring). This will allow us to calculate a lower-bound on the key-

rate of our protocol based only on observable quantities.

4.1 Parameter estimation

To evaluate our entropy bound derived above (in order to evaluate the key-rate of

the protocol using Eq. 1), we require bounds on the inner products of those vectors

appearing in Eq. 11. This can be done for any arbitrary channel, though to actually

evaluate our bound and compare with prior work, we derive expressions for a sym-

metric depolarization attack. This is a common approach in QKD security proofs and

so, by doing so, will allow us to compare with prior work and protocols. Note that

our security proof above does not require this as an assumption; it is only done to

evaluate the performance on a standard channel scenario. The steps we use to derive

these expressions may be used, however, for any observed channel.

We may parameterize the channel statistics using a few parameters. We use φ to be

the phase error of the channel and pl to be the probability of loss in one direction (the

server to users and the users back to the server). Finally, we use pd to denote the dark

count rate of the server’s detectors. Note that if the server is adversarial, it may have

perfect detectors but try to “hide” its attack by simulating a suitable dark count rate.

Now, we consider what observable statistics are available to users. We denote by

P0|R R to be Pr(C = 0 | A = B = Reflect), namely the probability that, condi-

tioning on both Alice and Bob choosing Reflect, the server sends the message “0.”

Similarly, we can define Pi |R R along with quantities of the form Pi |M R, Pi |RM , and

Pi |M M , where the later are conditioning on Alice choosing Measure and Bob choos-

ing Reflect; Alice choosing Reflect and Bob choosing Measure; and finally

both Alice and Bob choosing Measure, respectively. Note that, when working with

a probability involving a party choosing Measure, the probability is also over the

measuring party not detecting the photon.

123



Improved semi-quantum key distribution with two… Page 13 of 23 319

Using these parameters, we can compute important bounds on the inner products

appearing in our entropy expression. Full details on these derivations are described in

“Appendix A.1”. We are able to determine the following:

P1|R R = 〈r1|r1〉 =
pl pd

2
+ (1 − pl)

( pl pd

2
+ (1 − pl)φ

)

P0|R R = 〈r0|r0〉 =
pl pd

2
+ (1 − pl)

( pl pd

2
+ (1 − pl)(1 − φ)

)

P1|M R = 〈s1|s1〉 =
pl pd

2
+

1 − pl

2

(

pl pd

2
+

1 − pl

2

)

P0|M R = 〈s0|s0〉 =
pl pd

2
+

1 − pl

2

(

pl pd

2
+

1 − pl

2

)

P1|RM = 〈t1|t1〉 =
pl pd

2
+

1 − pl

2

(

pl pd

2
+

1 − pl

2

)

P0|RM = 〈t0|t0〉 =
pl pd

2
+

1 − pl

2

(

pl pd

2
+

1 − pl

2

)

P1|M M = 〈g1|g1〉 =
pl pd

2

P0|M M = 〈g0|g0〉 =
pl pd

2

These let us easily compute N using Eq. 10 and the above. We also have:

|α|2 = |β|2 =
1 − pl

2

|γ |2 = pl ,

Finally, we can also derive the following bounds (again, see “Appendix A.1” for

details):

|〈s1|t1〉| ≥
〈t1|t1〉 + 〈s1|s1〉 − 〈r1|r1〉

2
−

3

2
〈g1|g1〉 − (αγ + βγ )

√

〈g1|g1〉, (12)

|〈s0|t0〉| ≥
〈t0|t0〉 + 〈s0|s0〉 − 〈r1|r1〉

2
−

3

2
〈g1|g1〉 − (αγ + βγ )

√

〈g1|g1〉. (13)

The only remaining inner products we require are 〈r0|g0〉 and 〈g1|r1〉. However, we

were unable to find a non-trivial bound for these based only on observed statistics. Our

analysis shows that Eve can always set these to be orthogonal states without inducing

additional noise. Note that by making these orthogonal, Eve has maximal information

gain from these particular states. Thus, to work around this, we take advantage of

the fact that Theorem 1 allows us to remove summation terms while still generating

a lower-bound on the entropy. Therefore, we will instead use the following entropy

bound, which can only be lower than the one in Eq. 11 (thus this bound gives more

advantage to the adversary):
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H(A|E)ρ ≥
〈t1|t1〉 + 〈s1|s1〉

N

[

H

(

〈t1|t1〉
〈t1|t1〉 + 〈s1|s1〉

)

− H(λ1)

]

+
2〈t0, s0|t0, s0〉

N
[1 − H(λ2)]

+
〈t0, s1|t0, s1〉 + 〈s0, t1|s0, t1〉

N

[

H

(

〈t0, s1|t0, s1〉
〈t0, s1|t0, s1〉 + 〈s0, t1|s0, t1〉

)

− H(λ3)

]

(14)

Though we do not use it in our evaluation, we keep Eq. 11 in this paper to aid future

researchers. If it is possible to derive a non-trivial bound for those inner products

appearing in λ4, λ5, or λ6, the key-rate bound can only improve. We derive a lower

bound here that may not be optimal—yet, despite this, we show improved performance

over the original protocol (as we soon show).

4.2 Evaluation

This gives us everything we need to evaluate our key-rate bound. In Fig. 2, we show

how our protocol behaves as the probability of loss increases, while in Fig. 3, we show

how the protocol behaves when noise varies and see that the maximal phase noise φ

allowed is 9.8% when there is no loss (as the probability of loss increases, the maximal

noise tolerance of course decreases as expected).

We also compare to the original MZ-M-SQKD19 protocol introduced in [24] which

our protocol extends. For this comparison, we look at the ideal case of no loss and no

dark counts for both. To perform this comparison, we note that the original protocol

is the single-round version of the extension presented here. Thus, to compute it’s key-

rate, we simply discard all double-round terms appearing in our entropy and key-rate

expressions. That is, we use only the terms involving λ1 and λ4. We also change the

normalization term to remove the terms involving the second round. The resulting

expression is then easily evaluated and, furthermore, the expression agrees exactly

with the key-rate expression described in [24] for the ideal case.

This comparison is shown in Fig. 4. We note that the key-rate is significantly

improved for our new protocol for the same channel noise scenario. We also compare

to BB84’s key rate of 1 − 2h(φ) [32, 37]. Of course, BB84 outperforms as expected;

however, our extension does bring the key-rate closer to that of BB84 (in the ideal

scenario which is all we consider here).

Next, we consider the effective key-rate which is defined to be the number of secret

bits over the total number of signals sent. The previous graphs were the number of

secret bits over the raw key size, a value that is higher than the effective rate as the

effective rate takes into account rounds that were discarded and the fact that some

rounds require two qubits as the second sub-round was invoked. Let Q be the number

of photons sent (in the combined sub-round 1 and sub-round 2 for all used rounds),

and let M be the total number of rounds (where a round can consist of one or two

sub-rounds; thus a round can contribute one or two photons to the total number of

photons sent). Note that with most QKD protocols, and in particular the original

MZ-M-SQKD19 protocol, it holds that Q = M ; but this is not the case for our

protocol. Finally, let K be the size of the raw key. We have computed, above, the
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Fig. 2 Evaluating our protocol’s key-rate as the probability of loss increases for fixed phase error rate φ.

Here we set pd = 10−6 (a typical value for detector dark counts). Blue (top): φ = 0; Yellow (middle):

φ = 5%; Bottom (green): 8%. Note that this is assuming single qubits and lossy channels—if multi-photon

attacks were analyzed the maximal supported probability of loss would be significantly lower; however,

potentially decoy state methods [38–41] may be used to improve that though we leave that as interesting

future work (Color figure online)

Fig. 3 Evaluating our protocol’s key-rate as the phase error rate φ increases, for fixed loss rate. Blue (top):

pl = 0; Yellow (middle): pl = 0.8; Green (bottom): pl = 0.95. For all evaluations, we set pd = 10−6

(Color figure online)

ratio ℓ/K as K → ∞. We next derive ℓ/Q and for this, we must express Q as a

function of K . Normally, these values may all be observed; however to evaluate this

and compare we will again continue to assume our symmetric noise model. This is

not required, as mentioned before, it simply makes the algebra easier. It is clear that

Q = M + M ·Pr(Sub-Round 2 is Used) = M(1+Pr(C sends “0” on Sub-Round 1)).

Let p0 = Pr(C sends “0” on Sub-Round 1); in our symmetric noise model, we find

this to be:
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Fig. 4 Comparing our protocol’s key rate (Yellow, middle) with the original MZ-M-SQKD19 protocol in

[24] (Blue, bottom) with similar parameters; also comparing with BB84 (Green, top). Here, we consider

no loss and no dark counts, while we vary the phase error φ. We note that the extension we propose here

has a higher noise tolerance and higher key-rate than the original MZ-M-SQKD19 (Color figure online)

p0 =
1

4

(

2pl pd + (1 − pl)

(

pl pd +
1 − pl

2
+ (1 − pl)(1 − φ)

))

It is clear that K = pacc M , where pacc is the probability of accepting any particular

round (i.e., the probability that a round leads to a raw key bit generation). This is easily

seen to be pacc = 1
4

N , where N is given in Eq. 10. Thus, combining everything, we

have:

K =
pacc Q

1 + p0
=

N Q

4(1 + p0)
�⇒ Q =

4(1 + p0)K

N
,

and so we find the effective key-rate r ′ = ℓ
Q

to be:

r ′ =
ℓ

Q
=

Nℓ

4(1 + p0)K
=

N

4(1 + p0)
r .

In Fig. 5, we compare the effective key-rate of our extended protocol with the

original MZ-M-SQKD19 protocol. We note that even when factoring in the need for

an additional qubit, our extended version is still more efficient overall. In Fig. 6,

we show the overall improvement between the two protocols. We note that as the

noise increases, the percentage of increase in effective key-rate of our extension

also increases. Thus, our extension becomes highly useful the noisier the channel

becomes.
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Fig. 5 Comparing our protocol’s effective key rate (Yellow, middle) with the original MZ-M-SQKD19

protocol in [24] (Blue, bottom) with similar parameters; also comparing with BB84 (Green, top). Here we

consider no loss and no dark counts while we vary the phase error φ. We note that even when considering

the occasional need for two quantum signals per raw key bit (in the case a second sub-round is used), our

extension is still more efficient and noise tolerant with similar parameters (Color figure online)

Fig. 6 The percent improvement in effective key rate of our extension compared to the original MZ-M-

SQKD19 protocol under a noisy but lossless channel and no dark counts. That is, we plot
r ′
new−r ′

old

r ′
old

for

varying levels of phase noise φ. Note that for φ > 8.9%, r ′
old = 0 while our extension maintains a positive

key-rate until 9.8% thus the reason for the asymptote

5 Closing remarks

In this paper, we introduced an extension to the mediated SQKD protocol introduced

in [24]. Our extension was designed to improve efficiency of the overall system by

discarding fewer rounds. Even though our extension occasionally requires the use of
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two signals per round, overall effective secret key rates are still improved even under

noisy channels. Interestingly, our extension also improves the noise tolerance of the

protocol.

Many interesting open problems remain. First, would be a full security analysis

of general attacks—techniques from [42] in reducing mediated SQKD protocols to

entanglement-based versions may be useful, though those techniques do not immedi-

ately apply and some new insights are required. Also of interest would be to extend the

original protocol further in an effort to not waste the vacuum events. One candidate

protocol we may consider is to activate sub-round 2 if the server sends the message

“0” or “vac” on sub-round 1. It is clear that this would be correct and lead to improved

efficiency, especially on lossy channels. We tried to analyze the security of this proto-

col; however, the entropy expression contained over 18 terms and the analysis became

intractable; thus, alternative methods may be required to rigorously prove security of

this candidate extension. Finally, we comment that this protocol contains a high level

of asymmetry in error rates. Referring to Table 1 shows that the only way to get an

error of Alice= 1 and Bob= 0 is through a dark-count event (which are typically

small). It would be interesting to see if this can be harnessed somehow to improve

key-rates, perhaps even through a new classical process (e.g., a version of classical

advantage distillation [43–45]) that takes into account this asymmetry.
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Appendix

A.1 Parameter estimation

In this appendix, we determine bounds on the needed inner products (required to

evaluate Eq. 14) by considering various, observable, events such as the probability

of the server sending the message “1” given that both parties choose Reflect (this

should be small for instance). This can be done for arbitrary channels; however as

discussed in the text, we derive expressions for a symmetric depolarization attack,

a common approach in QKD security proofs. Note that our security proof does not

require this as an assumption—it is only done in order to evaluate the performance

on a standard channel scenario. Our steps below, however, may be followed for any

observed channel. Under these evaluation conditions, we may parameterize the channel

statistics as follows: φ will be the phase error of the channel; pl is the probability of

loss in one direction (the server to users and the users to the server); and pd is the dark

count rate of the server’s detectors.

Recall the density operator describing one round of the protocol (Eq. 9) which we

copy here:
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ρAB E =
1

N
[00]AB ⊗ ([1, t1,ν0] + [0, t0, 0, s0] + [0, t0, 1, s1])

+
1

N
[11]AB ⊗ ([1, s1,ν0] + [0, s0, 0, t0] + [0, s0, 1, t1])

+
1

N
[01]AB ⊗ ([1, r1,ν0] + [0, r0, 0, g0] + [0, r0, 1, g1])

+
1

N
[10]AB ⊗ ([1, g1,ν0] + [0, g0, 0, r0] + [0, g0, 1, r1]) (15)

We begin by considering Pr(C = 1 | A = B = Reflect) = P1|R R which is the

probability that conditioning on both Alice and Bob choosing Reflect, the server

sends the message 1. It is clear, from the analysis in Sect. 4 and the state ρAB E ,

that this is P1|R R = 〈r1|r1〉. Under our symmetric attack scenario, we set this to

P1|R R = pl pd

2
+ (1 − pl)

( pl pd

2
+ (1 − pl)φ

)

. Similarly, we find the following:

P1|R R = 〈r1|r1〉 =
pl pd

2
+ (1 − pl)

( pl pd

2
+ (1 − pl)φ

)

P0|R R = 〈r0|r0〉 =
pl pd

2
+ (1 − pl)

( pl pd

2
+ (1 − pl)(1 − φ)

)

P1|M R = 〈s1|s1〉 =
pl pd

2
+

1 − pl

2

(

pl pd

2
+

1 − pl

2

)

P0|M R = 〈s0|s0〉 =
pl pd

2
+

1 − pl

2

(

pl pd

2
+

1 − pl

2

)

P1|RM = 〈t1|t1〉 =
pl pd

2
+

1 − pl

2

(

pl pd

2
+

1 − pl

2

)

P0|RM = 〈t0|t0〉 =
pl pd

2
+

1 − pl

2

(

pl pd

2
+

1 − pl

2

)

P1|M M = 〈g1|g1〉 =
pl pd

2

P0|M M = 〈g0|g0〉 =
pl pd

2

Note that, in the above, we are defining Pi |RM = Pi |M R to be the probability of the

server sending message i and the measuring party not detecting the photon. These let

us easily compute N using Eq. 10 and the above.

It is also clear that the values of α, β, and γ may be observed based on Alice and

Bob’s measurements. Namely, |α|2 is the probability that conditioning on both parties

choosing Measure that Alice detects the photon. Similar observations may be made

for |β|2, while |γ |2 is the probability that neither party detects a photon. Thus, these
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are:

|α|2 = |β|2 =
1 − pl

2
; |γ |2 = pl ,

Next, we bound |〈s1|t1〉| and |〈s0|t0〉|. From Eq. 8, we have:

〈r1|r1〉 = α2〈e1|e1〉 + β2〈 f1| f1〉 + γ 2〈g1|g1〉
+ 2αβRe〈e1| f1〉 + 2βγ Re〈 f1|g1〉 + 2γαRe〈g1|e1〉

Thus,

αβRe〈e1| f1〉 =
1

2
(〈r1|r1〉 − α2〈e1|e1〉 − β2〈 f1| f1〉 − γ 2〈g1|g1〉

− 2βγ Re〈 f1|g1〉 − 2γαRe〈g1|e1〉)

=
1

2
(〈r1|r1〉 − α2〈e1|e1〉 − β2〈 f1| f1〉 − γ 2〈g1|g1〉)

− βγ Re〈 f1|g1〉 − γαRe〈g1|e1〉 (16)

Now, we can write Re〈s1|t1〉 as:

Re〈s1|t1〉 = αβRe〈 f1|e1〉 + βγ Re〈 f1|g1〉 + αγ Re〈g1|e1〉 + γ 2〈g1|g1〉

By substituting in Eq. 16 and noting that Re〈e1| f1〉 = Re〈 f1|e1〉, we have:

Re〈s1|t1〉 =
1

2
(〈r1|r1〉 − α2〈e1|e1〉 − β2〈 f1| f1〉 − γ 2〈g1|g1〉)

− βγ Re〈 f1|g1〉 − γαRe〈g1|e1〉 + βγ Re〈 f1|g1〉 + αγ Re〈g1|e1〉 + γ 2〈g1|g1〉

=
1

2
〈r1|r1〉 −

1

2
α2〈e1|e1〉 −

1

2
β2〈 f1| f1〉 +

1

2
γ 2〈g1|g1〉 (17)

Next we may find an expression for α2〈e1|e1〉 by looking at 〈t1|t1〉 (which is an

observable quantity as discussed above, namely P1|RM ):

〈t1|t1〉 = α2〈e1|e1〉 + γ 2〈g1|g1〉 + 2αγ Re〈e1|g1〉
�⇒ α2〈e1|e1〉 = 〈t1|t1〉 − γ 2〈g1|g1〉 − 2αγ Re〈e1|g1〉

Of course 〈t1|t1〉 is an observable probability for Alice and Bob and, later, we may

use Cauchy–Schwarz to bound |〈e1|g1〉| thus allowing them to bound α2〈e1|e1〉 used

in the expansion of 〈s1|t1〉. Similarly, we find:

〈s1|s1〉 = β2〈 f1| f1〉 + γ 2〈g1|g1〉 + 2βγ Re〈 f1|g1〉
�⇒ β2〈 f1| f1〉 = 〈s1|s1〉 − γ 2〈g1|g1〉 − 2βγ Re〈 f1|g1〉
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Combining this into Eq. 17 and using the (reverse) triangle inequality yields:

|〈s1|t1〉| ≥ |Re〈s1|t1〉| =
1

2
|〈t1|t1〉 + 〈s1|s1〉 − 〈r1|r1〉 − 3〈g1|g1〉 − 2αγ Re〈e1|g1〉

−2βγ Re〈 f1|g1〉|

≥
〈t1|t1〉 + 〈s1|s1〉 − 〈r1|r1〉

2

−
3

2
〈g1|g1〉 − (αγ + βγ )

√

〈g1|g1〉, (18)

where, for the last inequality, we used the fact that |〈e1|g1〉| ≤
√

〈e1|e1〉〈g1|g1〉 ≤√
〈g1|g1〉. (Similarly for 〈 f1|g1〉.) Similarly we may bound:

|〈s0|t0〉| ≥
1

2
|〈t1|t1〉 + 〈s1|s1〉 − 〈r1|r1〉 − 3〈g1|g1〉 − 2αγ Re〈e1|g1〉 − 2βγ Re〈 f1|g1〉|

(19)

≥
〈t0|t0〉 + 〈s0|s0〉 − 〈r1|r1〉

2
−

3

2
〈g1|g1〉 − (αγ + βγ )

√

〈g1|g1〉. (20)
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