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Abstract

Semi-quantum key distribution (SQKD) protocols attempt to establish a shared secret
key between users, secure against computationally unbounded adversaries. Unlike
standard quantum key distribution protocols, SQKD protocols contain at least one
user who is limited in their quantum abilities and is almost “classical” in nature. In
this paper, we revisit a mediated semi-quantum key distribution protocol, introduced by
Massa et al. (Experimental quantum cryptography with classical users, 2019. arXiv
preprint arXiv:1908.01780), where users need only the ability to detect a qubit, or
reflect a qubit; they do not need to perform any other basis measurement; nor do they
need to prepare quantum signals. Users require the services of a quantum server which
may be controlled by the adversary. In this paper, we show how this protocol may be
extended to improve its efficiency and also its noise tolerance. We discuss an extension
which allows more communication rounds to be directly usable; we analyze the key-
rate of this extension in the asymptotic scenario for a particular class of attacks and
compare with prior work. Finally, we evaluate the protocol’s performance in a variety
of lossy and noisy channels.

Keywords Quantum key distribution - Semi-quantum cryptography - Security -
Information theory

1 Introduction

Semi-quantum key distribution (SQKD) allows two parties, Alice and Bob, to estab-
lish a shared secret key that is secure against computationally unbounded adversaries.
Unlike standard quantum key distribution, with SQKD, at least one party is restricted
to being “classical” in nature—namely, at least one party is restricted to operating in
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a single, publicly known, basis, or to disconnecting from the quantum channel and
reflecting all qubits back to the sender. This limited “classical” party is not permitted
to measure or send qubits in arbitrary bases. Semi-quantum key distribution was intro-
duced originally in 2007 in [1] and, since then, has led to a growing area of research
interest with new protocols and security proofs for both QKD [2-11] and alternative
cryptographic primitives such as secret sharing [12—14], secure direct communication
[15-19], private comparison [20, 21], and secure identification protocols [22, 23]. It
is also experimentally realizable [24, 25]. For a general survey of semi-quantum cryp-
tography, the reader is referred to [26], while for a general survey of QKD, the reader
is referred to [27-29].

Recently, a form of mediated semi-quantum key distribution (M-SQKD) protocol
(a model originally introduced in [30]) was developed in [24]. Here, two parties wish
to establish a shared secret key; however, these parties are only able to detect the pres-
ence of a photon, or to reflect a photon back to a sender. They cannot even prepare new
quantum signals. Clearly, such a protocol cannot be secure (or even correct) without
the help of a third-party who is capable of performing some alternative quantum oper-
ations. This third-party, called a quantum server, is responsible for creating the initial
quantum state, and later performing a particular quantum measurement and reporting
the outcome. This protocol was also experimentally implemented. Interestingly, as
proven in [24], the server need not be trusted and may in fact be adversarial; security
is still possible even though users are so restricted. A variant of this protocol was
shown to be partially device independent in [10].

The protocol described in [24] (which we call here MZ-M-SQKD19 as it is a Mach-
Zehnder-based Mediated SQKD protocol developed in 2019) though proven secure in
the finite-key setting under practical device constraints (e.g., imperfect detectors and
weak coherent sources) and collective attacks, was inefficient. Under ideal scenarios,
the key-rate of the protocol was only 1/8 meaning that 8 qubits were required to distill
1 secret key bit assuming no noise or loss (if there is noise and/or loss, the key-rate, of
course, drops even more). This inefficiency is due to the fact that users must discard
numerous rounds and only use particular rounds where things “go right” (namely, a
random measurement from the server produces the right outcome).

In this work, we revisit this original protocol of [24] and extend it to increase
its efficiency. We also demonstrate that our extension can increase the protocol’s
noise tolerance. Our work is primarily concerned with improving the efficiency of this
original protocol and, to evaluate, we conduct an information theoretic proof of security
assuming single photons and lossy channels, though assuming an adversarial server.
We compute the protocol’s key-rate in the asymptotic scenario under a particular form
of i.i.d. attack. Our extension adds a potential second “sub-round” for every protocol
round; this greatly complicates the security analysis and our methods may be useful in
other (S)QKD protocols. Importantly, our methods in improving the efficiency of this
M-SQKD protocol may be useful to other experimentally realizable semi-quantum
protocols, such as [8, 9] as we show how previously discarded events may be utilized
in the semi-quantum model, through careful use of a second sub-round. Finally, we
evaluate the protocol’s performance in a variety of scenarios including noisy and lossy
channels and adversarial servers.
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2 Notation and preliminaries

Given a quantum state p4 (a Hermitian positive semi-definite operator of unit trace)
acting on some Hilbert space H 4. We write H (A), to mean the von Neumann entropy
of the system. Namely H(A), = —tr(pa log pa), where all logarithms in this paper
are base two unless otherwise specified. Given a bipartite state p4 g, we write H(A|E),
to be the conditional von Neumann entropy, namely H (A|E), = H(AE), — H(E),.
If both systems are classical, then H(A|E), is the Shannon entropy (in which case
we will often forgo writing the subscript when there is no ambiguity). We use A (x)
to mean the binary Shannon entropy, namely /4 (x) = —x logx — (1 — x) log(l — x).
Given a pure state |), we write:

In general, QKD protocols (semi-quantum or otherwise) will first utilize the quan-
tum channel and authenticated classical channel to establish a raw key of size N bits;
this process requires sending M > N qubits (in general, N = pycc M, where pacc 18
the probability that a round is “accepted” and not discarded by users). These raw keys
are classical bit strings, one held by Alice and another by Bob, which are partially
correlated and partially secret. Following this, an error correction protocol and pri-
vacy amplification protocol are run, establishing a final secret key of size £ bits. Two
important metrics for any QKD protocol are its key rate r = £/ N and its effective key
rate r’ = ¢/M. In the asymptotic scenario, where M — oo, and assuming collective
attacks, we may use the Devetak—Winter keyrate equation [31, 32] to evaluate these
rates leading to:

r=H(A|E), — H(A|B) ey

The effective key-rate, r’, is typically found by relating the number of qubits sent to
the size of the raw key (e.g., if N = paccM, then 1’ = paecr). Above, papE is the
state of the system modeling a single quantum communication round, conditioned on
it being accepted (i.e., conditioned on it leading to a raw key bit being generated).

To actually compute the key-rate, we will therefore need a bound on the entropy
H(A|E), and H(A|B). The latter is typically easy to compute directly since it is
a function of Alice and Bob only (who, through standard sampling arguments, may
fully know their joint A B distribution and thus evaluate H (A|B) directly). Bounding
the quantum entropy H(A|E), is the more difficult challenge and usually the key
ingredient in any security proof. For that, we will later use the following result from:
[33]:

Theorem 1 (From [33] though generalized for our application here) Given a quantum
state pAg of the form:

1 L 1 -
PAE = N[O]A ® (Z[Ei]) + N[I]A ® (Z[E]) , (2)

i=0 i=0
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then for every 0 < m’ < m it holds that:

&\ ((EE) + (FIF) (Ei|Ei) ‘
H(A'E)”ZZ(;( N >'(h(<E,-|Ei>+<E|Fi>)_h(k’)>’ ®

with:

A= 4

1 1+\/((Ei|Ei>—(Fi|Fi>)2+4|<Ei|Fi|Ei|Fi>|2
2 (EV|E;) + (Fi|F}) ’

Note that the states |E;) and | F;) may be arbitrary states (not necessarily normalized
nor orthogonal) in Eve’s ancilla.

Note that the above is a slight generalization of the theorem as presented in [33]; for
a proof that this indeed follows, the reader is referred to [34]. In particular, the above
theorem says that, given a classical-quantum state p4 g of the form described above,
namely where Eve’s system is the sum of rank one operators, then the entropy can be
computed if one has information on the inner product of the various states in Eve’s
ancilla. Note that the ordering of the sum for Eve’s system does not actually matter—
any “pairing” of E and F states will give a lower bound. Some pairings, however,
produce more optimal lower bounds. Note that it holds that any classical-quantum
state may actually be represented in the above manner and so the above theorem can
be used for any collective attack analysis.

3 The protocol

We now describe the protocol in detail. We assume that a two way quantum channel
connects the server (C) to Alice and Bob. In the ideal scenario, this should constitute
a folded Mach—Zehnder interferometer; however, since the server may be adversarial,
we do not assume this in our security proof later. An authenticated classical channel
connects Alice and Bob; an unauthenticated classical channel connects the server to
Alice and Bob. See Fig. 1. We will call our protocol here MZ-M-SQKD19-ext (to
distinguish from the original one in [24] which we extend and which, as mentioned,
we refer to as MZ-M-SQKD19).

We introduce the protocol assuming an honest server for clarity, however will
later prove security against a potentially corrupt server. The protocol consists of N
independent rounds, each round consists of two sub-rounds with the second sub-round
only being used in certain circumstances. The original protocol from [24] consists only
of the first sub-round; our extension here adds this second sub-round in an effort to
improve efficiency. A single round consists of the following process:

1. The server C prepares a quantum state of the form \%GO) + |1)), with |0) repre-

senting a photon traveling to Alice and |1) representing a photon traveling to Bob.
Such a state may be created by sending a single photon through a beamsplitter in
a Mach—Zehnder interferometer. See Fig. 1.
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Fig.1 Left: High-level diagram of the protocol assuming an honest server. The server should send a single
photon through a beamsplitter causing the qubit to travel towards Alice and Bob in a superposition. Alice
and Bob may independently choose to Reflect or Measure. If Reflect, the signal is sent directly
back to the server; otherwise, if Measure, the signal is routed to a photon detector. Note that Alice and
Bob cannot create new quantum systems. The server, on return, should pass the signal through a second
beamsplitter and report which of the two detectors (if any) received a signal. The key is derived from
users choices—in particular, when users choose opposite actions. Right: In our security analysis, we do not
assume an honest server. Instead the server is potentially adversarial and so we cannot assume the server
is actually implementing the interferometer, as is specified by the protocol. We do assume ideal single
photons, however, in our analysis. See Sect. 4 for more details on our security model

2. Alice and Bob, independently, choose to Reflect or Measure. If Measure,
the photon is routed to a photon detector; otherwise, it is routed back to the server.
If a party chooses Measure and detects the photon, they will later signal to discard
this round. Otherwise, if the measuring party does not detect the photon, Alice will
use the raw-key encoding scheme that a choice of Ref1ect means a key-bit of 0
and Measure means a key-bit of 1; Bob will use the opposite encoding scheme.
The goal of the protocol, at this point, is for Alice and Bob to guess at the action of
the other party without the server (or another third-party adversary) determining
what choice was actually made. Notably, it is the actions of the parties that dictate
their raw key, not an actual measurement outcome.

3. The server will pass the returning signal through the second half of the interfer-
ometer (again, see Fig. 1) and report the measurement outcome, either “0,” “1,” or
“vac.” Here the message “vac” is used to indicate that the server did not detect
a photon (i.e., the server detected the vacuum state). Normally, if both parties
choose Reflect, the interferometer should be calibrated so that the message “0”
is always sent. Of course natural noise (or adversarial interference) will alter this
and any other value will be considered noise that must be taken into account when
deriving the key rate.

4. If the server sends the message “vac”, then Alice and Bob discard this round and
repeat from step 1 with a new round; if the server sends the message “1” then Alice
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Table 1 The possible outcomes

. N A B A B C’s message
of a single sub-round of the key key g
protocol under analysis Reflect Measure “0”, 17, or “vac”

assuming ideal conditions and O T or “vac”
an honest server , 17, or Mvac
“«”

<« i

vac

0
Measure Reflect 1
Reflect Reflect 0

1

S = = O

Measure Measure

This table applies to both the original MZ-M-SQKD19 and our exten-
sion here. Alice and Bob’s keys are derived from their actions. Note
that, whenever the server sends the message “1,” users can be certain
they chose opposite actions, thus the need to reverse the action-to-key
encoding for Alice and Bob. In the original protocol, any other message
from the server was discarded as it was inconclusive for users. Here,
we propose an extension so that whenever the server sends the message
“0,” users run a second sub-round where they flip their actions. This
second sub-round is discarded only if the server sends the message
“vac” or users detect the photon in a measurement. See text for greater
explanation

and Bob use this round to contribute towards their raw key and users are finished
with this round, proceeding to the next (starting above at step 1). Ideally, if the
server sends the message “1,” users can be certain they chose opposite actions. See
Table 1.

5. Extension: Otherwise, if the server sends the message “0”, then parties will begin
Sub-Round 2. The server will repeat the above process (from step 1) but Alice and
Bob will invert their action choice. In this sub-round, when the server sends its
second message, they will reject this entire round only if the server sends “vac”—
otherwise, if the server sends the message “0” or “1”, they will use this round to
contribute towards their raw key. In particular, they will use the encoding chosen
in sub-round 1.

Note that, importantly, Alice and Bob’s choice of actions are independently chosen
each round; however if the second sub-round is used, their actions depend on their
choice in the first sub-round.

After the completion of a round (which may consist of both sub-rounds or just the
first sub-round depending on the server’s message), the protocol repeats with a new
round. Following the completion of a sufficient number of rounds (in this paper we
will consider the asymptotic scenario where the number of rounds goes to infinity),
Alice and Bob will disclose a random subset of all measurement outcomes and choices
to perform parameter estimation. In particular, users will choose a random subset and
disclose all actions and results on those rounds chosen. Any key material from those
rounds chosen for parameter estimation are, of course, discarded. Following this,
assuming the error rate is “low enough” (to be discussed), they will perform an error
correction and privacy amplification process to distill their final secret key.

We comment that this protocol extends the original MZ-M-SQKD19 protocol from
[24] by adding the additional sub-round 2. That is, the original protocol consisted of
steps 1-4 above; our extension adds the additional step 5, repeating the above for a
second sub-round The original protocol would reject any round where the server did
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not send the message “1.” Our protocol extension here, by utilizing a second sub-round
where users flip their action choice, allows for the potential contribution of message
“0” to be used towards the raw key. As we show later, this extension can greatly
improve the secret key generation rate of this protocol, even when counting for the
potential need to send two photons on a single round (i.e., even the effective key rate
is improved with our extension). Interestingly, our extension also improves the noise
tolerance of the protocol as we show later.

It is clear that our protocol is correct—namely, in the absence of noise and if the
server is honest, then Alice and Bob will agree on the same raw-key. Indeed, under
ideal conditions, the only time the server can send the message “1” is if one of Alice or
Bob, but not both, chose Measure and the measuring party did not detect the photon.
Furthermore, in this event, it is always clear to users that the other party choose the
opposite action. Now, in the event the server sends the message “0” on sub-round 1,
it is not immediately clear to parties whether they choose opposite actions or if both
parties choose Reflect (see Table 1). Thus, the original protocol [24] discarded this
event leading to waste. Our extension, by utilizing a second sub-round where users flip
their actions can potentially salvage these rounds by having the server send a second
qubit and parties flipping their action choices. Note that, the ambiguity of a message
“0” arises only if both parties choose Ref lect (in which case the server will always
send “0” in ideal conditions). Thus, by flipping their actions in this case, both parties,
in sub-round 2 will choose Measure causing the server to always send the message
“vac” (ideally) in which case parties discard the round. However, if one party chose
Measure and the other chose Reflect, in the next sub-round they will choose
Reflect and Measure, respectively; thus, any message of “0” or “1” by the server
in this second sub-round lets parties know they are choosing opposite actions without
ambiguity, thus leading to a correlation for their key.

The reader may now wonder if this is really more efficient than the original protocol
in terms of number of photons sent since, for some rounds, two photons are required.
We show later that our protocol, even with adversarial noise, can be more efficient
than the original.

4 Security analysis

The goal of this section is to compute a bound on the key-rate of our protocol. From
Eq. 1, this involves, primarily, computing a bound on the von Neumann entropy of the
system. To do this, we must first model a single round of the protocol, conditioning
on a key-generation event (from which H (A|E) must be computed). In our security
analysis, we will assume single qubits and lossy channels—that is, we do not consider
multi-photon events. These are important to consider, of course, and though considered
for the original protocol [24], we only consider single qubits and lossy channels here in
order to demonstrate how improvements may be made to the protocol in theory, leaving
practical issues as interesting future work. We will also consider only i.i.d. attacks
on each sub-round. In particular, each sub-round will consist of the same (potentially
probabilistic) attack operation. In general, this is weaker than a collective attack which
would have the second sub-round attack dependent on the first. However, we feel that

@ Springer



319 Page8of23 S. Mutreja, W. O. Krawec

analyzing security even in this case is still a notable contribution and furthermore,
if one were to consider the multi-mediated SQKD model introduced in [34], or a
variant of the protocol where users “shuffle” individual rounds into appropriate sub-
rounds when needed, then it is equivalent to a general collective attack. Analyzing full
collective attacks for a single server without this shuffling process would be interesting
future work (though out of scope for this paper), and our method below may serve as
a foundation for such an analysis.

Finally, we note that any third party adversary attack may be “absorbed” into an
adversarial server’s attack. Thus, in our security analysis, we only consider adversarial
servers—any third party adversary’s attack will be analyzed also as a consequence.
Because of this, we actually consider the server to be only adversary and call the
server, in this case, Eve.

Based on these assumptions, the server will begin the protocol by sending a state
of the form:

[$o) = @10, co) + B 1, c1) + ¥ v, cv) (%)

Note that the «, 8, and y may be real numbers as any alternative phase may simply
be absorbed into the corresponding |c;) ancilla state. Above, |0) represents a sin-
gle photon traveling towards Alice; |1) represents a photon traveling towards Bob;
and |v) represents a vacuum state. The |c;) states are arbitrary ancilla states that the
(adversarial) server may use to attempt to extract information later. If Alice chooses to
Measure, then, with probability ?, Alice observes the photon and, ultimately, the
round will be discarded. Otherwise, with probability 1 — az, Alice does not observe
the photon in which case it collapses to (8 |1, c1) +y |v, ¢y))/~/1 — o2. This will then
be the state that returns to the server. If Bob chooses Measure, similar identities may
be derived. Of course if both parties choose Measure and neither detect the photon,
then it collapses to |v, ¢, ), an event that happens with probability 2.

Following Alice and Bob’s actions, a quantum signal, or a vacuum state, returns
to Eve. From this, she may apply any quantum operation; however, she must send a
classical message to Alice and Bob. We may assume that this message is the same to
both parties (that is, Eve does not send one message to Alice and a different message to
Bob on a single round)—this is easily enforced by having Alice forward all messages
she receives from the server directly to Bob over the authenticated channel and any
discrepancies will cause Bob to signal to abort the protocol.

As shown in [24, 30], the most general way to model such an attack is through a
quantum instrument [35] which, using standard techniques [36], may be dilated to a
unitary operator. This attack, as shown in [30], then consists of Eve taking the return
signal, applying an isometry U mapping it to a state living in some Hilbert space
He ® HE, where in this case H; is spanned by {|0), |1), |[v)} where these three
basis states represent the three possible messages Eve could send to Alice and Bob.
Following the application of U to the returned signal, Eve measures the ¢/ register—
the outcome determines the message she sends to the parties, while the post measured
E portion represents her ancilla in this event. For a proof that this is identical to a
general quantum instrument attack, see [30].

@ Springer



Improved semi-quantum key distribution with two... Page9of23 319

More formally, Eve’s second attack is an isometry (which may, subsequently, be
dilated to a unitary operator, though we do not require this detail in this section):

U:Hr ® Hey, = He @ HE, (6)

where Hr is the “Transit” register modeling the traveling qubit (this is three dimen-
sional spanned by |vac), |0), and |1)) and Hg, is Eve’s (the adversarial server’s)
initial private ancilla (storing the |c;) states used in the initial state, Eq. 5). This is
mapped into the Hilbert space modeling the classical message sent (spanned by |0),
[1), and |v)) along with a new, enlarged, private ancilla for Eve (the server). Note that
the original qubit is “absorbed” into this new ancilla allowing Eve maximum ability
to attempt to extract useful information later. In particular, this takes into account that
the server may not be performing an honest measurement at the end of the protocol
round.

Without loss of generality, we may describe the action of this attack operator on
basis states using the following notation:

U0, co) =10 leo) g + 1) len) g + 1) lew) g
Ul,cr) =10y 1 fodg + Vel f1)E + V) | fo)E
Ulv,co) =10)g180) g + D) e 181 E + 10)er |80) E (7

Note that, in the following text, we often forgo writing the subscripts in the above
states. Also note that U’s action on basis states differing from those appearing on the
left-hand side of the above expressions may be arbitrary as such states never show up
in the analysis.

There are four main paths which can lead to a key being distilled based on the
choices of Alice and Bob. Consider, first, the case when Alice and Bob both choose
Reflect (in which case, should the round be accepted and not rejected, Alice will
have a key-bit of 0 and Bob a key-bit of 1—note this is an error event and so, ideally, the
probability of it being discarded should be one or close to one). We trace the protocol’s
execution in this event in order to derive a density operator describing the state of Alice,
Bob, and Eve’s registers in this case along with any public communication sent. Of
course, as we only care about cases that lead to a key bit being distilled, we condition
on events leading to a successful key generation event. In the first sub-round, since
both parties choose Reflect, the state returns to the server unchanged, namely the
state returning is |1o). Note that, as is normal in QKD security proofs, we assume
all noise is caused by the adversary’s attack and that, in fact, the adversary replaces
the noisy quantum channel with a perfect channel, allowing her to “hide” within the
natural noise. Thus, in the event both parties choose Reflect, the state returning is
unchanged. Eve at this point applies U evolving the state to:

U [Yo) =10} (a leo) + B | fo) + v 1go))
+ D)y (@ler) +B1f1) +vIg)
+ |U)cl (aley) + Blfo) +vlgu).
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Now, the protocol discards the round if the server sends the message “v”” while, if the
server sends the message “1” they will use this round immediately and proceed to the
next round. In this case, the state of the system is:

[01]48 ® ([l]cl ® P(aler) +B1f1) +vIig) @ [vel + Crreject)

where, above, [vg] is some state in Eve’s ancilla used by her when the second sub-
round is not used (without loss of power to Eve, this is a pure state) and oreject is the
state of the system in the case that Alice and Bob signal to discard this round (this
state will later be projected out when we condition on this round’s acceptance and so
we do not bother to derive what it is). We also define P(|z)) = [z] to simplify the
expressions.

Finally, if the server sends the message “0” parties run the second sub-round,
flipping their actions to Measure. In this case, as discussed in our security model,
Eve prepares, for sub-round 2, the same state as before, sending |v). Alice and Bob
both then Measure and discard if they see a photon. Thus, focusing on the part of the
state that will ultimately not be rejected (in particular, Alice and Bob do not observe
the photon when it arrives, thus causing the state to collapse to |v, ¢,) then returning
to Eve), we find the final state for Alice, Bob, and Eve to be:

[01]4p ® ([1]c; @ P (e ler) + B 1f1) + v 181) ® vo
+[0]1e; ® Pl leo) + B1fo) + ¥ 180) ® [[0lcr[go] + [Mler[g1]] + Oreject)

where the A B registers are used to store Alice and Bob’s classical raw key choice. Note
that |vg) is a state in the Hilbert space used to model the classical message and Eve’s
ancilla in the second sub-round assuming that sub-round is not used. Using similar
techniques, one may trace the protocol for the other three cases of actions, leading to
the following results (ignoring any “reject” states which, of course, appear in all the
cases below):

[10]4p ® ([1]a[g1] ® [vo]

+ 0] ® [go] @ [[1]er @ Plaler) + B1f1) + v 1g1) + [0]e ® P leo) + B1fo) + v 1go)])
[00]45 ® ([1le: ® P (o le1) + ¥ 181)) ® [vol

+ [0l ® P(aleo) + v 1g0) ® [[0]r ® P(B1fo) + v Ig0) + [Mer @ P(Bf1) + ¥ |g0))]
[11]ap ® ([1la ® P (B1f1) + v 1g1)) ® [vol

+ [0l ® P(B1fo) + v 1g0) ® [0l ® P(a|eo) + ¥ Igo)) + [1]er @ Pl [er) + ¥ g0))]

To clean up the resulting density operator, we introduce the following notation:

Ir1) = aler) + B 1f1)+ v Ig1)
lro) = a leo) + B 1f0) + v 180)
Is1) = B1f1) +vlg1)
Iso) = B 1fo) + ¥ I8o0)
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[t1) = aler) + ¥ Ig1)
[to) = a leo) + ¥ 1g0) (8)

Using this, we derive the following density operator p4pr which models the entire

joint state of the protocol conditioning on the round not being rejected (i.e., we now
project out the “reject” states above and re-normalize):

1
PABE = N[OO]AB ® ([1, t1,ve] + [0, to, 0, 9] + [0, to, 1, 51])
+ —[11]45 ® ([1, s1,v0] + [0, 50, 0, to] + [0, sp, 1, t1])

+ —[01]48 ® ([1, r1,v0] + [0, 19, 0, go] + [0, 1o, 1, g11)

+ N[IO]AB ® ([1, g1,v0] + [0, g0, 0, ro] + [0, go, 1, 11 ]) 9
where N is the normalization term:

N = (t1ln) + (tolt0) (solso) + (tolto){s1|s1)
+ {s11s1) + (solso) (fol70) + {solso)(z1]71)
+ (r1lr1) + (rolro){(golgo) + (rolro){gilg1)
+ (g1181) + (golgo) {rolro) + (golgo) (r1lr1). (10)

Our goalis tocompute H (A|E) ,. Applying Theorem 1 and simplifying the resulting
expression yields:

(t1ltr) + (s1ls1) (t1ler)
o B () )]

N )+ (s1ls1)
2(to, s0lt0, So)
— [ —H(
N [ (*2)]
to, S1lt0, 1) + (S0, t1|s0, to, S1lto, s
+<0 1lt0. s1) + (s0. 1150, t1) [H( (t0. s1lt0, s1) )—H()»3):|
N (t0, s1lt0, s1) + {0, t11s0, 11)

(rilr) + {g1lg1) ( (rilrn) ) ]
H — H(
* N [ i) + (giign )~ Y

2(ro, golro, go)

—— [l - H()
+ N [ (2s5)]
r0, 81170, 81) + (g0, r1lgo, 7 r0, 81170,
. {ro-gilro. g1) + (0. r1lgo. m1) [H( (ro. g1lro, g1) >—H(A6)
N (ro, g1lro, g1) + (go. r1180. r1)

(1)

where:

a2 L (14 YU = Gsils)? + 4t ls) P
2 ((ri]er) + (s1ls1))
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1 fo, ,t
Ay = & <1 . Itro. solso o)l)

2 (to, solto, so)

1 V1o, s1lto, 1) — (50, 1150, 11))% + 410, 51150, 1) |2
M==11+

2 ({to, s11t0, s1) + {s0, 11150, 11))
e = L (1 4 YUl = Gailgn)? + 4itrilgn) P

2 (rilr) + {(g1lg1)

1 , ,
P <1 . tro. golro go)l)

2 (ro, golro, go)

1 V({ro. g1lro. g1) — (g0. r11g0. 11))* + 41{ro. g11g0. 1) 2
M==|1+

2 ({ro, g1lro, g1) + (go. r1lgo. r1))

We must now show how those inner products appearing in the above expression
may be bounded through observable quantities (i.e., through the probabilities of certain
observable events occurring). This will allow us to calculate a lower-bound on the key-
rate of our protocol based only on observable quantities.

4.1 Parameter estimation

To evaluate our entropy bound derived above (in order to evaluate the key-rate of
the protocol using Eq. 1), we require bounds on the inner products of those vectors
appearing in Eq. 11. This can be done for any arbitrary channel, though to actually
evaluate our bound and compare with prior work, we derive expressions for a sym-
metric depolarization attack. This is a common approach in QKD security proofs and
s0, by doing so, will allow us to compare with prior work and protocols. Note that
our security proof above does not require this as an assumption; it is only done to
evaluate the performance on a standard channel scenario. The steps we use to derive
these expressions may be used, however, for any observed channel.

We may parameterize the channel statistics using a few parameters. We use ¢ to be
the phase error of the channel and p; to be the probability of loss in one direction (the
server to users and the users back to the server). Finally, we use p,; to denote the dark
count rate of the server’s detectors. Note that if the server is adversarial, it may have
perfect detectors but try to “hide” its attack by simulating a suitable dark count rate.

Now, we consider what observable statistics are available to users. We denote by
Pojrr tobe Pr(C = 0| A = B = Reflect), namely the probability that, condi-
tioning on both Alice and Bob choosing Reflect, the server sends the message “0.”
Similarly, we can define P;|rg along with quantities of the form P;yr, Pjjrm, and
P; 1y m, where the later are conditioning on Alice choosing Measure and Bob choos-
ing Reflect; Alice choosing Reflect and Bob choosing Measure; and finally
both Alice and Bob choosing Measure, respectively. Note that, when working with
a probability involving a party choosing Measure, the probability is also over the
measuring party not detecting the photon.
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Using these parameters, we can compute important bounds on the inner products
appearing in our entropy expression. Full details on these derivations are described in
“Appendix A.1”. We are able to determine the following:

Pure = (rilr) = 205 4+ (1= po) (B2 + (1 = p)g)

Pork = (rolro) = P24 4 (1 = pp) (£ + (1 = p)(1 = 9)

2 2
pipa 1 —pi (pipa 1 —pi
P = =
MR = {s1ls1) > + 5 (2 + > )
pipa 1 —pi (pipa  1—pi
P = =
oM R = (So0ls0) > + 5 (2 + 3 >
pipd L= pr (pipa 11— pi
P = (t1|t;) =
nrm = (t1lt1) > + 5 (2 + 3 )
pipda  L—pr (pipa  1—pi
P = {tylto) =
ojrM = (tolto) > + > (2 + > )
PiPd
Piym = (g1lg1) = -
PLpd

Poymym = (golgo) = -
These let us easily compute N using Eq. 10 and the above. We also have:

1—p
2_ 2:—
la|” = |B] 3

lv1* = pi,

Finally, we can also derive the following bounds (again, see “Appendix A.1” for
details):

— 3

sl = (”'“)“S”;” ralr) _ “tailg) — @y + By, (12)
- 3

\(solto)] = (“"IOH“O';O) (”"”—§<gl|g1>—(ay+ﬂy)\/<g1|g1>. (13)

The only remaining inner products we require are (ro|go) and (g1|r1). However, we
were unable to find a non-trivial bound for these based only on observed statistics. Our
analysis shows that Eve can always set these to be orthogonal states without inducing
additional noise. Note that by making these orthogonal, Eve has maximal information
gain from these particular states. Thus, to work around this, we take advantage of
the fact that Theorem 1 allows us to remove summation terms while still generating
a lower-bound on the entropy. Therefore, we will instead use the following entropy
bound, which can only be lower than the one in Eq. 11 (thus this bound gives more
advantage to the adversary):
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(t11t1) + (s1ls1) (t11t1)
HAE, ==y [H<<nm>+<s1|s1>> _H“')]

2(10, solt0, s0)

1—HM)
N [ *2)]
1o, S1lto, S1) + (S0, 1180, t to, S11to, §
4 Lo s1lto. s1) + (s0. frlso. 1) [H( (10, s1lt0, 51) )—H(k3)]
N (t0, s1lto, s1) + (s0, t11s0, 11)

(14)

Though we do not use it in our evaluation, we keep Eq. 11 in this paper to aid future
researchers. If it is possible to derive a non-trivial bound for those inner products
appearing in A4, As, Or Ag, the key-rate bound can only improve. We derive a lower
bound here that may not be optimal—yet, despite this, we show improved performance
over the original protocol (as we soon show).

4.2 Evaluation

This gives us everything we need to evaluate our key-rate bound. In Fig. 2, we show
how our protocol behaves as the probability of loss increases, while in Fig. 3, we show
how the protocol behaves when noise varies and see that the maximal phase noise ¢
allowed is 9.8 % when there is no loss (as the probability of loss increases, the maximal
noise tolerance of course decreases as expected).

We also compare to the original MZ-M-SQKD19 protocol introduced in [24] which
our protocol extends. For this comparison, we look at the ideal case of no loss and no
dark counts for both. To perform this comparison, we note that the original protocol
is the single-round version of the extension presented here. Thus, to compute it’s key-
rate, we simply discard all double-round terms appearing in our entropy and key-rate
expressions. That is, we use only the terms involving A and A4. We also change the
normalization term to remove the terms involving the second round. The resulting
expression is then easily evaluated and, furthermore, the expression agrees exactly
with the key-rate expression described in [24] for the ideal case.

This comparison is shown in Fig. 4. We note that the key-rate is significantly
improved for our new protocol for the same channel noise scenario. We also compare
to BB84’s key rate of 1 — 2h(¢) [32, 37]. Of course, BB84 outperforms as expected,;
however, our extension does bring the key-rate closer to that of BB84 (in the ideal
scenario which is all we consider here).

Next, we consider the effective key-rate which is defined to be the number of secret
bits over the total number of signals sent. The previous graphs were the number of
secret bits over the raw key size, a value that is higher than the effective rate as the
effective rate takes into account rounds that were discarded and the fact that some
rounds require two qubits as the second sub-round was invoked. Let Q be the number
of photons sent (in the combined sub-round 1 and sub-round 2 for all used rounds),
and let M be the total number of rounds (where a round can consist of one or two
sub-rounds; thus a round can contribute one or two photons to the total number of
photons sent). Note that with most QKD protocols, and in particular the original
MZ-M-SQKD19 protocol, it holds that QO = M; but this is not the case for our
protocol. Finally, let K be the size of the raw key. We have computed, above, the
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Fig. 2 Evaluating our protocol’s key-rate as the probability of loss increases for fixed phase error rate ¢.
Here we set pg = 10706 (a typical value for detector dark counts). Blue (top): ¢ = 0; Yellow (middle):
¢ = 5%; Bottom (green): 8%. Note that this is assuming single qubits and lossy channels—if multi-photon
attacks were analyzed the maximal supported probability of loss would be significantly lower; however,
potentially decoy state methods [38—41] may be used to improve that though we leave that as interesting

future work (Color figure online)
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Fig.3 Evaluating our protocol’s key-rate as the phase error rate ¢ increases, for fixed loss rate. Blue (top):
p1 = 0; Yellow (middle): p; = 0.8; Green (bottom): p; = 0.95. For all evaluations, we set p; = 1070

(Color figure online)

ratio £/K as K — oo. We next derive £/Q and for this, we must express Q as a
function of K. Normally, these values may all be observed; however to evaluate this
and compare we will again continue to assume our symmetric noise model. This is
not required, as mentioned before, it simply makes the algebra easier. It is clear that
Q = M+ M -Pr(Sub-Round 2 is Used) = M (1+4Pr(C sends “0” on Sub-Round 1)).
Let po = Pr(C sends “0” on Sub-Round 1); in our symmetric noise model, we find

this to be:
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Phase Error
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Fig. 4 Comparing our protocol’s key rate (Yellow, middle) with the original MZ-M-SQKD19 protocol in
[24] (Blue, bottom) with similar parameters; also comparing with BB84 (Green, top). Here, we consider
no loss and no dark counts, while we vary the phase error ¢. We note that the extension we propose here
has a higher noise tolerance and higher key-rate than the original MZ-M-SQKD19 (Color figure online)

1 1—
Po=1 <2pzpd +(1—pp) (pzpd + T”’ (1= p(1— ¢>))

It is clear that K = pacc M, where pyc is the probability of accepting any particular
round (i.e., the probability that a round leads to a raw key bit generation). This is easily
seen to be pycc = %N , where N is given in Eq. 10. Thus, combining everything, we
have:

_ Pacc O _ NQ :>Q=4(1+P0)K’
14+ po 4+ po) N

and so we find the effective key-rate r’ = é to be:

/

12 N¢{ N
= — = = r.
Q 40 +poK 41+ po)

In Fig. 5, we compare the effective key-rate of our extended protocol with the
original MZ-M-SQKD19 protocol. We note that even when factoring in the need for
an additional qubit, our extended version is still more efficient overall. In Fig. 6,
we show the overall improvement between the two protocols. We note that as the
noise increases, the percentage of increase in effective key-rate of our extension
also increases. Thus, our extension becomes highly useful the noisier the channel
becomes.
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Fig. 5 Comparing our protocol’s effective key rate (Yellow, middle) with the original MZ-M-SQKD19
protocol in [24] (Blue, bottom) with similar parameters; also comparing with BB84 (Green, top). Here we
consider no loss and no dark counts while we vary the phase error ¢. We note that even when considering
the occasional need for two quantum signals per raw key bit (in the case a second sub-round is used), our
extension is still more efficient and noise tolerant with similar parameters (Color figure online)
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Fig. 6 The percent improvement in effective key rate of our extension compared to the original MZ-M-
!

SQKD19 protocol under a noisy but lossless channel and no dark counts. That is, we plot M for
old

varying levels of phase noise ¢. Note that for ¢ > 8.9%, "(/;l 4 = 0 while our extension maintains a positive
key-rate until 9.8% thus the reason for the asymptote

5 Closing remarks
In this paper, we introduced an extension to the mediated SQKD protocol introduced

in [24]. Our extension was designed to improve efficiency of the overall system by
discarding fewer rounds. Even though our extension occasionally requires the use of
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two signals per round, overall effective secret key rates are still improved even under
noisy channels. Interestingly, our extension also improves the noise tolerance of the
protocol.

Many interesting open problems remain. First, would be a full security analysis
of general attacks—techniques from [42] in reducing mediated SQKD protocols to
entanglement-based versions may be useful, though those techniques do not immedi-
ately apply and some new insights are required. Also of interest would be to extend the
original protocol further in an effort to not waste the vacuum events. One candidate
protocol we may consider is to activate sub-round 2 if the server sends the message
“0” or “vac” on sub-round 1. It is clear that this would be correct and lead to improved
efficiency, especially on lossy channels. We tried to analyze the security of this proto-
col; however, the entropy expression contained over 18 terms and the analysis became
intractable; thus, alternative methods may be required to rigorously prove security of
this candidate extension. Finally, we comment that this protocol contains a high level
of asymmetry in error rates. Referring to Table 1 shows that the only way to get an
error of Alice= 1 and Bob= 0 is through a dark-count event (which are typically
small). It would be interesting to see if this can be harnessed somehow to improve
key-rates, perhaps even through a new classical process (e.g., a version of classical
advantage distillation [43—-45]) that takes into account this asymmetry.
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number CNS-1950600, which supported her during a summer REU at the University of Connecticut.
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Appendix
A.1 Parameter estimation

In this appendix, we determine bounds on the needed inner products (required to
evaluate Eq. 14) by considering various, observable, events such as the probability
of the server sending the message “1” given that both parties choose Reflect (this
should be small for instance). This can be done for arbitrary channels; however as
discussed in the text, we derive expressions for a symmetric depolarization attack,
a common approach in QKD security proofs. Note that our security proof does not
require this as an assumption—it is only done in order to evaluate the performance
on a standard channel scenario. Our steps below, however, may be followed for any
observed channel. Under these evaluation conditions, we may parameterize the channel
statistics as follows: ¢ will be the phase error of the channel; p; is the probability of
loss in one direction (the server to users and the users to the server); and py is the dark
count rate of the server’s detectors.

Recall the density operator describing one round of the protocol (Eq. 9) which we
copy here:
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1
PABE = N[OO]AB ® ([1, t1,ve] + [0, to, 0, s9] + [0, to, 1, 51])
+ —[11]43 ® ([1, s1,vo] + [0, s¢, 0, to] + [0, sp, 1, t1])
+ —[01]45 ® ([1,r1,v0] + [0, 19, 0, go] + [0, 19, 1, g11)

+

2| —z2[—2-

[10]45 ® ([1, g1,v0] + [0, 0, 0, ro] + [0, g0, 1, r1])  (15)

We begin by considering Pr(C = 1| A = B = Reflect) = Pjgg which is the
probability that conditioning on both Alice and Bob choosing Reflect, the server
sends the message 1. It is clear, from the analysis in Sect. 4 and the state pspE,
that this is Pjjgr = (r1lr1). Under our symmetric attack scenario, we set this to
Pirr = 284 + (1 — pp) (284 + (1 — p)¢). Similarly, we find the following:

Purg = (i) = 224+ (1 = p (B22 + (1= pg)
Por = (rolro) = P24+ (1 = p) (B24 4+ (1 = p1 - )

2 2

pipa | 1 —pi
Pojmr = {solso) = > + 2

pipd 1 —pr (pipa  1—pi
Piyr = {s1ls1) = + ( + )

pipa 1 —pi

P = () =

nrm = (t1lt1) 2+2<2+2
pipa  V—pi (pipa  1—pi

P, = (tolto) =

ojrM = (folto) 2+2(2+2
PLPd

Pyym = (g11g1) = -
PLpd

Pojym = (golgo) = -

Note that, in the above, we are defining P;|ry = P;jmr to be the probability of the
server sending message i and the measuring party not detecting the photon. These let
us easily compute N using Eq. 10 and the above.

It is also clear that the values of «, 8, and y may be observed based on Alice and
Bob’s measurements. Namely, || is the probability that conditioning on both parties
choosing Measure that Alice detects the photon. Similar observations may be made
for |8|%, while |y |? is the probability that neither party detects a photon. Thus, these
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are:

> = 1B1* = = p,

2

Next, we bound |(s1]#1)| and |{so|?o)|. From Eq. 8, we have:

(rilr) = o?(erler) + B2 fil A1) + vgilar)
+ 2aBReler| fi) + 2ByRe( filg1) + 2yaRe(giler)

Thus,

1
apfRe( €1|f1)— (rilr1) — & (erler) — B(fil f1) — v (gilg1)
- 2l‘})/Rﬂfllgw — 2yaRe(giler))

1
= 5((V1|rl)—a (etler) — B2(filf1) — v {gilg1)
— ByRe(fi1lg1) — yaRe(giler) (16)

Now, we can write Re(s{|¢]) as

Re(si|t1) = aBRe(file1) + ByRe(filg1) + ayRe(giler) + v (gilg1)

By substituting in Eq. 16 and noting that Re(e;| f1) = Re(f1|e1), we have:

1 2 2 2
Re(si|t) = 5(<r1|r1) —a“(erler) — B(f1lf1) — v~ (g1lg1))
— ByRe(filg1) — yaRe(gile1) + ByRe(filg1) + ayRe(giler) + y*(gilg1)

1 1 1 1
= S {rilr) = 5a2<e1|e1> - §ﬁ2<f1|f1> + 5y2<g1|g1> (17)

Next we may find an expression for a2leiler) by looking at (¢{|¢;) (which is an
observable quantity as discussed above, namely Pjjgum):

(tilt) = a*(erler) + y*(g1lg1) + 2ayRelerlgr)
— a’(erle1) = (t1lt1) — y*(g1lg1) — 2ayReler|g1)

Of course (#1|t1) is an observable probability for Alice and Bob and, later, we may

use Cauchy—Schwarz to bound |(e|g1)| thus allowing them to bound a?(e|er) used
in the expansion of (sy|#1). Similarly, we find:

(s11s1) = B2(f1lf1) + v (gilg1) + 2ByRe(filg1)
= BHfilf1) = (s1ls1) — v {gilg1) — 2By Re( filg1)
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Combining this into Eq. 17 and using the (reverse) triangle inequality yields:

1
[(s1lt1)| = [Re(s1]t1)| = 3 [{t1lt) + (s1ls1) — (rilr1) — 3{g1lg1) — 2ayRele1lg1)

—2ByRe(f1lg1)]
- (t11n) + (s1ls1) — (r1lr1)
- 2
3
- z(g1|g1) — (ay + By)v{gilg1), (18)

where, for the last inequality, we used the fact that |(e1|g1)| < +/{e1le1){g1lg1) <
J{g1lg1). (Similarly for ( fi|g1).) Similarly we may bound:

1
[(solt0)| > 3 [{t1121) + {s1ls1) — (rilr1) — 3(g1lg1) — 2ayRe(ei|g1) — 2By Re(f1lg1)]

(19)
{tolto) + (solso) — (rilr1) 3
> 5 — 5 {eilen) — (ay + By)Vigilg)- (20)
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