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Abstract

Mediated semi-quantum key distribution involves the use of two end-users who have
very restricted, almost classical, capabilities, who wish to establish a shared secret key
using the help of a fully-quantum server who may be adversarial. In this paper, we
introduce a new mediated semi-quantum key distribution protocol, extending prior
work, which has asymptotically perfect efficiency. Though this comes at the cost of
decreased noise tolerance, our protocol is backwards compatible with prior work, so
users may easily switch to the old (normally less efficient) protocol if the noise level
is high enough to justify it. To prove security, we show an interesting reduction from
the mediated semi-quantum scenario to a fully-quantum entanglement based protocol
which may be useful when proving the security of other multi-user QKD protocols.

1 Introduction

Quantum key distribution (QKD) allows two parties, who we refer to customarily as Alice
and Bob, to establish a shared secret key. Unlike classical communication protocols, where
security must always depend on unproven computational assumptions, QKD is secure against
computationally unbounded adversaries (i.e., adversaries who are bounded only by the laws
of quantum physics). One fascinating question in this field of research is, “how quantum”
must a protocol be to gain this advantage over classical protocols? To this end, the notion
of semi-quantum cryptography was introduced in 2007 by Boyer et al., [I]. Originally only
for key distribution [2, 3, 4 5] |6l [7, 8], the field of semi-quantum cryptography has advanced
to other applications including secure direct communication [9, 10, 11, 12], secret sharing
[13], 4], 15], identity verification [I6l [I7], and private state comparison [I8 19]. See [20]
for a recent survey on semi-quantum research and [21) 22] for general surveys on quantum

cryptography.
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Semi-quantum protocols involve at least one party who is semi-quantum or “classical”
in nature. Such a party is only able to interact with the quantum channel in a limited,
almost classical, way. In particular, this party can only measure and send in a single pub-
licly known basis (generally the computational Z basis spanned by |0) and [1)). Typically,
the party may measure in this basis, observing outcome |r), and then resend the result
|r), an operation known as Measure-Resend, though some recent implementations designed
for use with practical devices require only Z basis measurements and not state preparation
[23, 24, 25], 26] (with [26] being also secure in a strong semi-device independent security
model). Beyond this, the party may also choose to “disconnect” from the quantum chan-
nel, letting any signal pass through their lab undisturbed back to the original sender (an
operation denoted Reflect, as it “reflects” the signal back to the sender). Permutation of
a signal is also allowed [2], though we do not require this operation here. Notice that if all
parties were restricted in this manner, the protocol would be mathematically equivalent to a
purely classical communication protocol and, thus, unconditional security would be impossi-
ble. Semi-quantum cryptography, therefore, seeks to better understand this “gap” between
classical and quantum secure communication.

In 2015, it was shown that key-distribution is possible when both parties, Alice and Bob,
are semi-quantum according to the above definition, so long as a fully-quantum third party
server is available [27]. Interestingly, security is possible even when this server is actually the
adversary. Such a protocol is called a mediated semi-quantum key distribution (M-SQKD)
protocol.

Since this original M-SQKD protocol, several other mediated and multi-user semi-quantum
protocols have been developed with various advantages and disadvantages. In general three
avenues of research exist, often with many protocols advancing more than one of these si-
multaneously. First, is decreasing the necessary resources placed on the end-users; second is
decreasing the necessary resources for the quantum server; and third is to increase efficiency
or noise tolerance.

Some attempts have been made to decrease the resources placed on the end-users. For
instance, [28] designed a M-SQKD protocol which did not require users to measure (though
recently in [29] some attacks have been found against this protocol). An M-SQKD protocol
where users did not have to prepare quantum states was proposed in [25] along with a finite-
key security analysis and an experimental proof-of-concept. Towards reducing the server
requirements, [30] required the server to only send single qubit states, one to each user (as
opposed to creating an entangled Bell state as in the original 2015 protocol). This was
followed by a Bell measurement. Though, in [31] some attacks were shown against this
protocol but with a proposed improvement. Another protocol in [32] requires only single
qubit preparation and measurement for the server, though also requires a cycle topology
(allowing the qubit to travel from the server to Alice, to Bob, then back to the server).
Finally, towards increasing noise tolerance and/or efficiency, generally new protocols are
developed, or new models such as the multi-mediated SQKD model which use multiple
servers to gain advantages in noise tolerance [33] (though usually at the cost of efficiency).

Our work attempts to improve efficiency by extending the original M-SQKD protocol of



[27] in a way that does not require additional quantum capabilities for either the server or
the users. In fact, our protocol is backwards compatible with the original 2015 M-SQKD
protocol. Our extension, though potentially doubling efficiency, comes at the cost to noise
tolerance as we demonstrate later. Since our extension does not require additional quantum
complexity, end-users may decide (even after the protocol is run), to execute the original M-
SQKD protocol or our proposed extension here (since only the classical parts of the protocol
are changed). Taken as a whole, therefore, our work can only increase the efficiency of the
2015 M-SQKD protocol (at low noise levels), or maintain the original efficiency (at high
noise levels) without sacrificing noise tolerance. For “low” noise levels, one may use our
extension; once the noise level is passed a certain threshold (which can be found through
our key-rate bound as we show later), our extension may be deactivated, switching to the
original protocol and its higher noise tolerance. Furthermore, this is the first M-SQKD
protocol with provable security that allows, asymptotically, all communication rounds to
contribute to the raw key. While other M-SQKD protocols have also been proposed with
asymptotically perfect efficiency [28, 30, 32} [34], they are only proven secure against certain
classes of attacks. Towards proving our protocol secure, we also show a novel reduction from
this M-SQKD scenario to an entanglement based protocol. This reduction method may be
useful in analyzing other multi-user (S)QKD protocols.

We make several contributions in this paper. First, we revisit the original M-SQKD
protocol of [27] in order to improve its efficiency. In particular, we extend that protocol
so that, asymptotically, all rounds lead to contributions towards the distilled key (in the
original protocol of [27], only half the rounds could contribute asymptotically in ideal condi-
tions). To prove security, we rely on alternative classical post processing methods, especially
mismatched measurement analysis [35], 36l 87] (shown to be vital for many semi-quantum
protocols [20]), to bound Eve’s information in this case.

Perhaps our main contribution, however, is that we devise a general proof of security
for a mediated semi-quantum protocol by developing a novel reduction to an entanglement
based protocol. Due to the two-way quantum channel, standard mathematical tools used
in QKD security proofs often cannot be directly applied to semi-quantum scenarios. In
this work, we show for the first time that mediated SQKD protocols may be reduced to
equivalent entanglement based versions thus opening up the possibility of more rigorous
analytical methods. So far, reductions are only known for a certain subset of two-party
SQKD protocols [38, 8] but none were known for M-SQKD protocols. Our new reduction
may be highly useful to other researchers of multi-user (S)QKD protocols, providing new
methods to reduce their analysis to one-way entanglement based protocols for which many
mathematical tools exist to help prove them secure.

1.1 Preliminaries

Given a bipartite quantum state p4p, we write H(AB), to mean the von Neumann entropy of
pap. We write H(A|B), to mean the conditional von Neumann entropy, namely H(A|B), =
H(AB), — H(B),, where H(B), is the entropy in the resulting system pp = trapap after
tracing out A. If pap is a classical system, then H(A|B), is actually the Shannon entropy
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and in this case, we will often simply write H(A|B) so there is no ambiguity in the fact we
were discussing a classical system at that point. We denote by h(x) to be the binary Shannon
entropy, namely h(z) = —zlog, x — (1 — x)logy(1 — x). Finally, we denote by |¢;) to be the
four Bell states namely |¢g) = \%(\OOH—HD), lp1) = \%(!0@ —[11)), |p2) = \/Li(|01)+\10>),

and |¢3) = -5(|01) — |10)).
All quantum key distribution protocols, semi-quantum or otherwise, consist of two general

steps. First is the quantum communication stage which utilizes the quantum channel and the
authenticated classical channel to establish a raw key. This is a classical bit string held by
Alice and Bob which is partially correlated and partially secret. Due to these reasons, the raw
key cannot be used immediately for other cryptographic purposes. Instead, a second classical
postprocessing stage must be run which consists of an error correction protocol followed by
privacy amplification. See [21], 22] for more information on these standard processes.
Privacy amplification involves running the error corrected raw key through a two-universal
hash function. If the raw key size is N bits long, the secret key will be of size ((N) < N
bits. The more information Eve has on the raw key, the smaller /(N) will be. A statistic of
importance in QKD security analyses is its key rate, namely the ratio ¢(N)/N. If the ad-
versary employs a collective attack (i.e., an attack where Eve attacks each round identically
and independently) then, in the asymptotic scenario where N — oo, it was proven in [39] [40]
that:
r = lim @:H(AW),,—H(AB), (1)

N—oo

where papg is the state modeling a single raw-key bit. Namely, it describes Alice and Bob’s
raw key bit (as a random variable) and E’s quantum ancilla after the protocol is run, but
before error correction and privacy amplification. Since collective attacks are iid (independent
and identically distributed), the entire raw key can be described by the system pfg - Often,
one may promote security of collective attacks to general attacks and so collective attacks
are usually analyzed in QKD security analyses [21], 22]. We comment more on this later.

To compute the key-rate of a protocol using Equation |1, we therefore need to compute
bounds on the von Neumann entropy. To do so, later, we will use a theorem from [41] which
states:

Theorem 1. Let pag be a classical-quantum state of the form:

pAE_}V|><0|A®<Z|E E|>+—u (1], @ (DF F\)

=0

Then, it holds that:

s, = 3o (P (o ] ).

1=0

where:

>\i:

1
2

| VUEIE) = (FIF)* + ARe (B[ F)
(EilEq) + (Fi| F) '
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Above, h(z) is the binary Shannon entropy function, namely h(x) = —zlog,x — (1 —
x)logy(1 — ).

2 The Protocol

The protocol we propose is an extension of the original M-SQKD protocol introduced in
[27]. That protocol discarded, in the best case, one half of all quantum signals sent by the
server. We modify this protocol to fully utilize all quantum signals, while also extending its
capabilities to counter high noise channels. Users Alice and Bob are “semi-quantum” and
therefore restricted to performing the following actions each iteration:

1. A user may choose to Measure-Resend in which case the incoming signal is subjected
to a Z = {]0),|1)} measurement resulting in € {0,1}. A qubit |r) is then sent back
to the original sender.

2. A user may choose to Reflect in which case the incoming signal is reflected, without
disturbance, back to the sender.

Note that semi-quantum users are only able to communicate directly with the Z basis or to
“disconnect” from the quantum channel (in which case the sender, in our case the server, is
“talking to itself”).

The protocol acts as follows (a diagram can also be seen in Figure [1)):

¢ Quantum Communication Stage - Repeat the below process until a sufficiently
large raw key has been established. A single round of this stage consists of:

1. The server, C, prepares the Bell state |¢g) and sends one qubit to Alice and one
qubit to Bob.

2. Alice and Bob choose, independently of one another, to Measure-Resend or
Reflect their qubit. We denote by pys to be the probability that a single party
chooses Measure-Resend and pgr = 1 — pys to be the probability that a party
chooses Reflect.

3. The server, on receipt of both qubits, will perform a Bell measurement and an-
nounce the outcome as a classical message ‘0, ---, ‘3’ to both Alice and Bob.

e Sampling Stage - For every round in the above communication stage, Alice and
Bob disclose their choice of Measure-Resend or Reflect. A subset 7 of all rounds is
chosen and all actions and measurement results (if applicable) are disclosed on those
rounds in order to estimate the noise in the channel and the server’s honesty (to be
discussed). Alice and Bob also disclose to one another the message they received from
the server to ensure that both parties receive the same exact message for every round
(both in and out of 7).



Based on the noise in the channel, Alice and Bob will also determine a setting for
Mode (either Mode = FLIP or Mode = NO-FLIP). In particular, users will estimate all
needed probability values as used by our key-rate computation (discussed in Section
3). Once done, users may evaluate the expected key rate in the event users choose
Mode = FLIP or Mode = NO-FLIP (we provide equations for both cases). Once users
determine which of the two provide a higher key-rate, users may set Mode to that option
and continue the protocol with that option (since the choice of Mode only affects raw
key generation below and not the completed quantum communication portion of the
protocol users may choose it optimally, at this point).

e Raw Key Generation - For every round not in 7 and when both parties chose
Measure-Resend, Alice and Bob will use their measurement outcomes as their raw key
bits. Furthermore, if Mode = FLIP, then for every round where the server sent the
message ‘2’ or ‘3’ (which should correspond to a Bell outcome of |¢p9) or |¢3)), Bob
will flip his raw key bit; otherwise he leaves it alone.

e Postprocessing - Alice and Bob will run an error correction protocol and privacy
amplification to yield their final secret key. See [2I] for details on these standard
processes.

Note there are two major differences between our protocol and the original M-SQKD one
from [27]. First, raw key bits may be established regardless of the server’s message whereas
in [27], raw key bits could only be distilled when the server sent the message 1. Ideally,
without noise and with an honest server, if both parties chose Measure-Resend, the server
would send ‘1’ only half of the time and, thus, half the signals were wasted originally. This
was originally done for security reasons, however we prove in this paper that security can be
guaranteed even without this restriction, thus improving overall efficiency. Furthermore, in
the asymptotic scenario, py; may be set arbitrarily close to 1 thus implying that every signal
can be used for key distillation. Thus, our protocol attains asymptotically perfect efficiency,
unlike [27] which can only be at most 50% efficient.

Secondly, our protocol allows for Bob to flip his raw key bit if the server sends the message
€2? or ‘3’. This can be advantageous in some scenarios, as such a message implies that
the server (if honest) received a Bell measurement of |¢o) or |¢3) indicating, for some noise
scenarios, that there is a possibility that Alice and Bob’s raw key bits are incorrect and so by
flipping Bob’s raw key bit, the correlation is restored. Of course, care must be taken when
using this option, as there are other noise scenarios where this flipping option can destroy the
correlation thus creating more errors in the raw key. The important observation, however,
is that Alice and Bob may choose the setting of this value after the Sampling Stage and so
may use that data to determine an optimal strategy. Later, we will evaluate our protocol in
a variety of noise scenarios showing how this option can lead to drastic improvements in key
generation rates.



Quantum
Server

Figure 1: A diagram of our protocol. A quantum server (which may be adversarial) prepares a
quantum state (1) and sends part to Alice and part to Bob. Next, Alice (and, independently,
Bob) will choose Measure-Resend or Reflect (2). If Measure-Resend, the signal for that
round is subjected to a Z basis measurement resulting in outcome |r) which also becomes
the output of Alice’s lab (3); otherwise, if Reflect (4), then the incoming state is simply
sent to the output of Alice’s lab. Similarly for Bob. Finally, a signal returns to the quantum
server (5) who is allowed to perform any operation on it, but must send a single classical
message to Alice and Bob. If the server is honest, the state prepared in (1) is the Bell state
|¢o) while, on return (5), a Bell measurement is performed and the message is the actual
Bell outcome received by the server. We will prove security, however, assuming the server is
adversarial and may not follow the protocol.



3 Security Analysis

We first compute the key-rate of our protocol assuming collective attacks. These are attacks
where the adversary will perform the same (potentially probabilistic) attack each round of the
quantum communication stage. However, the adversary is also free to postpone measurement
of her ancilla until any future point in time. Later, we will show how this analysis may be
promoted to security against general attacks where there are no restrictions on the adversary.
We will do this later by showing a novel reduction to a one-way entanglement based protocol;
this reduction may hold applications to other M-SQKD protocols.
For our security proof, we assume the following:

1. Qubits are ideal and not subject to loss. Furthermore, multi-qubit signals in a single
round are not considered

2. Alice and Bob’s devices are ideal. We do not consider implementation level attacks
such as photon tagging [42] [43].

3. The server C' may be controlled completely by the adversary. Thus the server is allowed
to send any signal state to Alice and Bob (subject to the above). This signal may be
entangled with a private ancilla held by C' (now the adversary) of arbitrary dimension.
On return of the two qubits from the users, the server may perform any quantum
operation on these signals and the original ancilla state. As a consequence of this, we
do not need to consider third-party adversaries, as any such attack can be “absorbed”
into an adversarial server’s attack. Also, the classical communication between the
server and users does not need to be authenticated. (Of course, the classical channel
between Alice and Bob does need to be authenticated.)

4. The server must send a single classical message of ‘0’, ---, ‘3’ to parties on each
round. Furthermore, we assume the message sent to Alice and Bob is identical (that
is, the adversary cannot send one message to Alice and a different message to Bob on
a single round). This assumption is easy to enforce given that Alice and Bob reveal
to each other, using their authenticated channel, all messages received by the server
(both those within and without the sample subset 7). Users may then abort if a single
message is different between users for a particular round.

Assumptions (1) and (2) are useful for determining the theoretical performance of our
system and also for comparing to other SQKD protocols for which most make these two
assumptions. These assumptions may be dropped, or loosened, perhaps using the techniques
in [23, 25] combined with our security proof below. However, we leave that analysis as
interesting future work.



3.1 Key Rate Derivation

An adversarial server may prepare any state it likes in step 1 of the quantum communication
stage. In particular, the server may prepare and send the state

o) = Y Bijlisi)ap ®Eis)p-

i,j€{0,1}

The A and B qubits are sent to Alice and Bob respectively while Eve (the server) will keep
the F portion.

However, it was proven in [33] (see Theorem 1 of that source), that for a protocol of this
form, it is sufficient to actually consider an initial state of the form

o) = Z @i, J)

i,j€{0,1}

which is not entangled with Eve’s ancilla and where, furthermore, each «; ; is real and non-
negative. Thus, we only need to prove security assuming the server sends the “simpler” state
|19) and by Theorem 1 of [33], security against arbitrary initial states of the form [ig) will
follow.

In the return channel, when qubits return to the server (Eve), she is allowed to perform
any quantum operation of her choice, potentially creating an entanglement with a private
ancilla. However, the server must send a message to both Alice and Bob and, as discussed, the
message must be identical for both parties. This entire process can be modeled as a quantum
instrument [44]. Furthermore, using standard techniques [45], this quantum instrument may
actually be dilated to an isometry (which may then be extended to a unitary operator). In
particular, the attack will consist of an operator U, mapping the two returning qubits to
Eve’s private ancilla and a four dimensional Hilbert space H,, spanned by {|0?),--- /[3?)}.
The attack will consist of Eve applying this operator and then performing a projective
measurement on the H; space in this particular basis. The measurement outcome determines
the message she sends to parties and the post measurement state of the ancilla and qubit
system determines the state of her private ancilla in the event she had sent that message
using a quantum instrument. For details, along with an explicit proof that this is equivalent
to a quantum instrument attack against M-SQKD protocols, the reader is referred to [27].
Without loss of generality, this isometry may be described by its action on basis states as
follows:

3
Uli,j) = [‘m?, %) (2)
m=0

Note that, above, the |e;”]> are arbitrary, and not necessarily normalized, states in Eve’s
ancilla.

We are now ready to derive a bound on the asymptotic key-rate of our protocol against
collective attacks. To do so, we must derive a density operator describing the joint state of
the Alice, Bob, and Eve systems conditioning on a raw-key being distilled. This will allow
us to compute the required entropies needed to compute the key-rate of the protocol using



Equation [1} In this case, the server sends the initial state |¢)g) as discussed while Alice and
Bob choose Measure-Resend (as we are conditioning on events that lead to a raw key bit
for this round). When the two qubits return to the server, the adversary will apply U and
measure the “cl” message subspace. This leads to the following mixed state:

3
PABE = Z O‘zz,j|i7j><i7j|AB®Z"m”€$><‘m,’e%' (3)

i,j€{0,1} m=0

Now, if Mode = NO-FLIP, then pspg is the final joint state. If Mode = FLIP, then Bob
will flip his raw key bit in the event he receives message ‘2’ or ‘3’. In this case, the state
of the system becomes:

OABE = Z ”|Z J) (@, ]|AB®Z‘ m’, Zﬁ(‘m’,e% (4)

i,jG{O,l} m=0
+ Z 0612’]|Z,]_—j>< j|AB®Z|m7€z] uez,j
1,7€{0,1}

However, observe that trgpapg = trgoapg. In particular:
pap =0oap =10) (0, ® Y > af;|‘m, ef) (‘m*, ef|
7 m
+ D) (1, ® Zzaij |‘m”, ) (‘m’, el
7 m

Thus, it suffices to bound H(A|E), for both choices of Mode. Note that, even though Mode
does not affect H(A|E), it will affect H(A|B) and thus will play an important part later in
our analysis.

Our goal now is to compute a bound on H(A|E), which will give us also the entropy
needed for the case of o45. To do so, we use Theorem [1| which, applied to the above state,
yields the following result:

H(A|E), > Z ;i (eolen’s) + Oﬁ (el glel - >) Hjm, (5)

where: ) (e fem )

az (e |em.
Hj,m =h ( 2 m | ,m 2 277 i m m ) —h <)\j,m> ) (6)

Qg5 <€o,j|€o,j> +tag,_; <61,1—j|61,1—j>
and finally:
1 \/(ag,j <667j|667j> - O‘il—j <6T1—j|€717?1—j>)2 + 40‘3,]'04%,1—]'}%62 <€8,1j|6717?1—j>
>\j,m = 5 1+ 2 m | ,m 2 m m (7)
Qg ; <60,j’60,j> toi - <€1,1—j‘€1,1—j>
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The reader will note that we applied Theorem [1| by setting the |E;) terms to be of the
form g ; |eg’;) and the corresponding vectors | F;) of the form ay 1 [ef", ;). To use Theorem
[ one requires a “pairing” of Eve’s vectors in the even Alice has a key-bit of zero with that
of a key-bit of one. Any pairing provides a lower-bound on the entropy, however care must
be taken to choose a pairing that provides the most optimistic result. In general, due to
the way in which Theorem [I|is proven (see [41]), it is best to pair similar events with each
other. Thus, we pair, for instance, agp |egy) with ay 1 |ef") as they both represent the event
that there is no error in the raw key and the same message “m” was sent. Other pairings,
such as agp |efly) with, say, ai g [ef), though providing us with a lower-bound that is easier
to compute than the one we derive, actually produces a substantially lower entropy bound.
Furthermore, pairing vectors with different message outcomes (e.g., m and m') produces a
worse bound as it is impossible for Alice and Bob to determine information on the overlap
of Eve’s vectors in this case based only on observed parameters.

Thus, to evaluate the von Neumann entropy, needed to compute the key-rate of our pro-
tocol (Equation , we must now find bounds on the inner-products and « values appearing
in the above expressions. These bounds, however, must be functions only of observable
parameters which Alice and Bob can directly determine.

We begin by defining some notation. For i,j € {0,1}, let P,; be the probability that
Alice observes |i) and Bob observes |j) conditioning on them both choosing Measure-Resend.
Clearly:

_Pi’j — aij. (8)
Next, let P}, for 4,7 € {0,1, R}, be the probability that the server sends message ‘m’,

conditioning on Alice choosing Measure-Resend and observing |i) (if ¢ = 0,1) or Alice
choosing Reflect (if i = R) and similarly for Bob with j. It is not difficult to see that

P = (e]]ef") when i, j € {0, 1}. 9)

In the next section, we will consider values of the form Py'; and P/, which turn out to
be very important in bounding Eve’s information for our protocol. Values of this form may
be considered a form of mismatched measurement, introduced originally in [35] for standard
QKD analysis, and have been used extensively lately to boost noise tolerance of various
(S)QKD protocols [36] 37, 41]. We will also require Pg'p for our entropy bound.

3.1.1 Mismatched Events

Let us first consider Pg'y, namely, the probability that the server sends message ‘m’, con-
ditioning on Alice choosing Reflect and Bob choosing Measure-Resend and observing |0).
To determine this value, we trace the evolution of the protocol. Initially, the server sends
o) = >, ; @i li, j). Conditioning on Bob observing |0) and Alice ignoring her system, the

state collapses to:
\/ ago+ o
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When this state returns to the server, she will attack with operator U defined in Equation
2], evolving the system to

Z 0,0 |eglo) + a10el)

2 2
m=0 \/ Qo0 T g

From this, we attain the desired probability value:

ag,o <€8?0|@8?0> + O‘io <@717,10|6717,Lo> + 2ap, 0010 Re <€670|@717,10>
g+

_ Poolgo + ProPly + R

B Poo+ Pio

mo
PR,O—

where, above, we used Equations [§] and [0 and we also define:
Ry = 20/ PryP. o Re <e;'fy|egfw> . (10)
Through a similar process, we may compute the following values:

pm Pi,OPi PZ 1P ,1 + RzOzl (11)
ol Po+ Pis

Pm':POjP()]“‘Pl]Pm‘I‘RO]l]
g PO,3+P1,]

(12)

Critically, the above analysis allows us to learn the exact value of important inner prod-
ucts of the form Re (efy|ei) and Re (eg’;|el’;). In particular:

toin = (Pio+ Pi1)P'r — PioPly — Pia Py (13)

o1 = (Poj + Pij) PRy — Pos By — PPl (14)

Note that the right hand side of both expressions above involve only observable statistics
which Alice and Bob can estimate in the Sampling stage of the protocol. These will be
important momentarily.

3.1.2 Reflection Error Events

The final important statistic which Alice and Bob must consider is the probability that the
server sends a particular message ‘m’ conditioning on both parties choosing Reflect. We
denote this value by Pg'p. Note that, ideally, this message should always be ‘0’ and, so, any
alternative message sent in this case can be considered an error, either due to a malicious
server, phase error in the channel, or both. Note, we do not distinguish between natural
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noise and adversarial noise and simply assume the worst case that all errors in the signal or
messaging is due to an adversarial attack. It turns out that this expression, combined with
the above, will yield critical information on the inner products appearing in Equation [7] In
particular, we need information on R{j,; and Rg},.

To determine Pj'; as a function of the inner products of Eve’s ancilla (which will give
us the necessary information to evaluate Equation , we again trace the evolution of the
protocol, now conditioning on both parties choosing Reflect. In this case, the server sends
|1)o) and both parties ignore the signal, reflecting it back. Since we are assuming all noise
in the channel is adversarial (i.e., all noise is the result of an adversary), the state, therefore
arrives back at the server in this form. The server then applies U which evolves the system

to:
3
dlmye | Y il
m=0 i,j€{0,1}
From this, it is easy to show that:
Prpp = Z Q; ) + Rooor + Rooro + Roorn + Boiio + Botnn + Rion

Using the above analysis, this implies:
Ry + Rito = Pitp — > PPl = [(Poo + Pon) Pyl — Poo Py — Poa Py (15)

—[(P0,0+Pl,o)Pﬁfo—Po,op(%—Pl,opﬂ)]
—[(P01+P11)PE‘1—P01P5”1—P11PF1]
—[(Pro+ Piy)Pr — PioPyy — PPl

3.2 Final Key-Rate Bound

This gives us everything we need to compute the von Neumann entropy in Equation [3
In particular, we minimize Equation [5| subject to the above constraints, all of which are
functions of observable statistics. Additionally, the following constraints may be derived
through use of the Cauchy-Schwarz inequality:

0011|<2\/P00P11\/€00|600 ) (efilert) = 2 PooPia P(%‘Pﬂ

| Rii10| < 2\/P0,1P1,0\/<€(rﬁ‘6811> (efblets) = 24/ PoaPio Pgﬁ ‘ be

To perform the minimization, we note that the function to be minimized, namely the right
hand side of Equation [5]is convex and we are optimizing over a closed interval. Indeed, first
note that the free parameters to optimize over are { Rjt,,}2,_,- This is due to the fact that
Ry, s a function of Ry}, and some constant value (that constant being a simple function of
the observed probability values as shown in Equation. Next, note that the right hand side
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of Equation |5l which we are minimizing, can be broken up into four independent functions of
the form f,,(R{};,) which is the sum of the terms involving Hy,, and H; ,,. Thus, we may
minimize each f,, separately. Finally, note that the function f,,() is of the form:

(16)

hom h1,m

where ¢; m, di m, €i.m, Nim, and g; ., are constants (functions of the observed probability values)
and ¢, dim, €im, and h;,, are positive. We claim this is a continuous convex function
in the parameter to be optimized thus the minimum exists. Indeed, the function r(z) =
—h(1/2 + va+ 422/b) is convex for positive a and b. To see this, note that h(1/2 4+ z) is
concave and non increasing for x € [0,1/2] and that va + 42%/b is convex (for positive a
and b); thus their composition is concave and so its negative is convex. Thus both the first
term in the above is convex and so is the second as that results from the composition with
an affine transformation. To actually evaluate the minimum in the subsequent section, we
used Mathematica’s NMinimize function.

The only remaining element to compute is the conditional Shannon entropy H(A|B).
However, this is easy to compute given observed statistics. Indeed, it is a function only of
the probability distribution of Alice and Bob’s raw key bits. Let Pkey be the probability
that Alice’s raw key bit is “a” and Bob’s raw key bit is “b.” It is not difficult to see from
Equations [3] and [ that these are, for Mode = NO-FLIP:

P =P, Z pm (17)

and when Mode = FLIP we have:

PV = Py (P + Bl) + Py (PR + PY ) (18)

)

This allows us to readily compute:
H(A|B) = H (P, PEY) = (P + PLY)
thus completing the key-rate derivation.

3.3 Evaluation

Our security proof above works for any noise signature. That is, one simply needs to observe
all “P” values appearing in the above expressions and analysis and perform the minimization
of H(A|FE). However, to actually evaluate our key-rate bound, we will assume a depolar-
ization channel. This is a common assumption in QKD security proofs and also allows us
to compare with prior work. We will also, in order to determine P values to evaluate, as-
sume the server follows the protocol honestly. Note that none of this is a requirement of the
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proof, it is simply a way to evaluate our bound as we must put numbers to those statistics
appearing in our key-rate derivation.

A depolarization channel with parameter () takes a two qubit quantum state p and maps
it to:

Ealp) = (1~ 2Q)p+ Q.

(Here, I is the dimension four identity operator.) We choose this particular parameterization
so that () becomes more directly related with the error in Alice and Bob’s measurements as
will soon be evident. We will assume independent depolarization channels in the forward and
reverse channel, using Q)r to denote the depolarization parameter in the Forward channel
(from the server to Alice and Bob, and Q)i to denote the parameter in the Reverse channel
(from Alice and Bob to the server).

Using this, we may parameterize the many noise statistics needed for our key-rate com-
putation. These are easily seen to be:

1
Pgo = P(l)o = P(1)1 = Ph = 5(1 - QR)
Qr
Qr

1
P(2)1 - Pg1 = %0 = Pi)o = 5(1 - QR)-

1
2
1
2

For the reflection events, the system passes through both channels sequentially. Thus, to
model the case when both Alice and Bob reflect, we use &g, (Eq, (|¢0) (¢o])) to derive:

Phr = (1-2Qpr)(1-2Qr) + %(1 —2QRr)Qr + %QR

1 1
Prr = Par = Prp = 5(1 —2QR)QF + §QR

Finally, we need values for Pj; and Pp';. To do this, we first apply the depolarization
channel in the forward direction and then simulate Alice and Bob’s measurements, condi-
tioning on the required outcome. From this post measured state, we apply the depolarization
channel again (for the return trip to the server) and calculate the desired probabilities. This
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process leads us to the following derivations:

PO = Py = L1 200)(1 — 2Q5) + (1 - 200)Qr + Qu

2
Pp;=Pip = %[(1 = 2Qr)(1 = 2Qr) + (1= 2Qr)Qr + Q)
PI?Lj = P]%R = %[(1 —2QRr)QF + Qr|

PJP%,j = P]?:R = %[(1 —2QRr)Qr + Qr|

We compare the key-rate of our protocol to the original M-SQKD protocol from [27]. To
perform this comparison, we use improved key-rate results from [46]. Note that the protocol
of [25] will always be less efficient due to its design choices (that protocol was designed to
operate with practical devices whereas ours here is a more theoretical construction - while it
may potentially be made practical using techniques from [23, 25], this will lower its efficiency
and so we do not compare these). We also cannot compare to other M-SQKD protocols,
(even those with asymptotically perfect efficiency [28], 30} 32, 34] as ours has) as no other M-
SQKD protocols have information theoretic key-rate derivations and so there is no statistic to
compare (we can only compare the noiseless case in which case all these protocols, and ours,
have full efficiency). Note that, as discussed earlier, our proof methods may be applicable
to those other protocols; though, of course, performing the necessary key rate computations
for these alternative protocols is outside the scope of this work.

The evaluation and comparison is shown in Figures [2] 3, and [4 Figure [2 shows the case
when Qr = Qr = (). Note that in this case there is no difference in Mode = FLIP and
Mode = NO-FLIP which is clear from the protocol construction. Figure [3| shows the case
when Qr = 2Q and Qr = @ (namely, the noise in the forward channel is twice as high
as the noise in the reverse channel). Finally, Figure 4] shows the case when Qr = @ and
Qr = 2Q (i.e., the noise in the reverse channel is twice the noise in the forward).

In all cases we note that our new protocol greatly outperforms the original M-SQKD
protocol on which it was based when the noise level is not too large. As the noise increases,
our new protocol will reach a zero key-rate before the original does. This is not surprising.
Our new protocol utilizes all messages from the server and so efficiency naturally increases,
as is observed for smaller noise levels. As the noise level increases, however, and Eve (the
server) potentially gathers more information on Alice and Bob’s raw key, the fact that the
original protocol only used cases when the server sent a single specific message (translating
normally to a Bell measurement of |¢;) only), actually aids Alice and Bob by decreasing
efficiency but increasing noise tolerance. Namely, there are more attack strategies available
to a server who is allowed to use all four messages whereas in the original, only a single
message led to a key bit being distilled.

Finally, we note that, as expected, the use of Mode = FLIP and Mode = NO-FLIP is im-
portant depending on the relative noise levels of the forward and reverse channels. However,
as mentioned before, the choice of Mode may be made after channel statistics are gathered
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Figure 2: Evaluating the key-rate bound of our new protocol here (solid line) and comparing
with the key-rate of the original M-SQKD protocol from 2015 [27]. Here we have Qp =
Qr = @ and so there is no difference between the two settings for Mode. We observe that the
noise tolerance of our new protocol is lower, though the efficiency can be substantially higher
for lower noise levels (lower than 6.5% in this instance). Since our protocol is “backwards
compatible” one may actually use our protocol for lower levels of noise and switch to the
original (normally less efficient) protocol from [27] if the observed channel noise is high enough
to make the switch worthwhile. Since the difference in our protocol and the original 2015
M-SQKD one is purely in the classical stage, this decision may be made after determining

the channel noise and so an optimal choice may always be made.
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Figure 3: Evaluating our key-rate bound and comparing to the original 2015 M-SQKD
protocol from [27]. Here we set Qr = 2Q) and Qr = @ (thus there is twice as much noise
in the forward channel from the server to Alice and Bob as in the reverse channel. In this
asymmetric case, the choice of Mode is important and can improve performance. Again, we
observe that our new protocol is more efficient except at higher noise levels. Note that Mode
may be decided on after running the sampling stage so that there is never a “wrong choice.”
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Figure 4: Similar to Figure [3| but now setting Qr = @ and Qr = 2@ (that is, twice as much
noise in the reverse channel).
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(as it is purely a classical operation on the raw key data). Thus, Alice and Bob may run the
quantum portion of the protocol, estimate the channel noise, and then decide on an optimal
choice for the Mode. Pushing this idea further, Alice and Bob may even decide whether or
not to use the original M-SQKD protocol from [27] or our new extension, as the new protocol
we described here is backwards compatible. Thus, taken as a whole, our work in this paper
has shown how greatly improved efficiency is possible while still maintaining the high noise
tolerance of the original M-SQKD protocol.

3.4 Extension to General Attacks

The previous section analyzed the security of our protocol assuming collective attacks. How-
ever, we can extend this to security against general attacks by first showing an equivalent
entanglement based protocol and then using de Finetti [47] or postselection [48] techniques
to promote our earlier analysis to the general case [21]. Note that this reduction to an entan-
glement based protocol is perhaps our largest contribution in this work as, prior to this, no
reduction for M-SQKD protocols was known (only reductions for some classes of two-party
SQKD protocols were constructed in [38, 8], however they did not apply to mediated SQKD
protocols). Such a reduction is important to proving security against general attacks using
de Finetti style arguments [49]. Thus, our work in this section may be beneficial to other
protocol security analysis, both in semi-quantum and general multi-user QKD scenarios.

In the prepare-and-measure scenario considered before, the server sent a quantum state
to Alice and Bob who then returned a quantum state back to the server (and, of course,
this server may be adversarial). Instead, we will show this is equivalent to a scenario where
an adversary prepares a quantum state, sending part of it to Alice, part to Bob, and part
to a trusted server C, while also holding a part F in a private ancilla. Note that in the
entanglement based version, the server is honest (though the source is not), however security
in this setting will imply security in the “real” prepare-and-measure case even when the
server is adversarial as we will show.

The entanglement based protocol operates as follows:

e Quantum Communication Stage:

1. A quantum source (potentially adversarial) prepares a quantum state |¥) 4505
where the A and B registers consist of N qubits each and the C register consists
of N qudits, each of dimension 4 (thus, C’s register is of total dimension 4%).
The E system is kept private by the adversary and its dimension is arbitrary.

2. Alice and Bob choose, independently and for each of the N signals, Measure-Resend
or Reflect (though, we note, these labels no longer have direct meaning in this
case as Alice and Bob will not reflect anything). If the choice is Measure-Resend,
that party will measure their qubits in the Z basis; otherwise, they will measure
in the X basis and abort if they observe |—).

3. The trusted user C' will measure his system in the computational basis {|0) ,--- ,|3)}
and report the outcome publicly.
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4. Alice and Bob will disclose their choices of Measure-Resend and Reflect. They
will also disclose a random subset of their outcomes for quantum sampling pur-
poses. For those that were not disclosed, and for which both parties chose
Measure-Resend, they will keep that round to contribute towards their raw key.
If the server sends the message ‘2’ or ‘3’ and Mode = FLIP, Bob will flip his
raw key bit for that round.

e Postprocessing - Same as in the prepare-and-measure protocol.

Note that this protocol is not a semi-quantum one. Indeed, past reductions of semi-
quantum to one-way fully quantum protocols involve the reduction to a particular fully
quantum QKD protocol [38, [§] and this is the same in the mediated case here. The second
interesting point is that users will abort if they ever observe a |—). Thus, this entanglement
based protocol is highly inefficient; however it is only a “toy” protocol and not meant to
actually be used. Instead, we will prove that, conditioning on a non-abort, its security
implies the security of the prepare-and-measure protocol (where users are semi-quantum
and do not have this abort case). Further, we will show, that our previous analysis can
be applied to the security of this entanglement based protocol. Ultimately, our goal in this
section is to prove the following security relations:

Col-PM = Col-Ent = Gen-Ent = Gen-PM,

where X = Y means that security of protocol “X” implies security of protocol “Y” and,
furthermore, conditioning on protocols X and Y not aborting, the key rate of Y will be
no less than the key-rate of X under the same channel noise conditions. Above, we use
“Col” to mean the protocol under collective attacks (“Gen” for general attacks); we use “PM”
to denote the prepare-and-measure SQKD protocol and “Ent” to denote the entanglement
based protocol introduced in this section. Standard techniques will be used for showing
Col-Ent = Gen-Ent, while we already showed that Co1-PM is secure in the previous section.
Thus, our primary work will be to show the other relations. See also Figure [5]

3.4.1 Non-Interactive Attacks

We first show that security of the entanglement based protocol will imply security of the
prepare and measure protocol for general, non interactive, attacks (i.e., those where the
adversary can create any arbitrary quantum state, but must send all qubits to Alice and
Bob simultaneously). Later, we will show the more difficult case of interactive attacks where
the adversary is allowed to adapt its strategy after receiving qubit(s) back from Alice and/or
Bob.

For the reduction, we must show two things. First, we show that for any general attack
(i.e., not necessarily a collective attack) against the prepare-and-measure protocol, there
exists an equivalent attack in the entanglement based protocol. Here, by “equivalent” we
mean, conditioning on the entanglement protocol not aborting, the resulting quantum sys-
tems are identical in both the entanglement and the prepare and measure protocol and, so,
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Figure 5: We show in this section how security of the entanglement based, fully quantum,
protocol (Right) implies security of the semi-quantum prepare and measure protocol (left).
For the M-SQKD protocol, the adversarial server prepares and later receives quantum states
from Alice and Bob and must report a classical message. In the entanglement protocol, a
quantum source (potentially adversarial) prepares a quantum state sending part to Alice,
part to Bob, and part to a trusted server C'. We show that for any general attack against
the SQKD protocol there exists an attack against the entanglement based protocol which
creates an identical quantum state following the successful completion of the protocol. Thus,
security of the entanglement based protocol will imply security of the M-SQKD protocol as
there can only be more attacks against the entanglement based version.

any entropy computation for one will follow to the other. Second, for any attack against
the prepare and measure protocol, the equivalent attack produces a system with a non-zero
probability of not aborting (otherwise, we would be conditioning on a probability zero event).
Note that there are attacks against the entanglement version which will always cause it to
abort (e.g., the source Eve can simply send all |[—)’s to Alice and Bob) however such states
are impossible to appear in the prepare and measure protocol and so are not worth consider-
ing. Taken together, this will show Gen-Ent —> Gen-PM (as the entanglement based version
can only have more attacks against it).

For the prepare and measure protocol, a general attack will be modeled as an adversarial
server preparing an arbitrary 2N qubit state, entangled with its ancilla. Here, N will be the
number of rounds in the protocol. Half the qubits are sent to Alice and the other half to Bob.
After Alice and Bob perform their operations on their respective qubits, 2N qubits return to
the server who is allowed to perform an arbitrary attack on all qubits simultaneously using
a quantum instrument which may also act on the server’s initial, private, quantum ancilla.
From this, N classical messages are sent to both Alice and Bob. For the entanglement based
protocol, a general attack will consist of Eve preparing any arbitrary state, sending N qubits
to Alice, N qubits to Bob, and N dimension four qudits to C.

Now, we will model Alice and Bob’s choice of Measure-Resend in the prepare and measure
protocol as them applying a CNOT operation to a private register of size N qubits each and
then later measuring their private register in the Z basis. If they choose Reflect, they
will not apply this CNOT register. It is not difficult to see that this is equivalent to the
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real protocol where they would measure immediately. Let ©4 and ©p be their choice of
Reflect or Measure-Resend where © 4,05 € {0,1}" and a 1 in index i indicates a choice
to Measure-Resend signal 7 (i.e., apply a CNOT gate).

In more detail, Alice and Bob will start the protocol with a register of size N qubits each,
cleared to the all zero state |0---0). On round i, if ©) = 0, Alice will apply the identity
operator to qubit #; if ©% = 1, Alice will apply a CNOT gate with the control register being
the i'th qubit sent from the server, and the target register being the i’th ancilla qubit in
Alice’s private register. Similarly for Bob. Thus, we can actually write the result of this
operation on a bit string |a) = |a; - - - ay) to be:

0---0)4 @la)g, = [a A O4) @la)y, , (19)

where a A © 4 is the bit-wise logical AND, namely a A ©4 = (a; A ©OY) -+ (ay A OF). The
fact that we can write this as a logical AND is due to the fact that the ancilla is cleared to
zero; thus it changes to a |1) only if the corresponding bit in a and © 4 are both one.

A general attack against the prepare-and-measure protocol will consist of the adversarial
server preparing an arbitrary 2/N-qubit initial state of the form:

|tbo) = Z am\i,j;Ci,ﬁTlTQE- (20)

i,j€{0,1}N

Alice and Bob will receive the T} and T qubits respectively (while the server keeps the E
system private). The users will then apply a CNOT gate to their respective T' register and
a system held private by each user as discussed. After this, the state becomes:

)= > @i lin©aiAOB) @i ] cij)pmp (21)
i,j {01}

The T registers return to the adversarial server who applies a quantum instrument which,
through standard techniques, may be dilated to a unitary operator as before (though now,
of course, this operator acts on all 2N qubits and the E register). This operator U will act,
without loss of generality, as follows:

Uli, j, cij) = Z [m)e |f75) -

me{0,1,2,3}V

Note that U’s action on states of the form |i, 7, c.p) for (¢,7) # (a,b) can be arbitrary as
they do not appear in the returned state. The resulting state, then, is:

o) = D i liAOaiAOR @ Y melf), (22)

i7j€{071}N me{ov"'vg}N

Following this, the server would measure the message register which dictates the server’s
message and post-measurement state.
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At this point, let us consider the entanglement based version and show there is an attack
that the adversarial source may use which produces the exact same state as Equation [22)
conditioning on Alice and Bob not aborting. First, Eve will prepare the state:

= > aglida® Y, Imelfh.. (23)

i,jE{O,l}N m6{0,~~~,3}N

Clearly this is something that Eve can prepare. Indeed, she could initially prepare the state
> i @il 3) ag |t J) o, [¢ij) p and then apply U to the right-most two registers which will
evolve the state to the above. She sends the A and B registers to Alice and Bob respectively
while sending the C register to the trusted server. We claim this is the desired state; namely
that if Alice and Bob both observe a “4+” on the systems where ©,4 and ©p are 0, the
collapsed state is identical to Equation

For a given © 4 and bit string ¢, we may decompose i into a “zero” part (those indices of
i where ©4 is a zero) and a “one” part (those indices of i where ©4 is a one). Then, there
exists a natural permutation 74 such that every string ¢ can be written as i = 7 (4o, ¢;) and
iNOy =ma(0---0,71). Similarly for B (with permutation 7). For example, if © 4 = 0110010
then ma(x12923%4, Y1Y2y3) = T1Y1Y2X223y3x4 and, furthermore, if given ¢ = 1001011, then
ip = 1101 (those parts of ¢ that match with a zero in ©4) and i; = 001. In this case
ma(io,41) = ma(1101,001) = 1001011 = 4.

Finally, let ¢y(z) be the number of 0’s in the bit-string z; similarly define ¢;(z) to be the
number of 1’s in the bit string . From this, we may write Equation [22] as follows:

1)o) = Z @i j|ma(0,i1)) 4 [75(0,41)) 5 ® Z m) e [i5) 5
i0€{0,1}°0(®4) me{0,- 3}V
i1€{0,1}¢1(94)
jo€{0,1}c0(®B)
j1€{0,1}¢1(®B)

= Y mOiLm0)e Yy Y Imlelfl),

i1€{0,1}¢1(®4) i0€{0,1}¢0(© ) me{0,-+ 3}V
j1€{0,1}¢1(®B) jo€{0,1}¢0(®B)

-~

|¢(i1:j1)>CE

= > ma(0,i)) 1780, 51) 5 @ [B(i1, 1)) - (24)
i1€{071}01(9A)
jlg{0,1}61(93)

Note that, since the above state is normalized (due to the unitarity of the attack operations),

it holds that:
Z (@(i1, j1)lo(ir, 1)) = 1. (25)

i1€{0,1}°1(®4)
j1€{071}61(93)
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Now, consider the state created by Eve for the entanglement based protocol, namely
Equation [23] Using the same function 74 and 7z, we may write it as:

G =" > aglmalioi))alme(ini)p® Y Imel S, (26)

ipe{0,1}¢0(®4) me{0,---,3}V
i1€{0,1}¢1(®4)
joe{0,1}¢0(®4)
j1€{0,1}cl(93>

We now change basis for those qubits of A where © 4 is a zero (also for those qubits in B’s
register). We write w4 (+,141) to be the function which places a character “+” in the output
string wherever © 4 = 0 (same for 7). This allows us to write |(y) as:

1Co) = % Z [ma(+,80)) 4 lTB(+, 1)) p ® Z Q.5 Z M) | i5) 5 + V) ancr

i1€{0,1}¢1(®4) ipe{0,1}¢0(®4) me{0,-+, 3}V
j1€{0,1}¢1(®B) jo€{0,1}¢0(®B)

1 . . o

= Yo maltin)) 4 lms(+510)) s © 160G, 1)) + V) apcr
i16{0,1}01(®,4)
jle{071}61<63)

(27)

where M = v/2¢0(04)y/200(05) > 0 and |v) ;5 is Some quantum state where the A or B
registers contain at least one |—) in a position where the corresponding © 4,5 is a zero. That
is |V) spop 18 @ state which would cause an abort of the protocol. From the above, it is
clear that, conditioning on not aborting, the state collapses to Equation [24] the actual state
resulting from the prepare-and-measure semi-quantum protocol. Furthermore, it is clear from
Equation 25 along with M > 0, that the probability of not aborting is strictly positive. This
completes the reduction. Thus, since, following this stage, the two protocols are identical,
the claim follows and so proving security against general attacks in the entanglement based
protocol will imply security against general attacks for the real prepare-and-measure version;
that is, Gen-Ent =— Gen-PM.

Clearly this entanglement based protocol is not an efficient one, however that does not
matter. Instead, we are showing that for any attack against the prepare and measure pro-
tocol (which never aborts unless the noise is too high) there exists an attack against the
entanglement one such that (1) the quantum states, conditioning on a non-abort of the en-
tanglement protocol, are identical in both protocols (thus any key-rate computation in one
will apply to the other); (2) this equivalent attack always has a non-zero probability of not
aborting (so that we are not analyzing any cases in the entanglement protocol that cannot
occur in order to prove security of the prepare and measure protocol). Note that there are
attacks against the entanglement protocol, as discussed, which always abort; however from
the above, those attacks do not show up in the prepare and measure version and so are
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not worth analyzing (as we care only about the prepare and measure protocol). Note also
that there may be more attacks against the entanglement protocol; thus if the entanglement
protocol is secure with a positive key rate, the prepare and measure protocol will also be
secure with a key rate at least as high (possibly higher).

Using de Finetti or postselection style techniques [47, [48] it can be shown that security
against collective attacks in the entanglement based version imply security against general
attacks in the entanglement based version (i.e., Col-Ent = Gen-Ent). Indeed, the entan-
glement based version may be made permutation invariant in the standard way by having
A and B permute their subsystems [40]. Thus, we may assume that the state Eve prepares
initially in the entanglement based protocol is of the form |¢o) = |p0)®", where we may write
|fo) in the most general way as:

o) = Z @i j iy J) ap @ Z Im)o ® \672> .

i:je{ovl} me{oz"'zg}

It is easy to see that, regardless of Alice and Bob’s choice of Measure-Resend or Reflect
at this point (conditioning on a non-abort), the state will be equivalent to the one we
analyzed in the previous section. Namely, for any initial state of the above form for the
entanglement based protocol (that is, |u)), there exists an initial state and return attack
operator U in the prepare and measure case which will match the above expression. Thus,
our entropy bound will apply in this case and so Col-PM = Col-Ent. Therefore, taken
together, we may conclude that our prepare-and-measure protocol is actually secure against
general attacks. Note that the above analysis may be useful for the proofs of security of
other (S)QKD protocols, mediated or otherwise.

3.4.2 Interactive Attacks

We now show the reduction to an entanglement based protocol for the more complex scenario
where the adversary is allowed adaptive, interactive, attacks. By this, we mean the adversary
can send a qubit to Alice or Bob, and wait for the qubit back before deciding what to send
next. Furthermore, the systems may be out of order (e.g., the adversary may first send
qubits to Alice and then adjust its attack before sending qubits to Bob). This reduction
technique we develop here may be useful in other two party protocols relying on two-way
quantum channels outside this single, particular, semi-quantum protocol we are analyzing
in this work.

In more detail, for this attack, Eve is allowed to first create an arbitrary 2N-qubit state,
possibly entangled with Eve’s private ancilla, where N, as before, is the number of rounds
the protocol will use. Eve will then decide, potentially through some probabilistic process,
which party, Alice or Bob, to send the first qubit to. That party, on receipt of the qubit
will perform their choice of operation (Measure-Resend or Reflect) and return the qubit
to the adversary. Eve is now allowed to probe the entire 2N-qubit state, along with her
entangled ancilla, to evolve the system to a new 2/N-qubit state, again entangled with Eve’s
private memory. Eve then chooses a party to send the second qubit to. This process repeats
until 2N qubits have been transmitted and received back. Finally, Eve applies a quantum
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instrument (which, as before, will be dilated to a unitary operator) which determines the
classical message she sends (this message being in the set {0, 1,2, 3}"") and her post measured
ancilla state. See Figure [6]

Note that, despite the allowed adaptive interactivity, we still assume ideal qubits and,
furthermore, we assume Eve sends exactly N qubits to Alice and N qubits to Bob. Of
course, there are several more practical attacks which are outside our security model - for
instance, Eve could send two photons to a party when that party expects only one; if the
party chooses Measure-Resend, thus destroying the photon, information may be leaked to
Eve. Such attacks are outside the scope of our security model (though we comment on them
in the next sub-section). We assume, here, ideal qubits and that when Alice or Bob receives
quantum bits from Eve, they can operate on them individually. Nonetheless, Eve has a lot
of flexibility in creating the quantum state and adapting her attack based on users’ actions
throughout the protocol.

We first consider the prepare-and-measure semi-quantum protocol and model the at-
tack. We will then show, as in the previous sub-section for non-interactive attacks, that an
equivalent state may be prepared for the entanglement based protocol, leading to the same
quantum state after Alice and Bob’s operations, conditioning on a non-abort. We begin by
having a Transit register (7') of 2N qubits, which will represent the qubits being sent to
Alice and Bob, and Eve’s ancilla, similar to before. We also have a private ancilla for Alice
and Bob of size 2N qubits which, as before, will be used to model their classical memory for
measurements.

We now introduce a new register of size 2/N-qubits which will be used to decide which
party to send the next qubit to. In particular, if the i’th qubit of this register is a |0), the
1’th qubit should go to Alice; otherwise it should go to Bob. We use a quantum register
here as it will allow us to model probabilistic strategies and also adaptive ones (where the
register can be altered after each qubit received back). We will call this the Selection (5)
register. The initial state Eve prepares, then, may be written as:

W= 3 3 s Ban) ©0--0) 4. (28)

s1€{0,1}2N t1¢{0,1}2N

Note that the |E.,1) states are not necessarily normalized. For notation, we will use ¢ to
mean the state of the transit register on round ¢ (starting at round 1). We will decompose
thas t' =ttt} - - 4. Similarly for the selection register s.

Note that the Selection register is in a superposition. This models fixed order choice
attacks (where Eve determines before the protocol runs, what order to send the qubits in); it
also models probabilistic choices (as Eve can measure the register to determine what order
to use). We keep it as a superposition to give Eve the most flexibility. In this event, Alice
and Bob’s operations on round ¢ are actually conditioned on the i’th qubit of the Selection
register.

After creating the above state, the first qubit in the Transit register is sent out. As before,
we can model a Measure-Resend operation as a CNOT gate, with the target being that users’
private ancilla (initially cleared to |0)) and the control being the transit register. Note that
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Figure 6: Showing the interactive attack model we consider in this section. Eve is allowed
to prepare an arbitrary initial state consisting of 2N qubits (the Transit, 7', register); an
ordering decision of who to send qubits in which order (the Selection, S, register); and an
entangled ancilla (the E register). Eve then sends the first qubit to a party of her choice.
That party performs their given operation and returns the qubit to Eve. Eve is then allowed
to perform an arbitrary unitary operation on all 2N qubits, the selection choice, and her
private ancilla (i.e., she may adapt her attack in the second round based on the response
from the first). A second qubit is then sent to a party of Eve’s choice. This repeats until all
2N qubits have been sent and received leading to the final quantum state denoted |(p9@ED).
We claim in this section that an equivalent state may be created for the entanglement based
protocol thus implying that security of the entanglement based protocol will imply security
of the semi-quantum one.
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we add a second control, namely the Selection register; if Alice wants to Measure-Resend,
she will do so only if the corresponding Selection register is a |0); Bob will only do so if the
Selection register is a [1). Of course, in practice, Alice and Bob cannot access this register;
however we are assuming ideal qubits and that users know when they receive a qubit.

We will assume that the first N qubits of the AB register belong to Alice and the second
N qubits belong to Bob. Let 7'('3%(25%, 0) be the function which “places” the bit ¢] in Alice’s
first private register if s = 0; otherwise it places ¢} in Bob’s first register if s} = 1. Namely:

tl||02N*1 if st =0

st (41 _ 1 1

™ (0,0) { OV || 0N if sl =1

where 0% means a bit-string of size = consisting of all zeros and the “||” operation is bit-string
concatenation. Finally, let © = © 4]|©p. Then, using the same arguments as in the previous
sub-section when discussing the Measure-Resend operation modeled as a CNOT gate, the
state, after Alice and Bob’s operation, evolves to:

= > Y [sh ) e Ean) @ [71(t,0) AO) 4. (29)

s1e{0,1}2N ¢1e€{0,1}2N

The qubit returns to Eve who now has full control of the S, T, and E registers. She
then applies a unitary probe U; to these registers, evolving them all (thus allowing her to
change her ordering decision in the Selection register based on the response from the users).
Without loss of generality, we may define U;’s action as follows:

Uy |81, t1> |Eapn) = Z Z |S2, t2>ST ® |E52t2\slt1> . (30)

s2€{0,1}2N 2€{0,1}2N

Note that we need not define U;’s action on states other than those above, as any other state
will never appear in the quantum system under investigation. Naturally, the states in Eve’s
ancilla are not normalized and unitarity of U; imposes constraints on them. The state, after
applying this probe, becomes:

W= 3 Y A @ Eesan) @ (11,00 A O) 4 (31)
s1€{0,1}2N s2¢{0,1}?N
t1e{0,1}2N +2€{0,1}2N

The process then repeats with the second qubit of the T register being sent to a party
as determined by the second qubit of the S register. When that party returns the qubit to
Eve, the state is in the form:

|¢§> - Z Z |S27 t2> ® |Es2t2\s1t1> ® |7TS%S§ (tit%, 0) A @>AB ) (32)
s1€{0,1}2N s2€{0,1}2N
t'e{0,1}2N ¢2¢{0,1}2N

where, above, we define the function 71 (t1t2,0) similarly to the one involving only the first
round information; namely, it is a function that will place the bits ¢} and ¢2 in the correct
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register of Alice and Bob based on the ordering s}s3. For instance, if s; = s3 = 0, then the
output will be t1#2[|02V=2; or if s} = 1 and s2 = 0, then the output will be #2|[0V ||t} [|0N 1.
Eve, who again holds control of the complete T', S, and E registers, will apply a new unitary
probe Us whose actions we may define as:

U, |S2, t2>ST X |E52t2\slt1> = Z |83, t3> X |E53t3\32t2,51t1> . (33)
s3€{0,1}2N
t3€{0,1}2N
Similar to before, Uy’s action on states not of the form |s?, %) ¢, ® | Es2425141) may be arbitrary
as they do not appear. Of course unitarity of Us places constraints on the (sub-normalized)
E states which will be important later.
This process repeats for 2N rounds. After round 2N, when the last party to act sends the
2N’th qubit from the T register back to Eve, but before Eve applies her quantum instrument,
the state may be written in the form:

Wiy = D e Y SN )@ By en-en-100) @I (8 1N) A O) 4,
ste{0,1}2N s2Ne{o0,1}2N
t1e{0,1}2N t2Ne{0,1}2N

(34)
Now, Eve again controls the S, T, and E registers and applies a quantum instrument.
As in the previous section, this can be dilated to an isometry Usy acting as follows:

Usn |82N, t2N>ST ® |E32Nt2N‘32N71t2N71,,,31t1> = Z |m>C ® |Em|s2Nt2N_,,slt1>E . (35)
me{0, 3}V
Note that, above, the S and T registers are absorbed into the final £ ancilla state. Thus,

the final state after running the actual semi-quantum protocol under this attack is found to
be:

|1/)SQKD> = Z e Z Z |m>®|Em|SthzN,,,Slt1>®|7Ts%.“s§% (ti . t%%) A @>AB
s'e(0,1)2N s2Ne{0,1}2N mef0, 312N
te{0,1}2N 2N €{0,1}2N
(36)

We now manipulate the above state:

[t N W Y Im) @ | Bpeven.gn) ® [rt W (8 28 A O)
ste{0,1}2N 2N e{0,1}2N me{0,-,3}2N
tre{0,1}2NV 2N e{0,1}2N

D DEED D LR (RSN Y. D Im @ |Epeney.an)

ste{0,1} tie{o0,1} st e{0,1}2NV-1 ¢l {0,132V m
s3€{0,1} t3€{0,1}

52y €{0,1}2N =1 2 {0,132V 1

$2Ne{0,1} 12N e{0,1} N

—
|é(s1-s38 414510
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Observe that the left-most summations are over single bits s¢ and ¢! whereas the summations
on the right are over the remaining 2N —1 bits of those respective strings. We use the notation
s', to mean the substring of s’ that does not include the #’th bit (i.e., s' = si||s;). We also
permuted the subspaces at this point, putting the AB register on the left, for clarity only.
Changing notation slightly, we may write the above more simply as:

IRy 22 N N N () A ) ® [6(s, 1))

s€{0,1}2N te{0,1}2N

= Y tAO) e Y é(s,u). (37)

te{0,1}2N s€{0,1}2N

w7 (u)=t
Let us now consider the entanglement-based protocol. Here, Eve is allowed no inter-
activity and must create a single quantum state, sending part to Alice, part to Bob, and
part to a trusted server while keeping the remainder for herself. We show that there is an
initial state that Eve can create which exactly mimics the above state, assuming Alice and
Bob do not abort the entanglement based protocol. Furthermore, we show that this created
state has a non-zero probability of not aborting. We claim the desired state can be created
by Eve by simulating the semi-quantum protocol, playing the part of Alice and Bob, but
simulating the case when both Alice and Bob always choose Measure-Resend (i.e., when
© =1---1 =12"). Such a state can clearly be created by Eve and the resulting state is

found to be (using the simplified notation above):

ety = ST ST e (e tan)) 4 ® (s, 1))

s€{0,1}2N te{0,1}2N

Y ap® D éls,u). (38)

te{0,1}>N s€{0,1}2
u ¥ (u)=t

At this point, we may use the same technique as in the non-interactive case to show that,
conditioning on a non-abort of the entanglement based protocol (namely that Alice and Bob
observe all |+) in their given registers when © = 0), the post measurement state collapses
exactly to the state produced by the actual semi-quantum protocol (Equation . Also
using the same analysis above, taking into account that the attack operators are unitary, the
probability of not aborting is strictly positive. This completes the analysis.

3.5 Comment on Practical Attacks and Implementations

Our work in this section has focused on the theoretical, ideal device and single qubit, scenario.
We showed that an improvement in efficiency is possible under these conditions based on
the noise level of the channel, however it is worth discussing practical considerations. When
implementing a QKD protocol, one often uses weak coherent sources [21] which produce,
with non-zero probability, vacuum states or, often worse from a security stand point, multi-
photon states. These multi-photon states open up attacks such as photon number splitting
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attacks [0, 51]. Such attacks are often mitigated using decoy-state methods [52, 53, 54 55];
though it is an open question whether or not those methods can help in the semi-quantum
scenario. In the semi-quantum case, however, things are even more challenging. Due to
the two-way channel and the use of the Measure-Resend operation, Eve is afforded even
more attack opportunities, such as the photon-tagging attack [42] [43]. In general, any semi-
quantum protocol implementing the Measure-Resend operation cannot be experimentally
feasible [23]; however, one can modify the Measure-Resend operation using “mirror-devices”
as proposed in [23], however this comes at the cost of reducing efficiency by at least 50%.
Indeed, as shown in [25], a M-SQKD protocol was proven secure assuming practical devices,
but with a key-rate of only 12.5% in the ideal scenario and less than 1% using practical
current-day devices. Though we leave this as an open problem, we suspect our protocol can
be implemented using mirror-style devices as in [23], though with a similar drop in efficiency.

Despite these short-comings when translating theoretical semi-quantum results to prac-
tice, we still feel the study of semi-quantum cryptography is of high importance. First, due
to the increased complexity of the attacks against them (due to the two-way channel and also
due to users’ device restrictions), standard security proof techniques often fail and so new
methods are required. These new methods can lead to new insights and new mathematical
tools for other researchers to apply to alternative QKD protocols which may actually be
more practical. The design of SQKD protocols also requires careful use of channel statistics,
such as the use of mismatched measurements - these insights can be valuable in other QKD
research. Finally, it also addresses fundamental questions providing us with insight into the
“gap” between classical and quantum communication.

4 Closing Remarks

In this paper, we extended the original M-SQKD paper from [27] to improve efficiency.
Our modifications allow for nearly doubling of the key-generation rates for low noise levels.
Though this comes at the cost of reduced noise tolerance, our protocol was designed to be
“backwards compatible” with the original M-SQKD protocol. In fact, users may even decide
after the quantum communication stage is finished whether to run the new, modified protocol
or the original. Thus, taken together, our work shows how improved efficiency is possible for
certain channel noise levels, without sacrificing noise tolerance as the users may switch to the
original protocol if the observed noise level is too high. While newer M-SQKD protocols, as
discussed earlier, also exist now with asymptotically perfect efficiency [28] [30} 82 [34], ours
is the first such protocol with provable security.

Towards the security proof, we also showed how this M-SQKD protocol, involving two-
way quantum communication with an adversarial server, may be reduced to an entanglement
based protocol. This is perhaps the largest contribution of this work and our techniques here
may be useful in other (S)QKD protocols involving two-way quantum communication. Using
this reduction, we were able to show a complete security analysis against general attacks.
Our methods here may be broadly applicable to other multi-user QKD protocols including
and beyond M-SQKD ones. In particular, our proof methods might be useful in proving the
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security of other M-SQKD protocols which have yet to obtain a key rate derivation.

Many interesting future problems remain open. In particular, we did not consider prac-
tical attacks. Due to the nature of the Measure-Resend operation, several attack strategies
against practical devices [42] [43] are open which were not part of our security model (which
assumed ideal qubit states). Methods from [23] 25], combined with our new security proof
method (specifically our reduction to an entanglement based protocol), may create a more
practical system. Using our methods to prove the security of other M-SQKD protocols would
also be very useful and allow us to compare the overall efficiency under noise of these many
M-SQKD protocols in existence today to determine which M-SQKD protocol is actually the
most efficient over a given quantum channel (e.g., attack scenario).
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