
Automating Mechanism Design with Program Synthesis

Sai Kiran Narayanaswami
UT Austin

Austin, Texas, USA
nskiran@cs.utexas.edu

Swarat Chaudhuri
UT Austin

Austin, Texas, USA
swarat@cs.utexas.edu

Moshe Vardi
Rice University

Houston, Texas, USA
vardi@cs.rice.edu

Peter Stone
UT Austin and Sony AI
Austin, Texas, USA

pstone@cs.utexas.edu

ABSTRACT

This paper presents a new approach to the automated design of

mechanisms that incentivize self-interested agents to maximize a

global objective (such as revenue or social welfare) in equilibrium.

Prior work on automated design has either been restricted to rela-

tively simple mechanisms, or represented mechanisms as neural

networks that are hard to interpret and cannot easily incorporate

prior knowledge. In this paper, we propose program synthesis as

a way around these issues. Concretely, we formalize the problem

of designing mechanisms in the form of multiagent environments

whose transition and reward functions are programs in a domain-

specific language (DSL), in order to maximize an outcome such as

revenue or social welfare under given assumptions on how agents

act in these environments. We present an initial algorithm, based on

a combination of stochastic search over programs and Bayesian op-

timization, for this problem. We empirically evaluate the algorithm

in two domains with different characteristics. Our experiments sug-

gest that the approach can synthesize programmatic mechanisms

that are human-interpretable and also perform well.

KEYWORDS

Mechanism Design, Program Synthesis, Multiagent Systems

1 INTRODUCTION

Mechanism design is the study of procedures that incentivize self-

interested actors to maximize global objectives such as social wel-

fare. In recent years, the design of algorithmic mechanisms has

become a prominent area of computer science. Research in this

area has found applications in a wide range of domains, including

policymaking[19], traffic management[8], online advertising[36],

and even epidemiology[5].

In the traditional process of algorithmic mechanism design,

a designer manually comes up with a specific mechanism with

problem-specific guarantees. Such manual design can be brittle and

laborious. Also, to ensure guarantees, these classical approaches

tend to idealize various aspects of the agents and the mechanism

[4, 12, 23, 25, 28, 34]. In particular, agents are assumed to have simple

state spaces and follow mathematically simple behavioral models

such as perfect rationality. The interaction between the mechanism

and the agents is typically one-shot, rather than repeated.. The ob-

jectives that the mechanism is designed to enforce Ð for example,

Proc.of the Adaptive and Learning Agents Workshop (ALA 2022), Cruz, Hayes, Silva,
Santos (eds.), May 9-10, 2022, Online, https://ala2022.github.io/ . 2022.

truth telling in auctions or optimality of resource allocation Ð are

also idealized. Collectively, these assumptions significantly limit

the applicability of these approaches.

Automated Mechanism Design [9] was proposed to alleviate some

of these challenges. Here, one starts with a specification of the fi-

nite set of agents and an objective function. The discovery of a

desirable mechanism is now phrased as an optimization problem

that is solved automatically. While this approach was an important

step in reducing the complexity of mechanism design, scalability

was a challenge. As a result, the method was only applied to re-

stricted settings in which the agent had small state spaces and

repeated interaction between the agents and the mechanism was

not permitted.

More recent work has proposed deep learning as a way to scale

up automated mechanism design [4, 12, 19, 23, 25, 28, 34, 39]. Per-

haps the most prominent example of this approach is the recent

AI Economist [39], which uses deep neural networks to model both

the mechanism (the policymaker) and the agents, and uses Deep

Reinforcement Learning to learn a mechanism from simulations

of agent behavior. The method was used to learn taxation mecha-

nisms that maximize welfare in a sophisticated setting involving

long-term reasoning and resource management by the agents.

A basic issue, however, with such methods is that the mech-

anisms that they learn are not human interpretable. Because ap-

plications of mechanism design often have human stakeholders,

it is especially important that one be able to inspect and analyze

mechanisms, especially ones produced by an automated process[7].

This is, however, impossible for mechanisms represented as neural

networks.

In this paper, we propose program synthesis [15, 21] as an alterna-

tive approach to the automated mechanism design. Concretely, our

mechanisms are represented as programs in a high-level domain-

specific language (DSL). We model repeated interactions between

the mechanism and the agents through a general Markov game[20];

the agents are assumed to use reinforcement learning to discover

strategies in this game. In general, We assume a user-defined model

of behaviors (which we discuss in Sec 3.2) that can result under

each possible mechanism. Mechanism design is now phrased as the

problem of synthesizing a programmatic mechanism such that all

behaviors possible under this model achieve a globally desirable

outcome (as defined by a user-defined objective).

Our method offers two key advantages over deep-learning ap-

proaches such as AI Economist. First, as programs in a high-level

DSL, our mechanisms are human interpretable. Second, a user of

our method can use the DSL to incorporate prior knowledge about

the structure and behavior of mechanisms. The use of such priors

is difficult in deep-learning approaches. On the other hand, our

DSLs can express significantly more complex mechanisms than

those permitted in classical methods for automated mechanism

design[9, 29].

An essential challenge with program synthesis is that it is a com-

binatorially hard problem. To address that challenge, we give an

initial algorithm, based on a combination of stochastic search over

program structures and Bayesian optimization of numerical param-

eters, for our version of this problem. We present two experimental

domains with significantly different characteristics of the compo-

nents described in Sec 3, and evaluate the algorithm (along with a

variant and an ablation) on them. We find that the method returns

sensible mechanisms with good performance, which suggests that

it is indeed possible to design human interpretable mechanisms in

programmatic form.

In summary, the contributions of this work are as follows1:

(1) We offer the first program-synthesis formulation of auto-

mated mechanism design. This formulation has the benefit of

being more general than classical approaches to the problem.

At the same time, it produces mechanisms that, unlike those

in recent deep-learning approaches, are human interpretable

and consistent with human-held prior knowledge.

(2) We present an initial algorithm, based on a combination of

stochastic search and Bayesian optimization, for solving our

program-synthesis problem.

(3) We offer a promising experimental evaluation over two do-

mains with significantly different characteristics.

2 BACKGROUND

2.1 Multiagent Environments

We use Markov/Stochastic Games[20] as the formalism for describ-

ing multi-agent environments (from this point on, we use the terms

Markov Games and Multi-Agent Environments interchangeably).

While we assume fully observable environments in our descrip-

tion, our work easily applies to partially observable ones as well. A

Markov Game𝑀 comprises 𝑘 agents interacting with an environ-

ment with the following components:

• A joint state space 𝑆 , and an initial state distribution 𝜌0.

• A collection of action sets𝐴1, 𝐴2, . . . , 𝐴𝑘 , one for each agent.

• A transition function 𝑇 : 𝑆 ×𝐴1 ∪𝐴2 ∪ . . . ∪𝐴𝑘 → 𝑃𝐷 (𝑆)

that takes a state and a given set of actions for each agent

and outputs a distribution over the next state.

• A reward function for each agentR𝑖 : 𝑆×𝐴1∪𝐴2∪. . .∪𝐴𝑘 →

Real, that takes a state and a given set of actions for each

agent and outputs a real valued reward.

A strategy 𝜋𝑖 : 𝑆 → 𝑃𝐷 (𝐴𝑖) for the 𝑖-th agent is a (probabilistic)

decision rule that, for a given state, outputs a distribution over the

actions of the agent. A strategy profile 𝝅 = (𝜋1, 𝜋2 . . . 𝜋𝑘) is a tuple

of strategies, one for each agent.

A trajectory 𝜏 is a sequence of states, actions and rewards re-

sulting from the execution of a strategy profile. We define the

distribution of trajectories that could result from the execution

1Supplementary material is available at this link.

of a given strategy profile 𝝅 in the natural way, and denote this

distribution by𝑀 (𝝅).

We provide a discussion on Multiagent Reinforcement Learning

(MARL) based on the above in the supplementary material.

2.2 Program Synthesis

Program synthesis[15, 21] is the automated generation of programs

according to some criterion such as performance or the fulfillment

of a declarative specification. Programs are expressed, usually in

small, tailor-made programming languages called Domain Specific

Languages (DSLs), that define the space of possible programs that

need to be searched, and their semantics. Symbolic techniques and

others based on Satisfiability Modulo Theories solvers have seen

successes in applications such as spreadsheet processing and dis-

tributed computing[16, 32, 35]. These approaches are concerned

with formal constraints on the program and its behavior, including

exactly matching the outputs from a given dataset of examples for

the corresponding inputs. In quantitative synthesis[3], programs

are synthesized to optimize an objective. Recently, there has been

tremendous progress in using Machine Learning for quantitative

synthesis, in supervised[11], unsupervised[13, 22] as well as Rein-

forcement learning[37] settings.

3 PROGRAMMATIC MECHANISM DESIGN

In this section, we present the formulation of the programmatic

mechanism design problem we have motivated, and elucidate its

various aspects using a small-scale traffic management domain.

The goal here is to find a suitable mechanism from a search space

of programmatically defined multiagent environments that, under

certain assumptions about agent behavior, lead to outcomes that

maximize a certain objective. The formal statement of the problem

has three components, which we now describe.

3.1 Search Space

The search space F is a subset of all possible multiagent environ-

ments whose elements correspond to programs from a Domain

Specific Language (DSL). We denote elements from this search

space by 𝑓 = (𝑓𝑇 , 𝑓𝑅), with 𝑓𝑇 and 𝑓𝑅 being the transition and re-

ward functions of 𝑓 respectively. Let Π𝑓 denote the space of (not

necessarily Markovian) strategy profiles for environment 𝑓 , and

ΠF = ∪𝑓 ∈FΠ𝑓 , the set of all possible policies over all environments

in F . Note that different environments could have different state

and action spaces.

Typically, we are interested in synthesizing only parts of the

transition and reward functions, while the rest of the environment

behaves in a fixed manner. These parts could be directly involved

in determining the response (next state and rewards) of the en-

vironment, or could be an intermediate step in its computation.

We might also wish to synthesize subroutines that can be reused,

or even disparate parts of the environment’s behavior. Also note

that the programs being synthesized and their results could be

shared between transition and reward functions (as is often the

case with simulators). Many of these points are demonstrated in

our illustrative example, as well as later in the experiments.

3.2 Agent Behavior Generator

An Agent Behavior Generator (henceforth simply Behavior Gener-

ator) encodes the assumptions about agent behavior that will result

for any given environment. It is a function B : F → 𝑃𝐷 (ΠF)

that maps a given environment to a distribution over policies from

that environment representing the possible behaviors agents can

exhibit in that environment. Note that the distribution must be over

only that environment’s policy space, even though the codomain

of B can involve other policies as well. That is, ∀𝑓 ∈ F , B(𝑓) ∈

𝑃𝐷 (Π𝑓).

There are various forms a behavior generator could take. One set

of possibilities are the Game Theoretic solution concepts that are

traditionally studied in Multiagent Systems. For instance, it could

be defined as an equiprobable distribution over all Nash Equilib-

ria. A more practically relevant form in domains where finding

Nash Equilibria is infeasible, is the result of executing a multiagent

learning or planning algorithm, with the random choices (such

as initializations) made by the algorithms inducing a distribution

over possible agent behaviors. Such a definition can also impose

computational constraints on the agent (bounded rationality) such

as the amount of memory available, or representation capacity, as

well as the extent to which it can interact with the environment

(e.g how many episodes it is allowed for learning).

3.3 Objective Function

For a given environment from the search space, the objective func-

tion J : ∪𝑓 (𝑓 , 𝑃𝐷 (Π𝑓)) → Real, assigns a score to the envi-

ronment and distribution over possible agent behaviors for that

environment. Usually, the objective function involves criteria that

are based on the resulting agent behavior. However, it could also

involve properties of the environment itself, e.g the size of the

program, or more generally, a cost based on the contents of the

program.

With the above definitions in hand, we can formally state the

Programmatic Mechanism Design problem as the following opti-

mization problem:

max
𝑓 ∈F
J (𝑓 ,B(𝑓))

In other words, we would like to find a mechanism 𝑓 from the

search space of programs F that maximizes the objective function

J under behavior arising from behavior generator B. We summa-

rize this problem statement in Figure 1.

3.4 Example: Traffic Domain

In this section, we present a problem involving a tabular domain

(i.e discrete states and actions) as a concrete instantiation of the

above concepts. There are two agents whose goal is to cross an

intersection to get to their respective destinations. Two sets of

traffic signals are present at the intersection, one for each agent’s

road. The goal is to design the operation of a set of traffic signals

and the accompanying traffic rules to be followed by agents to

allow for safe, fair and just passage for both agents (which we will

shortly define more rigorously). We now present the details of the

multiagent environment described (for an illustration, please see

the supplementary material).

At each timestep, the agents can either move forward one square

or stay at their current position. They are not allowed to turn from

one road onto another at the intersection. Each agent gets a reward

of +1 upon reaching the goal. If both agents arrive at the intersection

at the same time, there is a 2.5% chance of collision, upon which

they receive a -1 reward. Note that it is possible for the agents

to meet at the intersection without colliding (in fact, that is more

likely), and they can continue onward after the collision. There are

possible penalties for the agents as described below, which lead to a

reward of -1. Otherwise, the reward is zero. The initial signal states

are chosen at random, though they are set to opposite values.

The components of the mechanism design problem are specified

as follows:

3.4.1 Search Space. Each of the two traffic signals can be in one

of two states: True and False. For the purpose of intuition, we

represent True as green and False as red. The transition function

for these signals take two Boolean inputs indicating the current

states of the two signals (which we refer to as sig1 and sig2),

and produce one output indicating its next state. As in real life,

traffic rules are implemented as penalties that are imposed under

certain conditions. The penalty decision function for each of the

two agents takes 4 boolean inputs, which include sig1 and sig2,

along with two additional Boolean values that indicate whether

each agent has just crossed into the intersection at the current

timestep, called cross1 and cross2. For example, the ’usual’ traffic

control mechanism could be implemented by having True mean go

and False mean stop (or more specifically, there will be a penalty

if the agent doesn’t stop when the signal is False).

The search space corresponds to a subset of possible 4-tuples of

Boolean expressions from the DSL presented in Table 1. The 4 ex-

pressions in each given tuple implement the transition and penalty

decision functions described above. Other than the operation of

the signal and the penalty decision function, all environments in

the search space are identical. Limiting ourselves to Normal Form

expressions with at most 2 binary operators, along with a few other

optimizations such as using commutativity to reduce double count-

ing, it can be seen that we have 1,411,344 4-tuples of expressions.

The above is an example of how programs can impose priors,

namely that effective mechanisms exist that can be expressed as

Boolean formulas, which are easily interpretable, and also impose

limits on the complexity of the rules. Further, we can impose priors

on the specific behavior of the mechanism. For instance, we could

restrict the search space of penalty decision functions to programs

of the form exp1&exp2, where exp1 and exp2 are literals, that is

the set of conjunctive Boolean expressions. This prior could express

our knowledge that there is likely to be a useful set of rules that is

a conjunction of some literals.

Let us consider as a running example, one (unconventional)

mechanism from this search space, whose signal next-states are

given by the expressions sig1->!(sig1) and sig1->!(sig1) re-

spectively (note, they are in fact the same expression). The penalty

rules are given by cross1&(!(sig1)) and cross2&sig2 respec-

tively for the two agents. One can work out that these signals both

take the same value on all steps but the first (when they are started

with opposite values), and toggle between True and False. Simi-

larly, it can be seen that the penalty rules penalize the first agent

(a & b) | (!a & !b)

Candidate
Progam

Search Space

Behavior Generator Objective
Function Maximize

Figure 1: The Programmatic Mechanism Design Problem Formulation

Terminals
True,

False
Logical True/False

Operators
! Logical negation Operator

&& Logical AND Operator

|| Logical OR Operator

Table 1: DSL of Boolean formulae for the traffic light do-

main.

for crossing into the intersection when the signal is False, while

the other agent is penalized for crossing when the signal is True.

3.4.2 Behavior Generator. We would like our behavior generator

to encode the idea that agents try to act in their own self interest

to maximize their own rewards, i.e rational behavior. Although

Game theoretic solution concepts like Nash Equilibria do so, they

are notoriously difficult to compute or analyze[18] even in rela-

tively simple domains such as this one. Therefore, we instead use

an MARL algorithm to generate behaviors that are reasonably close

to rational, and ask which mechanisms produce desirable outcomes

under behavior generated by MARL. Specifically, we use Indepen-

dent Q-Learning (IQL)[33] as the MARL algorithm.

3.4.3 Objective Function. For a given mechanism from the search

space and a distribution over behaviors, the objective function for a

particular trial is 0 if the agents meet at the intersection (regardless

of whether a collision occurs), if either of them incur a penalty, or

either of them is not able to reach the destination. Otherwise it is

𝑒−Δ𝑡 , where Δ𝑡 is the random variable that gives difference in the

number of timesteps that the agents took on that trial to get to their

respective destinations. The overall objective is the expected value

of the above over all trials.

Finding a mechanism maximizing this objective function means

trying to ensure that the agents acting according to policies gen-

erated by the behavior generator don’t meet at the intersection

(safety), while simultaneously ensuring that the agents are able to

reach their destinations in an equal amount of time (fairness), and

without penalties. For the running example, as noted earlier, the

agents are able to reach their destinations without incurring any

penalty. However, we see that on every run, one of the agents waits

for an additional timestep at the signal, so Δ𝑡 is always 1, making

the objective function 𝑒−1 = 0.368. In the experiments, we attempt

to find mechanisms that perform as best as possible, which means

asking if there is a safe and just mechanism that has Δ𝑡 = 0.

4 SAMPLING-BASED SYNTHESIS OF

PROGRAMMATIC MECHANISMS

We desire an approach that can search for desirable mechanisms

in large, programmatic spaces of candidate mechanisms involving

many combinatorial components. It should also be able to do so

while only being able to sample the objective function, as well as

the behavior generator’s output. This rules out gradient-based op-

timization, as well as many existing program synthesis approaches

that require access to the łsource codež of the objective and behavior

generator.

Markov Chain Monte-Carlo (MCMC) is a sampling-based search

technique that is capable of producing aMarkov Chain of candidates

in which, in steady state, the likelihood of occurrence of a candidate

increases with its performance according to the objective function

being optimized. It also satisfies the requirement for being able to

handle discrete spaces, and has been successfully used to synthesize

optimized machine code[30]. Thus, we turn to this technique for

our problem of synthesizing programmatic mechanisms.

There are 2 components in our MCMC-based approach, which

we describe below:

Objective Evaluation. We defined the objective function for the

problem as J (𝑓 ,B(𝑓)), where 𝑓 is a given mechanism. As men-

tioned earlier, the behavior generator and objective function can,

in general, only be estimated by sampling. We assume 𝑁 samples

are used, and denote the resulting estimate as 𝐽 (𝑓).

Proposal distribution. The proposal distribution, 𝑝 (𝑓 ′ |𝑓) łrewritesž

a given candidate mechanism 𝑓 to make small, random changes

to it to produce a proposal 𝑓 ′. These changes could alter the struc-

ture of the program, which defines the organization of operators,

operands and other programmatic constructs, in a syntactically

consistent way. Additionally, they could also change the values

of the operands, such as constants (e.g True/False, or numeric

parameters). These changes can then be accepted or rejected based

on the change in the performance.

The MCMC procedure starts with a random candidate 𝐹0. It

then constructs a Markov chain 𝐹0, 𝐹1 . . . of candidate mechanisms

using a procedure based on the Metropolis-Hastings algorithm[17],

which is performed by iteratively sampling a proposal from the

proposal distribution, and accepting or rejecting it based onwhether

it performs better than the current program. If the proposal is

accepted, then it becomes the current program.

Under the condition of reversibility of the proposal distribution, it

can be shown that the resultingMarkov Chain 𝐹0, 𝐹1 . . . has a steady

state distribution where the probability of a candidate mechanism 𝑓

Algorithm 1 MCMC-based Synthesis Procedure using Bayesian

Optimization (BO) for tuning parameters.

1: function Synthesize-BOMCMC

2: 𝐹0 ← Random mechanism

3: 𝐶 ←[𝐹0]

4: for 𝑖 = 0, 1 . . . 𝑁𝑖𝑡𝑟 − 1 do

5: 𝑓 ′𝑠 ∼ 𝑝 (𝑓 ′ |𝐹𝑖)

6: 𝑓 ′ ← TuneParameters(𝑓 ′𝑠)

7: 𝐹𝑖+1 ← 𝑓 ′

8: if 𝐽 (𝑓 ′) < 𝐽 (𝐹𝑖) then

9: 𝑟 ∼ Bernoulli
(

𝑒𝛽 (𝐽 (𝑓
′)−𝐽 (𝐹𝑖))

)

10: if 𝑟 == 0 then

11: 𝐹𝑖+1 ← 𝐹𝑖
12: end if

13: end if

14: end for

15: end function

is proportional to 𝑒𝛽 𝐽 (𝑓) . In practice, this means that, given enough

iterations, good mechanisms will eventually be found.

4.1 Bayesian Optimization for Efficient

Parameter Tuning

The above MCMC approach is able to search through both com-

binatorial spaces of program structures, or skeletons, as well as

continuous spaces of parameters that they might involve, with an

appropriately chosen proposal distribution. However, the MCMC

process might not spend enough time tuning the parameters in

a given program (before changing the structure of the program,

which could render existing parameter values useless) in order to

assess the best possible performance for a given program struc-

ture. While the best parameter configurations will eventually be

discovered, the frequent switching of the program structure would

substantially delay this process, an effect that we observed in our

experiments.

To improve the efficiency of the search, we propose to add an-

other level of search that tunes the parameters of the program

proposed by the previous level. This tuning is accomplished by

using Bayesian Optimization (BO)[31], where the input space of

the BO algorithm is the space of possible program parameters, and

the output, or objective is the same as the objective function as

defined in Section 3. BO algorithms have been known to rapidly

find good solutions to optimization problems, while working with

noisy estimates. We make use of these capabilities by significantly

reducing the number of samples used to estimate the objective

while tuning. The BO algorithm is encapsulated in a subroutine

TuneParams(𝑓). We defer the discussion of this subroutine to the

supplementary material. The entire procedure incorporating BO

search is summarized in Algorithm 1.

5 EXPERIMENTS

Through the experiments below, we validate the effectiveness of

our methods under variations in the following factors:

(1) The characteristics and complexity of the domain.

Traffic Domain Hunt-and-Gather
State/Action

Space
Discrete/Discrete Continuous/Discrete

Program

Structure
Boolean Expressions Decision Lists with

Boolean and Numeric

Conditions
Behavior

Generator

MARL Algorithm Pre-defined Behavior

Table 2: A summary of the characteristics and complexity

of the domain, structure of the programs being synthesized,

and the behavior generator used.

Agent Expression

Signals
1 !(sig1)

2 !(sig2)

Penalty
1 cross1&(!(sig1))

2 cross2&(!(sig2))

Table 3: Boolean expressions synthesized for the regular

traffic lights problem.

(2) Structure of the programs being synthesized.

(3) The Behavior Generator.

We summarize the above information in Table 2 for each of the

two sets of experiments we describe below.

5.1 Traffic Domain

We begin by evaluating our approach on the traffic domain intro-

duced in Section 3.4, and present more experimental details in the

supplementary material.

One of the top performing expressions found are shown in Ta-

ble 3. We see that the signals toggle between true and false each

timestep, while penalties are imposed when an agent crosses into

the intersection while the signal state is false. Assuming that true

corresponds to green, and false to red, these signals and rules are the

same as real-life traffic rules. This shows that sensible mechanisms

can be found even when the behavior generator involves learning

rules, and in combinatorial search spaces such as our search space

of Boolean expressions.

Interestingly, by evaluating the objective as in Section 3.4.3 this

mechanism too has performance 0.368, just like the example in

Section 3.4. This shows that while the latter is an unusual way to

design a signal, it is nevertheless just as valid and just as useful as

the conventional signal.

5.2 Hunt and Gather Domain

Now, we introduce a domain with significant complexity based

on the domain by Zheng et al. [39], which we similarly call the

hunt and gather domain. In this domain, 3 agents operate in a

gridworld, where they can move around the map, gather resources

(wood and stone) and use them to build houses. This is illustrated

in Figure 2. The agents are part of an economy, where they receive

coin for building houses, or by selling resources to other agents

(alternatively, they can spend money to buy resources from other

agents). Each episode is divided into łfiscal yearsž, at the end of

wood=stone=0.1 wood=stone=0.4

wood=stone=0.7 wood=stone=1.0

Figure 2: The Hunt and Gather domain: In each image,

agents are denoted by starmarkers of different colors. Green

and Beige tiles represent the resources wood and stone

respectively. The images show different possible environ-

ments with varying abundances of each resource, with the

normalized abundances mentioned above the image.

which tax is collected from the agents based on their income, and

the total tax amount is redistributed to all agents equally.

In each episode, the agents could face different environmental

conditions, particularly the abundances of the two resources, wood

and stone. The abundances are set at the beginning of every episode

from a uniform distribution over a grid of 25 values, and remain

fixed through the episode. It should be clarified here that resources

take time to replenish once they are collected by an agent. The

abundance of a resource refers to the number of sites on the map

where the resource can spawn.

The goal is to design amechanism that acts as an economic policy

to improve the welfare of the agents (which we define later) across

these conditions. It can do so by setting the following parameters

at the beginning of the episode based on the observed abundances

of the resources: 1) Taxes: There are two different tax schedules

to choose from, one with low tax rates, and the other with high

rates. 2) Market prices: the agents buy and sell resources at a fixed

price decided by the economic policy. There are 3 price levels (low,

moderate and high) to choose from, separately for each resource.

5.2.1 Search Space. We wish to find a program that decides at the

beginning of the episode, the taxes and prices as described above,

with the mechanisms from the search space being as described

above and identical, save for this program. Each program takes

as input two numeric values between 0 and 1 called wood and

stone. These represent the observed abundances of wood and stone

respectively, normalized to that range. The output consists of 3

values, or output variables representing the choices above, called

tax, price_wood, and price_stone.

The program takes the structure of a decision list, being a se-

quence of statements of the form:

if(condition) then: variable:=value

where the condition is a Boolean expression involving comparisons

of the input values. The resulting conditional statement sets the

value of one of the output variables listed above to a value rep-

resenting an appropriate choice from the ones described above,

which we assume to be from a set of the form {1, 2, . . .}. To reduce

program complexity, the output variables are all assigned a default

value, so programs need not set every output variable. An instance

of such a statement is as follows:

if((wood<0.5)&&(stone<0.5)) then:

tax:=2
The above statement sets a high tax rate when the (normalized)

abundances of both wood and stone are observed to be less than

0.5.

Considering programs of up to 4 statements, we see that the

search space is much more complex than in the Traffic domain.

Not only are there Boolean expressions, they also involve numeric

parameters. There are a similarly large number of program skeletons

(sets of programs differing only in the values of the parameters

involved). Each skeleton is further associated with a continuous,

usually multi-dimensional space of parameters to choose from.

5.2.2 Behavior Generator. We use a set of predefined, fixed behav-

iors as the behavior generator (meaning that the distribution over

generated behaviors is the same regardless of the mechanism, and

has all probability mass assigned to one particular policy), which

is as follows. For two of the three agents, the behavior is to con-

tinually collect a certain amount of a resource (one agent collects

wood and the other collects stone) and list it for sale. The other

agent buys the wood and stone that were listed for sale by the other

two agents, and uses them to build houses. Thus, the agents form a

supply chain that converts resources to houses. The problem can

then be thought of as maximizing the welfare of the agents who are

carrying out their roles in the above supply chain. Note that since

the behavior generator does not make use of the agents’ rewards,

they do not need to be specified, though a straightforward choice

as in [39] is the utility experienced by each agent as defined in the

next section.

5.2.3 Objective function. Each agent receives utility from the coin

it earns during an episode. Gathering resources and building houses

takes labor, which negatively impacts the utility of agents. Each

agent accrues a certain net utility at the end of an episode. Let the

vector of every agent’s utilities be u. Now, we define a performance

metric as 1 − gini(u), where gini(·) refers to the standard Gini

Index. Thus, it measures welfare in terms of equality of utility,

with 1.0 being the best possible outcome (all utilities equal), and

0.0 being the worst .This performance metric is averaged over all

possible values for the resource abundances to produce the final

objective function. When evaluating using sampling, one episode

per environment configuration is executed and the performances

averaged to produce one sample of the final objective.

5.2.4 Experiment Setup. We apply the following approaches to the

problem as described above:

BO-MCMC. This is the BO-MCMC algorithm as described in Al-

gorithm 1. We use a proposal distribution that chooses a statement

at random and adds, deletes or rewrites the operators, operands

with randomly chosen symbols. Any new parameters that are added

are set to 0.5, which are tuned along with existing parameters by

the BO algorithm.

BO-MCMC - Cur-Rand. This is also the BO-MCMC algorithm

as before, but performs an additional BO search starting from an

initial value for the program parameters as they were present in the

previous iteration of the search. For newly introduced parameters,

a random value is used. The tuned parameters are then the best per-

forming values among those obtained during this additional search,

as well as the usual search starting from a random initialization.

MCMC. As an ablation experiment, this is a version that does not

use BO to tune program parameters, but rather makes parameter

tuning a part of the MCMC search. That is, the proposal distri-

bution has a chance to make changes to the program parameters,

which include increments or decrements of 0.05 of any one random

parameter.

Decision Tree Oracle. We train a Decision Tree (DT) oracle in

order to establish an approximate upper bound on the performance

attainable while maintaining interpretability. We explain how it is

trained, and why it is an oracle in the supplementary material.

We describe hyperparameters, proposal distribution and other

details in the supplementary material. We used BoTorch[1] to im-

plement our BO algorithms and Scikit-Learn[26] for Decision Tree

learning.

5.2.5 Results. In Figure 3, we present the results obtained from

the above approaches along with the DT oracle and a łconstantž

baseline policy that always uses the default values for taxes and

prices. Figure 3 also presents one of the top programs synthesized by

each approach. The graphs show the best performance attained by

any candidate mechanism up to a particular iteration. The methods

that are being compared do different amounts of work in each

iteration, in terms of the number of environment runs executed. In

order to facilitate comparison, we plot this best performance for

each method as a function of an łeffort-adjustedž step number. This

effort-adjusted step multiplies the iteration number on the x-axis

by a factor given by the ratio between the number of runs executed

by the method in question and the plain MCMC approach (making

the factor 1 for MCMC). We make the following observations from

these results:

(1) Both BO-MCMC as well as BO-MCMC - Cur-Rand are able

to find good mechanisms with performance close to the DT

oracle, and quickly find mechanisms that are significantly

better than the constant policy baseline.

(2) While the plain MCMC approach is also able to surpass the

baseline, it is unable to make significant progress beyond

the baseline. This demonstrates that the use of Bayesian Op-

timization for parameter tuning is an important contributor

to the effectiveness of the algorithm.

(3) BO-MCMC-Cur-Rand is able to improve its performance

more quickly in the initial iterations, indicating that reusing

previously tuned parameters can potentially hasten the dis-

covery of effective programs. However, later its average per-

formance remains below that of BO-MCMC.

(4) The programs found are also highly interpretable. The pro-

gram found by BO-MCMC (Figure 3) is highly intuive. Al-

though the program found by Cur-Rand is longer and con-

tains redundant statements and conditions, a quick inspec-

tion suffices to deduce that it raises the price of wood if its

availability is lower than a certain value, while the price of

stone is constantly set high.

The above observations establish that our approach is able to find

good mechanisms on problems with significant complexity. It is

also able to handle complex program structures involving contin-

uous valued parameters, which are necessary in many real-world

situations.

6 RELATED WORK

We now compare aspects of the programmatic mechanism design

problem with existing work across mechanism design, as well as

program synthesis work connected to our problem.

Algorithmic Mechanism Design. Algorithmic mechanism design[24,

36] (separate from Automated Mechanism Design, which is dis-

cussed below) takes a computational perspective to mechanism

design with a focus on establishing theoretical guarantees such

as optimality. Although it employs analytic tools from theoretical

computer science towards this end, the design process remains

manual. Further, it does not consider the use of programs as an

interpretable representation for mechanisms, or the synthesis of

such programs.

Automated Mechanism Design. Automated Mechanism Design [9,

10, 29] aims to develop methods to solve problems involving mul-

tiple agents with private types. Although these works are more

general than their predecessors, they are nevertheless restricted

to certain kinds of settings (those involving voting, auctions, or

some other form of allocation), models of agent behavior (such as

individual rationality) and design objectives (e.g truthful reporting

of types/preferences).

Several solution approaches for Automated Mechanism Design,

including those employing Machine Learning [12, 23, 28], employ

the revelation principle, which allows the design algorithm to as-

sume that desirable (e.g truthful) behavior is optimal, avoiding the

need to learn agent behaviors. On the other hand, approaches such

as [2, 6, 27] employ machine learning to learn rational behaviors,

which are used to optimize the mechanism. Our general problem

framework is able to seamlessly handle both these classes of ideas

by using the appropriate behavior generator, allowing the solution

approach to be agnostic to such details. Indeed, we have demon-

strated this in the above experiments, with learning being used

for agent behavior in section 3.4, while the fixed behavior used in

section 5.2 can be seen as applying the revelation principle for that

behavior.

Adaptive Mechanism Design [25] considers auction design prob-

lems involving unknown and varying bidder behavior. We have

already tested an aspect of such problems in our work, namely

changing the mechanism’s behavior based on observed data (re-

source abundances). In principle, our work also applies to situations

where conditions (e.g bidder behavior) change continually.

Several recent works use RL in some form for designing mech-

anisms [4, 34, 39]. Perhaps the closest work to ours in terms of

generality of the mechanism design problem considered is [39].

The approach presented there aims to learn a taxation policy in the

form of a Neural Network using Deep MARL in a domain involving

large, continuous state spaces. Other approaches that learn agent

Method Discovered Program Performance

BO-MCMC

if (((stone<0.525)|(stone<0.328)))

 then price_Stone = 3;

if (((wood<0.778)&(wood>0.0)))

 then price_Wood = 3;

0.88

BO-MCMC-Cur-Rand

if (((stone>0.158)&(stone<0.551)))

 then price_Stone = 1;

if ((wood<0.563))

 then price_Wood = 3;

if (((stone>0.0)&(stone<1.0)))

 then price_Stone = 3;

if ((wood<0.0))

 then price_Stone = 1;

0.88

Figure 3: Left: Performance of best program found up to each step, over 5 different runs for each method. The step numbers

are normalized to an effort adjusted step which is equivalent to the amount of work done. Right: Best performing programs

discovered by BO-MCMC and BO-MCMC-Cur-Rand in particular runs.

behavior often solve two-level learning problems[2, 6], while [39]

jointly learn the agent behaviors, as well as the taxation policy

using MARL (essentially treating the mechanism as an agent), thus

solving a one-level problem, and as a result achieving significant

scalability. While there is potential to harness this scalability for

programmatic mechanism design in the case of a learning-based

behavior generator by combining this approach with program syn-

thesis approaches that convert learned neural models to programs

such as [37], there are still some challenges involved: First is that

a suitable reward function is needed to guide the reinforcement

learning of the mechanism. In many situations, feedback on the

performance of the mechanism can only be obtained at the end of

a trajectory, leading to sparse rewards that require further reward

engineering steps to enable RL algorithms to learn properly. Next,

representing many kinds of programs using neural networks can

require specialized architectures such as Neural Turing Machines,

while Reinforcement Learning has been shown to be difficult using

such models[38].

Program Synthesis for Mechanism Design. [14] consider the synthe-

sis of Linear Temporal Logic (LTL) mechanisms that satisfy a given

LTL specification under particular definitions of rational agent be-

havior. However, the work is limited to small, discrete systems due

to the sheer complexity of the LTL synthesis problem. It is also

limited to programs that are temporal logic formulas, rather than

from any given DSL as we consider here. To the best of our knowl-

edge, we are the first to present a general problem framework for

programmatic mechanism design, as well as a solution approach

that is applicable generally.

7 CONCLUSION AND FUTUREWORK

We have developed a novel problem framework that considers

mechanism design in programmatic form. It is able to deal with

many of the messy realities that arise in practice, greatly broad-

ening its scope in terms of the structure and complexity of the

problem, assumptions about agent behavior, and design objectives.

Our solution approach based on stochastic search is already able

to solve problems of significant complexity. We see this achieve-

ment as a successful first step towards using program synthesis for

designing interpretable mechanisms.

A natural question that arises is that of scalability. A major lim-

itation in our proof of concept in the larger domain is that the

behaviors are fixed. This property essentially reduces the problem

to a single-level optimization, rather than the fully general bi-level

one where the agent behaviors are also learned for each candidate

mechanism considered. One possibility for circumventing this hard

bi-level problem alluded to in section 6, is learning a neural net-

work mechanism using a single-level approach such as in [39], and

converting the learned model to a program. Despite the potential

RL challenges, this is an exciting direction for future work, as such

approaches can avoid the need to perform two-level learning.

Speeding up MARL algorithms in order to allow quick evalua-

tions of the behavior generator will be key to achieving scalability

when using methods such as ours. To this end, it may be feasible

to learn parameterized, or task-conditioned policies for the agents,

where the task is the program from the mechanism itself with an

embedding applied to it.

ACKNOWLEDGMENTS
This work has taken place in the Learning Agents Research Group (LARG)
and the Trishul Laboratory at the Department of Computer Science, The
University of Texas at Austin. LARG research is supported in part by the
National Science Foundation (CPS-1739964, IIS-1724157, FAIN-2019844), the
Office of Naval Research (N00014-18-2243), Army Research Office (W911NF-
19-2-0333), DARPA, Lockheed Martin, General Motors, Bosch, and Good
Systems, a research grand challenge at the University of Texas at Austin.
Research in Trishul on this topic was supported by the National Science
Foundation (CCF-1704883 and CCF-1918651). The views and conclusions
contained in this document are those of the authors alone. Peter Stone
serves as the Executive Director of Sony AI America and receives financial
compensation for this work. The terms of this arrangement have been
reviewed and approved by the University of Texas at Austin in accordance
with its policy on objectivity in research.

REFERENCES
[1] Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham,

Andrew G Wilson, and Eytan Bakshy. 2020. BoTorch: A Framework for Efficient
Monte-Carlo Bayesian Optimization. InAdvances in Neural Information Processing
Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Eds.),
Vol. 33. Curran Associates, Inc., 21524ś21538. https://proceedings.neurips.cc/
paper/2020/file/f5b1b89d98b7286673128a5fb112cb9a-Paper.pdf

[2] David Balduzzi, Marta Garnelo, Yoram Bachrach, Wojciech Czarnecki, Julien
Perolat, Max Jaderberg, and Thore Graepel. 2019. Open-ended learning in
symmetric zero-sum games. In Proceedings of the 36th International Conference
on Machine Learning (Proceedings of Machine Learning Research, Vol. 97), Ka-
malika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, 434ś443. https:

//proceedings.mlr.press/v97/balduzzi19a.html
[3] Roderick Bloem, Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara

Jobstmann. 2009. Better Quality in Synthesis through Quantitative Objectives. In
Proceedings of the 21st International Conference on Computer Aided Verification
(Grenoble, France) (CAV ’09). Springer-Verlag, Berlin, Heidelberg, 140ś156. https:
//doi.org/10.1007/978-3-642-02658-4_14

[4] Gianluca Brero, Alon Eden, Matthias Gerstgrasser, David Parkes, and Duncan
Rheingans-Yoo. 2021. Reinforcement Learning of Sequential Price Mechanisms.
Proceedings of the AAAI Conference on Artificial Intelligence 35, 6 (May 2021),
5219ś5227. https://ojs.aaai.org/index.php/AAAI/article/view/16659

[5] Roberto Capobianco, Varun Kompella, James Ault, Guni Sharon, Stacy Jong,
Spencer Fox, Lauren Meyers, Peter R. Wurman, and Peter Stone. 2021. Agent-
Based Markov Modeling for Improved COVID-19 Mitigation Policies. The Journal
of Artificial Intelligence Research (JAIR) 71 (August 2021), 953ś92.

[6] Micah Carroll, Rohin Shah, Mark K Ho, TomGriffiths, Sanjit Seshia, Pieter Abbeel,
and Anca Dragan. 2019. On the Utility of Learning about Humans for Human-AI
Coordination. In Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.),
Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2019/file/
f5b1b89d98b7286673128a5fb112cb9a-Paper.pdf

[7] Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie
Elhadad. 2015. Intelligible Models for HealthCare: Predicting Pneumonia Risk
and Hospital 30-Day Readmission. In Proceedings of the 21th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining (Sydney, NSW,
Australia) (KDD ’15). Association for Computing Machinery, New York, NY, USA,
1721ś1730. https://doi.org/10.1145/2783258.2788613

[8] Haipeng Chen, Bo An, Guni Sharon, Josiah P. Hanna, Peter Stone, Chunyan Miao,
and Yeng Chai Soh. 2018. DyETC: Dynamic Electronic Toll Collection for Traffic
Congestion Alleviation. In Proceedings of the 32nd AAAI Conference on Artificial
Intelligence (AAAI-18) (New Orleans, Lousiana, USA).

[9] Vincent Conitzer and Tuomas Sandholm. 2003. Automated Mechanism Design:
Complexity Results Stemming from the Single-Agent Setting. In Proceedings of the
5th International Conference on Electronic Commerce (Pittsburgh, Pennsylvania,
USA) (ICEC ’03). Association for Computing Machinery, New York, NY, USA,
17ś24. https://doi.org/10.1145/948005.948008

[10] Vincent Conitzer and Tuomas Sandholm. 2007. Incremental Mechanism Design.
In Proceedings of the 20th International Joint Conference on Artifical Intelligence
(Hyderabad, India) (IJCAI’07). Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1251ś1256.

[11] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman
Mohamed, and Pushmeet Kohli. 2017. RobustFill: Neural Program Learning under
Noisy I/O. In Proceedings of the 34th International Conference on Machine Learning
- Volume 70 (Sydney, NSW, Australia) (ICML’17). JMLR.org, 990ś998.

[12] Paul Duetting, Zhe Feng, Harikrishna Narasimhan, David Parkes, and Sai Srivatsa
Ravindranath. 2019. Optimal Auctions through Deep Learning. In Proceedings of
the 36th International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.).
PMLR, 1706ś1715. https://proceedings.mlr.press/v97/duetting19a.html

[13] Kevin Ellis, Armando Solar-Lezama, and Joshua B. Tenenbaum. 2015. Unsuper-
vised Learning by Program Synthesis. In Proceedings of the 28th International Con-
ference on Neural Information Processing Systems - Volume 1 (Montreal, Canada)
(NIPS’15). MIT Press, Cambridge, MA, USA, 973ś981.

[14] Dana Fisman, Orna Kupferman, and Yoad Lustig. 2010. Rational Synthesis. In
Tools and Algorithms for the Construction and Analysis of Systems, Javier Esparza
and Rupak Majumdar (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
190ś204.

[15] Cordell Green. 1969. Application of Theorem Proving to Problem Solving. In
Proceedings of the 1st International Joint Conference on Artificial Intelligence (Wash-
ington, DC) (IJCAI’69). Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 219ś239.

[16] William R. Harris and Sumit Gulwani. 2011. Spreadsheet Table Transformations
from Examples. SIGPLAN Not. 46, 6 (jun 2011), 317ś328. https://doi.org/10.1145/
1993316.1993536

[17] W. K. Hastings. 1970. Monte Carlo Sampling Methods Using Markov Chains and
Their Applications. Biometrika 57, 1 (1970), 97ś109. http://www.jstor.org/stable/
2334940

[18] Junling Hu and Michael P. Wellman. 2003. Nash Q-Learning for General-Sum
Stochastic Games. J. Mach. Learn. Res. 4, null (Dec. 2003), 1039ś1069.

[19] Raphael Koster, Jan Balaguer, Andrea Tacchetti, Ari Weinstein, Tina Zhu, Oliver
Hauser, Duncan Williams, Lucy Campbell-Gillingham, Phoebe Thacker, Matthew
Botvinick, and Christopher Summerfield. 2022. Human-centered mechanism
design with Democratic AI. arXiv:2201.11441 [cs.AI]

[20] Michael L. Littman. 1994. Markov Games as a Framework for Multi-Agent
Reinforcement Learning. In Proceedings of the Eleventh International Conference
on International Conference on Machine Learning (New Brunswick, NJ, USA)
(ICML’94). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 157ś163.

[21] Zohar Manna and Richard J. Waldinger. 1971. Toward Automatic Program
Synthesis. Commun. ACM 14, 3 (mar 1971), 151ś165. https://doi.org/10.1145/

362566.362568
[22] Vijayaraghavan Murali, Letao Qi, Swarat Chaudhuri, and Chris Jermaine. 2018.

Neural Sketch Learning for Conditional ProgramGeneration. In International Con-
ference on Learning Representations. https://openreview.net/forum?id=HkfXMz-
Ab

[23] Harikrishna Narasimhan and David C. Parkes. 2016. A General Statistical Frame-
work for Designing Strategy-Proof Assignment Mechanisms (UAI’16). AUAI
Press, Arlington, Virginia, USA, 527ś536.

[24] Noam Nisan and Amir Ronen. 2001. Algorithmic Mechanism Design. Games and
Economic Behavior 35, 1 (2001), 166ś196. https://doi.org/10.1006/game.1999.0790

[25] David Pardoe, Peter Stone, Maytal Saar-Tsechansky, and Kerem Tomak. 2006.
Adaptive Mechanism Design: A Metalearning Approach. In The Eighth Interna-
tional Conference on Electronic Commerce. 92ś102.

[26] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825ś2830.

[27] S Phelps, P McBurney, and Parsons S. 2010. Evolutionary mechanism design: a
review. Auton Agent Multi-Agent Syst 21 (2010). https://doi.org/10.1007/s10458-
009-9108-7

[28] Ariel D. Procaccia, Aviv Zohar, Yoni Peleg, and Jeffrey S. Rosenschein. 2009.
The Learnability of Voting Rules. 173, 12-13 (aug 2009), 1133ś1149. https:
//doi.org/10.1016/j.artint.2009.03.003

[29] Tuomas Sandholm and Anton Likhodedov. 2015. Automated Design of Revenue-
Maximizing Combinatorial Auctions. Oper. Res. 63, 5 (oct 2015), 1000ś1025.

[30] Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic Superoptimization.
SIGARCH Comput. Archit. News 41, 1 (March 2013), 305ś316. https://doi.org/10.
1145/2490301.2451150

[31] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Fre-
itas. 2016. Taking the HumanOut of the Loop: A Review of Bayesian Optimization.
Proc. IEEE 104, 1 (2016), 148ś175. https://doi.org/10.1109/JPROC.2015.2494218

[32] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay
Saraswat. 2006. Combinatorial Sketching for Finite Programs. In Proceedings of the
12th International Conference on Architectural Support for Programming Languages
and Operating Systems (San Jose, California, USA) (ASPLOS XII). Association for
Computing Machinery, New York, NY, USA, 404ś415. https://doi.org/10.1145/
1168857.1168907

[33] Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Kor-
jus, Juhan Aru, Jaan Aru, and Raul Vicente. 2017. Multiagent cooperation and
competition with deep reinforcement learning. PLOS ONE 12, 4 (04 2017), 1ś15.
https://doi.org/10.1371/journal.pone.0172395

[34] Pingzhong Tang. 2017. Reinforcement mechanism design. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17.
5146ś5150. https://doi.org/10.24963/ijcai.2017/739

[35] Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-Haim,
Milo M.K. Martin, and Rajeev Alur. 2013. TRANSIT: Specifying Protocols with
Concolic Snippets. In Proceedings of the 34th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (Seattle, Washington, USA)
(PLDI ’13). Association for Computing Machinery, New York, NY, USA, 287ś
296. https://doi.org/10.1145/2491956.2462174

[36] Hal R. Varian. 2009. Online Ad Auctions. American Economic Review 99, 2 (May
2009), 430ś34. https://doi.org/10.1257/aer.99.2.430

[37] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and
Swarat Chaudhuri. 2018. Programmatically Interpretable Reinforcement Learning.
In Proceedings of the 35th International Conference on Machine Learning (Proceed-
ings of Machine Learning Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.).
PMLR, 5045ś5054. https://proceedings.mlr.press/v80/verma18a.html

[38] Wojciech Zaremba and Ilya Sutskever. 2016. Reinforcement Learning Neural
Turing Machines - Revised. arXiv:1505.00521 [cs.LG]

[39] Stephan Zheng, Alexander Trott, Sunil Srinivasa, Nikhil Naik, Melvin Gruesbeck,
David C. Parkes, and Richard Socher. 2020. The AI Economist: Improving Equality
and Productivity with AI-Driven Tax Policies. arXiv:2004.13332 [econ.GN]

	Abstract
	1 Introduction
	2 Background
	2.1 Multiagent Environments
	2.2 Program Synthesis

	3 Programmatic Mechanism Design
	3.1 Search Space
	3.2 Agent Behavior Generator
	3.3 Objective Function
	3.4 Example: Traffic Domain

	4 Sampling-Based Synthesis of Programmatic Mechanisms
	4.1 Bayesian Optimization for Efficient Parameter Tuning

	5 Experiments
	5.1 Traffic Domain
	5.2 Hunt and Gather Domain

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

