
OneVision: Centralized to Distributed Controller Synthesis

with Delay Compensation

Jiayi Wei1, Tongrui Li1, Swarat Chaudhuri1, Isil Dillig1, and Joydeep Biswas1

Abstract— We propose a new algorithm to simplify the con-
troller development for distributed robotic systems subject to
external observations, disturbances, and communication delays.
Unlike prior approaches that propose specialized solutions to
handling communication latency for specific robotic applica-
tions, our algorithm uses an arbitrary centralized controller as
the specification and automatically generates distributed con-
trollers with communication management and delay compen-
sation. We formulate our goal as nonlinear optimal control—
using a regret minimizing objective that measures how much
the distributed agents behave differently from the delay-free
centralized response—and solve for optimal actions w.r.t. local
estimations of this objective using gradient-based optimization.
We analyze our proposed algorithm’s behavior under a linear
time-invariant special case and prove that the closed-loop
dynamics satisfy a form of input-to-state stability w.r.t. unex-
pected disturbances and observations. Our experimental results
on both simulated and real-world robotic tasks demonstrate
the practical usefulness of our approach and show significant
improvement over several baseline approaches.

I. INTRODUCTION

We are interested in distributed multi-agent control of

robots in environments with unknown conditions or obsta-

cles. Examples of such settings include autonomous convoy

driving following a human driver and autonomous formation

control of a fleet that needs to change formations in response

to obstacles. Unlike in applications with fixed formation [24],

[10] or trajectory control [12], the agents’ behavior can

vary significantly based on environmental observations, such

as the observed trajectory of the lead car in the convoy

setting or a narrow tunnel for the formation switching setting.

Thus, it is preferable to specify the behavior of the robotic

fleet, rather than their execution, as a desired ideal central

controller. Unfortunately, such ideal central controllers can-

not be executed directly in a distributed setting since each

agent is only capable of observing their own local state,

and communication latency leads to delayed observations

of other agents. While there have been a few specialized

solutions for handling communication latency for specific

controllers such as formation control [21] and coordinated

path following [11], synthesizing distributed controllers from

arbitrary central controllers while accounting for communi-

cation delays has remained an open problem until now.

In this paper, we present OneVision, an algorithm for

distributed control of multi-agent systems with local obser-

vation and disturbances, in the presence of communication

delays. OneVision accepts an ideal central control function

1Computer Science Department, University of Texas at Austin,
USA. {jiayi, tongrui, swarat, isil, joydeepb}
@cs.utexas.edu

for a multi-agent system as well as a system dynamics and

observation model. Given the ideal central control function,

OneVision generates local plans at every time step by

minimizing a regret loss using gradient-based optimization.

This regret loss is defined as the difference between the

predicted future states and actions and an ideal fleet trajec-

tory computed by forward-predicting the central controller

on delay-compensated local observations from all agents.

Since the ideal fleet trajectory cannot be locally computed

in real time due to communication delays, each synthesized

distributed controller also computes a local approximation of

the ideal fleet trajectory and plans its future actions against

this approximated objective.

Although OneVision works with arbitrary discrete-time

multi-agent controllers, we limit our theoretical analysis

to cases where the system dynamics and centralized con-

troller are linear time-invariant. We prove that the distributed

agents’ execution generated by OneVision converges to the

ideal fleet trajectory and is stable in the sense that smaller

external disturbances lead to staying closer to the ideal

trajectory. In addition, we provide empirical evidence of con-

vergence and stability for a number of non-linear examples.

We summarize our contributions as follows:

• We present OneVision, a general algorithm for synthe-

sizing distributed controllers from a centralized con-

troller specification, under the presence of unknown

local observations and disturbances.

• We analyze the close-loop behavior of our algorithm

in a linear time-invariant special case and provide the-

oretical guarantees on the resulting performance. Our

analysis provides an error bound that is independent of

the amount of the delays.

• We implement the proposed algorithm, experimentally

evaluate our algorithm on 4 multi-agent tasks, and

demonstrate the practical usefulness of our approach.

II. RELATED WORK

a) Synthesis Techniques for Multi-Robot Systems:

There has been a long line of work on synthesizing reactive

controllers from temporal logic specifications for multi-robot

systems [16], [17], [22]. These approaches typically create

a discrete abstraction of the system and synthesize hybrid

controllers that fulfill the logical specifications. In contrast,

we focus on synthesizing continuous distributed controllers

from a centralized controller specification.

b) Model Predictive Control (MPC): MPC has found

use in several domains that are related to this work, including

controlling distributed multi-agent systems [27], [28] and

ar
X

iv
:2

1
0
4
.0

6
5
8
8
v
1

[c

s.
R

O
]

 1
4
 A

p
r

2
0
2
1

distributed systems with time delays [20], [13]. Recently,

MPC has also been applied to robotics applications such as

trajectory tracking [15], vehicle control [5], flight control [2],

and cooperative landing [25]. Unlike many prior approaches

where MPC is used to directly optimize a global performance

objective defined across multiple agents, we use MPC mainly

as a local control planning strategy to reduce the discrepancy

between each agent’s own trajectory and the corresponding

(centrally predicted) ideal fleet trajectory.

c) Distributed Control Designs and Applications: In

recent control and robotics literature, many specialized dis-

tributed controllers have been proposed for various appli-

cation domains such as coordinated trajectory tracking and

path following [1], [11], [12], vehicle formation control [10],

[26], [21], traffic control [29], [14], and information consen-

sus [30], [31]. In this work, we take a different approach and

instead aim at reducing the future effort required to develop

these distributed systems using a general controller synthesis

framework applicable to different robotic applications.

d) Centralized Formation Control: Lastly, there are

many prior works on multi-vehicle formation control using

a centralized control law [19], [7]; some also deal with the

challenging case of nonholonomic robots [9], [6]. In our

2D formation experiments, we employ a simple centralized

control scheme based on reference point tracking [8] and

rotational repulsive forces [7].

III. PROBLEM DEFINITION

Formally, our goal is to synthesize distributed robotic con-

trollers from a given centralized controller, dynamics model,

and observation model—subject to sensor noise, external

disturbances and communication, actuation, and observation

delays—such that the joint behaviors of the synthesized

controllers approximate that of the centralized controller. For

a setting with N robots, the inputs to our problem are:

(a) f̂i, the discrete-time dynamics models of robot i, for

i ∈ {1 . . . N}, given in the form

xi(t+ 1) = f̂i(xi(t), ui(t), t) , (1)

where t ∈ N is the time index, xi(t) ∈ R
nx

i and ui(t) ∈
R

nu

i is robot i’s state and actuation vector at time step

t, respectively. Note that f̂i can be different from the

true dynamics fi, with the difference being modeled as

external disturbance.

(b) ĥi, the local observation model of robot i, for i ∈
{1 . . . N}, given in the form

zi(t+ 1) = ĥi(zi(t), t) , (2)

where zi ∈ R
nz

i is the observation of robot i.1 Similarly,

ĥ can be different from h, resulting in unexpected

observations.

1Note that here we require observations to be defined as some state-
independent quantities. For example, instead of using the distance to an
obstacle as z (which depends on the position of the robot) we can define z
as the obstacle’s position (whose true value does not depend on where we
perform the measurement).

(c) πc, the centralized controller of the form

u(t) = πc(x(t), z(t), t) , (3)

where x(t) = [x1(t), . . . , xN (t)]ᵀ ∈ R
Nnx

is the

global state vector formed by vertically concatenate all

robot states, and similarly, z(t) = [z1(t), . . . , zN (t)]ᵀ

∈ R
Nnz

and u(t) = [u1(t), . . . , uN (t)]ᵀ ∈ R
Nnu

.

(d) T x, Tu, T c ∈ N
+, the discrete-time observation, actua-

tion, and communication delay of this robotic fleet.

From the inputs given above, we want to synthesize N

distributed controllers πd
i , ∀i ∈ {1 . . . N} of the form

ui(t+ Tu) = πd
i (Xi(t),Zi(t),Ui(t), t) (4)

where Xi(t),Zi(t),Ui(t) denote the parts of the entire fleet’s

state history, observation history, and actuation history that

are available to agent i at time t, subject to constraints

imposed by the delays. For example, we have Xi(t) =
{xi(τ)|τ ≤ t− T x} ∪ {xj(τ)|j 6= i, τ ≤ t− T x − T c}.

Since our goal is to make the distributed agents behave

like they were controlled by the centralized controller πc,

we need to formally define a loss that measures the distance

between πd and πc. In this work, we have considered two

different ways to define such a loss.

Option 1: Action Loss Since our goal is to make every

agent to take an action that is similar to the one given by

the centralized controller, one intuitive way to define such a

loss is as

`act(t) = ‖πc(x(t), z(t), t)− u(t)‖ ,

which simply measures the difference between the actuation

output by the centralized controller (given the current state

and observation) and the actual actuation u(t) output by the

distributed controllers.

Minimizing this loss requires each agent to accurately

predict the current state x(t) and observation z(t) of the

entire fleet, such that we can define the output of πd
i as

πc
i (x̂

(i)(t), ẑ(i)(t), t), where x̂(i)(t) ≈ x(t), ẑ(i)(t) ≈ z(t)
are the ith agent’s prediction of the current fleet state and

observation.

However, predicting x̂ and ẑ in the closed-loop dynamics

can lead to an infinite recursion. To see this, note that each

agent’s actuation depends on its prediction of other agent’s

states since

∀i, ui(t) = πc
i (x̂

(i)(t), ẑ(i)(t), t) .

But for agent i to predict agent j’s state, it will further need

to predict j’s action at the previous time step t′ = t− 1:

∀i, j, x̂
(i)
j (t) = f̂j(x̂

(i)
j (t′), u

(i)
j (t′), t′) .

But this in turn requires predicting how agent j would have

predicted other agent’s states:

∀i, j, u
(i)
j (t′) = πc

j(x̂
(i,j)(t′), ẑ(i,j)(t), t′) ,

where the notation x̂(i,j)(t′) denotes agent i’s prediction

(made at t) of agent j’s prediction (made at t′) of the fleet

state at time t′. Therefore, we can keep unrolling the right

hand side, resulting in an infinite recursion.

Option 2: Regret Loss In this formulation, instead of

requiring each agent to predict the current states of other

agent, we introduce the notion of an ideal fleet trajectory

that—although not locally computable by each agent in

real time—will always become computable later once more

information become available through communication. We

then define the loss as the difference between the actual fleet

trajectory (x, u) and this ideal fleet trajectory (x∗, u∗):

`reg(t) = ‖x(t)− x∗(t)‖Qx
+ ‖u(t)− u∗(t)‖Qu

(5)

for some positive definite Qu and positive semi-definite Qx,

with the notation ‖a‖B = aᵀBa denoting the quadratic norm

of a defined by matrix B.

Assuming the true observation dynamics h(z, t) =
ĥ(z, t) + δz(t), and the true system dynamics f(x, u, t) =
f̂(x, u, t) + δx(t), where δz and δx are the observation and

state disturbance (both unknown a priori to us), we define the

ideal fleet trajectory x∗ and u∗ as the solution to the closed-

loop dynamics obtained by combining equation (1)–(3), with

f̂ and ĥ replaced by f and h:

x∗
i (t+ 1) = fi(x

∗
i (t), u

∗
i (t), t) ,

u∗(t) = πc(x∗(t), z∗(t), t) ,

z∗i (t+ 1) = hi(z
∗
i (t), t) .

(6)

Note that since δxi and δzi can be measured at time

t + 1 from the observed state and actuation (assuming no

observation noise) using eq. (1) and (2) as

δxi(t) = xi(t+ 1)− f̂i(xi(t), ui(t), t)) ,

δzi(t) = zi(t+ 1)− ĥi(zi(t), t) ,

each agent will eventually be able to locally compute the

same ideal fleet trajectory once other agents’ δx and δz

become available through communication. However, because

communication takes time, the most recent part of the ideal

fleet trajectory will have to be predicted initially and revised

later, hence loss (5) in general cannot be zero and is caused

by the “regret” of each agent’s past predictions.

Since minimizing this loss only requires each agent to

predict the ideal fleet trajectory, which is considerably easier

than predicting the actual fleet trajectory, we use this second

loss definition in this work.

IV. ONEVISION OVERVIEW

At a high level, our algorithm makes control decisions

based on three main steps: forward prediction, self state

estimation, and local planning. In forward prediction, each

agent tries to locally compute an estimated ideal fleet trajec-

tory that approximates the ideal fleet trajectory using all the

information currently available to itself. As we will show in

Section V, an important property of this step is that despite

agents only having access to limited state information about

other agents, the differences between these predicted fleet

trajectories computed by different agents do not accumulate

over time. In self state estimation, each agent uses its locally

Fig. 1: How OneVision works from the perspective

of agent 1. On the time axis, T x, Tu, and T c denote

state, actuation, and communication delay, respectively. τ

is the current time step, and H is the prediction horizon.

The two dotted lines, x∗
1 and x∗

2, represent the ideal fleet

trajectories, while x̃
(1)
1 and x̃

(1)
2 represent the most probable

ideal fleet trajectory predicted by agent 1. The solid line

x̄1 represents the self estimation computed using agent 1’s

recorded action history. Line x̂1 represents a planned future

trajectory obtained by minimizing the discrepancy between

x̂1 and x̃
(1)
2 (shown as the colored area.)

recorded actuation history and observed past state to predict

its future state at τ + Tu. Lastly, in local planning, each

agent tries to plan its next action using model predictive

control, with the goal of minimizing the discrepancy between

its predicted future trajectory and the corresponding part in

the estimated ideal fleet trajectory. These three steps are

illustrated in Figure 1.

Let τ be the current time step, we now describe each of

these three steps in more details:

1. Forward Prediction. Every robot i uses the newest

information available to itself (as defined in eq. (4)) to

forward-predict the most probable future ideal fleet trajectory

x̃(i) by solving the following initial value problem for the

time span τ − T x − T c − 1 ≤ t < τ + Tu +H , where H is

the prediction horizon:

x̃
(i)
j (t+ 1) = f̂j(x̃

(i)
j (t), ũ

(i)
j (t), t) + δx̃

(i)
j ,

ũ(i)(t) = πc(x̃(i)(t), z̃(i)(t), t) ,

z̃
(i)
j (t+ 1) = ĥj(x̃

(i)
j (t), z̃

(i)
j (t), t) + δz̃

(i)
j ,

(7)

for j ∈ {1 . . . N}. Let τinit = τ − T x − T c − 1, the above

problem is subject to the initial conditions

x̃
(i)
j (τinit|τ) = x̃

(i)
j (τinit|τ − 1) , (8)

where the notation f̃
(i)
j (t|τ) means “the prediction of f̃j(t)

made by robot i at time τ”. The disturbance terms δx̃(i)

and δz̃(i) are defined to be zero unless the corresponding

trajectory information is available to robot i, i.e.,

δx̃
(i)
j , δz̃

(i)
j =











δxj , δzj j = i and τinit ≤ t < τ − T x

or j 6= i and t = τinit ,

0, 0 otherwise.
(9)

2. Self State Estimation. Every robot i then estimates its

actual state at time τ + Tu using its actuation history ui by

solving the following initial value problem for τ−T x ≤ t <

τ + Tu:

x̄i(t+ 1) = f̂(x̄i(t), ui(t), t) (10)

subject to the initial condition

x̄i(τ − T x) = xi(τ − T x) . (11)

This gives the self state estimation x̄i(τ + Tu), which will

be used in the next step.

3. Local Planning. Every robot i then uses the predicted

x̃(i) and ũ(i) from step 1 as the most probable approximation

to the ideal fleet trajectory x∗ and u∗ and tries to locally min-

imize its future regret by solving the following optimization

problem for the control time span τ+Tu ≤ t < τ+Tu+H:

Minimize
{ûi(t)|t}

τ+Tu+H−1
∑

t=τ+Tu

`i(t) , (12)

where

`i(t) = ‖x̂i(t)− x̃
(i)
i (t)‖Qx

+ ‖ûi(t)− ũ
(i)
i (t)‖Qu

,

subject to the initial condition

x̂i(t) = x̄i(t) , for t = τ + Tu (13)

and the dynamics constraints

x̂i(t+ 1) = f̂(x̂i(t), ûi(t), t) , (14)

for τ + Tu ≤ t < τ + Tu +H . Robot i then takes the first

actuation from the optimal solution as its next actuation, i.e.,

we have ui(τ + Tu) = ûi(τ + Tu|τ) .
Initialization OneVision needs an initial history of x, z,

and u to start with. As we will see from the analysis in

the next section, our algorithm is not sensitive to the errors

introduced during initialization as long as the initialization

guarantees that all robots make the same forward prediction

x̃(i) initially. In our implementation, we assume the initial

condition of the entire fleet is available to all robots during

initialization, and we simply initialize the history trajectories

as constant functions whose value equals the corresponding

initial condition.

V. THEORETICAL ANALYSIS

In this section, we analyze our algorithm’s closed-loop

behavior in the special case of linear time-invariant (LTI)

dynamics and controller. Our main goal is to answer the

following two questions: 1) When our model error δx and

δz is zero, how fast does the true fleet trajectory x converge

to the ideal fleet trajectory x∗? 2) When δx and δz is small,

does x stays close to x∗? We will answer these questions

in Proposition V.5 at the end of this section, stated in the

form of input-to-state stability. But before we can prove

Proposition V.5, we first prove a few lemmas and make

additional assumptions.

Lemma V.1 (Inital condition of forward prediction). Initial

condition (8) in the forward prediction step initializes x̃(i)

to the ideal fleet state x∗ (as shown in Figure 1). i.e.,

x̃
(i)
j (τinit|τ) = x∗

j (τinit), ∀j, ∀τ ≥ 0 .

Proof. We prove this by induction. The base case at τ = 0,

x̃
(i)
j (τinit|τ) = x∗

j (τinit) holds because of the initialization

step. For the inductive case, assume x̃
(i)
j (τinit|τ) = x∗

j (τinit) at

time τ , we aim to show that x̃
(i)
j (τinit+1|τ+1) = x∗

j (τinit+1).
Compare the dynamics (6) of x∗ with the dynamics (7) of

x̃(i) , we see that they become identical if δx̃(i)(t) = δx(t)
and δz̃(i)(t) = δz(t). And from the history constraints (9),

we see that this is indeed the case at t = τinit; hence, we

have x̃
(i)
j (τinit +1|τ) = x∗

j (τinit +1). Finally, apply the initial

condition (8), we have x̃
(i)
j (τinit+1|τ+1) = x∗

j (τinit+1) . �

Next, we introduce the following LTI assumptions about

the system dynamics and controllers.2

Assumption 1. For t ≥ 0, all robots have the LTI dynamics

of the form

f̂i(xi, ui, t) = Aixi +Biui + ŵi(t) , (15)

fi(xi, ui, t) = Aixi +Biui + w∗
i (t) , (16)

in which Ai and Bi are constant matrices, and the time-

dependent terms satisfy w∗
i (t) − ŵi(t) = δx(t). We also

assume that norm |λk| ≤ 1 for all eigenvalues λk of Ai, i.e.,

the system dynamics is not exponentially unstable.

Assumption 2. For t ≥ 0, the observation dynamics have

LTI dynamics of the form

ĥ(zi, t) = Cizi + µ̂i(t) , (17)

h(zi, t) = Cizi + µ∗
i (t) , (18)

in which Ci has all its eigenvalues λk’s norm |λk| ≤ 1, and

µ∗(t)− µ̂i(t) = δz(t).

Assumption 3. For t ≥ 0, the centralized controller πc is

also LTI w.r.t. x and z and has the form

πc(x, z, t) = −Kxx+Kzz + v(t) ,

and Kx stabilizes the closed-loop dynamics, i.e., |λk| < 1
for all eigenvalues λk of the matrix A − BKx. Here, A =
diag{Ai| ∀i} and B = diag{Bi| ∀i} are the block-diagonal

matrices of the overall system.

We next prove the following error bounds of the forward

prediction and self state estimation step.

Lemma V.2 (Self estimation error). Let ∆x̄i = x̄i − xi,

∆ŵi = ŵi − w∗
i . At any given time τ ≥ 0, we have

‖∆x̄i(τ + Tu)‖ ≤ βi(T
x + Tu) d∆ŵie ,

where βi is a positive definite polynomial of order mi
3, mi

depends on the number of unit-norm eigenvalues of Ai, and

d∆ŵie = max
−Tx≤t≤Tu

‖∆ŵi(τ + t)‖

is the maximal norm of ∆ŵi between τ − T x and τ + Tu .

2For mildly nonlinear systems, the following assumptions can hold
temporarily by linearizing the system behavior around the current operating
point.

3when Ai is stable, βi reduces to a constant.

Proof. Using (1), (10), we can write down the error dynam-

ics as

∆x̄i(t+ 1) = Ai∆x̄i(t) + ∆ŵi(t) (19)

with the initial condition (due to (11))

∆x̄i(τ − T x) = 0 .

Solving this linear system gives us the value of ∆x̄ at τ+Tu:

∆x̄i(τ + Tu) =

Tx+Tu

∑

t=1

(Ai)
t∆ŵi(τ + Tu − t) .

Since Ai contains no eigenvalues whose norm is greater than

1, (Assumption 1), we can bound ‖(Ai)
t‖ by a polynomial

of order m′
i on t, where m′

i is the number of unit-norm

eigenvalues of Ai whose algebraic multiplicity 6= geometric

multiplicity. Also bound ‖∆ŵi(t)‖ by d∆ŵie, we arrive at

the conclusion by setting mi = m′
i + 1. �

Similarly, we now provide a bound for the prediction error

∆x̃(i)(t|τ) = x̃(i)(t|τ)− x∗(t) and ∆z̃(i)(t|τ) = z̃(i)(t|τ)−
z∗(t) .

Lemma V.3 (Forward prediction error). At any time τ ≥ 0,

we have

‖∆z̃(i)(τ + Tu|τ)‖ ≤ γi(T
all)d∆µ̂e , (20)

‖∆x̃(i)(τ + Tu|τ)‖ ≤ aid∆µ̂e+ bd∆ŵe . (21)

where T all = T x + Tu + T c. γi is a polynomial of order

ni that depends on the eigenvalues of Ci’s, and ai, b are

constants that depends on A,B,Kx,Kz, and C. ∆µ̂ = µ̂−
µ∗ is the prediction model error, and d∆µ̂e and d∆ŵe are

the corresponding maximal error norms between τ−T x−T c

and τ + Tu.

Proof. Take the difference of the dynamics of z̃
(i)
i and z∗i

using (17), we can write down the error dynamics of ∆z̃
(i)
i (t)

as

∆z̃
(i)
j (t+ 1) = Cj∆z̃

(i)
j (t) + ∆µj(t)

with the initial condition (which can be obtained from the

history constraints (9))
{

∆z̃
(i)
i (τinit + T x) = 0 , j = i

∆z̃
(i)
i (τinit) = 0 , j 6= i .

And since Ci has no eigenvalues whose norm is greater than

1, similar to the argument in the proof of Lemma V.2, ∆z̃
(i)
i

only grows at most at polynomial speed, hence we have

‖∆z̃(i)(τ+Tu)‖ ≤ γ′
i(T

all−T x)d∆µ̂ie+
∑

j 6=i

γ′
j(T

all)d∆µ̂je .

We can then bound the right-hand-side with γi(T
all)d∆µ̂e

and arrive at (20).

Now using the linear form of πc given by Assumption 3,

we can also write down the dynamics of ∆x̃(i) as

∆x̃(i)(t+ 1) = (A−BKx)∆x̃(i)(t)

+BKz∆z̃(i)(t) + ∆w̃
(i)
j (t)

with the initial condition (which holds by Lemma V.1)

∆x̃(i)(τinit) = 0 .

Since |λk| < 1 for all eigenvalues λk of A−BKx (Assump-

tion 3), and ∆z̃(i) grows at most at polynomial speed, we

can bound ∆x̃(i)(τ + Tu|τ) using (21). �

To simplify the analysis of local planning, we also assume

that the prediction horizon H is very long such that the

resulting optimal action is linear feedback.

Assumption 4. The prediction horizon H → ∞.

Lemma V.4 (Local planning provides linear feedback). The

optimal actuation given by the local planning step has the

form

ui(t) = ũ
(i)
i (t|t− Tu)−KL

i (x̄i(t)− x̃
(i)
i (t|t− Tu)) ,

where KL
i is some constant matrix that stabilizes the system.

Proof. Take the difference between (14) and (7), and notice

that there are no history constraints during t ≥ τ + Tu, we

obtain

x̂i(t+ 1)− x̃
(i)
i (t+ 1) = Ai (x̂i(t)− x̃

(i)
i (t|τ))

+Bi (ûi(t)− ũ
(i)
i (t|τ))

for t ≥ τ + Tu, which—when combined with the objective

(12) and the assumption H ≈ ∞—matches the form of a

linear quadratic regulator (LQR) problem. Hence, the optimal

solution is a linear feedback law given by

ûi(t)− ũ
(i)
i (t|τ) = −KL

i (x̂i(t|τ)− x̃
(i)
i (t|τ)) ,

where the gain KL
i stabilizes the system and can be obtained

by solving the discrete-time algebraic Riccati equation [18].

Take t = τ + Tu in the above, and notice that x̂i(τ +
Tu|τ) = x̄i(τ + Tu) (equation (13)), we arrive at the

conclusion. �

We are now ready to prove our main result.

Theorem V.5 (closed-loop stability). Let ∆x = x − x∗ be

the distance between the actual fleet trajectory and the ideal

fleet trajectory, we have the following bound

‖∆x(t)‖ ≤ c1e
−λt‖∆x(0)‖+ d1d∆ŵe+ d2d∆µ̂e , (22)

where c1, λ, d1, and d2 are all constants independent of the

delays, and the maximal norm d·e is defined on the interval

0 ≤ t < ∞.

Proof. We have the actual closed-loop dynamics

x(t+ 1) = Ax(t) +Bu(t) + w∗(t) ,

where u(t) is given by Lemma V.4. We also have the ideal

dynamics

x∗(t+ 1) = Ax∗(t) +Bu∗(t) + w∗(t) .

Take the difference, we obtain

∆x(t+ 1) = A∆x(t) +B∆u(t) .

Fig. 2: Simulation of 2D Formation Switching running

OneVision. The orange car is the formation leader and is

controlled by external inputs, while the three other cars try to

follow the leader. Red dots show formation reference points.

Expand u and u∗’s definitions, and use the notation f̃ (·) to

denote [f̃
(j)
j | ∀j]ᵀ, we have

∆u = ũ(·) − u∗ −KL(x̄(t)− x̃(·))

= [(Kz z̃
(j))j | ∀j]

ᵀ −Kzz
∗ −Kx(x̃

(·) − x∗)

−KL(x− x∗ + x̄− x+ x∗ − x̃(·))

= [(Kz∆z̃(j))j | ∀j]
ᵀ −Kx∆x̃(·)

−KL(∆x+∆x̄−∆x̃(·)) ,

in which the time arguments are omitted for brevity. Substi-

tute the above into the previous equation, we obtain

∆x(t+ 1) = (A−BKL)∆x(t) +Bε(t) , (23)

where the disturbance term

ε(t) = [(Kz∆z̃(j))j | ∀j]
ᵀ − (Kx −KL)∆x̃(·) −KL∆x̄

is clearly bounded by the bound of ∆z̃(j), ∆x̃(·), and ∆x̄

(given by Lemma V.3 and V.2). Thus, we can write the bound

as

‖ε(t)‖ ≤ α1(t)d∆µ̂e+ α2(t)d∆ŵe

using some polynomial α1 and α2 (whose concrete forms

are not needed for this proof).

Since A − BKL has only eigenvalues with norms < 1,

and ‖ε(t)‖ grows at most at polynomial rate, we can bound

the solution to (23) with (22). �

VI. EXPERIMENTAL EVALUATION

Implementation Our implementation of OneVision

consists of around 2000 lines of Julia code and allows

the user to write centralized controllers as ordinary Julia

functions. To minimize the regret loss (5), we use the L-

BFGS optimizer [4] implemented by the Optim package [23],

which employs automatic differentiation to compute gradient

information needed by the optimization process. To ensure

convergence to the same local optimum between time steps

when dealing with nonlinear dynamics, we always feed the

solution found in the previous time step as the initial solution

to the optimizer in the next time step.

Simulation Tasks We use the following 4 simulation

tasks to compare OneVision with several other baseline

controllers. We simulate 20 seconds for each task.

1) 1D Leader Linear: 1-dimensional leader-follower driv-

ing task with a linear (PID) controller. The leader’s goal

is to reach a desired velocity, while the follower tries

to stay close to the leader

2) 1D Leader With Obstacle: 1-dimensional leader-

follower task with an obstacle of unknown position.

The leader can observe the obstacle when it is within its

sensor’s range and will brake once the obstacle becomes

too close. To control velocity, both robots use bang-bang

control instead of linear control.

3) 2D Formation Driving: 4 car-like robots driving on

a 2-dimensional plane. The leader car is assumed to

be controlled by external commands (in the form of

external observations), while the other four cars follow

the leader and try to maintain a circular formation while

avoiding collision with each other.

4) 2D Formation Switching: Similar to the task above,

but the leader also controls the formation of the fleet.

At some point, the leader will switch the formation from

a triangle to a straight line. A simulation result of this

task is shown in Figure 2.

Baseline Controller Frameworks We compare OneVi-

sion with 3 other baseline controller frameworks:

• Naive: This is the simplest controller framework that

runs the centralized controller without performing any

delay compensation. In other words, each agent simply

treats their own observations as well as the information

broadcasted by other agents as the current state of the

fleet.

• Local: Under this controller framework, delay compen-

sation is limited to local information. Each agent uses its

local actuation history and dynamics model to predict

away its state and observation delays.

• ConstU: This controller framework employs simple

heuristics to perform global compensation by assuming

other agent’s actuation remains constant during forward

prediction. It also performs local compensation using

the same strategy as Local.

Task-Sepcific Metrics To quantitively measure the per-

formance on each task, in addition to the loss defined in

(5), which is motivated by our proposed algorithm, we also

define the following two method-independent, task-specific

metrics.

• Average Distance (for task 1 and 2): defined as the

time-averaged distance between the leader and follower

in L2 norm, given by

√

1
T

∫ T

0
(p1 − p2)2dt, where p1

and p2 are the positions of each car, and T is the length

of the simulation.

• Average Deviation (for task 3 and 4): defined as

the time-averaged distance between each follower and

their supposed position in the fleet formation, given

by

√

1
T (N−1)

∫ T

0

∑N

i=2 ‖pi − p̂i‖2dt, where p̂i is the

supposed position of follower i.

TABLE I: Simulation Performance (log loss)

Task Naive Local ConstU OneVision

Leader Linear 1.444 1.169 0.912 -0.353
Leader With Obstacle 1.638 1.133 0.587 -0.349

Formation Driving 4.183 2.393 2.060 0.262
Formation Switching 4.150 2.446 2.150 0.681

TABLE II: Simulation Performance (task-specific metrics)

Task Naive Local ConstU OneVision

Leader Linear 0.101 0.100 0.027 0.022
Leader With Obstacle 0.083 0.082 0.027 0.022

Formation Driving 1.151 0.272 0.206 0.204
Formation Switching 1.234 0.343 0.281 0.272

Default Parameters Unless stated otherwise, we use

the following set of parameters across different tasks: We

run all controllers at 20Hz, with communication delay T c =
50ms, observation delay T x = 30ms, and actuation delay

Tu = 40ms4. For sensor noise, we add Gaussian noise to the

state vector at every time step, and for external disturbance,

we also add Gaussian noise but it is limited only to velocity

and steering angle. In both cases, the default noise strength is

0.005 (in SI units) at 100Hz. We set OneVision’s prediction

horizon to be H = 20, which corresponds to a time span of

1 second. By default, we also assume the dynamics models

accurately match the true dynamics (excluding noise).

A. Performance under Default Parameters

We run OneVision along with the 3 other baselines under

the default parameters and compare their performance in

Table I (regret loss) and Table II (task-specific metrics). Each

datum is obtained by averaging 100 random runs. OneVision

achieves consistently the best performance in all tasks under

both performance measurements.

B. Sensitivity Analysis

In this section, we modify the default parameters to

study the impact of sensor noise, disturbance, delays, model

inaccuracy, and prediction horizon. We vary each of these

variables and compare the performance of different controller

frameworks on all 4 simulation tasks (all results are measured

using 10 random runs). Due to space constraints, we only

present a few representative examples in this section and

describe general trends we observed for the rest cases.5

Sensor Noise (Figure 3 upper left) We modify the

sensor noise strength from 0 the 10 times the default strength

and found that OneVision still achieves the best performance

across this range. We also observe similar trends when

varying the amount of communication delay from 10ms

to 500ms, both measured in log loss and in average dis-

tance/deviation. Particularly, for the 1D Leader Linear task,

4In our discrete formulation time is discrete. Hence, to handle non-integral
delays like 30ms (which is less than 1 time step under 20Hz control), we
actually run our framework at 100Hz but only replan actuation at every 5th
time step.

5Our full results available at https://git.io/JqJ2x

Fig. 3: Representative examples showing impact of sensor

noise (upper left), communication delay (upper right), model

inaccuracy (lower left), and prediction horizon (lower right).

Fig. 4: Deviation over time in real-world experiment.

we notice that OneVision’s performance is almost unaffected

by the amount of the delay (Figure 3 upper right), confirming

the results given by Theorem V.5.

Model Error (Figure 3 lower left)) To study the

sensitivity w.r.t. model error, we define model error for task

1 and 2 as r1−1, where r1 is the ratio between the modeled

car acceleration and the actual acceleration, and for task 3

and 4 as r2 − 1, where r2 is the ratio between the modeled

car wheelbase and the true wheelbase. By ranging the model

error from 0 to 100%, we found that although OneVision still

has better performance than other baselines when the error

is small (≤ 60%), OneVision is generally more sensitive to

model error due to its heavy reliance on forward prediction.

We also observe similar trends when varying the amount of

external disturbances from 0X to 10X.

Prediction Horizon (Figure 3 lower right)) As an

ablation study, we change the prediction horizon H used

by OneVision from 1 to 30 (default value is 20). We see

that a very short horizon negatively impacts OneVision’s

performance, suggesting that the local planning step plays an

important role, but a horizon longer than 10 (corresponding

to 0.5s) does not further improve the performance.

C. Real-World Experiments

We implemented two real-world versions of the simulation

tasks on the UT AUTOmata, a fleet of scale 1/10 autonomous

cars. All sensing and computation is performed on-board—

the cars are equipped with 2D LIDAR for sensing, and

an Nvidia Jetson TX2 for computation. Each car runs

Episodic non-Markov Localization [3] using observations

from the LIDAR to estimate their pose in the world, and

communicates to the other cars via WiFi. To ensure that

the noise margin of localization is lower than the errors in

distributed control stemming from delays, and to account

for variability in transmission, the communication queue

performs per-message throttling to ensures that all messages

have a constant delay of 300ms for all controllers. We

run the controllers at 50Hz and use the estimated delay

parameters T x = 40ms and Tu = 80ms. We summarize

our results below and highlight the major differences from

the simulation tasks.

1D Leader with Obstacle (quantitative study) We

modify our 2D reference point tracking controller to fix the

leader’s reference point to be always on a straight line. We

also use 3 cars instead of 2 and maintain a triangular forma-

tion. For each controller framework, we run the experiment

5 times and report the average deviation below.

Naive Local ConstU OneVision

0.396 0.407 0.239 0.192

We also plot how deviation changes over time in Figure 4,

which matches the expected trends and shows OneVision’s

superior performance compared to other baselines.

2D Formation Switching (qualitative study) We set

up the formation so that the leader was tele-operated by one

of the authors, while the other two cars followed the leader in

formation. Upon command from the leader, the followers had

to switch formations while performed obstacle avoidance. We

observed robust performance and were able to successfully

finish the task using OneVision. The followers were able to

quickly converge back to their target formation in response

to variation in the leader’s action. We recorded an example

execution as part of our supplementary video.

REFERENCES

[1] A. P. Aguiar and A. M. Pascoal. Coordinated path-following control
for nonlinear systems with logic-based communication. In 46th IEEE

Conference on Decision and Control, pages 1473–1479. IEEE, 2007.

[2] K. Alexis, C. Papachristos, R. Siegwart, and A. Tzes. Robust model
predictive flight control of unmanned rotorcrafts. Journal of Intelligent

& Robotic Systems, 81(3):443–469, 2016.

[3] J. Biswas and M. M. Veloso. Episodic non-markov localization.
Robotics and Autonomous Systems, 87:162 – 176, 2017.

[4] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory
algorithm for bound constrained optimization. SIAM Journal on

scientific computing, 16(5):1190–1208, 1995.

[5] S. D. Cairano, D. Bernardini, A. Bemporad, and I. V. Kolmanovsky.
Stochastic MPC with learning for driver-predictive vehicle control and
its application to HEV energy management. IEEE Transactions on

Control Systems Technology, 22(3):1018–1031, 2014.

[6] L. Consolini, F. Morbidi, D. Prattichizzo, and M. Tosques.
Leader–follower formation control of nonholonomic mobile robots
with input constraints. Automatica, 44(5):1343–1349, 2008.

[7] A. D. Dang, H. M. La, T. Nguyen, and J. Horn. Formation control
for autonomous robots with collision and obstacle avoidance using a
rotational and repulsive force–based approach. International Journal

of Advanced Robotic Systems, 16(3), 2019.
[8] Danwei Wang and Guangyan Xu. Full-state tracking and internal

dynamics of nonholonomic wheeled mobile robots. IEEE/ASME

Transactions on Mechatronics, 8(2):203–214, 2003.
[9] J. P. Desai, J. P. Ostrowski, and V. Kumar. Modeling and control

of formations of nonholonomic mobile robots. IEEE Transactions on

Robotics and Automation, 17(6):905–908, 2001.
[10] W. B. Dunbar and R. M. Murray. Distributed receding horizon control

for multi-vehicle formation stabilization. Automatica, 2006.
[11] R. Ghabcheloo, A. P. Aguiar, A. Pascoal, C. Silvestre, I. Kaminer,

and J. Hespanha. Coordinated path-following in the presence of
communication losses and time delays. SIAM Journal on Control

and Optimization, 48(1):234–265, 2009.
[12] J. Ghommam and F. Mnif. Coordinated path-following control for

a group of underactuated surface vessels. IEEE Transactions on

Industrial Electronics, 56(10):3951–3963, 2009.
[13] J. Hahn, R. Schoeffauer, G. Wunder, and O. Stursberg. Distributed

MPC with prediction of time-varying communication delay. IFAC-

PapersOnLine, 51(23):224–229, 2018.
[14] N. Hawes, C. Street, B. Lacerda, and M. Mühlig. Multi-robot planning

under uncertainty with congestion-aware models. Proceedings of

AAMAS 2020, 2020.
[15] M. Kamel, M. Burri, and R. Siegwart. Linear vs nonlinear MPC

for trajectory tracking applied to rotary wing micro aerial vehicles.
arXiv:1611.09240 [cs], 2017.

[16] M. Kloetzer and C. Belta. Automatic deployment of distributed
teams of robots from temporal logic motion specifications. IEEE

Transactions on Robotics, 26(1):48–61, 2009.
[17] M. Kloetzer, X. C. Ding, and C. Belta. Multi-robot deployment

from ltl specifications with reduced communication. In 2011 50th

IEEE Conference on Decision and Control and European Control

Conference, pages 4867–4872. IEEE, 2011.
[18] P. Lancaster and L. Rodman. Algebraic riccati equations. Clarendon

press, 1995.
[19] N. Leonard and E. Fiorelli. Virtual leaders, artificial potentials and

coordinated control of groups. In Proceedings of the 40th IEEE

Conference on Decision and Control (Cat. No.01CH37228), volume 3,
pages 2968–2973. IEEE, 2001.

[20] H. Li and Y. Shi. Distributed model predictive control of constrained
nonlinear systems with communication delays. Systems & Control

Letters, 62(10):819–826, 2013.
[21] F. Liao, R. Teo, J. L. Wang, X. Dong, F. Lin, and K. Peng. Dis-

tributed formation and reconfiguration control of VTOL UAVs. IEEE

Transactions on Control Systems Technology, 25(1):270–277, 2017.
[22] S. Moarref and H. Kress-Gazit. Decentralized control of robotic

swarms from high-level temporal logic specifications. In 2017 inter-

national symposium on multi-robot and multi-agent systems (MRS),
pages 17–23. IEEE, 2017.

[23] P. K. Mogensen and A. N. Riseth. Optim: A mathematical optimization
package for Julia. Journal of Open Source Software, 3(24):615, 2018.

[24] R. Olfati-Saber and R. M. Murray. Distributed cooperative control of
multiple vehicle formations using structural potential functions. IFAC

Proceedings Volumes, 35(1):495–500, 2002.
[25] L. Persson, B. Wahlberg, T. A. Johansen, KTH, and Skolan för elek-

troteknik och datavetenskap (EECS). Autonomous and Cooperative

Landings Using Model Predictive Control. 2019.
[26] W. Ren and N. Sorensen. Distributed coordination architecture for

multi-robot formation control. Robotics and Autonomous Systems,
56(4):324–333, 2008.

[27] A. Richards and J. How. A decentralized algorithm for robust
constrained model predictive control. In Proceedings of the 2004

American Control Conference, 2004.
[28] A. Richards and J. P. How. Robust distributed model predictive control.

International Journal of Control, 80(9):1517–1531, 2007.
[29] T. Tettamanti and I. Varga. Distributed traffic control system based on

model predictive control. Periodica Polytechnica Civil Engineering,
54(1):3–9, 2010.

[30] E. M. A. Wei Ren, Randal W. Beard. Information consensus in
multivehicle cooperative control. IEEE Control Systems, 27(2):71–82.

[31] G. Wen, Z. Duan, W. Yu, and G. Chen. Consensus in multi-agent
systems with communication constraints. International Journal of

Robust and Nonlinear Control, 22(2):170–182, 2012.

	I Introduction
	II Related Work
	III Problem Definition
	IV OneVision Overview
	V Theoretical Analysis
	VI Experimental Evaluation
	VI-A Performance under Default Parameters
	VI-B Sensitivity Analysis
	VI-C Real-World Experiments

	References

