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Abstract.

The notion of comparison between system runs is fundamental in formal verification.
This concept is implicitly present in the verification of qualitative systems, and is more
pronounced in the verification of quantitative systems. In this work, we identify a novel
mode of comparison in quantitative systems: the online comparison of the aggregate values
of two sequences of quantitative weights. This notion is embodied by comparator automata

(comparators, in short), a new class of automata that read two infinite sequences of weights
synchronously and relate their aggregate values.

We show that aggregate functions that can be represented with Büchi automaton result in
comparators that are finite-state and accept by the Büchi condition as well. Such ω-regular

comparators further lead to generic algorithms for a number of well-studied problems,
including the quantitative inclusion and winning strategies in quantitative graph games
with incomplete information, as well as related non-decision problems, such as obtaining a
finite representation of all counterexamples in the quantitative inclusion problem.

We study comparators for two aggregate functions: discounted-sum and limit-average.
We prove that the discounted-sum comparator is ω-regular iff the discount-factor is an
integer. Not every aggregate function, however, has an ω-regular comparator. Specifically,
we show that the language of sequence-pairs for which limit-average aggregates exist is
neither ω-regular nor ω-context-free. Given this result, we introduce the notion of prefix-
average as a relaxation of limit-average aggregation, and show that it admits ω-context-free
comparators i.e. comparator automata expressed by Büchi pushdown automata.

Key words and phrases: Comparator automata, aggregate functions, discounted-sum, limit-average,
quantitative inclusion, PSPACE-complete, ω-regular, integer discount-factor.
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1. Introduction

Many classic questions in formal methods can be seen as involving comparisons between dif-
ferent system runs or inputs. Consider the problem of verifying if a system S satisfies a linear-
time temporal property P . Traditionally, this problem is phrased language-theoretically: S
and P are interpreted as sets of (infinite) words, and S is determined to satisfy P if S ⊆ P .
The problem, however, can also be framed in terms of a comparison between words in S and
P . Suppose a word w is assigned a weight of 1 if it belongs to the language of the system or
property, and 0 otherwise. Then determining if S ⊆ P amounts to checking whether the
weight of every word in S is less than or equal to its weight in P [BK+08].

The need for such a formulation is clearer in quantitative systems, in which every run of
a word is associated with a sequence of (rational-valued) weights. The weight of a run is
given by aggregate function f : Qω → R, which returns the real-valued aggregate value of
the run’s weight sequence. The weight of a word is given by the supremum or infimum of
the weight of all its runs. Common examples of aggregate functions include discounted-sum
and limit-average.

In a well-studied class of problems involving quantitative systems, the objective is to
check if the aggregate value of words of a system exceed a constant threshold value [DAFH+04,
DAFS04, DDG+10]. This is a natural generalization of emptiness problems in qualitative
systems. Known solutions to the problem involve arithmetic reasoning via linear programming
and graph algorithms such as negative-weight cycle detection, computation of maximum
weight of cycles etc [And06, Kar78].

A more general notion of comparison relates aggregate values of two weight sequences.
Such a notion arises in the quantitative inclusion problem for weighted automata [ABK11],
where the goal is to determine whether the weight of words in one weighted automaton is less
than that in another. Here it is necessary to compare the aggregate value along runs between
the two automata. Approaches based on arithmetic reasoning do not, however, generalize to
solving such problems. In fact, the known solution to discounted-sum inclusion with integer
discount-factor combines linear programming with a specialized subset-construction-based
determinization step, rendering an EXPTIME algorithm [And06, BH14]. Yet, this approach
does not match the PSPACE lower bound for discounted-sum inclusion.

In this paper, we present an automata-theoretic formulation of this form of comparison
between weighted sequences. Specifically, we introduce comparator automata (comparators,
in short), a class of automata that read pairs of infinite weight sequences synchronously,
and compare their aggregate values in an online manner. While comparisons between
weight sequences happen implicitly in prior approaches to quantitative systems, comparator
automata make these comparisons explicit. We show that this has many benefits, including
generic algorithms for a large class of quantitative reasoning problems, as well as a direct
solution to the problem of discounted-sum inclusion that also closes its complexity gap.

A comparator for aggregate function f for relation R is an automaton that accepts a pair
(A,B) of sequences of bounded natural numbers iff f(A) R f(B), where R is an inequality
relation (>, <, ≥, ≤, 6=) or the equality relation =. A comparator could be finite-state or
(pushdown) infinite-state. This paper studies such comparators.

A comparator is ω-regular if it is finite-state and accepts by the Büchi condition. We
relate ω-regular comparators to ω-regular aggregate functions [CSV13], and show that ω-
regular aggregate-functions entail ω-regular comparators. However, the other direction
is still open: Does an ω-regular comparator for an aggregate function and a relation
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imply that the aggregate function is also ω-regular? Furthermore, we show that ω-regular
comparators lead to generic algorithms for a number of well-studied problems including
the quantitative inclusion problem, and in solving quantitative games with incomplete
information. Our algorithm yields PSPACE-completeness of quantitative inclusion when the
ω-regular comparator is provided. The same algorithm extends to obtaining finite-state
representations of counterexample words in inclusion.

Next, we show that the discounted-sum aggregation function admits an ω-regular
comparator for all relations R iff the discount-factor d > 1 is an integer. We use this result
to prove that discounted-sum aggregate function for discount-factor d > 1 is ω-regular iff d
is an integer. Furthermore, we use properties of ω-regular comparators to conclude that the
discounted-sum inclusion is PSPACE-complete, hence resolving the complexity gap (under a
unary representation of numbers).

Finally, we investigate the limit-average comparator. Since limit-average is only defined
for sequences in which the average of prefixes converge, limit-average comparison is not
well-defined. We show that even a Büchi pushdown automaton cannot separate sequences
for which limit-average exists from those for which it does not. Hence, we introduce the
novel notion of prefix-average comparison as a relaxation of limit-average comparison. We
show that the prefix-average comparator admits a comparator that is ω-context-free, i.e.,
given by a Büchi pushdown automaton, and we discuss the utility of this characterization.

This paper is organized as follows: Preliminaries are given in § 2. Comparator automata
are formally defined in § 3. The connections between ω-regular aggregate functions and ω-
regular comparators is discussed in Section 3.1. Generic algorithms for ω-regular comparators
are discussed in § 3.2-3.3. § 4 discusses discounted-sum aggregate function and its comparators
with non-integer rational discount-factors (§ 4.1) and integer discount-factors (§ 4.2). The
construction and properties of prefix-average comparator are given in § 5. We conclude with
future directions in § 6.

1.1. Related work. The notion of comparison has been widely studied in quantitative
settings. Here we mention only a few of them. Such aggregate-function based notions
appear in weighted automata [ABK11, DKV09], quantitative games including mean-payoff
and energy games [DDG+10], discounted-payoff games [AC13, And06], in systems regulat-
ing cost, memory consumption, power consumption, verification of quantitative temporal
properties [DAFH+04, DAFS04], and others. Common solution approaches include graph
algorithms such as weight of cycles or presence of cycle [Kar78], linear-programming-based
approaches, fixed-point-based approaches [CD10], and the like. The choice of approach for a
problem typically depends on the underlying aggregate function. In contrast, in this work
we present an automata-theoretic approach that unifies solution approaches to problems on
different aggregate functions. We identify a class of aggregate functions, ones that have an
ω-regular comparator, and present generic algorithms for some of these problems.

While work on finite-representations of counterexamples and witnesses in the qualitative
setting is known [BK+08], we are not aware of such work in the quantitative verification
domain. This work can be interpreted as automata-theoretic arithmetic, which has been
explored in regular real analysis [CSV13].
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2. Preliminaries

Let Σ be a finite set of alphabet. The set of finite and infinite words over Σ is denoted
by Σ∗ and Σω, respectively. An aggregate function f : Qω → R takes the aggregate of an
infinite-length weight sequence.

Definition 2.1 (Büchi automaton [TW+02] ). A (finite-state) Büchi automaton is a tuple
A = (S , Σ, δ, Init , F), where S is a finite set of states, Σ is a finite input alphabet,
δ ⊆ (S × Σ× S ) is the transition relation, Init ⊆ S is the set of initial states, and F ⊆ S is
the set of accepting states.

A Büchi automaton is deterministic if for all states s and inputs a, |{s′|(s, a, s′) ∈
δ for some s′}| ≤ 1 and |Init | = 1. Otherwise, it is nondeterministic. A Büchi automaton
is complete if for all states s and inputs a, |{s′|(s, a, s′) ∈ δ for some s′}| ≥ 1. For a word
w = w0w1 · · · ∈ Σω, a run ρ of w is a sequence of states s0s1 . . . s.t. s0 ∈ Init , and
τi = (si, wi, si+1) ∈ δ for all i. Let inf (ρ) denote the set of states that occur infinitely often
in run ρ. A run ρ is an accepting run if inf (ρ) ∩ F 6= ∅. A word w is an accepting word if it
has an accepting run. Büchi automata are closed under set-theoretic union, intersection,
and complementation [TW+02]. Languages accepted by these automata are called ω-regular
languages.

Reals over ω-words [CSV13]. Given an integer base β ≥ 2, its digit set is Digit(β) =
{0, . . . , β − 1}. Let x ∈ R, then there exist unique words Int(x, β) = z0z1 · · · ∈ Digit(β)∗ · 0ω

and Frac(x, β) = f0f1 · · · ∈ Digit(β)ω \Digit(β)∗ · (β−1)ω such that |x| = Σ∞
i=0β

i ·zi+Σ∞
i=0

fi
βi .

Thus, zi and fi are respectively the i-th least significant digit in the base β representation
of the integer part of x, and the i-th most significant digit in the base β representation
of the fractional part of x. Then, a real-number x ∈ R in base β is represented by
rep(x, β) = sign · (Int(x, β),Frac(x, β)), where sign = + if x ≥ 0, sign = − if x < 0,
and (Int(x, β),Frac(x, β)) is the interleaved word of Int(x, β) and Frac(x, β). Clearly, x =

sign · |x| = sign · (Σ∞
i=0β

i · zi + Σ∞
i=0

fi
βi ). For all integer β ≥ 2, we denote the alphabet of

representation of real-numbers in base β by AlphaRep(β) = {+,−} ∪ Digit(β)× Digit(β).
We adopt the definitions of function automata and regular functions [CSV13] w.r.t.

aggregate functions as follows:

Definition 2.2 (Aggregate function automaton, ω-Regular aggregate function). Let Σ be
a finite set, and β ≥ 2 be an integer-valued base. A Büchi automaton A over alphabet
Σ×AlphaRep(β) is an aggregate function automaton of type Σω → R if for all A ∈ Σω, there
exists exactly one x ∈ R such that (A, rep(x, β)) ∈ L(A).

Equivalently, the language could be represented by a Parity automaton instead of a
Büchi automaton.

Σ and AlphaRep(β) are the input and output alphabets, respectively. An aggregate
function is an arbitrary function f : Σω → R. An aggregate function f : Σω → R is said to
be ω-regular under integer base β ≥ 2 if there exists an aggregate function automaton A
over alphabet Σ× AlphaRep(β) such that for all sequences A ∈ Σω and x ∈ R, f(A) = x iff
(A, rep(x, β)) ∈ L(A).

Definition 2.3 (Weighted automaton [CDH10, Moh09]). A weighted automaton over infinite
words is a tuple A = (M, γ, f), whereM = (S ,Σ, δ, Init ,S ) is a Büchi automaton with all
states as accepting, γ : δ → Q is a weight function, and f : Q→ R is the aggregate function.
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Words and runs in weighted automata are defined as they are in Büchi automata. The
weight-sequence of run ρ = s0s1 . . . of word w = w0w1 . . . is given by wtρ = n0n1n2 . . .
where ni = γ(si, wi, si+1) for all i. The weight of a run ρ, denoted by f(ρ), is given by f(wtρ).
Here the weight of a word w ∈ Σω in weighted automata is defined as wtA(w) = sup{f(ρ)|ρ
is a run of w in A}. In general, weight of a word can also be defined as the infimum of the
weight of all its runs. Note, an automaton need not accept every word, even though all its
states are accepting, since it need not be complete. By convention, if a word w /∈ L(M) its
weight wtA(w) = −∞.

Definition 2.4 (Quantitative inclusion). Let P and Q be weighted ω-automata with the
same aggregate function f . The strict quantitative inclusion problem, denoted by P ⊂f Q,
asks whether for all words w ∈ Σω, wtP (w) < wtQ(w). The non-strict quantitative inclusion
problem, denoted by P ⊆f Q, asks whether for all words w ∈ Σω, wtP (w) ≤ wtQ(w).

Quantitative inclusion, strict and non-strict, is PSPACE-complete for limsup and lim-
inf [CDH10]. Non-strict quantitative inclusion is undecidable for limit-average [DDG+10],
while decidability of the strict variant is still open. For discounted-sum with integer
discount-factor it is in EXPTIME [BH14, CDH10], and decidability is unknown for rational
discount-factors.

Definition 2.5 (Incomplete-information quantitative games). An incomplete-information
quantitative game is a tuple G = (S, sI ,O ,Σ, δ, γ, f), where S, O , Σ are sets of states,
observations, and actions, respectively, sI ∈ S is the initial state, δ ⊆ S × Σ × S is the
transition relation, γ : S → N× N is the weight function, and f : Nω → R is the aggregate
function.

The transition relation δ is complete, i.e., for all states p and actions a, there exists a
state q s.t. (p, a, q) ∈ δ. A play ρ is a sequence s0a0s1a1 . . . , where τi = (si, ai, si+1) ∈ δ.
The observation of state s, by abuse of notation, is denoted by O(s) ∈ O . The observed
play oρ of ρ is the sequence o0a0o1aa1 . . . , where oi = O(si). Player P0 has incomplete
information about the game G; it only perceives the observation play oρ. Player P1 receives
full information and witnesses play ρ. Plays begin in the initial state s0 = sI . For i ≥ 0,
Player P0 selects action ai. Next, player P1 selects the state si+1, such that (si, ai, si+1) ∈ δ.
The weight of state s is the pair of payoffs γ(s) = (γ(s)0, γ(s)1). The weight sequence wti of
player Pi along ρ is given by γ(s0)iγ(s1)i . . . , and its payoff from ρ is given by f(wti) for
aggregate function f , denoted by f(ρi), for simplicity. A play on which a player receives a
greater payoff than the other player is said to be a winning play for the player. A strategy
for player P0 is given by a function α : O∗ → Σ since it only sees observations. Player P0

agrees with strategy α if for all i, ai = α(o0 . . . oi). A strategy α is said to be a winning
strategy for player P0 if all plays agreeing with α are winning plays for P0.

Definition 2.6 (Büchi pushdown automaton [CG77]). A Büchi pushdown automaton (Büchi
PDA) is a tuple A = (S ,Σ,Γ, δ, Init , Z0,F), where S , Σ, Γ, and F are finite sets of states,
input alphabet, pushdown alphabet and accepting states, respectively. δ ⊆ (S × Γ × (Σ ∪
{ε})× S × Γ) is the transition relation, Init ⊆ S is a set of initial states, Z0 ∈ Γ is the start
symbol.

A run ρ on a word w = w0w1 · · · ∈ Σω of a Büchi PDA A is a sequence of configurations
(s0, γ0), (s1, γ1) . . . satisfying (1) s0 ∈ Init , γ0 = Z0, and (2) (si, γi, wi, si+1, γi+1) ∈ δ for all
i. Büchi PDA consists of a stack, elements of which are the tokens Γ, and initial element
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Z0. Transitions push or pop token(s) to/from the top of the stack. Let inf (ρ) be the set of
states that occur infinitely often in state sequence s0s1 . . . of run ρ. A run ρ is an accepting
run in Büchi PDA if inf (ρ) ∩ F 6= ∅. A word w is an accepting word if it has an accepting
run. Languages accepted by Büchi PDA are called ω-context-free languages (ω-CFL).

Notation and Terminology. For an infinite sequence A = (a0, a1, . . . ), A[i] denotes its
i-th element, and A[n,m] denotes the finite word A[n]A[n+ 1] . . . A[m]. An infinite weight-
sequence A is said to be bounded if there exists a value b ∈ Q such that |A[i]| < b for all
i ≥ 0. Abusing notation, we write w ∈ A and ρ ∈ A if w and ρ are an accepting word and
an accepting run of A respectively. The Symbol · is used to denote both multiplication of
real numbers and concatenation of sequences. The meaning will be clear in context.

3. Comparator automata

Comparator automata (often abbreviated as comparators) are a class of automata that
can read pairs of weight sequences synchronously and establish an equality or inequality
relationship between these sequences. Formally, we define:

Definition 3.1 (Comparator automata). Let Σ be a finite set of rational numbers, and
f : Qω → R denote an aggregate function. A comparator automaton for aggregate function
f with inequality or equality relation R ∈ {≤, <,≥, >,=, 6=} is an automaton over the
alphabet Σ× Σ that accepts a pair (A,B) of (infinite) weight sequences iff f(A) R f(B).

From now on, unless mentioned otherwise, we assume that all weight sequences are
bounded, natural number sequences. The boundedness assumption is justified since the set
of weights forming the alphabet of a comparator is bounded. For all aggregate functions
considered in this paper, the result of comparison of weight sequences is preserved by a
uniform linear transformation that converts rational-valued weights into natural numbers;
justifying the natural number assumption.

When the comparator for an aggregate function and a relation is a Büchi automaton,
we call it an ω-regular comparator. Likewise, when the comparator is a Büchi pushdown
automaton, we call it an ω-context-free comparator.

Theorem 3.2. Let Σ be a finite alphabet of natural numbers. Let f : Nω → R be an aggregate
function. If the comparator automata for aggregate function f for any one inequality relation
R ∈ {≤, <,≥, >} is ω-regular, then the comparator for f is ω-regular for all relations in
{≤, <,≥, >,=, 6=}.

Proof sketch. Suppose the comparator automata A for relation ≤ is ω-regular for aggregate
function f . Then the pair of weight sequences (A,B) ∈ A iff f(A) ≤ f(B) holds. Since

f(A) ≤ f(B) iff f(B) ≥ f(A) the automaton obtained by altering transition s
(a,b)
−−−→ t in A

to transition s
(b,a)
−−−→ t is the ω-regular comparator automata for relation ≥. The ω-regular

comparator for = can be obtained by taking the intersection of the comparator for ≤ and ≥
since Büchi automata are closed under intersection. Finally, since Büchi automata are also
closed under complementation, we get that the comparator automata for the other three
relations, namely <,>, 6=, is also ω-regular.



Vol. 18:3 COMPARATOR AUTOMATA 13:7

sstart fk sk

(∗, ∗)

(k,≤ k)

(k,≤ k)

(≤ k − 1,≤ k)

(≤ k − 1,≤ k)

(k,≤ k)

Figure 1: State fk is an accepting state. Automaton Ak accepts (A,B) iff LimSup(A) = k,
LimSup(B) ≤ k. ∗ denotes {0, 1 . . . µ}, ≤ m denotes {0, 1 . . . ,m}

Later, we see that discounted-sum comparator is ω-regular (§ 4) and prefix-average
comparator with ≥ (or ≤) is ω-context-free (§ 5).

Limsup comparator. We explain comparators through an example. The limit supremum
(limsup, in short) of a bounded, integer sequence A, denoted by LimSup(A), is the largest
integer that appears infinitely often in A. The limsup comparator for relation ≥ is a Büchi
automaton that accepts the pair (A,B) of sequences iff LimSup(A) ≥ LimSup(B).

The working of the limsup comparator for relation ≥ is based on non-deterministically
guessing the limsup of sequences A and B, and then verifying that LimSup(A) ≥ LimSup(B).
Formal construction of the limsup comparator is given here. Suppose all sequences are
natural number sequences, bounded by µ. The limsup comparator is the Büchi automaton
A�LS = (S ,Σ, δ, Init ,F) where,

• S = {s} ∪ {s0, s1 . . . , sµ} ∪ {f0, f1 . . . , fµ}
• Σ = {(a, b) : 0 ≤ a, b ≤ µ} where a and b are integers.
• δ ⊆ S × Σ× S is defined as follows:
(1) Transitions from start state s: (s, (a, b), p) for all (a, b) ∈ Σ, and for all p ∈ {s} ∪
{f0, f1, . . . , fµ}.

(2) Transitions between fk and sk for each k:
i (fk, α, fk) for α ∈ {k} × {0, 1, . . . k}.
ii (fk, α, sk) for α ∈ {0, 1, . . . k − 1} × {0, 1, . . . k}.
iii (sk, α, sk) for α ∈ {0, 1, . . . k − 1} × {0, 1, . . . k}.
iv (sk, α, fk) for α ∈ {k} × {0, 1, . . . k}.

• Init = {s}
• F = {f0, f1 . . . , fµ}

Fig. 1 illustrates the basic building block of the limsup comparator for relation ≥. For
k ∈ {0 . . . , µ}, Fig 1 represents the segment of the limsup comparator consisting of the
initial state s, accepting state fk and state sk. We denote this by Büchi automaton Ak. We
show that automaton Ak accepts pair (A,B) of number sequences iff LimSup(A) = k, and
LimSup(B) ≤ k, for integer k. (Lemma 3.3).

Lemma 3.3. Let A and B be non-negative integer sequences bounded by µ. Büchi automaton
Ak (Fig. 1) accepts (A,B) iff LimSup(A) = k, and LimSup(A) ≥ LimSup(B).

Proof. Let (A,B) have an accepting run in Ak. We show that LimSup(A) = k ≥ LimSup(B).
The accepting run visits state fk infinitely often. Note that all incoming transitions to
accepting state fk occur on alphabet (k,≤ k) while all transitions between states fk and sk
occur on alphabet (≤ k − 1,≤ k), where ≤ k denotes the set {0, 1, . . . k}. So, the integer
k must appear infinitely often in A and all elements occurring infinitely often in A and B
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are less than or equal to k. Therefore, if (A,B) is accepted by Ak then LimSup(A) = k, and
LimSup(B) ≤ k, and LimSup(A) ≥ LimSup(B).

Conversely, let LimSup(A) = k > LimSup(B). We prove that (A,B) is accepted by Ak.
For an integer sequence A when LimSup(A) = k integers greater than k can occur only a
finite number of times in A. Let lA denote the index of the last occurrence of an integer
greater than k in A. Similarly, since LimSup(B) ≤ k, let lB be index of the last occurrence of
an integer greater than k in B. Therefore, for sequences A and B integers greater than k will
not occur beyond index l = max (lA, lB). Büchi automaton Ak (Fig. 1) non-deterministically
determines l. On reading the l-th element of input word (A,B), the run of (A,B) exits the
start state s and shifts to accepting state fk. Note that all runs beginning at state fk occur
on alphabet (a, b) where a, b ≤ k. Therefore, (A,B) can continue its infinite run even after
transitioning to fk. To ensure that this is an accepting run, the run must visit accepting
state fk infinitely often. But this must be the case, as transition on alphabet (k, k′) for
k′ ≤ k must be taken infinitely often as k is the limsup of A and limsup of B is less than or
equal to k. Transitions on this alphabet always return to the accepting state fk. Hence, for
all integer sequences A,B bounded by µ, if LimSup(A) = k, and LimSup(A) ≥ LimSup(B),
the automaton accepts (A,B).

Theorem 3.4. There exists an ω-regular comparator for the limsup aggregation function.

Proof. The construction given above contains a Büchi automata Ak for all k ∈ {0, . . . , µ}.
Therefore, from Lemma 3.3, we conclude that the construction corresponds to the limsup
comparator with inequality ≥. Therefore, limsup comparator with relation ≥ is ω-regular.

From Lemma 3.2 we know that limsup comparator is ω-regular for all relations.

Due to closure properties of Büchi automata, this implies that limsup comparator for all
inequalities and equality relation is also ω-regular. The limit infimum (liminf, in short) of
an integer sequence is the smallest integer that appears infinitely often in it; its comparator
has a similar construction to the limsup comparator. One can further prove that the limsup
and liminf aggregate functions are also ω-regular aggregate functions.

3.1. ω-Regular aggregate functions. This section draws out the relationship between
ω-regular aggregate functions and ω-regular comparators. We begin with the following
Lemma in order to show that ω-regular aggregate functions entail ω-regular comparators for
the aggregate function.

Lemma 3.5. Let µ > 0 be the upper-bound on weight sequences, and β ≥ 2 be the integer
base. Then there exists a Büchi automaton Aβ such that for all a, b ∈ R, Aβ accepts
(rep(a, β), rep(b, β)) iff a > b.

Proof. Let a, b ∈ R, and β > 2 be an integer base. Let rep(a, β) = signa ·(Int(a, β),Frac(a, β))
and rep(b, β) = signb · (Int(b, β),Frac(b, β)). Then, the following statements can be proven
using simple evaluation from definitions:

• When signa = + and signb = −. Then a > b.
• When signa = signb = +
– If Int(a, β) 6= Int(b, β): Since Int(a, β) and Int(b, β) eventually only see digit 0 i.e. they

are necessarily identical eventually, there exists an index i such that it is the last
position where Int(a, β) and Int(b, β) differ. If Int(a, β)[i] > Int(b, β)[i], then a > b. If
Int(a, β)[i] < Int(b, β)[i], then a < b.
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– If Int(a, β) = Int(b, β) but Frac(a, β) 6= Frac(b, β): Let i be the first index where Frac(a, β)
and Frac(b, β) differ. If Frac(a, β)[i] > Frac(b, β)[i] then a > b. If Frac(a, β)[i] <
Frac(b, β)[i] then a < b.

– Finally, if Int(a, β) = Int(b, β) and Frac(a, β) = Frac(b, β): Then a = b.
• When signa = signb = −
– If Int(a, β) 6= Int(b, β): Since Int(a, β) and Int(b, β) eventually only see digit 0 i.e. they

are necessarily identical eventually. Therefore, there exists an index i such that it is the
last position where Int(a, β) and Int(b, β) differ. If Int(a, β)[i] > Int(b, β)[i], then a < b.
If Int(a, β)[i] < Int(b, β)[i], then a > b.

– If Int(a, β) = Int(b, β) but Frac(a, β) 6= Frac(b, β): Let i be the first index where Frac(a, β)
and Frac(b, β) differ. If Frac(a, β)[i] > Frac(b, β)[i] then a < b. If Frac(a, β)[i] <
Frac(b, β)[i] then a > b.

– Finally, if Int(a, β) = Int(b, β) and Frac(a, β) = Frac(b, β): Then a = b.
• When signa = − and signb = +. Then a < b.

Since the conditions given above are exhaustive and mutually exclusive, we conclude that
for all a, b ∈ R and integer base β ≥ 2, letting rep(a, β) = signa · (Int(a, β),Frac(a, β)) and
rep(b, β) = signb · (Int(b, β),Frac(b, β)), a > b iff one of the following conditions occurs:

(1) signa = + and signb = −.
(2) signa = signb = +, Int(a, β) 6= Int(b, β), and Int(a, β)[i] > Int(b, β)[i] when i is the last

index where Int(a, β) and Int(b, β) differ.
(3) signa = signb = +, Int(a, β) = Int(b, β), Frac(a, β) 6= Frac(b, β), and Int(a, β)[i] >

Int(b, β)[i] when i is the first index where Frac(a, β) and Frac(b, β) differ.
(4) signa = signb = −, Int(a, β) 6= Int(b, β), and Int(a, β)[i] < Int(b, β)[i] when i is the last

index where Int(a, β) and Int(b, β) differ.
(5) signa = signb = −, Int(a, β) = Int(b, β), Frac(a, β) 6= Frac(b, β), and Int(a, β)[i] <

Int(b, β)[i] when i is the first index where Frac(a, β) and Frac(b, β) differ.

Note that each of these five conditions can be easily expressed by a Büchi automaton over
alphabet AlphaRep(β) for an integer β ≥ 2. For an integer β ≥ 2, the union of all these Büchi
automata will result in a Büchi automaton Aβ such that for all a, b ∈ R and A = rep(a, β)
and B = rep(b, β), a > b iff interleaved word (A,B) ∈ L(Aβ).

We finally show that ω-regular aggregate functions entail ω-regular comparators for the
aggregate function.

Theorem 3.6. Let µ > 0 be the upper-bound on weight sequences, and β ≥ 2 be the integer
base. Let f : {0, 1, . . . , µ}ω → R be an aggregate function. If aggregate function f is ω-regular
under base β, then its comparator for all inequality and equality relations is also ω-regular.

Proof. We show that if an aggregate function is ω-regular under base β, then its comparator
for relation > is ω-regular. By closure properties of ω-regular comparators, this implies that
comparators of the aggregate function are ω-regular for all inequality and equality relations.

Let f : Σω → R be an ω-regular aggregate function with aggregate function automata Af .
We will construct an ω-regular comparator for f with relation >. From Lemma 3.5 we know
that (X,Y ) is present in the comparator iff (X,M), (Y,N) ∈ Af for M,N ∈ AlphaRep(β)ω

and (M,N) ∈ Aβ, for Aβ as described above. Since Af and Aβ are both Büchi automata,
the comparator for function f with relation > is also a Büchi auotmaton. Therefore, the
comparator for aggregate function f with relation > is ω-regular.
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p1start p2
a, 1

a, 1

Figure 2: Weighted automaton P

q1start q2

a, 0

a, 2
a, 1

Figure 3: Weighted automaton Q

The converse direction of whether ω-regular comparator for an aggregate function f for
all inequality or equality relations will entail ω-regular functions under an integer base β ≥ 0
is trickier. For all aggregate functions considered in this paper, we see that whenever the
comparator is ω-regular, the aggregate function is ω-regular as well. However, the proofs for
this have been done on a case-by-cass basis, and we do not have an algorithmic procedure
to derive a function (Büchi) automaton from its ω-regular comparator. We also do not have
an example of an aggregate function for which the comparator is ω-regular but the function
is not. Therefore, we arrive at the following conjecture:

Conjecture 3.7. Let µ > 0 be the upper-bound on weight sequences, and β ≥ 2 be the
integer base. Let f : {0, 1, . . . , µ}ω → R be an aggregate function. If the comparator for an
aggregate function f is ω-regular for all inequality and equality relations, then its aggregate
function is also ω-regular under base β.

3.2. Quantitative inclusion. The aggregate function or comparator of a quantitative
inclusion problem refer to the aggregate function or comparator of the associated aggregate
function. This section presents a generic algorithm (Algorithm 1) to solve quantitative
inlcusion between ω-weighted automata P and Q with ω-comparators. This section focusses
on the non-strict quantitative inclusion. InclusionReg (Algorithm 1) is an algorithm for
quantitative inclusion between weighted ω-automata P and Q with ω-regular comparator
Af for relation ≥. InclusionReg takes P ,Q and Af as input, and returns True iff P ⊆f Q.
The results for strict quantitative inclusion are similar. We use the following motivating
example to explain steps of Algorithm 1.

Motivating example. Let weighted ω-automata P and Q be as illustrated in Fig. 2-3
with the limsup aggregate function. The word w = aω has one run ρP1 = p1p

ω
2 with weight

sequence wtP1 = 1ω in P and two runs ρQ1 = q1q
ω
2 with weight sequence wtQ1 = 0, 1ω and

run ρQ2 = q1q
ω
2 with weight sequence wtQ2 = 2, 1ω. Clearly, wtP (w) ≤ wtQ(w). Therefore

P ⊆f Q. From Theorem 3.4 we know that the limsup comparator A≤
LS

for ≤ is ω-regular.
We use Algorithm 1 to show that P ⊆f Q using its ω-regular comparator for ≤.

Intuitively, the algorithm must be able to identify that for run ρP1 of w in P , there exists a

run ρQ2 in Q s.t. (wtP1 , wt
Q
2 ) is accepted by the limsup comparator for ≤.

Key ideas. A run ρP in P on word w ∈ Σω is said to be dominated w.r.t P ⊆f Q if there
exists a run ρQ in Q on the same word w such that wtP (ρP ) ≤ wtQ(ρQ). P ⊆f Q holds if
for every run ρP in P is dominated w.r.t. P ⊆f Q.

InclusionReg constructs Büchi automaton Dom that consists of exactly the dominated
runs of P w.r.t P ⊆f Q. InclusionReg returns True iff Dom contains all runs of P . To obtain
Dom, it constructs Büchi automaton DomProof that accepts word (ρP , ρQ) iff ρP and ρQ
are runs of the same word in P and Q respectively, and wtP (ρP ) ≤ wtQ(ρQ) i.e. if wP and
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Algorithm 1 InclusionReg(P,Q,Af ), Is P ⊆f Q?

1: Input: Weighted automata P , Q, and ω-regular comparator Af (Inequality ≤)
2: Output: True if P ⊆f Q, False otherwise

3: P̂ ← AugmentWtAndLabel(P )

4: Q̂← AugmentWtAndLabel(Q)

5: P̂ × Q̂← MakeProduct(P̂ , Q̂)

6: DomProof ← Intersect(P̂ × Q̂,A�)
7: Dom ← FirstProject(DomProof )

8: return P̂ ≡ Dom

p1start p2
(a, 1, 1)

(a, 1, 2)

Figure 4: P̂

q1start q2

(a, 0, 1)

(a, 2, 2)

(a, 1, 3)

Figure 5: Q̂

p1, q1start p2, q2

(a, 1, 1, 0, 1)

(a, 1, 1, 2, 2)

(a, 1, 2, 1, 3)

Figure 6: P̂ × Q̂

wQ are weight sequence of ρP and ρQ, respectively, then (wP , wQ) is present in the ω-regular

comparator A≤
f for aggregate function f with relation ≤. The projection of DomProof on

runs of P results in Dom.

Algorithm details. For sake a simplicity, we assume that every word present in P is also
present in Q i.e. P ⊆ Q (qualitative inclusion). InclusionReg has three steps: (a). UniqueId
(Lines 3-4): Enables unique identification of runs in P and Q through labels. (b). Compare

(Lines 5-7): Compares weight of runs in P with weight of runs in Q, and constructs Dom.
(c). DimEnsure (Line 8): Ensures if all runs of P are diminished.

(1) UniqueId: AugmentWtAndLabel transforms weighted ω-automaton A into Büchi au-

tomaton Â by converting transition τ = (s, a, t) with weight γ(τ) in A to transition

τ̂ = (s, (a, γ(τ), l), t) in Â, where l is a unique label assigned to transition τ . The word

ρ̂ = (a0, n0, l0)(a1, n1, l1) · · · ∈ Â iff there exists a run ρ ∈ A on word a0a1 . . . with

weight sequence n0n1 . . . . Labels ensure bijection between runs in A and words in Â.
Words of Â have a single run in Â. Hence, transformation of weighted ω-automata P
and Q to Büchi automata P̂ and Q̂ enables disambiguation between runs of P and Q
(Line 3-4).

The corresponding Â for weighted ω-automata P and Q from Figure 2- 3 are given in
Figure 4- 5 respectively.

(2) Compare: The output of this step is the Büchi automaton Dom that contains the word

ρ̂ ∈ P̂ iff ρ is a dominated run in P w.r.t P ⊆f Q (Lines 5-7).

MakeProduct(P̂ , Q̂) constructs P̂ × Q̂ s.t. word (ρ̂P , ρ̂Q) ∈ P̂ × Q̂ iff ρP and ρQ are
runs of the same word in P and Q respectively (Line 5). Concretely, for transition

τ̂A = (sA, (a, nA, lA), tA) in automaton A, where A ∈ {P̂ , Q̂}, transition τ̂P × τ̂Q =

((sP , sQ), (a, nP , lP , nQ, lQ), (tP , tQ)) is in P̂ × Q̂, as shown in Figure 6.

Intersect intersects the weight components of P̂ × Q̂ with comparator A≤
f (Line 6).

The resulting automaton DomProof accepts word (ρ̂P , ρ̂Q) iff f(ρP ) ≤ f(ρQ), and ρP
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s1start s2

s3

(1, 2)

(1, 0)

(1, 1)

(1, 1)

Figure 7: Snippet of limsup
comparator A≤

LS

for relation ≤

t1start t2
(a, 1, 1, 2, 2)

(a, 1, 2, 1, 3)

Figure 8: Snippet of Intersect.
t1 = (p1, q1, s1) and
t2 = (p2, q2, s2).

t′1start t′2
(a, 1, 1)

(a, 1, 2)

Figure 9: Snippet of Dom

and ρQ are runs on the same word in P and Q respectively. The result of Intersect

between P̂ × Q̂ with the limsup comparator A≤
LS

for relation ≤ (Figure 7) is given in
Figure 8.

The projection of DomProof on the alphabet of P̂ returns Dom which contains the
word ρ̂P iff ρP is a dominated run in P w.r.t P ⊆f Q (Line 7), as shown in Figure 9.

(3) DimEnsure: P ⊆f Q iff P̂ ≡ Dom (qualitative equivalence) since P̂ consists of all runs
of P and Dom consists of all dominated runs w.r.t P ⊆f Q (Line 8).

Lemma 3.8. Büchi automaton Dom consists of all dominated runs in P w.r.t P ⊆f Q.

Proof. Let A≤
f be the comparator for ω-regular aggregate function f and relation ≤ s.t.

Af accepts (A,B) iff f(A) ≤ f(B). A run ρ over word w with weight sequence wt in P

(or Q) is represented by the unique word ρ̂ = (w,wt, l) in P̂ (or Q̂) where l is the unique
label sequence associated with each run in P (or Q). Since every label on each transition is

unique, P̂ and Q̂ are deterministic automata. Now, P̂ × Q̂ is constructed by ensuring that
two transitions are combined in the product only if their alphabet is the same. Therefore
if (w,wt1, l1, wt2, l2) ∈ P̂ × Q̂, then ρ̂ = (w,wt1, l1) ∈ P̂ , σ̂ = (w,wt2, l2) ∈ Q̂. Hence, there
exist runs ρ and σ with weight sequences wt1 and wt2 in P and Q, respectively. Next,
P̂ × Q̂ is intersected over the weight sequences with ω-regular comparator A≤

f for aggregate

function f and relation ≤. Therefore (w,wt1, l1, wt2, l2) ∈ DomProof iff f(wt1) ≤ f(wt2).
Therefore runs ρ in P and σ in Q are runs on the same word s.t. aggregate weight in P is
less than or equal to that of σ in Q. Therefore Dom consists of ρ̂ only if ρ is a dominated
run in P w.r.t P ⊆f Q.

Every step of the algorithm has a two-way implication, hence it is also true that every
dominated run in P w.r.t P ⊆f Q is present in Dom.

Lemma 3.9. Given weighted ω-automata P and Q and their ω-regular comparator A≤
f for

aggregate function f and relation ≤. InclusionReg(P,Q,Af ) returns True iff P ⊆f Q.

Proof. P̂ consists of all runs of P . Dom consists of all dominated run in P w.r.t P ⊆f Q.
P ⊆f Q iff every run of P is dominated w.r.t P ⊆f Q. Therefore P ⊆f Q is given by whether

P̂ ≡ Dom, where ≡ denotes qualitative equivalence.

Algorithm InclusionReg is adapted for strict quantitative inclusion P ⊂f Q by repeating
the same procedure with ω-regular comparator A<

f for aggregate function f and relation <.

Here, a run ρP in P on word w ∈ Σω is said to be dominated w.r.t P ⊂f Q if there exists a
run ρQ in Q on the same word w such that wtP (ρP ) < wtQ(ρQ). Similarly for quantitative
equivalence P ≡f Q.

We give the complexity analysis of quantitative-inclusion with ω-regular comparators.
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Theorem 3.10. Let P and Q be weighted ω-automata and Af be an ω-regular compara-
tor. Quantitative inclusion problem, quantitative strict-inclusion problem, and quantitative
equivalence problem for ω-regular aggregate function f is PSPACE-complete.

Proof. All operations in InclusionReg until Line 7 are polytime operations in the size of
weighted ω-automata P , Q and comparator Af . Hence, Dom is polynomial in size of P , Q
and Af . Line 8 solves a PSPACE-complete problem. Therefore, the quantitative inclusion
for ω-regular aggregate function f is in PSPACE in size of the inputs P , Q, and Af .

The PSPACE-hardness of the quantitative inclusion is established via reduction from
the qualitative inclusion problem, which is PSPACE-complete. The formal reduction is as
follows: Let P and Q be Büchi automata (with all states as accepting states). Reduce P ,
Q to weighted automata P , Q by assigning a weight of 1 to each transition. Since all runs
in P , Q have the same weight sequence, weight of all words in P and Q is the same for
any function f . It is easy to see P ⊆ Q (qualitative inclusion) iff P ⊆f Q (quantitative
inclusion).

Theorem 3.10 extends to weighted ω-automata when weight of words is the infimum of
weight of runs. The key idea for P ⊆f Q here is to ensure that for every run ρQ in Q there
exists a run on the same word in ρP in P s.t. f(ρP ) ≤ f(ρQ).

Representation of counterexamples. When P *f Q, there exists word(s) w ∈ Σ∗ s.t
wtP (w) > wtQ(w). Such a word w is said to be a counterexample word. Previously, finite-
state representations of counterexamples have been useful in verification and synthesis in
qualitative systems [BK+08], and could be useful in quantitative settings as well. However,
we are not aware of procedures for such representations in the quantitative settings. Here
we show that a trivial extension of InclusionReg yields Büchi automata-representations for
all counterexamples of the quantitative inclusion problem for ω-regular functions.

Theorem 3.11. All counterexamples of the quantitative inclusion problem for an ω-regular
aggregate function can be expressed by a Büchi automaton.

Proof. For word w to be a counterexample, it must contain a run in P that is not dominated.
Clearly, all non-dominated runs of P w.r.t to the quantitative inclusion are members of
P̂ \ Dom. The counterexamples words can be obtained from P̂ \ Dom by modifying its
alphabet to the alphabet of P by dropping transition weights and their unique labels.

3.3. Incomplete-information quantitative games. Given an incomplete-information
quantitative game G = (S, sI ,O ,Σ, δ, γ, f), our objective is to determine if player P0 has a
winning strategy α : O∗ → Σ for ω-regular aggregate function f . We assume we are given
the ω-regular comparator Af for function f . We provide an informal description of the
algorithm to describe the intuition.

Note that a function A∗ → B can be treated like a B-labeled A-tree, and vice-versa.
Hence, we proceed by finding a Σ-labeled O-tree — the winning strategy tree. Every branch
of a winning strategy-tree is an observed play oρ of G for which every actual play ρ is a
winning play for P0.

We first consider all game trees of G by interpreting G as a tree-automaton over Σ-
labeled S-trees. Nodes n ∈ S∗ of the game-tree correspond to states in S and labeled by
actions in Σ taken by player P0. Thus, the root node ε corresponds to sI , and a node
si0 , . . . , sik corresponds to the state sik reached via sI , si0 , . . . , sik−1

. Consider now a node
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x corresponding to state s and labeled by an action σ. Then x has children xs1, . . . xsn, for
every si ∈ S. If si ∈ δ(s, σ), then we call xsi a valid child, otherwise we call it an invalid
child. Branches that contain invalid children correspond to invalid plays.

A game-tree τ is a winning tree for player P0 if every branch of τ is either a winning play
for P0 or an invalid play of G. One can check, using an automata, if a play is invalid by the
presence of invalid children. Furthermore, the winning condition for P0 can be expressed by
the ω-regular comparator Af that accepts (A,B) iff f(A) > f(B). To use the comparator
Af , it is determinized to Parity automaton Df . Thus, a product of game G with Df is a
deterministic Parity tree-automaton accepting precisely winning-trees for player P0.

Winning trees for player P0 are Σ-labeled S-trees. We need to convert them to Σ-labeled
O-trees. Recall that every state has a unique observation. We can simulate these Σ-labeled
S-trees on strategy trees using the technique of thinning states S to observations O [KV00].
The resulting alternating Parity tree automatonM will accept a Σ-labeled O-tree τo iff for
all actual game-tree τ of τo, τ is a winning-tree for P0 with respect to the strategy τo. The
problem of existence of winning-strategy for P0 is then reduced to non-emptiness checking
ofM.

Using the above, we get the following result: Given an incomplete-information quan-
titative game G and ω-regular comparator Af for the aggregate function f , the time
complexity of determining whether P0 has a winning strategy is exponential in |G| · |Df |,

where |Df | = |Af |
O(|Af |).

Observe that since Df is obtained by determinization of Af , we obtain that |Df | =

|Af |
O(|Af |). The thinning operation is linear in size of |G ×Df |, therefore |M| = |G| · |Df |.

Non-emptiness checking of alternating Parity tree automata is exponential. Therefore, our
procedure is doubly exponential in size of the comparator and exponential in size of the
game. The question of tighter bounds is open.

4. Discounted-sum comparator

The discounted-sum of an infinite sequence A with discount-factor d > 1, denoted by
DS (A, d), is defined as Σ∞

i=0A[i]/d
i, and the discounted-sum of a finite sequence A is

Σ
|A|−1
i=0 A[i]/di. The discounted-sum comparator (DS-comparator, in short) for discount-

factor d and relation R, denoted by AR
d , accepts a pair (A,B) of (infinite length) weight

sequences iff DS (A, d) R DS (B, d). We investigate properties of the DS-comparator, and
show that the DS-comparator is ω-regular iff the discount-factor d > 1 is an integer. We
also show that the discounted-sum aggregate function is ω-regular iff the discount-factor is
an integer. Finally, we show the repercussions of the above results on quantitative inclusion
with discounted-sum aggregate function (DS-inclusion, in short). Section 4.1 and Section 4.2
deal with the non-integer rational discount-factors and integer discount-factors, respectively.

4.1. Non-integer, rational discount-factor. We prove that for non-integer discount
factors, the discounted-sum comparator is not ω-regular. For a weighted ω-automaton
A and a real number r ∈ R, the cut-point language of A w.r.t. r is defined as L≥r =
{w ∈ L(A)|wtA(w) ≥ r} [CDH09]. When the discount factor is a rational value 1 <
d < 2, it is known that not all deterministic weighted ω-automaton with discounted-sum
aggregate function (DS-automaton, in short) have an ω-regular cut-point language for
an r ∈ R [CDH09]. In this section, we extended this result to all non-integer, rational
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discount-factors d > 1. Finally, we use this to prove that discounted-sum is not an ω-regular
aggregate function when its discount-factor is a non-integer rational number.

Ambiguous Words. Let d > 2 be a non-integer, rational discount-factor. We consider
finite weight-sequences over the alphabet {0, 1, . . . , dde − 1}. We say a weight-sequence w is

ambiguous if 1− dde−1

d|w|−1·(d−1)
≤ DS (w, d) < 1. Intuitively, a weight-sequence is ambiguous if

it could be extended to an infinite word with length less than 1 and greater than 1.
We will establish that there exists an infinite word such that its discounted-sum is

equal to 1 but all of its finite prefixes are ambiguous. We prove by induction on length of

prefixes. Let w = 0. Since d > 2, dde−1
d−1 > 1. So, w is ambiguous. Now, we prove that if w is

ambiguous, then at least one of w · 0, . . . , w · (dde − 1) is ambiguous.

We prove this in cases: Suppose DS (w, d) < 1− dde−1

d|w| , then we show that w · (dde− 1) is

ambiguous. First, since w is ambiguous, we know that DS (w, d) ≥ 1− dde−1

d|w|−1·(d−1)
. It is easy

to show that DS (w · (dde − 1), d) = DS (w, d)+ dde−1

d|w| ≥ 1− dde−1

d|w|−1·(d−1)
+ dde−1

d|w| = 1− dde−1

d|w|·(d−1)
.

Next, since DS (w, d) < 1− dde−1

d|w| we get that DS (w · (dde − 1), d) = DS (w, d) + dde−1

d|w| ≤ 1.

Thus, w · (dde − 1) is ambiguous.

In the next case, suppose 1− dde−1

d|w| ≤ DS (w, d) < 1− dde−2

d|w| . We will show that w ·(dde−2)

is ambiguous. First, as show earlier, it is easy to see that DS (w · (dde − 2), d) < 1 since

DS (w, d) < 1 − dde−2

d|w| has been assumed. Next, since DS (w, d) > 1 − dde−1

d|w| , we get that

DS (w · (dde − 2), d) ≥ 1− dde−1

d|w| + dde−2

d|w| = 1− 1
d|w| . Since d > 2, we know that dde−1

d−1 > 1, so

DS (w · (dde − 2), d) ≥ 1− dde−1

d|w|·(d−1)
. Thus, w · (dde − 2) is ambiguous.

Similarly, when 1− i+1
d|w| ≤ DS (w · i, d) < 1− i

d|w| , we can show that w · i is ambiguous

for i ∈ {1, dde − 2}.
In the final case, DS (w, d) ≥ 1− 1

d|w| . SinceDS (w · 0, d) = DS (w, d), clearly, DS (w · 0, d) <

1 since w is ambiguous. Further, DS (w, d) ≥ 1− 1
d|w| , we get that DS (w · 0, d) ≥ 1− dde−1

d|w|·(d−1)

as dde−1
d−1 > 1. Thus, w · 0 is ambiguous.

Theorem 4.1. For all non-integer, rational discount-factor d > 1, there exists a determin-
istic discounted-sum automata A and rational value r ∈ R for which its cut-point language
is not ω-regular.

Proof. Since the proof for 1 < d < 2 has been presented in [CDH09], we skip that case.
The proof presented here extends the earlier result on 1 < d < 2 from [CDH09] to all

non-integer, rational discount factors d > 2.
Let d > 2 be a non-integer, rational discount-factor. Define deterministic discounted-sum

automata A over the alphabet {0, 1, . . . , dde − 1} such that the weight of transitions on
alphabet n ∈ {0, 1, . . . , dde − 1} is n. Therefore, weight of word w ∈ A is DS (w, d).

Consider its cut-point language L≥1. Let us assume that the language L≥1 is ω-regular
and represented by Büchi automaton B. For n < m, let the n- and m-length prefixes of w≥,
denoted w≥[0, n− 1] and w≥[0,m− 1], respectively, be such that they reach the same states
in B. Then there exists an infinite length word ws such that DS (w≥[0, n− 1] · ws, d) =
DS (w≥[0,m− 1] · ws, d) = 1. Now, DS (w≥[0, n− 1] · ws, d) = DS (w≥[0, n− 1], d) + 1

dn
·

DS (ws, d) and DS (w≥[0,m− 1] · ws, d) = DS (w≥[0,m− 1], d)+ 1
dm
·DS (ws, d). Eliminating



13:16 S. Bansal, S. Chaudhuri, and M.Y. Vardi Vol. 18:3

DS (ws, d) from the equations and simplification, we get:

dm−1 · (DS (w≥[0,m− 1], d)− 1) + dn−1 · (DS (w≥[0, n− 1], d)− 1) = 0

The above is a polynomial over d with degree m− 1 and integer co-efficients. Specifically,
d = p

q
> 2 such that integers p, q > 1, and p and q are mutually prime. Since d = p

q
is a

root of the above equation, q must divide co-efficient of the highest degree term, in this
case it is m − 1. The co-efficient of the highest degree term in the polynomial above is
(w≥[0] − (dde − 1)). Recall from construction of the infinite-length word with ambiguous
prefixes w≥ from above, w≥[0] = 0. So the co-efficient of the highest degree term is −1,
which is not divisible by integer q > 1. Contradiction.

Finally, we use Theorem 4.1 to prove the discounted-sum comparator is not ω-regular
when the discount-factor d > 1 is non-integer, rational number.

Theorem 4.2. DS-comparator for non-integer, rational discount-factors d > 1 for all
inequalities and equality are not ω-regular.

Proof. If the comparator for an aggregate function for any one inequality is not ω-regular,
then the comparator for all inequalities and equality relation will also not be ω-regular.
Therefore, it is sufficient to prove that the discounted-sum comparator with non-integer,
rational value for relation ≥ is not ω-regular.

Let d > 1 be a non-integer, rational discount-fact. Let A be the discounted-sum
automaton as described in proof of Lemma 4.1. Consider its cut-point language L≥1. From
Lemma 4.1 and [CDH09], we know that L≥1 is not an ω-regular language.

Suppose there exists an ω-regular DS-comparator A≤
d for non-integer rational discount

factor d > 1 for relation ≥. We define the Büchi automaton P s.t. L(P) = {(w, v)|w ∈
L(A), v = dde−1 ·0ω}. Note that DS (dde − 1 · 0ω, d) = dde−1. Then the cut-point language

L≥(dde−1) of deterministic discounted-sum automata A can be constructed by taking the
intersection of P with A≥

d . Since all actions are closed under ω-regular operations, L≥1 can
be represented by a Büchi automaton. Contradiction to Theorem 4.1.

Theorem 4.3. Let d > 1 be a non-integer, rational discount-factor. The discounted-sum
aggregate function with discount-factor d is not ω-regular.

Proof. Immediate from Lemma 4.1 and Theorem 3.6.

Since the DS-comparator for all non-integer, rational discount-factor d > 1 is not ω-
regular, the ω-regular-based algorithm for quantitative inclusion described in Algorithm 1
does not apply to DS-inclusion. In fact, the decidability of DS-inclusion with non-integer,
rational discount-factors is still open. Finally, we have shown is follow-up work that
comparators for approximations of discounted-sum with non-integer discount factors 1 <
d < 2 can be made ω-regular [BKVW22].

4.2. Integer discount-factor. In this section, we provide an explicit construction of
an ω-regular comparator for discounted-sum with integer discount-factors. We use this
construction to prove that discounted-sum aggregate function with integer discount-factor is
ω-regular. Finally, we use the ω-regular DS-comparator in Algorithm 1 to establish that
PSPACE-completeness of DS-inclusion with integer discount-factors.
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Discounted-sum comparator. Let integer µ > 0 be the upper-bound on sequences. The
core intuition is that bounded sequences can be converted to their value in base d via
a finite-state transducer. Lexicographic comparison of the converted sequences renders
the desired DS-comparator. Conversion of sequences to base d requires a certain amount
of look-ahead by the transducer. Here we describe a method that directly incorporates
the look-ahead with lexicographic comparison to obtain the DS-comparator for integer
discount-factor d > 1. Here we construct the discounted-sum comparator for relation <.

We explain the construction in detail now. For weight sequence A and integer discount-
factor d > 1, DS (A, d) can be interpreted as a value in base d i.e. DS (A, d) = A[0] +
A[1]
d

+ A[2]
d2

+ · · · = (A[0].A[1]A[2] . . . )d [CSV13]. Unlike comparison of numbers in base d,
the lexicographically larger sequence may not be larger in value since (i) The elements of
weight sequences may be larger in value than base d, and (ii) Every value has multiple
infinite-sequence representations.

To overcome these challenges, we resort to arithmetic techniques in base d. Note that
DS (B, d) > DS (A, d) iff there exists a sequence C such that DS (B, d) = DS (A, d)+DS (C, d),
and DS (C, d) > 0. Therefore, to compare the discounted-sum of A and B, we obtain a
sequence C. Arithmetic in base d also results in sequence X of carry elements. Then:

Lemma 4.4. Let A,B,C,X be weight sequences, d > 1 be a positive integer such that the
following equations hold:

(1) A[0] + C[0] +X[0] = B[0]
(2) For i ≥ 1, A[i] + C[i] +X[i] = B[i] + d ·X[i− 1]

Then DS (B, d) = DS (A, d) +DS (C, d).

Proof. DS (A, d) + DS (C, d) = Σ∞
i=0A[i]

1
di

+ Σ∞
i=0C[i] 1

di
= Σ∞

i=0(A[i] + C[i]) 1
di

= (B[0] −

X[0])+Σ∞
i=1(B[i]+d ·X[i−1]−X[i]) 1

di
= (B[0]−X[0])+Σ∞

i=1(B[i]+d ·X[i−1]−X[i]) 1
di

=

Σ∞
i=0B[i] · 1

di
− Σ∞

i=0X[i] + Σ∞
i=0X[i] = Σ∞

i=0B[i] · 1
di

= DS (B, d)

Hence to determine DS (B, d)−DS (A, d), systematically guess sequences C and X using
the equations, element-by-element beginning with the 0-th index and moving rightwards.
There are two crucial observations here: (i) Computation of i-th element of C and X
only depends on i-th and (i − 1)-th elements of A and B. Therefore guessing C[i] and
X[i] requires finite memory only. (ii) Intuitively, C refers to a representation of value
DS (B, d)−DS (A, d) in base d and X is the carry-sequence. If we can prove that X and C
are also bounded-sequences and can be constructed from a finite-set of integers, we would
be able to further proceed to construct a Büchi automaton for the desired comparator.

We proceed by providing an inductive construction of sequences C and X that satisfy
the properties in Lemma 4.4 (Lemma 4.5), and show that these sequences are bounded when
A and B are bounded. In particular, when A and B are bounded integer-sequences, then
sequences C and X constructed here are also bounded-integer sequences. Therefore, they
can be constructed from a finite-set of integers. Proofs for sequence C are in Lemma 4.6-
Lemma 4.8, and proof for sequence X is in Lemma 4.9.

We begin with introducing some notation. Let DS−(B,A, d, i) = Σi
j=0(B[j]−A[j]) · 1

dj

for all index i ≥ 0. Also, let DS−(B,A, d, ·) = Σ∞
j=0(B[j]−A[j]) · 1

dj
= DS (B, d)−DS (A, d).

Define maxC = µ · d
d−1 . We define the residual function Res : N ∪ {0} 7→ R as follows:

Res(i) =

{

DS−(B,A, d, ·)− bDS−(B,A, d, ·)c if i = 0

Res(i− 1)− bRes(i− 1) · dic · 1
di

otherwise
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Then we define C[i] as follows:

C[i] =

{

bDS−(B,A, d, ·)c if i = 0

bRes(i− 1) · dic otherwise

Intuitively, C[i] is computed by stripping off the value of the i-th digit in a representation
of DS−(B,A, d, ·) in base d. C[i] denotes the numerical value of the i-th position of the
difference between B and A. The residual function denotes the numerical value of the
difference remaining after assigning the value of C[i] until that i.

We define function CSum(i) : N ∪ {0} → Z s.t. CSum(i) = Σi
j=0C[j] · 1

dj
. Then, we

define X[i] as follows:

X[i] = (DS−(B,A, d, i)− CSum(i)) · di

Therefore, we have defined sequences C and X as above. We now prove the desired properties
one-by-one.

First, we establish that sequences C, X as defined here satisfy Equations 1-2 from
Lemma 4.4. Therefore, ensuring that C is indeed the difference between sequences B and A,
and X is their carry-sequence.

Lemma 4.5. Let A and B be bounded integer sequences and C and X be defined as above.
Then,

(1) B[0] = A[0] + C[0] +X[0]
(2) For i ≥ 1, B[i] + d ·X[i− 1] = A[i] + C[i] +X[i]

Proof. We prove this by induction on i using definition of function X.
When i = 0, thenX[0] = DS−(B,A, d, 0)−CSum(0) =⇒ X[0] = B[0]−A[0]−C[0] =⇒

B[0] = A[0] + C[0] +X[0].
When i = 1, then X[1] = (DS−(B,A, d, 1)−CSum(1))·d = (B[0]+B[1]· 1

d
)−(A[0]+A[1]·

1
d
)−(C[0]+C[1]· 1

d
)·d =⇒ X[1] = B[0]·d+B[1]−(A[0]·d+A[1])−(C[0]·d+C[1]). From the

above we obtain X[1] = d ·X[0]+B[1]−A[1]−C[1] =⇒ B[1]+d ·X[0] = A[1]+C[1]+X[1].
Suppose the invariant holds true for all i ≤ n, we show that it is true for n + 1.

X[n+1] = (DS−(B,A, d, n+1)−CSum(n+1)) · dn+1 =⇒ X[n+1] = (DS−(B,A, d, n)−
CSum(n)) · dn+1 + (B[n+ 1]−A[n+ 1]− C[n+ 1]) =⇒ X[n+ 1] = X[n] · d+B[n+ 1]−
A[n+ 1]− C[n+ 1] =⇒ B[n+ 1] +X[n] · d = A[n+ 1] + C[n+ 1] +X[n+ 1].

Next, we establish the sequence C is a bounded integer sequence, therefore it can be
represented by a finite-set of integers. First of all, by definition of C[i] it is clear that C[i] is
an integer for all i ≥ 0. We are left with proving boundedness of C. Lemma 4.6-Lemma 4.8
establish boundedness of C[i].

Lemma 4.6. For all i ≥ 0, Res(i) = DS−(B,A, d, ·)− CSum(i).

Proof. Proof by simple induction on the definitions of functions Res and C.

(1) When i = 0, Res(0) = DS−(B,A, d, ·) − bDS−(B,A, d, ·)c. By definition of C[0],
Res(0) = DS−(B,A, d, ·)− C[0] ⇐⇒ Res(0) = DS−(B,A, d, ·)− CSum(0).

(2) Suppose the induction hypothesis is true for all i < n. We prove it is true when
i = n. When i = n, Res(n) = Res(n − 1) − bRes(n − 1) · dnc · 1

dn
. By definition of

C[n] and I.H, we get Res(n) = (DS−(B,A, d, ·)− CSum(n− 1))− C[n] · 1
dn
. Therefore

Res(n) = DS−(B,A, d, ·)− CSum(n).

Lemma 4.7. If DS−(B,A, d, ·) ≥ 0, then for all i ≥ 0, 0 ≤ Res(i) < 1
di
.
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Proof. Since DS−(B,A, d, ·) ≥ 0, Res(0) = DS−(B,A, d, ·) − bDS−(B,A, d, ·)c ≥ 0 and
Res(0) = DS−(B,A, d, ·)− bDS−(B,A, d, ·)c < 1. Specifically, 0 ≤ Res(0) < 1.

Suppose for all i ≤ k, 0 ≤ Res(i) < 1
di
. We show this is true even for k + 1.

Since Res(k) ≥ 0, Res(k) · dk+1 ≥ 0. Let Res(k) · dk+1 = x+ f , for integral x ≥ 0, and

fractional 0 ≤ f < 1. Then, from definition of Res, we get Res(k + 1) = x+f

dk+1 −
x

dk+1 =⇒

Res(k + 1) < 1
dk+1 .

Also, Res(k + 1) ≥ 0 since a− bac ≥ 0 for all positive values of a (Lemma 4.6).

Lemma 4.8. Let maxC = µ · d
d−1 . When DS−(B,A, d, ·) ≥ 0, for i = 0, 0 ≤ C(0) ≤ maxC ,

and for i ≥ 1, 0 ≤ C(i) < d.

Proof. Since both A and B are non-negative bounded weight sequences, maximum value
of DS−(B,A, d, ·) is when B = {µ}i and A = {0}i. In this case DS−(B,A, d, ·) = maxC .
Therefore, 0 ≤ C[0] ≤ maxC .

From Lemma 4.7, we know that for all i, 0 ≤ Res(i) < 1
di
. Alternately, when i ≥ 1,

0 ≤ Res(i− 1) < 1
di−1 =⇒ 0 ≤ Res(i− 1) · di < 1

di−1 · d
i =⇒ 0 ≤ Res(i− 1) · di < d =⇒

0 ≤ bRes(i− 1) · dic < d =⇒ 0 ≤ C[i] < d.

Therefore, we have established that sequence C is non-negative integer-valued and is
bounded by maxC = µ · d

d−1 .
Finally, we prove that sequence X is also a bounded-integer sequence, thereby proving

that it is bounded, and can be represented with a finite-set of integers. Note that for all
i ≥ 0, by expanding out the definition of X[i] we get that X[i] is an integer for all i ≥ 0.
We are left with proving boundedness of X:

Lemma 4.9. Let maxX = 1 + µ
d−1 . When DS−(B,A, d, ·) ≥ 0, then for all i ≥ 0, |X(i)| ≤

maxX .

Proof. From definition of X, we know that X(i) = (DS−(B,A, d, i) − CSum(i)) · di =⇒
X(i) · 1

di
= DS−(B,A, d, i)−CSum(i). From Lemma 4.6 we get X(i) · 1

di
= DS−(B,A, d, i)−

(DS−(B,A, d, ·)−Res(i)) =⇒ X(i) · 1
di

= Res(i)− (DS−(B,A, d, ·)−DS−(B,A, d, i)) =⇒

X(i)· 1
di

= Res(i)−(Σ∞
j=i+1(B[j]−A[j])· 1

dj
) =⇒ |X(i)· 1

di
| ≤ |Res(i)|+|(Σ∞

j=i+1(B[j]−A[j])·
1
dj
)| =⇒ |X(i) · 1

di
| ≤ |Res(i)|+ 1

di+1 · |(Σ
∞
j=0(B[j+i+1]−A[j+i+1]) · 1

dj
)| =⇒ |X(i) · 1

di
| ≤

|Res(i)|+ 1
di+1 · |maxC |. From Lemma 4.7, this implies |X(i) · 1

di
| ≤ 1

di
+ 1

di+1 · |maxC | =⇒

|X(i)| ≤ 1 + 1
d
· |maxC | =⇒ |X(i)| ≤ 1 + µ

d−1 =⇒ |X(i)| ≤ maxX

We summarize our results from Lemma 4.5-Lemma 4.9 as follows:

Corollary 4.10. Let d > 1 be an integer discount-factor. Let A and B be non-negative
integer sequences bounded by µ, and DS (A, d) < DS (B, d). Then there exists bounded
integer-valued sequences X and C that satisfy the conditions in Lemma 4.4. Furthermore, C
and X are bounded as follows:

(1) 0 ≤ C[0] ≤ µ · d
d−1 and for all i ≥ 1, 0 ≤ C[i] < d,

(2) For all i ≥ 0, 0 ≤ |X[i]| ≤ 1 + µ
d−1

Intuitively, we construct a Büchi automaton A<
d with states of the form (x, c) where x

and c range over all possible values of X and C, respectively, and a special initial state s.
Transitions over alphabet (a, b) replicate the equations in Lemma 4.4. i.e. transitions from
the start state (s, (a, b), (x, c)) satisfy a+ c+ x = b to replicate Equation 1 (Lemma 4.4) at
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the 0-th index, and all other transitions ((x1, c1), (a, b), (x2, c2)) satisfy a+ c2+x2 = b+d ·x1
to replicate Equation 2 (Lemma 4.4) at indexes i > 0. Full construction is as follows:

Construction. Let µC = µ · d
d−1 and µX = 1 + µ

d−1 . A
<
d = (S ,Σ, δd, Init ,F)

• S = {s} ∪ F ∪ S⊥ where
F = {(x, c)||x| ≤ µX , 0 ≤ c ≤ µC}, and
S⊥ = {(x,⊥)||x| ≤ µX} where ⊥ is a special character, and c ∈ N, x ∈ Z.
• State s is the initial state, and F are accepting states
• Σ = {(a, b) : 0 ≤ a, b ≤ µ} where a and b are integers.
• δd ⊆ S × Σ× S is defined as follows:
(1) Transitions from start state s:

i (s, (a, b), (x, c)) for all (x, c) ∈ F s.t. a+ x+ c = b and c 6= 0
ii (s, (a, b), (x,⊥)) for all (x,⊥) ∈ S⊥ s.t. a+ x = b

(2) Transitions within S⊥: ((x,⊥), (a, b), (x
′,⊥)) for all (x,⊥), (x′,⊥) ∈ S⊥, if a+ x′ =

b+ d · x
(3) Transitions within F : ((x, c), (a, b), (x′, c′)) for all (x, c), (x′, c′) ∈ F where c′ < d, if

a+ x′ + c′ = b+ d · x
(4) Transition between S⊥ and F : ((x,⊥), (a, b), (x′, c′)) for all (x,⊥) ∈ S⊥, (x

′, c′) ∈ F
where 0 < c′ < d, if a+ x′ + c′ = b+ d · x

Theorem 4.11. Let d > 1 be an integer discount-factor, and µ > 1 be an integer upper-bound.
Büchi automaton A<

d accepts pair of bounded sequences (A,B) iff DS (A, d) ≤ DS (B, d).

The Büchi automaton has O(µ
2

d
)-many states.

Proof. Corollary 4.10 proves that if DS (A, d) < DS (B, d) then sequences X and C satisfying
the integer sequence criteria and bounded-criteria will exist. Let these sequences be X =
X[0]X[1] . . . and C = [0]C[1] . . . . Since DS (C, d) > 0, there exists an index i ≥ 0 where
C[i] > 0. Let the first position where C[i] > 0 be index j. By construction of A<

d , the state
sequence given by s, (X[0],⊥) . . . , (X[j − 1],⊥), (X[j], C[j]), (X[j + 1], C[j + 1]) . . . , where
for all i ≥ j, C[i] 6= ⊥, forms a run of word (A,B) in the Büchi automaton. Furthermore,
this run is accepting since state (x, c) where c 6= ⊥ are accepting states. Therefore, (A,B) is
an accepting word in A<

d .
To prove the other direction, suppose the pair of sequences (A,B) has an accepting

run with state sequence s, (x0,⊥), . . . (xj−1,⊥), (xj , cj), (xj+1, cj+1) . . . , where for all i ≥ j,
cj 6= ⊥. Construct sequences X and C as follows: For all i ≥ 0, X[i] = xi. For all i < j,
C[i] = 0 and for all i ≥ j C[i] = ci. Then the transitions of A<

d guarantees Equations 1- 2
from Lemma 4.4 to hold for sequences A,B and C,X. Therefore, it must be the case that
DS (B, d) = DS (A, d) +DS (C, d). Furthermore, since the first transition to accepting states
(x, c) where c 6= ⊥ is possible only if c > 0, DS (C, d) > 0. Therefore, DS (A, d) < DS (B, d).
Therefore, A<

d accepts (A,B) if DS (A, d) < DS (B, d).

Corollary 4.12. DS-comparator for integer discount-factors d > 1 for all inequalities and
equality are ω-regular.

Proof. Immediate from Theorem 4.11, and closure properties of Büchi automaton.

Constructions of DS-comparator with integer discount-factor d > 1 for non-strict

inequality ≤ and equality = follow similarly and also have O(µ
2

d
)-many states.
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Discounted-sum aggregate function. We use the ω-regular comparator for DS-aggregate
function for integer discount-factor to prove that discounted-sum with integer discount-factors
is an ω-regular aggregate function.

Theorem 4.13. Let d > 1 be an integer discount-factor. The discounted-sum aggregate
function with discount-factor d is ω-regular under base d.

Proof. We define the discounted-sum aggregate function automaton (DS-function automaton,
in short): For integer µ > 0, let Σ = {0, 1, . . . µ} be the input alphabet of DS-function,
and d > 1 be its integer base. Büchi automaton Aµ

d over alphabet Σ × AlphaRep(d) is a
DS-function automaton of type Σω → R if for all A ∈ Σω, (A, rep(DS (A, d)), d) ∈ Aµ

d . Here
we prove that such a Aµ

d exists.
Let µ > 0 be the integer upper-bound. Let A=

d be the DS-comparator for integer
discount-factor d > 1 for relation =. Intersect A=

d with the Büchi automata consisting of all
infinite words from alphabet {0, 1 . . . µ}×{0, . . . , d− 1}. The resulting automaton B accepts
(A,B) for A ∈ {0, . . . , µ}ω and B ∈ {0, . . . , d− 1}ω iff DS (A, d) = DS (B, d). Next, we want
to ensure that for all (A,B) accepted by B, B is not of the form {0, . . . , d− 1}∗ · (d− 1)ω.
I.e., either DS (B, d) is an irrational number or DS (B, d) is a rational number in which case
we prevent the finite-representation which ends in an infinite series of (d− 1). This can be
represented by the Büchi automata B \ C, where C accepts words of the form (A,B) s.t.
A ∈ {0, . . . , µ}ω and B ∈ {0, . . . , d− 1}∗ · (d− 1)ω. A non-deterministic Büchi automaton
for C can be constructed by hand. The automaton for B \ C will be a Parity automaton.

Since all elements of B are bounded by d − 1, DS (B, d) can be represented as an
ω-word as follows: Let B = B[0], B[1] . . . , then its ω-word representation in base d is
given by + · (Int(DS (B, d), d),Frac(DS (B, d), d)) where Int(DS (B, d), d) = B[0] · 0ω and
Frac(DS (B, d), d) = B[1], B[2] . . . . This transformation of integer sequence B into its
ω-regular word form in base d can be achieved with a simple transducer T .

Therefore, application of transducer T to Parity automaton B \ C will result in a Parity
automaton over the alphabet Σ × AlphaRep(d) such that for all A ∈ Σω the automaton
accepts (A, rep(DS (A, d), d)). This is exactly the DS-function automaton over input alphabet
Σ and integer base d > 1. Therefore, the discounted-sum aggregate function with integer
discount-factors in ω-regular.

Recall, this proof works only for the discounted-sum aggregate function with integer
discount-factor. In general, there is no known procedure to derive a function automaton
from an ω-regular comparator (Conjecture 3.7).

DS-inclusion. For discounted-sum with integer discount-factor it is in EXPTIME [BH14,
CDH10] which does not match with its existing PSPACE lower bound. In this section, we use
the ω-regular DS-comparator for integer to close the gap, and establish PSPACE-completeness

of DS-inclusion under a unary representation of numbers.

Corollary 4.14. Let integer µ > 1 be the maximum weight on transitions in DS-automata
P and Q, and d > 1 be an integer discount-factor. Let µ and d be represented in unary
form. Then DS-inclusion, DS-strict-inclusion, and DS-equivalence between P and Q are
PSPACE-complete.

Proof. Since size of DS-comparator is polynomial w.r.t. to upper bound µ, when represented
in unary, (Theorem 4.11), DS-inclusion is PSPACE in size of input weighted ω-automata and
µ (Theorem 3.10).



13:22 S. Bansal, S. Chaudhuri, and M.Y. Vardi Vol. 18:3

Not only does this result improve upon the previously known upper bound of EXPTIME

but it also closes the gap between upper and lower bounds for DS-inclusion. Note, however,
if the numbers are represented in binary, then the comparator-based algorithm will incur
prohibitively large overhead since the size of the comparator will be exponential in µ.

We observe the algorithmic benefits of comparator-based solutions. The earlier known
EXPTIME upper bound in complexity is based on an exponential determinization construction
(subset construction) combined with arithmetical reasoning [BH14, CDH10]. We observe
that the determinization construction can be performed on-the-fly in PSPACE. To perform,
however, the arithmetical reasoning on-the-fly in PSPACE would require essentially using the
same bit-level ((x, c)-state) techniques that we have used to construct DS-comparator. This
point is corroborated in empirical evaluations where comparator-based approach compre-
hensively outperforms the determinization-based approach [BCV18a]. The performance of
comparator-based approach has further been improved using additional language-theoretic
properties of DS comparators, namely their safety and co-safety properties [BV19].

5. Limit-average comparator

The limit-average of an infinite sequence M is the point of convergence of the average of
prefixes of M . Let Sum(M [0, n − 1]) denote the sum of the n-length prefix of sequence
M . The limit-average infimum, denoted by LimInfAvg(M), is defined as lim infn→∞

1
n
·

Sum(M [0, n − 1]). Similarly, the limit-average supremum, denoted by LimSupAvg(M), is
defined as lim supn→∞

1
n
· Sum(M [0, n − 1]). The limit-average of sequence M , denoted

by LimAvg(M), is defined only if the limit-average infimum and limit-average supremum
coincide, and then LimAvg(M) = LimInfAvg(M) (= LimSupAvg(M)). Note that while limit-
average infimum and supremum exist for all bounded sequences, the limit-average may
not. To work around this limitation of limit-average, most applications simply use limit-
average infimum or limit-average supremum of sequences [BCD+11, CDH10, CHJ05, ZP96].
However, the usage of limit-average infimum or limit-average supremum in lieu of limit-
average for purpose of comparison can be misleading. For example, consider sequence A
s.t. LimSupAvg(A) = 2 and LimInfAvg(A) = 0, and sequence B s.t. LimAvg(B) = 1. Clearly,
limit-average of A does not exist. So while it is true that LimInfAvg(A) < LimInfAvg(B),
indicating that at infinitely many indices the average of prefixes of A is lower, this renders
an incomplete picture since at infinitley many indices, the average of prefixes of B is greater
as LimSupAvg(A) = 2.

Such inaccuracies in limit-average comparison may occur when the limit-average of at
least one sequence does not exist. However, it is not easy to distinguish sequences for which
limit-average exists from those for which it doesn’t.

We define prefix-average comparison as a relaxation of limit-average comparison. Prefix-
average comparison coincides with limit-average comparison when limit-average exists for
both sequences. Otherwise, it determines whether eventually the average of prefixes of
one sequence are greater than those of the other. This comparison does not require the
limit-average to exist to return intuitive results. Further, we show that the prefix-average
comparator is ω-context-free.

5.1. Limit-average language and comparison. Let Σ = {0, 1, . . . , µ} be a finite alpha-
bet with µ > 0. The limit-average language LLA contains the sequence (word) A ∈ Σω iff
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its limit-average exists. We begin with the intuition to why limit-average language is neither
ω-regular nor ω-context free. The formal argument is available in Theorem 5.1.

Suppose LLA were ω-regular, then LLA =
⋃n

i=0 Ui · V
ω
i , where Ui, Vi ⊆ Σ∗ are regular

languages over finite words. The limit-average of sequences is determined by its behavior in
the limit, so limit-average of sequences in V ω

i exists. Additionally, the average of all (finite)
words in Vi must be the same. If this were not the case, then two words in Vi with unequal
averages l1 and l2, can generate a word w ∈ V ω

i s.t the average of its prefixes oscillates
between l1 and l2. This cannot occur, since limit-average of w exists. Let the average of
sequences in Vi be ai, then limit-average of sequences in V ω

i and Ui · V
ω
i is also ai. This

is contradictory since there are sequences with limit-average different from ai. Similarly,
since every ω-CFL is represented by

⋃n
i=1 Ui · V

ω
i for CFLs Ui, Vi over finite words [CG77],

a similar argument proves that LLA is not ω-context-free.

Theorem 5.1. LLA is neither an ω-regular nor an ω-context-free language.

Proof. We first prove that LLA is not ω-regular.
Let us assume that the language LLA is ω-regular. Then there exists a finite number n

s.t. LLA =
⋃n

i=0 Ui · V
ω
i , where Ui and Vi ∈ Σ∗ are regular languages over finite words.

For all i ∈ {0, 1, . . . n}, the limit-average of any word in Ui · V
ω
i is given by the suffix of

the word in V ω
i . Since Ui ·V

ω
i ⊆ LLA, limit-average exists for all words in Ui ·V

ω
i . Therefore,

limit-average of all words in V ω
i must exist. As discussed above, we conclude that the

average of all words in Vi must be the same. Furthermore, we know that the limit-average
of all words in V ω

i must be the same, say LimAvg(w) = ai for all w ∈ V ω
i .

Then the limit-average of all words in LLA is one of a0, a1 . . . an. Let a = p
q
s.t p < q,

and a 6= ai for i ∈ {0, 1, . . . , µ}. Consider the word w = (1p0q−p)ω. It is easy to see that
LimAvg(w) = a. However, this word is not present in LLA since the limit-average of all
words in LLA is equal to a0 or a1 . . . or an.

Therefore, our assumption that LLA is an ω-regular language has been contradicted.
Next we prove that LLA is not an ω-CFL.
Every ω-context-free language can be written in the form of

⋃n
i=0 Ui · V

ω
i where Ui and

Vi are context-free languages over finite words. The rest of this proof is similar to the proof
for non-ω-regularity of LLA.

In the next section, we will define prefix-average comparison as a relaxation of limit-
average comparison. To show how prefix-average comparison relates to limit-average compar-
ison, we will require the following two lemmas: Quantifiers ∃∞i and ∃f i denote the existence
of infinitely many and only finitely many indices i, respectively.

Lemma 5.2. Let A, B be sequences s.t their limit-average exists. If LimAvg(A) > LimAvg(B)
then ∃f i, Sum(B[0, i− 1]) ≥ Sum(A[0, i− 1]).

Proof. Let the limit-average of sequences A, B be La, Lb respectively. Since the limit
average of both A and B exists, for every ε > 0, there exists Nε s.t. for all n > Nε,
|Avg(A[1, n])− La| < ε and |Avg(B[1, n])− Lb| < ε.

Let La − Lb = k > 0. Let us take ε = k
4 . Then, for all n > N k

4

, we get that

Avg(A[0, n− 1])− Avg(B[0, n− 1]) > k
2 , since La − Lb = k and |Avg(A[1, n])− La| <

k
4 and

|Avg(B[1, n])−Lb| <
k
4 . Thus, for all n > N k

4

, we get that Sum(A[0, n−1]) > Sum(B[0, n−1]).

In particular, we get that ∃f i, Sum(B[0, i− 1]) ≥ Sum(A[0, i− 1]).
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The implication does not hold the other way since for sequences A and B with equal limit-
average it is possible that ∃∞i, Sum(A[0, n− 1]) > Sum(B[0, n− 1]) and ∃∞i, Sum(B[0, n−
1]) > Sum(A[0, n− 1]).

Lemma 5.3. Let A and B be sequences s.t. their limit average exists. If ∃f i, Sum(B[0, i−
1]) ≥ Sum(A[0, i− 1]), then LimAvg(A) ≥ LimAvg(B).

Proof. We prove by contradiction.
Suppose, LimAvg(A) < LimAvg(B). Then, from Lemma 5.2, we know that

∃f i, Sum(A[0, i− 1]) ≥ Sum(B[0, i− 1]).

But, ∃f i, Sum(A[0, i−1]) ≥ Sum(B[0, i−1]) and ∃f i, Sum(B[0, i−1]) ≥ Sum(A[0, i−1]) cannot
hold together since the sequences A and B are of infinite length. Hence, contradiction.

5.2. Prefix-average comparison and comparator. The previous section relates limit-
average comparison with the sums of equal length prefixes of the sequences (Lemma 5.2-5.3).
The comparison criterion is based on the number of times sum of prefix of one sequence is
greater than the other, which does not rely on the existence of limit-average. Unfortunately,
this comparison criterion is not necessary and sufficient for limit-average comparison due to
the one-way implication of Lemma 5.2. Instead, we use this criteria to define prefix-average
comparison. In this section, we define prefix-average comparison and explain how it relaxes
limit-average comparison. Lastly, we construct the prefix-average comparator, and prove
that it is not ω-regular but is ω-context-free.

Definition 5.4 (Prefix-average comparison). Let A and B be number sequences. We say
PrefixAvg(A) � PrefixAvg(B) if ∃f i, Sum(B[0, i− 1]) ≥ Sum(A[0, i− 1]).

Note, the definition implies that ∃∞i, Sum(A[0, i− 1]) > Sum(B[0, i− 1]).
Intuitively, prefix-average comparison states that PrefixAvg(A) � PrefixAvg(B) if eventu-

ally the sum of prefixes of A are always greater than those of B. We use � since the average
of prefixes may be equal when the difference between the sum converges to 0. Definition 5.4
and Lemma 5.2-5.3 relate limit-average comparison and prefix-average comparison:

Corollary 5.5. When limit-average of A and B exists, then

• PrefixAvg(A) � PrefixAvg(B) =⇒ LimAvg(A) ≥ LimAvg(B).
• LimAvg(A) > LimAvg(B) =⇒ PrefixAvg(A) � PrefixAvg(B).

Proof. The first item falls directly from Definition 5.4 and Lemma 5.3. The second item
falls directly from Definition 5.4 and Lemma 5.2.

Therefore, on sequences for which limit-average exists, the first bullet says that prefix-
average comparison returns the same result as limit-average comparison. In addition, when
limit-average may not exist, the prefix-average comparison can return intuitive results. For
example, suppose limit-average of A and B do not exist, but LimInfAvg(A) > LimSupAvg(B),
then PrefixAvg(A) � PrefixAvg(B). This way, prefix-average comparison relaxes limit-average
comparison.

The rest of this section describes prefix-average comparator, denoted by A�
PA
, an au-

tomaton that accepts the pair (A,B) of sequences iff PrefixAvg(A) � PrefixAvg(B).
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Lemma 5.6. (Pumping Lemma for ω-regular language [ADMW09]) Let L be an
ω-regular language. There exists p ∈ N such that, for each w = u1w1u2w2 · · · ∈ L such that
|wi| ≥ p for all i, there are sequences of finite words (xi)i∈N, (yi)i∈N, (zi)i∈N s.t., for all i,
wi = xiyizi, |xiyi| ≤ p and |yi| > 0 and for every sequence of pumping factors (ji)i∈N ∈ N,
the pumped word u1x1y

j1
1 z1u2x2y

j2
2 z2 · · · ∈ L.

Theorem 5.7. The prefix-average comparator is not ω-regular.

Proof Sketch. We use Lemma 5.6 to prove that A�
PA

is not ω-regular. Suppose A�
PA

were
ω-regular. For p > 0 ∈ N, let w = (A,B) = ((0, 1)p(1, 0)2p)ω. The segment (0, 1)∗ can be

pumped s.t the resulting word is no longer in A�
PA
.

Concretely, A = (0p12p)ω, B = (1p02p)ω, LimAvg(A) = 2
3 , LimAvg(B) = 1

3 . So, w =

(A,B) ∈ A≥
PA
. Select as factor wi (from Lemma 5.6) the sequence (0, 1)p. Pump each yi

enough times so that the resulting word is ŵ = (Â, B̂) = ((0, 1)mi(1, 0)2p)ω where mi > 4p.

It is easy to show that ŵ = (Â, B̂) /∈ A�
PA
.

We discuss key ideas and sketch the construction of the prefix average comparator. The
term prefix-sum difference at i indicates Sum(A[0, i−1])−Sum(B[0, i−1]), i.e. the difference
between sum of i-length prefix of A and B.

Key ideas. For sequencesA andB to satisfy PrefixAvg(A) � PrefixAvg(B), ∃f i, Sum(B[0, i−
1]) ≥ Sum(A[0, i − 1]). This implies there exists an index N s.t. for all indices i > N ,
Sum(A[0, i − 1]) − Sum(B[0, i − 1]) > 0. While reading a word, the prefix-sum difference
is maintained by states and the stack of ω-PDA: states maintain whether it is negative or
positive, while number of tokens in the stack equals its absolute value. The automaton
non-deterministically guesses the aforementioned index N , beyond which the automaton
ensures that prefix-sum difference remains positive.

Construction sketch. The push-down comparator A�
PA

consists of three states: (i) State
sP and (ii) State sN that indicate that the prefix-sum difference is greater than zero or not
respectively, (iii) accepting state sF . An execution of (A,B) begins in state sN with an
empty stack. On reading letter (a, b), the stack pops or pushes |(a− b)| tokens from the stack
depending on the current state of the execution. From state sP , the stack pushes tokens if
(a− b) > 0, and pops otherwise. The opposite occurs in state sN . State transition between
sN and sP occurs only if the stack action is to pop but the stack consists of k < |a − b|
tokens. In this case, stack is emptied, state transition is performed and |a− b| − k tokens
are pushed into the stack. For an execution of (A,B) to be an accepting run, the automaton
non-deterministically transitions into state sF . State sF acts similar to state sP except that
execution is terminated if there aren’t enough tokens to pop out of the stack. A�

PA
accepts

by accepting state.
To see why the construction is correct, it is sufficient to prove that at each index

i, the number of tokens in the stack is equal to |Sum(A[0, i − 1]) − Sum(B[0, i − 1])|.
Furthermore, in state sN , Sum(A[0, i− 1])− Sum(B[0, i− 1]) ≤ 0, and in state sP and sF ,
Sum(A[0, i−1])−Sum(B[0, i−1]) > 0. Next, the index at which the automaton transitions to
the accepting state sF coincides with index N . The execution is accepted if it has an infinite
execution in state sF , which allows transitions only if Sum(A[0, i− 1])−Sum(B[0, i− 1]) > 0.



13:26 S. Bansal, S. Chaudhuri, and M.Y. Vardi Vol. 18:3

Construction. We provide a sketch of the construction of the Büchi push-down autoamaton
A≥

PA
, and then prove that it corresponds to the prefix average comparator.
Let µ be the bound on sequences. Then Σ = {0, 1, . . . , n} is the alphabet of sequences.

Let A�
PA

= (S ,Σ× Σ,Γ, δ, s0, Z0) where:

• S = {sN , sP , sF } is the set of states of the automaton.
• Σ× Σ is the alphabet of the language.
• Γ = {Z0, α} is the alphabet.
• s0 = sN is the start state of the automata.
• Z0 is the start symbol of the stack.
• sF is the accepting state of the automaton. Automaton A≥

PA
accepts words by final state.

• Here we give a sketch of the behavior of the transition function δ.
– When A�

PA
is in configuration (sP , τ) for τ ∈ Γ, push a number of α-s into the stack.

Next, pop b number of α-s. If after popping k α-s where k < b, the PDA’s configuration
becomes (sP , Z0), then first move to state (sN , Z0) and then resume with pushing b− k
α-s into the stack.

– When A�
PA

is in configuration (sN , τ) for τ ∈ Γ, push b number of α-s into the stack
Next, pop a number of α-s. If after popping k α-s where k < a, the PDA’s configuration
becomes (sN , Z0), then first move to state (sP , Z0) and then resume with pushing a− k
α-s into the stack.

– When A�
PA

is in configuration (sP , τ) for τ 6= Z0, first move to configuration (sF , τ) and
then push a number of α-s and pop b number of α-s. Note that there are no provisions
for popping α if the stack hits Z0 along this transition.

– When A�
PA

is in configuration (sF , τ) for τ 6= Z0, push a α-s then pop b α-s.
Note that there are no provisions for popping α if the stack hits Z0 along this transition.

Lemma 5.8. Pushdown automaton A�
PA

accepts a pair of sequences (A,B) iff PrefixAvg(A) �
PrefixAvg(B).

Proof sketch. To prove this statement, it is sufficient to demonstrate that A�
PA

accepts a pair
of sequences (A,B) iff there are only finitely many indexes where Sum(B[1, i]) > Sum(A[1, i]).

On A�
PA

this corresponds to the condition that there being only finitely many times when the
PDA is in state N during the run of (A,B). This is ensured by the pushdown automaton
since the word can be accepted only in state F and there is no outgoing edge from F .
Therefore, every word that is accepted by A�

PA
satisfies the condition ∃f i, Sum(B[0, i− 1]) ≥

Sum(A[0, i− 1]).
Conversely, for every word (A,B) that satisfies ∃f i, Sum(B[0, i− 1]) ≥ Sum(A[0, i− 1])

there is a point, call it index k, such that for all indexesm > k, Sum(B[1,m]) � Sum(A[1,m]).
If a run of (A,B) switches to F at this m, then it will be accepted by the automaton. Since

A�
PA

allows for non-deterministic move to (F, τ) from (P, τ), the run of (A,B) will always

be able to move to F after index m. Hence, every (A,B) satisfying ∃f i, Sum(B[0, i− 1]) ≥

Sum(A[0, i− 1]) will be accepted by A�
PA
.

Theorem 5.9. The prefix-average comparator is an ω-CFL.

While ω-CFL can be easily expressed, they do not possess closure properties, and
several problems on ω-CFL are easily undecidable. Hence, the application of ω-context-
free comparator will require further investigation. For example, it is unclear whether
ω-context free comparators can solve quantitative inclusion since complementation of ω-
CFL is undecidable. Problems like membership in ω-CFG are decidable. We will have to
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investigate applications where reductions using ω-context-free comparators require decidable
operations such as membership.

6. Concluding remarks

In this paper, we identified a novel mode for comparison in quantitative systems: the
online comparison of aggregate values of sequences of quantitative weights. This notion is
embodied by comparators automata that read two infinite sequences of weights synchronously
and relate their aggregate values. We showed that all ω-regular aggregate functions have
ω-regular comparators. However, the converse direction is still open: Are functions with
ω-regular comparators also ω-regular? We showed that ω-regular comparators not only yield
generic algorithms for problems including quantitative inclusion and winning strategies in
incomplete-information quantitative games, they also result in algorithmic advances [BCV21].
We establish that when the weights are represented in unary, the discounted-sum inclusion
problem is PSAPCE-complete for integer discount-factor, hence closing a complexity gap.
We showed that discounted-sum aggregate function and their comparators are ω-regular
iff the discount-factor d > 1 is an integer. We showed that prefix-average comparator are
ω-context-free.

We believe comparators, especially ω-regular comparators, can be of significant utility in
verification and synthesis of quantitative systems [Ban20], as demonstrated by the existence
of finite-representation of counterexamples of the quantitative inclusion problem. Another
potential application is computing equilibria in quantitative games. Applications of the prefix-
average comparator, in general ω-context-free comparators, is open to further investigation.
Another direction to pursue is to study aggregate functions in more detail, and attempt to
solve the conjecture relating ω-regular aggregate functions and ω-regular comparators.
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[DAFS04] Luca De Alfaro, Marco Faella, and Mariëlle Stoelinga. Linear and branching metrics for quanti-
tative transition systems. In Proc. of ICALP, pages 97–109. Springer, 2004.

[DDG+10] Aldric Degorre, Laurent Doyen, Raffaella Gentilini, Jean-François Raskin, and Szymon Toruńczyk.
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