
High-dimensional Causal Mediation Analysis Based on Partial Linear

Structural Equation Models
⇤

Xizhen Caia, Yeying Zhub, Yuan Huangc,⇤, Debashis Ghoshd

aDepartment of Mathematics and Statistics, Williams College, Williamstown, MA 01267, United States
bDepartment of Statistics & Actuarial Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada

cDepartment of Biostatistics, Yale School of Public Health, New Haven, CT 06511, United States
dDepartment of Biostatistics & Informatics, Colorado School of Public Health, Aurora, CO 80045, United States

Abstract

Causal mediation analysis has become popular in recent years, in which researchers not only aim

to estimate the causal e↵ect of a treatment, but also try to understand how the treatment a↵ects

the outcome through intermediate variables, namely mediators. In this paper, a set of generalized

structural equations to estimate the direct and indirect e↵ects for mediation analysis is proposed

when the number of mediators is of high-dimensionality. Specifically, a two-step procedure is

considered where the penalization framework can be adopted to perform variable selection. A

partial linear model is used to account for a nonlinear relationship among pre-treatment confounder

(confounders) and the response variable in each model, given that the interest is in estimating the

coe�cients for the treatment and the mediators in the structural models. The obtained estimators

can be interpreted as causal e↵ects without imposing the linear assumption on the model structure.

The performance of Sobel’s method in obtaining the standard error and confidence interval for the

estimated joint indirect e↵ect is also evaluated in simulation studies. Simulation results show a

superior performance of our proposed method. The proposed method is applied to investigate how

DNA methylation plays a role in the regulation of human stress reactivity impacted by childhood

trauma.
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1. Introduction

Mediation analysis is often used to study how a treatment variable relates to the outcome variable

through an intermediate variable, namely, a mediator (see Figure 1 (a) for a visual illustration).

The most commonly used approach for mediation analysis is the Baron and Kenny’s four-step

linear structural equation modeling (LSEM) approach (Baron and Kenny, 1986; Judd and Kenny,5

1981). In LSEM, the total e↵ect of the treatment on the outcome is decomposed into two kinds of

e↵ects: the direct e↵ect and the indirect e↵ect, where the latter refers to the e↵ect of the treatment

on the outcome that goes through the mediator. Based on the framework of counterfactuals,

modern mediation approaches interpret the mediation e↵ect as natural e↵ects, controlled e↵ects,

and principal stratification e↵ects, all of which can be interpreted causally because they are based10

on the contrast among the potential outcomes within the same subject. Such approaches include

Angrist et al. (1996), who apply two-stage least squares to estimate principal stratification e↵ects

among compliers; Ten Have et al. (2007), who propose rank preserving models (RPM) for controlled

e↵ects, Gallop et al. (2009), who focus on Bayesian approaches for principal stratification e↵ects,

and Imai et al. (2010a,b), who propose nonparametric identification of natural direct and indirect15

e↵ects. A comprehensive review of these causal approaches can be found in Co↵man et al. (2016).

In particular, Imai et al. (2010a) have shown that the estimated direct and indirect e↵ects

by LSEM are causal e↵ects under certain assumptions. A strong assumption about the traditional

LSEM approach is that the assumed linear models are correct. However, the true relationship among

the three set of variables (treatment, outcome, mediators), as well as the pre-treatment confounders20

are unknown (we will defer the formal definition of pre-treatment confounders to Section 2.1). With

the existence of a large number of pre-treatment confounders, this assumption is unlikely to be

true (Keele and Keele, 2008; Imai et al., 2010a). In this article, we relax the linear assumption

by imposing a set of more flexible models, i.e., partial linear models, where the pre-treatment

confounders are regarded as nuisance in the sense that nonparametric smoothing methods can be25

fitted to capture the relationship between the pre-treatment confounders and the outcome variables

in each model. A similar type of model framework has been considered in Hines et al. (2021).

Very often, the causal e↵ect of a treatment on the outcome can be carried out by multiple

indirect pathways and recent development in mediation analysis has focused on estimating the

direct and indirect e↵ects with the existence of multiple mediators, e.g., Imai and Yamamoto30

(2013); VanderWeele and Vansteelandt (2014); Huang and Pan (2016); Aung et al. (2020); Jirolon
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et al. (2020). In many applications, the set of mediators could be high-dimensional or even ultra

high-dimensional. For example, researchers might be interested in investigating how an exposure

variable could a↵ect the disease outcome through DNA methylation markers. In this case, the

number of markers could even be larger than the sample size. Zhang et al. (2016) propose a penalized35

estimating and inference procedure based on linear models when the mediators are high-dimensional

methylation markers, in which the authors employ sure independence screening (SIS) and minimax

concave penalty (MCP) for variable selection. As a data application, the authors study how DNA

methylations mediate the association between smoking and lung cancer. Chén et al. (2018) consider

transforming the mediators into a few of orthogonal components by linear combinations. Gao et al.40

(2019) propose a sparse mediation model and a high-dimensional testing procedure based on SIS and

LASSO for correlated multiple mediators. The authors apply the proposed method to study how

DNA methylations mediate the association between alcohol consumption and epithelial ovarian

cancer status. Guo et al. (2021) study a statistical inference procedure in the high-dimensional

linear mediation models. They propose a new F-type test for the direct and indirect e↵ects and45

also develop its theoretical properties. Luo et al. (2020) extend the methodologies to a survival

outcome for settings with high-dimensional mediators.

However, none of the above-mentioned methods explicitly consider the possible confounders in

the study. In observational studies, if the purpose is to draw causal conclusions, not accounting for

the pre-treatment confounders will lead to biased estimators of causal direct and indirect e↵ects.50

Under high-dimensional settings, performance of variable selection can also be a↵ected. In this

paper, we propose a two-step procedure to select the important mediators and to estimate the

direct and indirect e↵ects simultaneously with the confounders taken into account in the models.

The paper will proceed as follows. In Section 2, we review the traditional linear structural

equation modeling approach and the assumptions needed for estimating causal direct and indirect55

e↵ects. In Section 3, we propose a set of partial linear models that allow flexible modeling for

the pre-treatment confounders. We then propose variable selection procedures when the set of

mediators is high-dimensional. Simulation studies are conducted to compare the proposed method

with alternative approaches in Section 4 and an application to an epigenetic study is provided in

Section 5.60
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Figure 1: (a) The treatment Z, outcome Y , pre-treatment confounders X, and a single mediator M ; (b) The
treatment Z, outcome Y , pre-treatment confounders X, and multiple mediators M1, . . . ,Mp. The dashed lines with
double-headed arrows on plot (b) represent the correlations between pairs of mediators.

2. Traditional Linear Structural Equation Modeling Approach

In this section, we review the traditional mediation analysis method as well as the causal me-

diation analysis based on the potential outcomes framework in the context of a single mediator,

followed by a description of connections between the two streams of methods.

2.1. Linear Structural Equation Modeling65

The traditional approach for mediation analysis uses a linear structural equation modeling

(LSEM) approach (Judd and Kenny, 1981; Baron and Kenny, 1986). Based on Baron and Kenny’s

four-step procedure, the total e↵ect of the treatment can be decomposed into the direct and indirect

e↵ects, where the latter implies the amount of mediation. Denote the treatment variable as Z,

the outcome variable as Y , the mediator variable as M , and the pre-treatment confounders as70

X = (X1, . . . , Xk)>. A pre-treatment confounder is a variable that (1) jointly a↵ects Z & Y; or (2)

jointly a↵ects Z & M; or (3) jointly a↵ects M &Y; and (4) is not a↵ected by Z (VanderWeele, 2016;

Valente et al., 2017).
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The mediation e↵ect can be calculated through the following set of regression models:

Y = �0 + �Z + �
>
XX+ ✏1, (1)

Y = �0 + �M + �
0
Z + �

>
XX+ ✏2, (2)

M = ↵0 + ↵Z + ↵
>
XX+ ✏3, (3)

where ✏i ⇠ N(0,�2
i ), i = 1, 2, 3. In the above models, the direct e↵ect is defined as �0 (i.e., the e↵ect75

of the treatment on the outcome when M is fixed) while the indirect e↵ect is ↵� (i.e., the e↵ect of

the treatment on the outcome that goes through the mediator). As a result, examining whether

a mediation e↵ect exists is equivalent to testing H0 : ↵� = 0. Although Model (1) is not used to

estimate ↵ and �, if we substitute Model (3) into Model (2) and compare it with Model (1), we

get � � �
0 = ↵�. If all of the parameters are estimated by least squares, we also have �̂ � �̂

0 = ↵̂�̂80

(MacKinnon et al., 1995).

If Z is randomized, the total e↵ect of Z on Y (i.e., �) and the e↵ect of Z on M (i.e., ↵) may

be interpreted causally. On the other hand, �0 and � do not readily admit a causal interpretation

due to the fact that M is a post-treatment variable, which is a variable that can be a↵ected by the

treatment. In Section 2.2, we list the assumptions under which the direct and indirect e↵ects based85

on LSEM have causal interpretations.

2.2. Assumptions

To make causal inference, we employ the potential outcome framework to define causal quantities

(Rubin, 1974, 1978). We denote Yi(z,m) as the potential outcome if subject i was assigned to the

treatment level z and the mediator level m. We further define Mi(z0) as the potential mediator90

value if subject i was assigned to the treatment level z0. Assuming the treatment Z is binary, the

natural direct e↵ect is defined as NDEz = E(Y (1,M(z))�E(Y (0,M(z)) and the natural indirect

e↵ect is defined as NIEz = E(Y (z,M(1))�E(Y (z,M(0)) for z = 0, 1 (Pearl, 2001). The total e↵ect

is TE = E(Y (1,M(1))� E(Y (0,M(0)) and can be written as NDE1 +NIE0 or NDE0 +NIE1.

Imai et al. (2010a) prove that the mediation e↵ect ↵� can be interpreted as a causal e↵ect and95

↵� = NIE1 = NIE0 if the following assumptions are satisfied:
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• Sequential Ignorability Assumption:

{Y (z,m),M(z0)}?Z|X,

Y (z,m)?M(z0)|Z,X,

where Pr(Z = z|X = x) > 0 and Pr(M(z0) = m|Z = z,X = x) > 0 for all possible values of

x, m, and z.100

• Linearity Assumption: the linear relationship between the predictors and the response variable

is satisfied in Models (1) - (3).

• No Interaction Assumption: there is no interaction between Z & M .

The first part of the ignorability assumption says that among those who share the same values of

baseline covariates, the treatment can be regarded as randomized. This is automatically true if the105

treatment is randomly assigned. However, in observational studies, where treatment is self-selected,

this assumption may not be true and can hardly be tested based on the observed data. As pointed

out by Imai et al. (2010b), a common strategy is to collect as many baseline covariates as possible

so there is no unmeasured confounders. This argument also applies to the second part of the

ignorability assumption; that is among those who have the same values of treatment and baseline110

covariates, the mediator can be regarded as randomized if there is no unmeasured confounders.

Note that in Model (2), there is no treatment-mediator interaction, which is the focus of this study.

However, in the literature, this no interaction assumption has been relaxed by Kraemer et al.

(2002, 2008); Imai et al. (2010a,b). Since the sequential ignorability assumption is an untestable

assumption, we will focus on relaxing the linearity assumption for estimating the natural direct and115

indirect e↵ects in the following work.
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3. Proposed Methodology

3.1. Relaxing the Linearity Assumption

The linearity assumption mentioned above is a strong assumption imposed on the form of the

models. To relax this assumption, we propose a set of generalized linear structural equation models:120

Y = �0 + �Z + g1(X) + ✏1, (4)

Y = �0 + �M + �
0
Z + g2(X) + ✏2, (5)

M = ↵0 + ↵Z + g3(X) + ✏3, (6)

where gj(X), j = 1, 2, 3 are assumed to be some unknown smoothed functions, and thus are non-

parametric. The above models are partial linear models (Härdle et al., 2000) where the nonpara-

metric components act like nuisance parameters. The main interest of partial linear models is to

estimate the coe�cients for the linear components. Under this model framework, the indirect e↵ect

is still ���
0 = ↵�, but we allow a more flexible relationship between the pre-treatment confounders125

and the mediator, as well as the outcome variable.

3.2. Multiple Mediators and Mediator Selection

In many applications, especially genetic studies, the causal pathway is often carried out by mul-

tiple mediators (see Figure 1 (b) for a visual illustration). Models (5)-(6) can be further extended to

accommodate datasets with multiple candidate mediators. Denote the vector of candidate media-130

tors as M = (M1,M2, . . . ,Mp)> where p is the number of candidate mediators. Model (4) remains

unchanged, but Models (5) and (6) can be generalized to the following set of models,

Y = �0 + �>M+ �
0
Z + g2(X) + ✏2, (7)

Mj = ↵j0 + ↵jZ + g3j(X) + ✏3j , j = 1, 2, . . . , p. (8)

Note that now each mediator is associated with one equation in (8). It is often not realistic to

assume that the mediators are independent. For example, in genetic studies, the DNA methylation

markers could be correlated with each other. Therefore, it is assumed that ✏3j ’s are correlated, but135

they are independent with ✏2 in (7). Note here we do not consider the case where the mediators are

causally related. The dashed lines with double-headed arrows between any pair of two mediators
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Figure 2: An illustration of an invalid mediator Mj (ignoring the pre-treatment confounders).In (a), ↵j = 0 but
�j 6= 0; in (b), �j = 0 but ↵j 6= 0. In both scenarios, Mj is only associated with one of Z and Y, and thus Mj is not
a valid mediator.

in Figure 1 (b) indicate that they are only correlated. In the case when one mediator causes the

other, the direct and indirect e↵ect have to be redefined in a more complex way. See Imai and

Yamamoto (2013); Daniel et al. (2015) for examples. Without independence, the mediation e↵ect140

for each individual mediator is generally unidentifiable. Thus the interest of such settings is usually

in estimating the joint mediation/indirect e↵ect of all the mediators. If we stack the coe�cients

↵j ’s in (8) as ↵ = (↵1,↵2, . . . ,↵p)>, then the joint indirect e↵ect is represented by ↵>�.

When the dimension of the potential mediators is high or ultra-high, identifying a subset of

true mediators is of scientific interest and also increases estimation precision of the estimated direct145

and indirect e↵ects. For an individual mediator Mj , if ↵j�j = 0, it adds no contribution to the

joint indirect e↵ect, and thus should be removed from the set of mediators. Next, we propose a

two-step procedure for selecting the important mediators based on the fact that ↵j�j 6= 0 if and

only if ↵j 6= 0 and �j 6= 0. In other words, if ↵j = 0 but |�j | is large, we do not consider Mj

as a valid mediator. The same applies to the scenario when �j = 0 but |↵j | is large. These two150

scenarios can be illustrated in Figure 2. In both scenarios, Mj is not a valid mediator because it is

only associated with one of Z and Y.

To proceed, we first assume that the nonlinear components of Models (7) and (8) follow an
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additive model (Hastie and Tibshirani, 1990), i.e.,

g2(X) =
KX

k=1

g
k
2 (Xk), g3j(X) =

KX

k=1

g
k
3j(Xk). (9)

Then, we are going to approximate g2(X) and g3j(X) by smoothing techniques. There are various155

smoothing techniques we can employ including but not limited to regression spline, smoothing

spline, local regression, etc (Fan and Gijbels, 2018). We include more details of the implementation

in the simulation study section. Here we use regression spline for its easiness of implementation in a

regression setting. Specifically, denote the normalized B-spline basis functions as Bb(·), b = 1, . . . , B,

then the transformed expression of g2(X) and g3j(X) can be written as160

g2(X) ⇡
KX

k=1

BX

b=1

⇠
0k
b B

0
b(Xk), g3j(X) ⇡

KX

k=1

BX

b=1

⇠
k
bjBbj(Xk) (10)

where ⇠
0
b
k and ⇠

k
bj are the coe�cients associated with the b-th basis function B

0
b(·) and Bbj(Xk),

respectively.

Denote the subscript i as the index for the ith observation. We propose the following two-

step procedure to get a parsimonious set of mediators and to estimate the direct e↵ect and the

joint indirect e↵ect based on the selected mediators. First, we estimate and select the nonzero165

components of � by minimizing

1

2n

nX

i=1

(
Yi � �0 � �>Mi � �

0
Zi �

KX

k=1

BX

b=1

⇠
0k
b B

0
b(Xik)

)2

+
pX

j=1

p�j (|�j |), (11)

where p�j (|�j |) is the penalty function placed on the jth covariate with tuning parameter �j . It

shrinks the magnitude of the estimated �, so that some �̂j ’s might be shrunken to zero. Here, we

adopt the adaptive LASSO based on L1 penalty for variable selection due to its oracle property

(Zou, 2006). Other adopted penalty functions can also be implemented in this framework, including170

SCAD (Fan and Li, 2001), elastic net (Zou and Hastie, 2005), and the plain LASSO (Tibshirani,

1996), etc.

Then, denote B as the set of non-zero �j ’s selected by (11) and q = dim(B), we now only consider
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a subset of the equations in (8). That is,

Mj = ↵j0 + ↵jZ + g3j(X) + ✏3j , for j 2 B.

To complete the second step, we further apply one of the following two methods to select a175

subset of the mediators in B by identifying nonzero ↵j ’s, with j 2 B.

I. Consider all q models at the same time and apply a penalty function on ↵j ’s, j 2 B. Specifi-

cally, we minimize the following objective function by stacking the corresponding datasets for

the q penalization problems together,

1

2nq

nX

i=1

X

j2B

(
Mij � ↵j0 � ↵jZi �

KX

k=1

BX

b=1

⇠
k
bjBbj(Xik)

)2

+
X

j2B
p�j (|↵j |). (12)

II. Estimate q models separately, each as one partial linear regression; and obtain the p-values180

for ↵j ’s. We then adjust the obtained p-values for testing ↵j = 0, j 2 B by the Bonferroni

correction and select the ones with an adjusted p-value smaller than a given threshold. This

is to control the family-wise type I error in multiple testing.

After the above second-step selection, we denote the set of non-zero ↵j ’s selected as A, which is

a subset of B. As a result, {Mj , j 2 A} is the final set of important mediators selected by our185

proposed two-step procedure.

To estimate the direct and joint indirect e↵ect, we refit Models (7) & (8) with the selected

mediators in A. Specifically, the Models (8) is fitted as a multivariate regression model with a

multivariate response vector of dimension |A|, i.e., the size of A. By conducting a multivariate

regression, we account for the correlation in the selected mediators, and are able to obtain an190

estimated covariance matrix for the estimated ↵̂j ’s, which can further be used to estimate the

standard error of the estimated joint indirect e↵ect (see section 3.3). Without ambiguity, we still

denote the estimated direct e↵ect as �̂0 and the estimated indirect e↵ect as ↵̂>�̂ after model selection

and refit.

3.3. Inference of the Indirect E↵ect and Standard Error Estimation195
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Under classic low-dimensional settings, the asymptotic distribution of ↵̂>�̂ is a multivariate

normal distribution (Sobel, 1982) obtained by the multivariate delta method with the variance

estimator as

dV ar[↵̂>�̂] = �̂>
Cov[↵̂]�̂ + ↵̂>

Cov[�̂]↵̂, (13)

where ↵̂ and �̂ are the estimated coe�cients in Models (7) & (8); Cov(↵̂) is the estimated variance-

covariance matrix for ↵̂ using multivariate linear regression for Model (8), and Cov(�̂) is the

estimated variance-covariance matrix for �̂ in the simple partial linear regression for Model (7).

Note, similar variance estimation for the joint indirect e↵ect is also discussed and used in Bollen

(1987, 1989); Preacher et al. (2007); Preacher and Hayes (2008). Denote SE[↵̂>�̂] as the square

root of the variance estimate, then a Wald test statistic for testing H0 : ↵>� = 0, vs.Ha : ↵>� 6= 0.

can be defined as
↵̂>�̂

SE[↵̂>�̂]
,

which is treated as following the standard normal distribution asymptotically (Sobel, 1982).

In our settings with high-dimensionality, the application of the Sobel’s method needs a careful200

choice of post-selection estimates for the parameters and their covariance matrices in Eqn (13). We

examine the performance of Sobel’s method using the estimates from the refitted models. That is,

in Eqn (13), ↵̂ (�̂) and Cov(↵̂) (Cov(�̂)) are the estimated coe�cients and covariance fitted using

only the selected mediators in Models (7) & (8). We note this is a simple choice and the variability

of variable selection is not fully accounted. In the simulation, we will evaluate its performance and205

assess the impact of variable selection.

4. Simulation Studies

4.1. Aim, Data Generation, and Estimand

To examine the performance of our proposed method in terms of variable selection, estimation

and inference performance, we conduct several simulation studies.210

We consider the case when Y is a continuous variable and the treatment variable Z is bi-

nary with an equal chance for 0 or 1. We generate two independent covariates X1 and X2 where

Xi ⇠ N(0, 1), i = 1, 2. We further assume the mediator vector M is multivariate and follows a

MVN(µ,⌃) distribution. Here, we consider an AR(1) correlation structure on ⌃ = (�ij), i.e.

11



�
2
ij = ⇢

|i�j|, where ⇢ = 0.5. In addition, we let215

Mj = ↵0j + ↵jZ + g
1
3j(X1) + g

2
3j(X2) + ✏, j = 1, 2, . . . , p, (14)

Y = �0 + �
0
Z + �>M + g

1
2(X1) + g

2
2(X2) + ✏, (15)

where ↵0j = 2, j = 1, 2, . . . p,�0 = 2, �0 = 1, and ✏ ⇠ N(0, 1); the other parameters ↵j , j = 1, . . . , p

and � are considered in the following two settings:

A. ↵1:p = (1, 0.8, 0.6, 0.4, 0.2, 1, 0.8, 0.6, 0.4, 0.2| {z }
10 nonzeros

, 0, . . . , 0)>,

� = (1, 0.8, 0.6, 0.4, 0.2, 1, 0.8, 0.6, 0.4, 0.2, 1, 0.8, 0.6, 0.4, 0.2, 1, 0.8, 0.6, 0.4, 0.2| {z }
20 nonzeros

, 0, . . . , 0)>.

B. ↵1:p = (1, 0.8, 0.6, 0.4, 0.2, 1, 0.8, 0.6, 0.4, 0.2, 1, 0.8, 0.6, 0.4, 0.2, 1, 0.8, 0.6, 0.4, 0.2| {z }
20 nonzeros

, 0, . . . , 0)>,220

� = (1, 0.8, 0.6, 0.4, 0.2, 1, 0.8, 0.6, 0.4, 0.2| {z }
10 nonzeros

, 0, . . . , 0)>.

In setting A, the number of significant mediators in Model (15) is double of that in Model (14);

and vice versa in setting B. Since our two-step procedure selects �’s first and then select ↵’s, by

creating the second setting, we would like to investigate the performance of the two-step procedure

when the true signals in � is a subset of that in ↵.225

Furthermore, we consider di↵erent types of the relationship between the covariates X1, X2, M ,

and Y , as described in Scenarios (I)-(III) below. In particular, Scenarios (I)&(II) are based on a

set of nonlinear models, and Scenario (III) is based on a set of linear models.

• Scenario I: g13j(X) = g
2
3j(X) = X + 0.5X2 and g

1
2(X) = 0.5X + 0.25X2, g21(X) = 0.1X2.

• Scenario II: g13j(X) = sin(2X), g23j(X) = cos(X) and g
1
2(X) = cos(X), g22(X) = sin(2X).230

• Scenario III: g13j(X) = 0.5X, g23j(X) = X and g
1
2(X) = 0.5X, g22(X) = 0.25X.

We consider four settings for the sample size n and the number of mediators p: n = 100, p = 500;

n = 300, p = 500; n = 1000, p = 500; and n = 300, p = 3000. Based on the simulation setup, the

true direct e↵ect is 1; the joint indirect e↵ect is 1 and the total e↵ect is 4.4.
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4.2. Methods and Performance Measures235

To estimate the direct and the indirect e↵ect, we implement two proposed approaches based on

partial linear models: the one using Bonferroni correction for variable selection in the second step

(PLSEMB), and the one using adaptive LASSO for variable selection (PLSEMAL). For comparison,

we implement two approaches based on the linear structural equation models: the one using adaptive

LASSO for variable selection following our two-step procedure (LSEMAL) and the joint significance240

testing approach proposed by Zhang et al. (2016) (HIMA). We use the bs function in the R package

spline to fit the regression spline with degrees of freedom 5. This is equivalent to using a cubic

spline with two knots, where the locations of knots are determined by the (33.3%. 66.6%) percentiles

of the data. All penalization methods are implemented with R package glmnet. The weights for

adaptive LASSO are calculated using the inverse of the absolute values of the ridge regression245

estimators with the tuning parameter selected from 20 equally spaced grid on [0, 1]. The tuning

parameter for adaptive LASSO is selected by the function cv.glmnet. The HIMA procedure is

implemented by the R package HIMA available on the github page2.

For each simulation setting and each model scenario, we report the mediator selection results

and the estimation performance. For the variable selection results, we report the true positive (TP)250

and false positive (FP) number of mediators selected for each approach. For a fair comparison, we

also report the corresponding rates. For the estimation results, we evaluate the bias, the empirical

standard error, and the square root of mean squared error (RMSE). Additionally, for statistical

inference purpose, we also calculate the standard error of the estimated indirect e↵ect using the

method described in Section 3.3. The coverage rate of a 95% confidence interval is also evaluated255

using this asymptotic standard error.

We repeat the simulation for 500 times for each simulation setting. The variable selection results

for setting A are summarized in Table 1, and that for setting B are in Table 2. Figure 3 & 4 give

the results for the bias and variability of both the direct and joint indirect e↵ect, respectively, with

detailed numerical results of estimation provided in the supplementary file. The inference results260

are displayed in Table 3.

2https://github.com/YinanZheng/HIMA/
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Figure 3: Visualization of estimated bias for indirect e↵ects (left) and direct e↵ects (right) in the setting A of
simulated studies. Results are based on 500 replications. Each row is corresponding to a particular model, with
models I, II, and III from the top to bottom. Each segmentation in one graph (separated by the vertical blue
dashed lines) presents the comparisons among the four methods (colored legend on the bottom), and there are four
combinations of sample sizes and dimensions of the mediators in each setting.

4.3. Results

In terms of variable selection, the proposed PLSEMAL approach based on adaptive LASSO

has the best performance overall by yielding a high TP rate and a low FP rate. The proposed

PLSEMB approach based on Bonferroni correction is too conservative by yielding relatively low TP265

rate across all scenarios; the LSEMAL approach has the highest TP rate but also the highest FP

14
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Figure 4: Visualization of estimated bias for indirect e↵ects (left) and direct e↵ects (right) in the setting B of
simulated studies. Results are based on 500 replications. Each row is corresponding to a particular model, with
models I, II, and III from the top to bottom. Each segmentation in one graph (separated by the vertical blue
dashed lines) presents the comparisons among the four methods (colored legend on the bottom), and there are four
combinations of sample sizes and dimensions of the mediators in each setting.

rate in almost all the scenarios. On the other hand, the HIMA approach yields the lowest TP rate

but also the lowest FP rate.

In terms of bias and variance, in Scenario III where the true underlying models are linear, the

bias and RMSE for LSEMAL and HIMA are the smallest as these two approaches are built upon270

the linear structural equation models. In Scenarios I & II, where the true underlying models are
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nonlinear, the methods based on partial linear models yield the smaller standard errors and RMSE

values across di↵erent settings. This indicates that by not assuming a fully parametric model, we

eliminate model misspecification for the covariates and can eventually improve the estimation of

the direct and indirect e↵ects when the true model is nonlinear. In addition, although the TP rate275

for HIMA is the lowest, the bias is the smallest in most of the scenarios. We found this is due

to the fact that HIMA has di�culty in picking up the weak signals, which may not impact the

estimation results in the same magnitude. To verify this, we consider another simulation scenario

in supplementary file when all the signals are weak. As can be found in Table S6 & S7 of the

supplementary file, the bias of the proposed approaches are much lower than HIMA in this case.280

Regarding inference, from Table 3, we find that when n = 100, p = 500, the theoretical standard

error is much smaller than the empirical standard error due to the small sample size. In this

case, we observe that the discrepancy gets much smaller as the sample size increases (see results

for n = 1000, p = 500). For the proposed PLSEMB , the theoretical standard error is close to

the empirical standard error when n = 300, p = 500 and n = 300, p = 3000 and for PLSEMAL,285

they are close when n = 1000, p = 500, indicating that the formula for the theoretical standard

error described in Section 3.3 performs relatively well in these specific scenarios. In addition, when

the biases are small, such as most of the scenarios in Setting B, the coverage rates of the 95%

confidence interval calculated from the standard error formula described in Section 3.3 are close

to the nominal level. The above observations suggest that the performance can depend on the290

settings and a larger sample size can be helpful in improving the performance. In general, the

performance of the standard error formula works better in Setting B, compared to that in Setting

A. As we indicate in the discussions, further investigation of alternative methods for characterizing

confidence intervals and conducting inference is needed.

In addition, we explore additional simulation settings with a slightly more complex confounding295

structure. Instead of using a completely randomized treatment, we consider a scenario where

there is a pre-treatment confounder that jointly a↵ects Z and M . The detailed settings and the

corresponding results are presented in Section 3 of the supplementary file. Observations on the

comparisons under these new settings are similar to those of the major simulations presented above.

Overall, we recommend PLSEMAL over PLSEMB as it provides less bias and variance and300

higher true positive rates in most scenarios.
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Table 1: Summary of variable selection results in setting A. “True Positive” (TP) is the number of variables in
A = (M1,M2, . . . ,M10) that are selected as the important mediators; TP rate is its value divided by 10. “False
Positive” (FP) is the number of variables that are selected as the important mediators, but are not in A; FP rate is
its value divided by p� 10.

n p Model Method TP TP rate FP FP rate

100 500

I

LSEMAL 6.698 0.670 4.890 0.010

PLSEMB 4.510 0.451 0.070 0

PLSEMAL 6.974 0.697 3.856 0.008

HIMA 1.376 0.138 0.020 0

II

LSEMAL 7.188 0.719 4.36 0.009

PLSEMB 4.444 0.444 0.072 0

PLSEMAL 7.014 0.701 5.006 0.010

HIMA 1.998 0.200 0.036 0

III

LSEMAL 7.954 0.795 7.184 0.015

PLSEMB 4.400 0.440 0.088 0

PLSEMAL 7.290 0.729 6.254 0.013

HIMA 3.442 0.344 0.026 0

300 500

I

LSEMAL 8.280 0.828 2.252 0.005

PLSEMB 7.638 0.764 0.062 0

PLSEMAL 8.734 0.873 1.332 0.003

HIMA 3.576 0.358 0.028 0

II

LSEMAL 8.666 0.867 2.250 0.005

PLSEMB 7.676 0.768 0.062 0

PLSEMAL 9.048 0.905 2.136 0.004

HIMA 4.52 0.452 0.024 0

III

LSEMAL 9.238 0.924 2.628 0.005

PLSEMB 7.664 0.766 0.064 0

PLSEMAL 9.178 0.918 2.872 0.006

HIMA 7.306 0.731 0.032 0

1000 500

I

LSEMAL 8.954 0.895 0.726 0.001

PLSEMB 9.170 0.917 0.036 0

PLSEMAL 9.116 0.912 0.108 0

HIMA 8.244 0.824 0.018 0

II

LSEMAL 8.800 0.880 2.330 0.005

PLSEMB 9.130 0.913 0.060 0

PLSEMAL 9.130 0.913 0.770 0.002

HIMA 9.136 0.914 0.518 0.001

III

LSEMAL 9.506 0.951 0.380 0.001

PLSEMB 9.220 0.922 0.040 0

PLSEMAL 9.526 0.953 0.630 0.001

HIMA 9.086 0.909 0.018 0

300 3000

I

LSEMAL 7.848 0.785 4.372 0.001

PLSEMB 7.164 0.716 0.050 0

PLSEMAL 7.886 0.789 1.770 0.001

HIMA 3.452 0.345 0.022 0

II

LSEMAL 8.754 0.875 3.896 0.001

PLSEMB 7.548 0.755 0.066 0

PLSEMAL 8.876 0.888 2.154 0.001

HIMA 4.488 0.449 0.038 0

III

LSEMAL 8.892 0.889 4.078 0.001

PLSEMB 7.444 0.744 0.068 0

PLSEMAL 8.854 0.885 4.040 0.001

HIMA 7.190 0.719 0.030 017



Table 2: Summary of Variable Selection Results for Setting B. “True Positive” (TP) is the number of variables in
A = (M1,M2, . . . ,M10) that are selected as the important mediators; TP rate is its value divided by 10. “False
Positive” is the number of variables that are selected as the important mediators, but are not in A; FP rate is its
value divided by p� 10.

n p Model Method TP TP rate FP FP rate

100 500

I

LSEMAL 7.222 0.722 2.190 0.004

PLSEMB 4.870 0.487 0.424 0.001

PLSEMAL 7.274 0.727 3.006 0.006

HIMA 2.506 0.251 0.028 0

II

LSEMAL 7.346 0.735 2.530 0.005

PLSEMB 4.874 0.487 0.532 0.001

PLSEMAL 7.462 0.746 3.598 0.007

HIMA 2.984 0.298 0.042 0

III

LSEMAL 8.198 0.82 4.582 0.009

PLSEMB 4.836 0.484 0.494 0.001

PLSEMAL 7.620 0.762 4.082 0.008

HIMA 4.298 0.43 0.138 0

300 500

I

LSEMAL 8.460 0.846 0.040 0

PLSEMB 7.872 0.787 0.028 0

PLSEMAL 8.780 0.878 0.142 0

HIMA 5.356 0.536 0.002 0

II

LSEMAL 8.714 0.871 0.268 0.001

PLSEMB 7.868 0.787 0.108 0

PLSEMAL 9.044 0.904 0.576 0.001

HIMA 6.428 0.643 0.006 0

III

LSEMAL 9.194 0.919 0.552 0.001

PLSEMB 7.872 0.787 0.106 0

PLSEMAL 9.148 0.915 0.552 0.001

HIMA 7.478 0.748 0.070 0

1000 500

I

LSEMAL 8.954 0.895 0.726 0.001

PLSEMB 9.392 0.939 0 0

PLSEMAL 9.448 0.945 0 0

HIMA 8.244 0.824 0.018 0

II

LSEMAL 8.790 0.879 2.890 0.006

PLSEMB 9.170 0.917 0.660 0.001

PLSEMAL 9.130 0.913 0.830 0.002

HIMA 8.600 0.860 0.010 0

III

LSEMAL 9.634 0.963 0.178 0

PLSEMB 9.356 0.936 0.192 0

PLSEMAL 9.686 0.969 2.132 0.004

HIMA 9.262 0.926 0.02 0

300 3000

I

LSEMAL 7.860 0.786 0.448 0

PLSEMB 7.400 0.740 0.020 0

PLSEMAL 7.774 0.777 0.054 0

HIMA 5.202 0.52 0.004 0

II

LSEMAL 8.536 0.854 0.414 0

PLSEMB 7.812 0.781 0.092 0

PLSEMAL 8.580 0.858 0.104 0

HIMA 6.380 0.638 0.002 0

III

LSEMAL 8.662 0.866 0.486 0

PLSEMB 7.774 0.777 0.064 0

PLSEMAL 8.538 0.854 0.110 0

HIMA 7.240 0.724 0.068 018



Table 3: Results of the standard error estimation for the joint indirect e↵ect. The SE is the empirical standard error,
the SE⇤ is the standard error calculated by Eqn (13) and coverage is the coverage rate of the true indirect e↵ect in
the 95% confidence interval using ±2SE⇤.

Setting

A

Setting

B

n p Model Methods SE SE
⇤

Coverage SE SE
⇤

Coverage

100 500

I

LSEMAL 3.14 2.53 0.86 1.26 1.38 0.97

PLSEMB 1.14 0.90 0.95 0.81 0.68 0.95

PLSEMAL 1.43 0.96 0.91 0.96 0.68 0.94

HIMA 1.87 0.60 0.57 1.80 0.69 0.71

II

LSEMAL 2.83 2.07 0.82 1.13 1.15 0.98

PLSEMB 1.16 0.91 0.95 0.81 0.68 0.94

PLSEMAL 1.49 0.97 0.88 0.88 0.69 0.93

HIMA 1.79 0.63 0.69 1.68 0.65 0.75

III

LSEMAL 1.19 0.97 0.91 0.66 0.66 0.96

PLSEMB 1.17 0.9 0.95 0.86 0.67 0.94

PLSEMAL 1.40 0.98 0.91 0.81 0.69 0.95

HIMA 1.06 0.48 0.85 1.02 0.49 0.92

300 500

I

LSEMAL 2.12 1.49 0.53 0.74 0.82 0.95

PLSEMB 0.55 0.50 0.93 0.38 0.38 0.95

PLSEMAL 0.67 0.52 0.91 0.39 0.38 0.96

HIMA 1.13 0.69 0.94 0.98 0.70 0.95

II

LSEMAL 1.74 1.19 0.55 0.64 0.67 0.96

PLSEMB 0.55 0.51 0.90 0.38 0.38 0.95

PLSEMAL 0.69 0.53 0.89 0.39 0.38 0.95

HIMA 0.88 0.61 0.93 0.81 0.60 0.94

III

LSEMAL 0.66 0.52 0.91 0.38 0.38 0.96

PLSEMB 0.55 0.50 0.93 0.38 0.38 0.95

PLSEMAL 0.67 0.53 0.92 0.39 0.38 0.95

HIMA 0.46 0.36 0.97 0.44 0.36 0.97

1000 500

I

LSEMAL 1.14 0.81 0.10 1.14 0.81 0.10

PLSEMB 0.27 0.27 0.89 0.27 0.27 0.89

PLSEMAL 0.28 0.27 0.88 0.28 0.27 0.88

HIMA 0.46 0.41 0.97 0.46 0.41 0.97

II

LSEMAL 1.08 0.64 0.08 0.35 0.36 0.97

PLSEMB 0.26 0.28 0.80 0.20 0.21 0.97

PLSEMAL 0.26 0.28 0.79 0.20 0.21 0.98

HIMA 0.41 0.35 0.97 0.39 0.35 0.98

III

LSEMAL 0.31 0.27 0.89 0.20 0.21 0.98

PLSEMB 0.27 0.27 0.89 0.19 0.21 0.98

PLSEMAL 0.31 0.27 0.89 0.20 0.21 0.98

HIMA 0.21 0.2 0.98 0.21 0.20 0.98

300 3000

I

LSEMAL 2.16 1.49 0.54 0.80 0.82 0.94

PLSEMB 0.50 0.50 0.95 0.36 0.38 0.97

PLSEMAL 0.63 0.51 0.93 0.37 0.38 0.97

HIMA 1.08 0.69 0.94 1 0.70 0.93

II

LSEMAL 1.72 1.20 0.61 0.62 0.66 0.97

PLSEMB 0.52 0.50 0.94 0.37 0.38 0.96

PLSEMAL 0.71 0.52 0.90 0.37 0.38 0.97

HIMA 0.85 0.60 0.96 0.76 0.59 0.96

III

LSEMAL 0.65 0.52 0.91 0.36 0.37 0.97

PLSEMB 0.51 0.50 0.96 0.36 0.38 0.97

PLSEMAL 0.68 0.52 0.91 0.37 0.38 0.97

HIMA 0.44 0.35 0.97 0.44 0.35 0.97
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5. Data Application

It has been shown that DNA methylations play an important role in many human activities. In

a genome-wide analysis of blood DNA methylation, the DNA methylation information are recorded

on 85 subjects and their stress-related activities are examined (Houtepen et al., 2016). The re-305

searchers are interested in knowing whether DNA methylation plays a role in the regulation of hu-

man stress reactivity impacted by childhood trauma. The treatment variable is childhood trauma

exposure, which was assessed using a version of the Childhood Trauma Questionnaire (Bernstein

et al., 2003). The dataset is publicly available3. The distribution of the original score has a right

skewed distribution ranging from 24 to 63, with a mean of 32 and standard deviation of of 8.22.310

After standardization (centered and scaled to have mean zero and standard deviation one), the

range becomes -1 to 4. The outcome variable is cortisol stress reactivity, whose distribution is close

to a bell-shaped curve, with a minimum of -1029.85 and max of 1876.28. The mean is 243.46 with a

standard deviation of 420.6. The cortisol stress reactivity is measured from saliva samples collected

from a stress induction task, which consists of a public speaking test and subsequent arithmetic task315

(Vinkers et al., 2013). The span of the experiment is 90 minutes and the participants in this study

have an average age of 33 (Houtepen et al., 2016). The mediators are human DNA methylation

markers. There are two important covariates that we need to adjust for: “Age” (X1) and “Sex”

(X2). Figure 5 plots the relationship between the outcome variable and the covariate “Age”, as well

as the relationship between “Age” and some of the methylation markers identified by the proposed320

method. The plot shows that the relationships are nonlinear and the partial linear models can be

helpful to accommodate the nonlinearity.

In the original dataset, there are a total of 385882 methylation variables. In order to scale down

the computational burden, we first apply sure independence screening (Fan and Lv, 2008) to reduce

the dimension to a reasonable scale. We follow the suggestion given by Gao et al. (2019) to select

the top candidate mediators by fitting the following model:

Y = �0 + �jMj + �
0
Z + g(X1) +X2 + ✏j , j = 1, . . . , 385882.

The “Sex” covariate (i.e., X2) is a binary variable, so we do not apply the smoothing function

3https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-77445
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Figure 5: Top left: the relationship between the scaled age (continuous covariate) and the cortisol stress reactivity.
Others: the relationship between the scaled age (continuous covariate) and the identified mediators. The red line
corresponds to the smoothed curve that describes the relationship between the two variables.

Table 4: Results for real data analysis when p = 500, 1000, and 2000. The standard error of the indirect e↵ect is
estimated by Eqn (13). The p-value for the indirect e↵ect is calculated by Wald test, and the p-value for the direct
e↵ect is reported by t-test. All significant e↵ects at ↵ = 0.05 are marked with *. The PLSEM approach using
Bonferroni correction is not listed as no mediator is selected.

# Indirect Direct
p Method Selected Estimate SE p�value Estimate SE p�value

500
LSEMAL 7 -12.65 3.93 0.0006* -2.10 4.49 0.64
PLSEMAL 36 -9.39 5.43 0.04* -4.30 2.32 0.07

1000
LSEMAL 18 -13.53 4.95 0.003* -1.22 3.21 0.71
PLSEMAL 40 -10.13 5.47 0.03* -3.56 2.71 0.20

2000
LSEMAL 18 -18.47 5.04 0.0001* 3.72 3.73 0.32
PLSEMAL 33 -10.64 5.43 0.02* -3.04 2.34 0.20

on it. We then pick the first p mediators whose e↵ects are the largest. We consider three di↵erent p

values: p = 500, 1000, 2000. The number of selected methylation markers and the estimated direct325

and indirect e↵ects are provided in Table 4. The PLSEM approach using Bonferroni correction

and the HIMA approach do not select any important mediators so we do not include it in the
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Figure 6: Top left: the estimated function of scaled age (continuous covariate) in the model to predict the cortisol
stress reactivity. Others: the estimated function of the scaled age (continuous covariate) in the model to predict the
identified mediators.

table. As we can see, the estimation results are consistent across di↵erent p values and di↵erent

methods. Generally speaking, the indirect e↵ect is significant at ↵ = 0.05 while the direct e↵ect is

not, which indicates some important methylation markers regulate the impact of childhood trauma330

on adulthood stress level. The selected methylation markers are displayed in Table 5. There is

much overlap between LSEMAL and PLSEMAL approaches. In particular, the methylation marker

“cg27512205” is selected by both approaches when p = 500. This marker is found to be an important

locus on the KITLG gene that mediates the childhood trauma and cortisol stress reactivity based

on three independent samples (Houtepen et al., 2016). The total e↵ect of the treatment on the335

outcome is -13.69 (s.e.: 5.37 and p-value: 0.01). In mediation analysis, an important estimation

quantity is how much of the total e↵ect that can be explained by the given mediator(s).
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Table 5: The selected mediators in real data analysis. The highlighted mediators are the ones selected by both
methods for a given p. The number under each mediator in parenthesis is ↵̂j �̂j/Total E↵ect

Method Selected Mediators

p = 500

LSEMAL cg27512205 cg06957003 cg16746576 cg26168148 cg11876022 cg04621676 cg13946872
(0.212) (0.040) (0.138) (0.124) (0.013) (0.194) (0.137)

PLSEMAL

cg09573795 cg14414944 cg03633948 cg00344209 cg18087143 cg27512205 cg25458175
(0.026) (-0.036) (0.013) (0.021) (0.004) (0.019) (0.014)

cg19695521 cg22073766 cg16999495 cg00083399 cg16512390 cg02381064 cg27155653
(0.007) (0.018) (0.025) (0.009) (0.014) (-0.034) (0.037)

cg13341380 cg22120488 cg04262938 cg06621358 cg06957003 cg13539205 cg22396632
(0.020) (0.009) (0.037) (0.025) (0.068) (0.030) (0.043)

cg00229532 cg06144990 cg17880320 cg16830861 cg23350558 cg26168148 cg21926402
(-0.001) (0.054) (-0.013) (0.011) (0.025) (0.017) (0.019)

cg22815785 cg19386484 cg21063480 cg15604507 cg04621676 cg25652781 cg13946872
(0.013) (0.006) (0.118) (-0.013) (0.011) (0.004) (0.051)

cg23402444
(0.017)

p = 1000

LSEMAL

cg16376036 cg14414944 cg27512205 cg22073766 cg05333968 cg06957003 cg22396632
(-0.023) (-0.058) (0.115) (0.035) (0.083) (0.046) (0.123)

cg26168148 cg21063480 cg13946872 cg21815667 cg22203081 cg20247596 cg23686508
(0.082) (0.096) (0.135) (-0.036) (0.057) (0.081) (0.015)

cg06019865 cg00719211 cg02506717 cg09725013
(0.067) (0.047) (-0.013) (0.065)

PLSEMAL

cg09573795 cg14414944 cg03633948 cg00344209 cg25458175 cg23092635 cg22073766
(0.038) (-0.063) (0.003) (0.018) (0.053) (-0.010) (0.074)

cg16999495 cg00083399 cg16512390 cg27155653 cg04262938 cg06957003 cg13539205
(-0.009) (-0.007) (0.006) (0.010) (0.046) (0.048) (-0.023)

cg22396632 cg17880320 cg16830861 cg23350558 cg26168148 cg02860705 cg12947510
(0.023) (-0.021) (0.028) (0.018) (0.012) (0.016) (0.026)

cg19386484 cg21063480 cg15604507 cg04621676 cg13946872 cg23402444 cg21815667
(0.006) (0.102) (0.001) (0.131) (0.055) (0.022) (0.028)

cg08504448 cg20247596 cg16150053 cg05971891 cg10147507 cg17840166 cg06019865
(0.040) (0.038) (-0.011) (0.077) (-0.038) (-0.063) (0.009)

cg17189568 cg02506717 cg09725013 cg24165747 cg00499707
(0.038) (-0.061) (-0.034) (-0.004) (0.113)

p = 2000

LSEMAL

cg27512205 cg22073766 cg27155653 cg22396632 cg19230917 cg13946872 cg21815667
(0.038) (0.156) (0.062) (0.040) (0.168) (0.134) (0.062)

cg22203081 cg10147507 cg12446629 cg03341991 cg19975931 cg22713958 cg20707780
(0.198) (-0.017) (0.042) (0.148) (0.031) (-0.058) (0.050)

cg11753311 cg16908740 cg14843651 cg25626453
(-0.026) (0.126) (-0.009) (0.109)

PLSEMAL

cg14414944 cg00344209 cg18087143 cg25458175 cg23092635 cg19695521 cg22073766
(-0.065) (-0.002) (0.006) (0.072) (0.019) (0.017) (-0.022)

cg16512390 cg04262938 cg05333968 cg22396632 cg00229532 cg17880320 cg23350558
(0.014) (0.040) (0.076) (0.054) (0.006) (-0.013) (0.014)

cg22815785 cg19386484 cg21063480 cg21815667 cg22203081 cg20247596 cg10147507
(0.028) (0.011) (0.080) (0.038) (0.038) (0.057) (0.018)

cg12446629 cg03341991 cg09725013 cg00499707 cg08118034 cg19975931 cg07314988
(-0.016) (0.077) (-0.018) (0.026) (0.027) (-0.007) (-0.006)

cg05846894 cg16908740 cg04405414 cg05942970 cg25626453
(-0.015) (0.032) (0.013) (0.084) (0.094)
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6. Discussion

In this study we have examined the performance of a two-step procedure for mediation analysis

when the number of mediators is large. With the increasing capability to measure various kinds of340

-omics data and the growing scientific interest to integrate information in a biologically meaningful

way (Richardson et al., 2016), the analysis that can accommodate high-dimensional data will be

much needed. We emphasize the importance of incorporating the confounders for drawing causality

and allowing flexible models to account for nonlinearity. Although the individual indirect e↵ect for

each mediator is generally unidentifiable unless we impose some restrictions on the joint distribution345

of the mediators or on the correlation structure among the mediators (Wang et al., 2013), the

parsimonious set of mediators obtained through the penalized framework provides a data-driven

selected mediators for possible downstream scientific investigation. We look into estimation of

mediation e↵ects by examining the bias and coverage with the proposed standard error formula.

Despite the possible underestimation caused by ignorance of variability in the variable selection step,350

the performance provides some evidence of the significance with conservativeness as expected.

In the two-step procedure, we choose to estimate Model (11) first and pass the selected set of

mediators to Model (12) for further selection. We note that an order-free approach is to use the full

set of mediators to estimate both Models (11) and (12), and then choose the subset of mediators

that are selected in both models. Our choice is driven by the concern of high computation cost355

in estimating Model (12) where mediators are stacked to account for their correlation. Although

theoretically the selection should be the same regardless of the order of estimation, it is not the

case with real data given the high-dimensionality and finite sample size. If in practise, researchers

choose to use the order-free approach, we recommend to use SIS to bring down the dimension to

make the computation a↵ordable and estimation more reliable. After all, the PLSEM approach360

using the Bonferroni correction may return a very conservative set. Under our current framework,

researchers have flexibility if other smoothing methods or penalties are preferred. One limitation

of our two-step methods is that by separately selecting ↵’s and �’s, the proposed method may

miss the mediator which has a small signal on one but a large signal on the other. Although

in examining the estimate and confidence interval of the product term we choose to evaluate the365

performance of the Sobel’s method using the refitted coe�cients with those selected in each model,

we note that the refitting method is naive. The post-selection inference is an active research field

(Gao et al., 2017; Kuchibhotla et al., 2021) and more sophisticated methods such as the debiased
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method as reviewed in Kuchibhotla et al. (2021) should be investigated in the future work. We

also acknowledge that, in terms of the confounding structure, the simulation settings are rather370

simplistic. In the event where confounders are also high-dimensional, penalties can be applied on

the confounders as well. This is an active research area in causal inference (Shortreed and Ertefaie,

2017; Ye et al., 2021). In particular, we note that the confounder selection problem is not the same

as a typical variable selection problem in regression and researchers should follow the adjustment

criteria (e.g., VanderWeele (2019)) to pick the confounders in mediation analysis.375
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