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Abstract

Causal mediation analysis has become popular in recent years, in which researchers not only aim
to estimate the causal effect of a treatment, but also try to understand how the treatment affects
the outcome through intermediate variables, namely mediators. In this paper, a set of generalized
structural equations to estimate the direct and indirect effects for mediation analysis is proposed
when the number of mediators is of high-dimensionality. Specifically, a two-step procedure is
considered where the penalization framework can be adopted to perform variable selection. A
partial linear model is used to account for a nonlinear relationship among pre-treatment confounder
(confounders) and the response variable in each model, given that the interest is in estimating the
coefficients for the treatment and the mediators in the structural models. The obtained estimators
can be interpreted as causal effects without imposing the linear assumption on the model structure.
The performance of Sobel’s method in obtaining the standard error and confidence interval for the
estimated joint indirect effect is also evaluated in simulation studies. Simulation results show a
superior performance of our proposed method. The proposed method is applied to investigate how
DNA methylation plays a role in the regulation of human stress reactivity impacted by childhood
trauma.
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1. Introduction

Mediation analysis is often used to study how a treatment variable relates to the outcome variable
through an intermediate variable, namely, a mediator (see Figure [1| (a) for a visual illustration).

The most commonly used approach for mediation analysis is the Baron and Kenny’s four-step

linear structural equation modeling (LSEM) approach (Baron and Kennyl, [1986} [Judd and Kenny|
1981). In LSEM, the total effect of the treatment on the outcome is decomposed into two kinds of

effects: the direct effect and the indirect effect, where the latter refers to the effect of the treatment
on the outcome that goes through the mediator. Based on the framework of counterfactuals,
modern mediation approaches interpret the mediation effect as natural effects, controlled effects,
and principal stratification effects, all of which can be interpreted causally because they are based

on the contrast among the potential outcomes within the same subject. Such approaches include

[Angrist et al. (1996), who apply two-stage least squares to estimate principal stratification effects

among compliers; [Ten Have et al.|(2007), who propose rank preserving models (RPM) for controlled

effects, |Gallop et al. (2009), who focus on Bayesian approaches for principal stratification effects,

and [Imai et al.| (2010alb), who propose nonparametric identification of natural direct and indirect

effects. A comprehensive review of these causal approaches can be found in |Coffman et al. (2016).

In particular, Tmai et al.| (2010a) have shown that the estimated direct and indirect effects

by LSEM are causal effects under certain assumptions. A strong assumption about the traditional
LSEM approach is that the assumed linear models are correct. However, the true relationship among
the three set of variables (treatment, outcome, mediators), as well as the pre-treatment confounders
are unknown (we will defer the formal definition of pre-treatment confounders to Section 2.1). With

the existence of a large number of pre-treatment confounders, this assumption is unlikely to be

true (Keele and Keelé, 2008} fmai et al [2010a)). In this article, we relax the linear assumption

by imposing a set of more flexible models, i.e., partial linear models, where the pre-treatment
confounders are regarded as nuisance in the sense that nonparametric smoothing methods can be

fitted to capture the relationship between the pre-treatment confounders and the outcome variables

in each model. A similar type of model framework has been considered in Hines et al.| (2021).

Very often, the causal effect of a treatment on the outcome can be carried out by multiple

indirect pathways and recent development in mediation analysis has focused on estimating the

direct and indirect effects with the existence of multiple mediators, e.g., fmai and Yamamoto|

(2013); [VanderWeele and Vansteelandt| (2014); [Huang and Pan (2016); Aung et al. (2020); Jirolon
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et al.| (2020). In many applications, the set of mediators could be high-dimensional or even ultra
high-dimensional. For example, researchers might be interested in investigating how an exposure
variable could affect the disease outcome through DNA methylation markers. In this case, the
number of markers could even be larger than the sample size. |Zhang et al.|(2016)) propose a penalized
estimating and inference procedure based on linear models when the mediators are high-dimensional
methylation markers, in which the authors employ sure independence screening (SIS) and minimax
concave penalty (MCP) for variable selection. As a data application, the authors study how DNA
methylations mediate the association between smoking and lung cancer. |Chén et al.| (2018 consider
transforming the mediators into a few of orthogonal components by linear combinations. |Gao et al.
(2019) propose a sparse mediation model and a high-dimensional testing procedure based on SIS and
LASSO for correlated multiple mediators. The authors apply the proposed method to study how
DNA methylations mediate the association between alcohol consumption and epithelial ovarian
cancer status. |Guo et al.| (2021) study a statistical inference procedure in the high-dimensional
linear mediation models. They propose a new F-type test for the direct and indirect effects and
also develop its theoretical properties. [Luo et al.| (2020) extend the methodologies to a survival
outcome for settings with high-dimensional mediators.

However, none of the above-mentioned methods explicitly consider the possible confounders in
the study. In observational studies, if the purpose is to draw causal conclusions, not accounting for
the pre-treatment confounders will lead to biased estimators of causal direct and indirect effects.
Under high-dimensional settings, performance of variable selection can also be affected. In this
paper, we propose a two-step procedure to select the important mediators and to estimate the
direct and indirect effects simultaneously with the confounders taken into account in the models.

The paper will proceed as follows. In Section 2, we review the traditional linear structural
equation modeling approach and the assumptions needed for estimating causal direct and indirect
effects. In Section 3, we propose a set of partial linear models that allow flexible modeling for
the pre-treatment confounders. We then propose variable selection procedures when the set of
mediators is high-dimensional. Simulation studies are conducted to compare the proposed method
with alternative approaches in Section 4 and an application to an epigenetic study is provided in

Section 5.
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Figure 1: (a) The treatment Z, outcome Y, pre-treatment confounders X, and a single mediator M; (b) The
treatment Z, outcome Y, pre-treatment confounders X, and multiple mediators M, ..., M;. The dashed lines with
double-headed arrows on plot (b) represent the correlations between pairs of mediators.

2. Traditional Linear Structural Equation Modeling Approach

In this section, we review the traditional mediation analysis method as well as the causal me-
diation analysis based on the potential outcomes framework in the context of a single mediator,

followed by a description of connections between the two streams of methods.

2.1. Linear Structural Equation Modeling

The traditional approach for mediation analysis uses a linear structural equation modeling

(LSEM) approach (Judd and Kenny, 1981} [Baron and Kenny, [1986). Based on Baron and Kenny’s

four-step procedure, the total effect of the treatment can be decomposed into the direct and indirect
effects, where the latter implies the amount of mediation. Denote the treatment variable as Z,
the outcome variable as Y, the mediator variable as M, and the pre-treatment confounders as
X = (X1,...,Xk)". A pre-treatment confounder is a variable that (1) jointly affects Z & Y; or (2)
jointly affects Z & M; or (3) jointly affects M &Y; and (4) is not affected by Z (VanderWeele, [2016
[Valente et al., [2017).
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The mediation effect can be calculated through the following set of regression models:

= Y+7Z+vxX+e, (1)
Y = Bo+BM++Z+BxX +e, (2)
= ap+aZ+arX+es, (3)

where €; ~ N(0,02),i = 1,2,3. In the above models, the direct effect is defined as 7/ (i.e., the effect
of the treatment on the outcome when M is fixed) while the indirect effect is af (i.e., the effect of
the treatment on the outcome that goes through the mediator). As a result, examining whether
a mediation effect exists is equivalent to testing Hp : a8 = 0. Although Model is not used to
estimate o and 3, if we substitute Model into Model and compare it with Model , we
get v — ' = af. If all of the parameters are estimated by least squares, we also have 4 — 4’ = dB
(MacKinnon et al., [1995).

If Z is randomized, the total effect of Z on Y (i.e., 7) and the effect of Z on M (i.e., &) may

be interpreted causally. On the other hand, 7' and 8 do not readily admit a causal interpretation
due to the fact that M is a post-treatment variable, which is a variable that can be affected by the
treatment. In Section [2.2] we list the assumptions under which the direct and indirect effects based

on LSEM have causal interpretations.

2.2. Assumptions

To make causal inference, we employ the potential outcome framework to define causal quantities

(Rubin| [1974, [1978). We denote Y;(z,m) as the potential outcome if subject i was assigned to the

treatment level z and the mediator level m. We further define M;(z’) as the potential mediator
value if subject i was assigned to the treatment level z’. Assuming the treatment Z is binary, the
natural direct effect is defined as NDE, = E(Y (1, M(z)) — E(Y (0, M(z)) and the natural indirect
effect is defined as NIE, = E(Y (z, M(1))—E(Y (z,M(0)) for z = 0,1 (Pearl, [2001). The total effect
isTE=E(Y(1,M(1)) — E(Y(0,M(0)) and can be written as NDE, + NIEy or NDEy + NIFE;.

Tmai et al. (2010a) prove that the mediation effect a8 can be interpreted as a causal effect and

aff = NIE| = NIEj if the following assumptions are satisfied:
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o Sequential Ignorability Assumption:
{Y(z,m),M(z")} LZ|X,

Y(z,m)LM(")|Z,X,

where Pr(Z = z|X =x) > 0 and Pr(M(z') = m|Z = z,X = x) > 0 for all possible values of

X, m, and z.

e Linearity Assumption: the linear relationship between the predictors and the response variable

is satisfied in Models - .
e No Interaction Assumption: there is no interaction between Z & M.

The first part of the ignorability assumption says that among those who share the same values of
baseline covariates, the treatment can be regarded as randomized. This is automatically true if the
treatment is randomly assigned. However, in observational studies, where treatment is self-selected,

this assumption may not be true and can hardly be tested based on the observed data. As pointed

out by Imai et al. (2010b), a common strategy is to collect as many baseline covariates as possible

so there is no unmeasured confounders. This argument also applies to the second part of the
ignorability assumption; that is among those who have the same values of treatment and baseline
covariates, the mediator can be regarded as randomized if there is no unmeasured confounders.
Note that in Model , there is no treatment-mediator interaction, which is the focus of this study.
However, in the literature, this no interaction assumption has been relaxed by [Kraemer et al.

(2002} |2008)); Imai et al. (2010alb). Since the sequential ignorability assumption is an untestable

assumption, we will focus on relaxing the linearity assumption for estimating the natural direct and

indirect effects in the following work.
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3. Proposed Methodology

3.1. Relaxing the Linearity Assumption

The linearity assumption mentioned above is a strong assumption imposed on the form of the

models. To relax this assumption, we propose a set of generalized linear structural equation models:

= N +vZ+nX) te, (4)
Y = Bo+BM+~Z+ ga(X) + e, (5)
= «apt+aZ+ gB(X) + €3, (6)

where g;(X),j = 1,2,3 are assumed to be some unknown smoothed functions, and thus are non-
parametric. The above models are partial linear models (Hardle et al., 2000) where the nonpara-
metric components act like nuisance parameters. The main interest of partial linear models is to
estimate the coefficients for the linear components. Under this model framework, the indirect effect
is still y—+' = a3, but we allow a more flexible relationship between the pre-treatment confounders

and the mediator, as well as the outcome variable.

3.2. Multiple Mediators and Mediator Selection

In many applications, especially genetic studies, the causal pathway is often carried out by mul-
tiple mediators (see Figure[I] (b) for a visual illustration). Models (f])-(€]) can be further extended to
accommodate datasets with multiple candidate mediators. Denote the vector of candidate media-
tors as M = (M, Mo, ..., Mp)T where p is the number of candidate mediators. Model remains
unchanged, but Models and @ can be generalized to the following set of models,

Y Bo+B M++"Z+ g2(X) + e, (7)

M] = a]0+a]Z+g3](X)+€3J7 j:152vap (8)

Note that now each mediator is associated with one equation in . It is often not realistic to
assume that the mediators are independent. For example, in genetic studies, the DNA methylation
markers could be correlated with each other. Therefore, it is assumed that €3;’s are correlated, but
they are independent with €z in . Note here we do not consider the case where the mediators are

causally related. The dashed lines with double-headed arrows between any pair of two mediators
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Figure 2: An illustration of an invalid mediator M; (ignoring the pre-treatment confounders).In (a), a; = 0 but
B; # 05 in (b), B; = 0 but a; # 0. In both scenarios, M; is only associated with one of Z and Y, and thus M; is not
a valid mediator.

in Figure 1| (b) indicate that they are only correlated. In the case when one mediator causes the
other, the direct and indirect effect have to be redefined in a more complex way. See [Imai and
Yamamoto (2013); |Daniel et al| (2015) for examples. Without independence, the mediation effect
for each individual mediator is generally unidentifiable. Thus the interest of such settings is usually
in estimating the joint mediation/indirect effect of all the mediators. If we stack the coefficients
oj’s in as o = (g, a9, ... ,ap)T, then the joint indirect effect is represented by a' 3.

When the dimension of the potential mediators is high or ultra-high, identifying a subset of
true mediators is of scientific interest and also increases estimation precision of the estimated direct
and indirect effects. For an individual mediator Mj, if o;8; = 0, it adds no contribution to the
joint indirect effect, and thus should be removed from the set of mediators. Next, we propose a
two-step procedure for selecting the important mediators based on the fact that a;3; # 0 if and
only if a; # 0 and 8; # 0. In other words, if a; = 0 but |5;| is large, we do not consider M;
as a valid mediator. The same applies to the scenario when 8; = 0 but |«;| is large. These two
scenarios can be illustrated in Figure [2l In both scenarios, M; is not a valid mediator because it is
only associated with one of Z and Y.

To proceed, we first assume that the nonlinear components of Models and follow an
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additive model (Hastie and Tibshirani, |1990), i.e

K K
=D (X, g3(X) = g5 (Xn). (9)
k=1 =

Then, we are going to approximate go(X) and g3;(X) by smoothing techniques. There are various
smoothing techniques we can employ including but not limited to regression spline, smoothing
spline, local regression, etc (Fan and Gijbels, |2018). We include more details of the implementation
in the simulation study section. Here we use regression spline for its easiness of implementation in a
regression setting. Specifically, denote the normalized B-spline basis functions as By(-),b=1,..., B,

then the transformed expression of g2(X) and g3;(X) can be written as

B K B
S GBIXy),  gs(X) = DD & By (Xa) (10)

1b=1 k=1 b=1

Mx

k

where &% and &} are the coefficients associated with the b-th basis function Bj(-) and By;(Xy),
respectively.

Denote the subscript ¢ as the index for the ith observation. We propose the following two-
step procedure to get a parsimonious set of mediators and to estimate the direct effect and the
joint indirect effect based on the selected mediators. First, we estimate and select the nonzero

components of 3 by minimizing

n K B 2 »
% Z {Y; —Bo—B"™M; —~'Z; — Z Zf{fB,’,(Xik)} + Zpkj(|,8j|), (11)
i=1 j=1

k=1b=1

where py,(|3;]) is the penalty function placed on the jth covariate with tuning parameter ;. It
shrinks the magnitude of the estimated 3, so that some Bj’s might be shrunken to zero. Here, we
adopt the adaptive LASSO based on L; penalty for variable selection due to its oracle property
(Zou, [2006). Other adopted penalty functions can also be implemented in this framework, including
SCAD (Fan and Li| [2001)), elastic net (Zou and Hastie, |2005]), and the plain LASSO (Tibshirani)
1996)), etc.

Then, denote B as the set of non-zero ;s selected by and ¢ = dim(B), we now only consider
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a subset of the equations in . That is,

M; = aj0+ajZ+ggj(X)+63j7 for j€B.

To complete the second step, we further apply one of the following two methods to select a

subset of the mediators in B by identifying nonzero o;’s, with j € B.

L.

II.

Consider all ¢ models at the same time and apply a penalty function on «a;’s, j € B. Specifi-
cally, we minimize the following objective function by stacking the corresponding datasets for

the ¢ penalization problems together,

n K B 2
2an 3y {Mij —ajo—a;Zi— Y ngijj(Xik)} +Y " pa, (). (12)

i=1jeB k=1b=1 jeB

Estimate ¢ models separately, each as one partial linear regression; and obtain the p-values
for a;’s. We then adjust the obtained p-values for testing a; = 0,5 € B by the Bonferroni
correction and select the ones with an adjusted p-value smaller than a given threshold. This

is to control the family-wise type I error in multiple testing.

After the above second-step selection, we denote the set of non-zero «;’s selected as A, which is

a subset of B. As a result, {M;,j € A} is the final set of important mediators selected by our

proposed two-step procedure.

To estimate the direct and joint indirect effect, we refit Models & with the selected

mediators in A. Specifically, the Models is fitted as a multivariate regression model with a

multivariate response vector of dimension |A|, i.e., the size of A. By conducting a multivariate

regression, we account for the correlation in the selected mediators, and are able to obtain an

estimated covariance matrix for the estimated ¢&;’s, which can further be used to estimate the

standard error of the estimated joint indirect effect (see section [3.3). Without ambiguity, we still

denote the estimated direct effect as 4’ and the estimated indirect effect as & " B after model selection

and refit.

3.8. Inference of the Indirect Effect and Standard Error Estimation

10
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Under classic low-dimensional settings, the asymptotic distribution of &TB is a multivariate
normal distribution (Sobel, [1982) obtained by the multivariate delta method with the variance
estimator as

Var[e" 8] = BT Cov[a)B + & T Cov[Bla, (13)

where & and 3 are the estimated coefficients in Models (]ZI) & (I§|); Cov(a&) is the estimated variance-
covariance matrix for & using multivariate linear regression for Model , and COU(B) is the
estimated variance-covariance matrix for 8 in the simple partial linear regression for Model (EI)
Note, similar variance estimation for the joint indirect effect is also discussed and used in
(11987L |1989I); |Preacher et al.‘ (IQOO?I); |Preacher and Hayes d2008|). Denote SE[&T (] as the square

root of the variance estimate, then a Wald test statistic for testing Hy : '3 = 0,vs.H, : a3 # 0.

can be defined as .
a'p
SE[6TH)
which is treated as following the standard normal distribution asymptotically [1982)).

In our settings with high-dimensionality, the application of the Sobel’s method needs a careful
choice of post-selection estimates for the parameters and their covariance matrices in Eqn . We
examine the performance of Sobel’s method using the estimates from the refitted models. That is,
in Eqn , & (B) and Cov(&) (Cov(B)) are the estimated coefficients and covariance fitted using
only the selected mediators in Models @ & . We note this is a simple choice and the variability
of variable selection is not fully accounted. In the simulation, we will evaluate its performance and

assess the impact of variable selection.

4. Simulation Studies

4.1. Aim, Data Generation, and Estimand

To examine the performance of our proposed method in terms of variable selection, estimation
and inference performance, we conduct several simulation studies.

We consider the case when Y is a continuous variable and the treatment variable Z is bi-
nary with an equal chance for 0 or 1. We generate two independent covariates X; and X, where
X; ~ N(0,1),7 = 1,2. We further assume the mediator vector M is multivariate and follows a

MV N(p,) distribution. Here, we consider an AR(1) correlation structure on X = (o0y;), i.e.

11



215 Uz»zj = pli=il, where p = 0.5. In addition, we let

M, = ay+ao;Z +g§j(X1) +g§j(X2) +e j=1,2,...,p, (14)

Y = Bo+9'Z+BTM +g5(X1) + g5(Xa) + e, (15)

where ap; = 2,7 =1,2,...p,60 = 2,7 =1, and € ~ N(0,1); the other parameters a;,j =1,...,p

and B are considered in the following two settings:

A. ay, = (1,0.8,0.6,0.4,0.2,1,0.8,0.6,0.4,0.2,0,...,0)T,

10 nonzeros
B8 =1(1,0.8,0.6,0.4,0.2,1,0.8,0.6,0.4,0.2,1,0.8,0.6,0.4,0.2,1,0.8,0.6,0.4,0.2,0, ..., O)T.

20 nonzeros
220 B. ai, = (1,0.8,0.6,0.4,0.2,1,0.8,0.6,0.4,0.2,1,0.8,0.6,0.4,0.2,1,0.8,0.6,0.4,0.2, 0, . . .,O)T,

20 nonzeros
B8=1(1,0.8,0.6,0.4,0.2,1,0.8,0.6,0.4,0.2,0, . .. ,O)T.

10 nonzeros

In setting A, the number of significant mediators in Model is double of that in Model ;

and vice versa in setting B. Since our two-step procedure selects (’s first and then select a’s, by
creating the second setting, we would like to investigate the performance of the two-step procedure

25 when the true signals in 3 is a subset of that in .
Furthermore, we consider different types of the relationship between the covariates X7, Xo, M,
and Y, as described in Scenarios (I)-(III) below. In particular, Scenarios (I)&(II) are based on a

set of nonlinear models, and Scenario (IIT) is based on a set of linear models.
e Scenario I: g3;(X) = g3;(X) = X +0.5X? and g5(X) = 0.5X +0.25X?, ¢7(X) = 0.1X>.
230 e Scenario IT: g3;(X) = sin(2X), g3;(X) = cos(X) and g3(X) = cos(X), g5(X) = sin(2X).
e Scenario ITI: g3;(X) = 0.5X, g3;(X) = X and g3(X) = 0.5X, g5(X) = 0.25X.

We consider four settings for the sample size n and the number of mediators p: n = 100, p = 500;
n = 300,p = 500; n = 1000,p = 500; and n = 300,p = 3000. Based on the simulation setup, the
true direct effect is 1; the joint indirect effect is 1 and the total effect is 4.4.

12
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4.2. Methods and Performance Measures

To estimate the direct and the indirect effect, we implement two proposed approaches based on
partial linear models: the one using Bonferroni correction for variable selection in the second step
(PLSEMp), and the one using adaptive LASSO for variable selection (PLSEM 41,). For comparison,
we implement two approaches based on the linear structural equation models: the one using adaptive

LASSO for variable selection following our two-step procedure (LSEM 4;,) and the joint significance

testing approach proposed by [Zhang et al.| (2016)) (HIMA). We use the bs function in the R package

spline to fit the regression spline with degrees of freedom 5. This is equivalent to using a cubic
spline with two knots, where the locations of knots are determined by the (33.3%. 66.6%) percentiles
of the data. All penalization methods are implemented with R package glmnet. The weights for
adaptive LASSO are calculated using the inverse of the absolute values of the ridge regression
estimators with the tuning parameter selected from 20 equally spaced grid on [0, 1]. The tuning
parameter for adaptive LASSO is selected by the function cv.glmnet. The HIMA procedure is
implemented by the R package HIMA available on the github pag

For each simulation setting and each model scenario, we report the mediator selection results
and the estimation performance. For the variable selection results, we report the true positive (TP)
and false positive (FP) number of mediators selected for each approach. For a fair comparison, we
also report the corresponding rates. For the estimation results, we evaluate the bias, the empirical
standard error, and the square root of mean squared error (RMSE). Additionally, for statistical
inference purpose, we also calculate the standard error of the estimated indirect effect using the
method described in Section The coverage rate of a 95% confidence interval is also evaluated
using this asymptotic standard error.

We repeat the simulation for 500 times for each simulation setting. The variable selection results
for setting A are summarized in Table [I] and that for setting B are in Table [2] Figure [3] & [4] give
the results for the bias and variability of both the direct and joint indirect effect, respectively, with
detailed numerical results of estimation provided in the supplementary file. The inference results

are displayed in Table

%https://github.com/YinanZheng/HIMA/

13
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4.3. Results
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Figure 3: Visualization of estimated bias for indirect effects (left) and direct effects (right) in the setting A of
simulated studies. Results are based on 500 replications. Each row is corresponding to a particular model, with
models I, II, and III from the top to bottom. Each segmentation in one graph (separated by the vertical blue
dashed lines) presents the comparisons among the four methods (colored legend on the bottom), and there are four
combinations of sample sizes and dimensions of the mediators in each setting,.

In terms of variable selection, the proposed PLSEM 45 approach based on adaptive LASSO

14

has the best performance overall by yielding a high TP rate and a low FP rate. The proposed
PLSEM g approach based on Bonferroni correction is too conservative by yielding relatively low TP

rate across all scenarios; the LSEM 4, approach has the highest TP rate but also the highest FP
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Figure 4: Visualization of estimated bias for indirect effects (left) and direct effects (right) in the setting B of
simulated studies. Results are based on 500 replications. Each row is corresponding to a particular model, with
models I, II, and III from the top to bottom. Each segmentation in one graph (separated by the vertical blue
dashed lines) presents the comparisons among the four methods (colored legend on the bottom), and there are four
combinations of sample sizes and dimensions of the mediators in each setting,.

rate in almost all the scenarios. On the other hand, the HIMA approach yields the lowest TP rate
but also the lowest FP rate.

In terms of bias and variance, in Scenario III where the true underlying models are linear, the
bias and RMSE for LSEM 47, and HIMA are the smallest as these two approaches are built upon

the linear structural equation models. In Scenarios I & II, where the true underlying models are
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nonlinear, the methods based on partial linear models yield the smaller standard errors and RMSE
values across different settings. This indicates that by not assuming a fully parametric model, we
eliminate model misspecification for the covariates and can eventually improve the estimation of
the direct and indirect effects when the true model is nonlinear. In addition, although the TP rate
for HIMA is the lowest, the bias is the smallest in most of the scenarios. We found this is due
to the fact that HIMA has difficulty in picking up the weak signals, which may not impact the
estimation results in the same magnitude. To verify this, we consider another simulation scenario
in supplementary file when all the signals are weak. As can be found in Table S6 & S7 of the
supplementary file, the bias of the proposed approaches are much lower than HIMA in this case.

Regarding inference, from Table[3] we find that when n = 100, p = 500, the theoretical standard
error is much smaller than the empirical standard error due to the small sample size. In this
case, we observe that the discrepancy gets much smaller as the sample size increases (see results
for n = 1000,p = 500). For the proposed PLSEMpg, the theoretical standard error is close to
the empirical standard error when n = 300, p = 500 and n = 300,p = 3000 and for PLSEM 41,
they are close when n = 1000,p = 500, indicating that the formula for the theoretical standard
error described in Section [3.3] performs relatively well in these specific scenarios. In addition, when
the biases are small, such as most of the scenarios in Setting B, the coverage rates of the 95%
confidence interval calculated from the standard error formula described in Section B.3] are close
to the nominal level. The above observations suggest that the performance can depend on the
settings and a larger sample size can be helpful in improving the performance. In general, the
performance of the standard error formula works better in Setting B, compared to that in Setting
A. As we indicate in the discussions, further investigation of alternative methods for characterizing
confidence intervals and conducting inference is needed.

In addition, we explore additional simulation settings with a slightly more complex confounding
structure. Instead of using a completely randomized treatment, we consider a scenario where
there is a pre-treatment confounder that jointly affects Z and M. The detailed settings and the
corresponding results are presented in Section 3 of the supplementary file. Observations on the
comparisons under these new settings are similar to those of the major simulations presented above.

Overall, we recommend PLSEM 45, over PLSEMpg as it provides less bias and variance and

higher true positive rates in most scenarios.
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Table 1: Summary of variable selection results in setting A. “True Positive” (TP) is the number of variables in
A = (M1, Ma, ..., Mio) that are selected as the important mediators; TP rate is its value divided by 10. “False
Positive” (FP) is the number of variables that are selected as the important mediators, but are not in A; FP rate is
its value divided by p — 10.

n P Model Method TP TP rate FP FP rate
LSEMar 6.698 0.670 4.890 0.010
I PLSEMp 4.510 0.451 0.070 0
PLSEMar, 6.974 0.697 3.856 0.008
HIMA 1.376 0.138 0.020 0
LSEMar 7.188 0.719 4.36 0.009
PLSEMp 4.444 0.444 0.072 0
100 500 n PLSEMap, 7.014 0.701 5.006 0.010
HIMA 1.998 0.200 0.036 0
LSEMar, 7.954 0.795 7.184 0.015
I PLSEMp 4.400 0.440 0.088 0
PLSEMar 7.290 0.729 6.254 0.013
HIMA 3.442 0.344 0.026 0
LSEMar 8.280 0.828 2.252 0.005
I PLSEMp 7.638 0.764 0.062 0
PLSEMar, 8.734 0.873 1.332 0.003
HIMA 3.576 0.358 0.028 0
LSEMar, 8.666 0.867 2.250 0.005
PLSEM 7.676 0.768 0.062 0
300 500 1 PLSEMar 9.048 0.905 2.136 0.004
HIMA 4.52 0.452 0.024 0
LSEMar 9.238 0.924 2.628 0.005
I PLSEM3p 7.664 0.766 0.064 0
PLSEM ap, 9.178 0.918 2.872 0.006
HIMA 7.306 0.731 0.032 0
LSEMar, 8.954 0.895 0.726 0.001
I PLSEMp 9.170 0.917 0.036 0
PLSEMar 9.116 0.912 0.108 0
HIMA 8.244 0.824 0.018 0
LSEMar 8.800 0.880 2.330 0.005
PLSEM3p 9.130 0.913 0.060 0
1000 500 1 PLSEM ap, 9.130 0.913 0.770 0.002
HIMA 9.136 0.914 0.518 0.001
LSEMar 9.506 0.951 0.380 0.001
I PLSEMp 9.220 0.922 0.040 0
PLSEMar 9.526 0.953 0.630 0.001
HIMA 9.086 0.909 0.018 0
LSEMar 7.848 0.785 4.372 0.001
I PLSEM3p 7.164 0.716 0.050 0
PLSEM ap, 7.886 0.789 1.770 0.001
HIMA 3.452 0.345 0.022 0
LSEMar, 8.754 0.875 3.896 0.001
PLSEMp 7.548 0.755 0.066 0
300 3000 1 PLSEMar 8.876 0.888 2.154 0.001
HIMA 4.488 0.449 0.038 0
LSEMar 8.892 0.889 4.078 0.001
I PLSEMp 7.444 0.744 0.068 0
PLSEMar, 8.854 0.885 4.040 0.001

HIMA 17 7.190 0.719 0.030 0




Table 2: Summary of Variable Selection Results for Setting B. “True Positive” (TP) is the number of variables in
A = (M1, Mas,...,Mip) that are selected as the important mediators; TP rate is its value divided by 10. “False
Positive” is the number of variables that are selected as the important mediators, but are not in A; FP rate is its
value divided by p — 10.

n P Model Method TP TP rate FP FP rate
LSEMar, 7.222 0.722 2.190 0.004
I PLSEMp 4.870 0.487 0.424 0.001
PLSEMar, 7.274 0.727 3.006 0.006
HIMA 2.506 0.251 0.028 0
LSEMar 7.346 0.735 2.530 0.005
PLSEMp 4.874 0.487 0.532 0.001
100 500 n PLSEMap, 7.462 0.746 3.598 0.007
HIMA 2.984 0.298 0.042 0
LSEMar, 8.198 0.82 4.582 0.009
I PLSEMp 4.836 0.484 0.494 0.001
PLSEMar 7.620 0.762 4.082 0.008
HIMA 4.298 0.43 0.138 0
LSEMar 8.460 0.846 0.040 0
I PLSEMp 7.872 0.787 0.028 0
PLSEMar, 8.780 0.878 0.142 0
HIMA 5.356 0.536 0.002 0
LSEMar, 8.714 0.871 0.268 0.001
PLSEM 7.868 0.787 0.108 0
300 500 1 PLSEMar 9.044 0.904 0.576 0.001
HIMA 6.428 0.643 0.006 0
LSEMar, 9.194 0.919 0.552 0.001
I PLSEM3p 7.872 0.787 0.106 0
PLSEM ap, 9.148 0.915 0.552 0.001
HIMA 7.478 0.748 0.070 0
LSEMar, 8.954 0.895 0.726 0.001
I PLSEMp 9.392 0.939 0 0
PLSEMar 9.448 0.945 0 0
HIMA 8.244 0.824 0.018 0
LSEMar, 8.790 0.879 2.890 0.006
PLSEM3p 9.170 0.917 0.660 0.001
1000 500 1 PLSEM ap, 9.130 0.913 0.830 0.002
HIMA 8.600 0.860 0.010 0
LSEMar 9.634 0.963 0.178 0
I PLSEMp 9.356 0.936 0.192 0
PLSEMar 9.686 0.969 2.132 0.004
HIMA 9.262 0.926 0.02 0
LSEMar, 7.860 0.786 0.448 0
I PLSEM3p 7.400 0.740 0.020 0
PLSEM ap, 7.774 0.777 0.054 0
HIMA 5.202 0.52 0.004 0
LSEMar, 8.536 0.854 0.414 0
PLSEMp 7.812 0.781 0.092 0
300 3000 1 PLSEMar 8.580 0.858 0.104 0
HIMA 6.380 0.638 0.002 0
LSEMar, 8.662 0.866 0.486 0
I PLSEMp 7.774 0.777 0.064 0
PLSEMar, 8.538 0.854 0.110 0
HIMA 18 7.240 0.724 0.068 0




Table 3: Results of the standard error estimation for the joint indirect effect. The SE is the empirical standard error,
the SE* is the standard error calculated by Eqn (13) and coverage is the coverage rate of the true indirect effect in
the 95% confidence interval using +2SE*.

Setting Setting
A B
n p Model  Methods SE SE* Coverage SE SE* Coverage
LSEMsr 3.14 2.53 0.86 1.26 1.38 0.97
I PLSEMp 1.14 0.90 0.95 0.81 0.68 0.95
PLSEMaz 1.43 0.96 0.91 0.96 0.68 0.94
HIMA 1.87 0.60 0.57 1.80 0.69 0.71
LSEMar, 2.83 2.07 0.82 1.13 1.15 0.98
100 500 i PLSEMpg 1.16 0.91 0.95 0.81 0.68 0.94
PLSEMar 1.49 0.97 0.88 0.88 0.69 0.93
HIMA 1.79 0.63 0.69 1.68 0.65 0.75
LSEMa;, 1.19 0.97 0.91 0.66 0.66 0.96
I PLSEMp 1.17 0.9 0.95 0.86 0.67 0.94
PLSEMar 1.40 0.98 0.91 0.81 0.69 0.95
HIMA 1.06 0.48 0.85 1.02 0.49 0.92
LSEMar  2.12 1.49 0.53 0.74 0.82 0.95
I PLSEMp 0.55 0.50 0.93 0.38 0.38 0.95
PLSEMar 0.67 0.52 0.91 0.39 0.38 0.96
HIMA 1.13 0.69 0.94 0.98 0.70 0.95
LSEMa;, 1.74 1.19 0.55 0.64 0.67 0.96
300 500 I PLSEMp 0.55 0.51 0.90 0.38 0.38 0.95
PLSEMar, 0.69 0.53 0.89 0.39 0.38 0.95
HIMA 0.88 0.61 0.93 0.81 0.60 0.94
LSEMar  0.66 0.52 0.91 0.38 0.38 0.96
I PLSEMpg 0.55 0.50 0.93 0.38 0.38 0.95
PLSEMar 0.67 0.53 0.92 0.39 0.38 0.95
HIMA 0.46 0.36 0.97 0.44 0.36 0.97
LSEMar, 1.14 0.81 0.10 1.14 0.81 0.10
I PLSEMp 0.27 0.27 0.89 0.27 0.27 0.89
PLSEMar 0.28 0.27 0.88 0.28 0.27 0.88
HIMA 0.46 0.41 0.97 0.46 0.41 0.97
LSEMar 1.08 0.64 0.08 0.35 0.36 0.97
PLSEMpg 0.26 0.28 0.80 0.20 0.21 0.97
1000 500 1 PLSEMa; 0.26 0.28 0.79 0.20 0.21 0.98
HIMA 0.41 0.35 0.97 0.39 0.35 0.98
LSEMar 0.31 0.27 0.89 0.20 0.21 0.98
I PLSEMpg 0.27 0.27 0.89 0.19 0.21 0.98
PLSEMar 0.31 0.27 0.89 0.20 0.21 0.98
HIMA 0.21 0.2 0.98 0.21 0.20 0.98
LSEMar 2.16 1.49 0.54 0.80 0.82 0.94
I PLSEMg 0.50 0.50 0.95 0.36 0.38 0.97
PLSEMar 0.63 0.51 0.93 0.37 0.38 0.97
HIMA 1.08 0.69 0.94 1 0.70 0.93
LSEMar 1.72 1.20 0.61 0.62 0.66 0.97
PLSEMpg 0.52 0.50 0.94 0.37 0.38 0.96
300 3000 1 PLSEMar 0.71 0.52 0.90 0.37 0.38 0.97
HIMA 0.85 0.60 0.96 0.76 0.59 0.96
LSEM4r  0.65 0.52 0.91 0.36 0.37 0.97
I PLSEMp 0.51 19 0.50 0.96 0.36 0.38 0.97
PLSEMar 0.68 0.52 0.91 0.37 0.38 0.97
HIMA 0.44 0.35 0.97 0.44 0.35 0.97
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5. Data Application

It has been shown that DNA methylations play an important role in many human activities. In

a genome-wide analysis of blood DNA methylation, the DNA methylation information are recorded

on 85 subjects and their stress-related activities are examined (Houtepen et al., 2016). The re-

searchers are interested in knowing whether DNA methylation plays a role in the regulation of hu-
man stress reactivity impacted by childhood trauma. The treatment variable is childhood trauma
exposure, which was assessed using a version of the Childhood Trauma Questionnaire (Bernstein
. The dataset is publicly availabl The distribution of the original score has a right
skewed distribution ranging from 24 to 63, with a mean of 32 and standard deviation of of 8.22.
After standardization (centered and scaled to have mean zero and standard deviation one), the
range becomes -1 to 4. The outcome variable is cortisol stress reactivity, whose distribution is close
to a bell-shaped curve, with a minimum of -1029.85 and max of 1876.28. The mean is 243.46 with a
standard deviation of 420.6. The cortisol stress reactivity is measured from saliva samples collected

from a stress induction task, which consists of a public speaking test and subsequent arithmetic task

(Vinkers et al.,|2013)). The span of the experiment is 90 minutes and the participants in this study

have an average age of 33 (Houtepen et al.| 2016). The mediators are human DNA methylation

markers. There are two important covariates that we need to adjust for: “Age” (X;) and “Sex”
(X32). Figure 5| plots the relationship between the outcome variable and the covariate “Age”, as well
as the relationship between “Age” and some of the methylation markers identified by the proposed
method. The plot shows that the relationships are nonlinear and the partial linear models can be
helpful to accommodate the nonlinearity.

In the original dataset, there are a total of 385882 methylation variables. In order to scale down

the computational burden, we first apply sure independence screening (Fan and Lv}2008) to reduce

the dimension to a reasonable scale. We follow the suggestion given by |Gao et al.| (2019) to select

the top candidate mediators by fitting the following model:

Y = BO —|—ﬂij +7’Z+g(X1) +X2 —|—€j,j = 1,,385882

The “Sex” covariate (i.e., X3) is a binary variable, so we do not apply the smoothing function

Shttps://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-77445
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Figure 5: Top left: the relationship between the scaled age (continuous covariate) and the cortisol stress reactivity.
Others: the relationship between the scaled age (continuous covariate) and the identified mediators. The red line
corresponds to the smoothed curve that describes the relationship between the two variables.

Table 4: Results for real data analysis when p = 500, 1000, and 2000. The standard error of the indirect effect is
estimated by Eqn . The p-value for the indirect effect is calculated by Wald test, and the p-value for the direct
effect is reported by t-test. All significant effects at « = 0.05 are marked with *. The PLSEM approach using
Bonferroni correction is not listed as no mediator is selected.

# Indirect Direct
P Method  Selected Estimate SE p—value Estimate SE p—value
500 LSEM 41, 7 -12.65 3.93 0.0006* -2.10 4.49 0.64
PLSEM,; 36 -9.39 5.43 0.04* -4.30 2.32 0.07
1000 LSEM 4, 18 -13.53 4.95 0.003* -1.22 3.21 0.71
PLSEM,r 40 -10.13 5.47 0.03* -3.56 2.71 0.20
2000 LSEM 4, 18 -18.47 5.04 0.0001* 3.72 3.73 0.32
PLSEM,r, 33 -10.64 5.43 0.02* -3.04 2.34 0.20

on it. We then pick the first p mediators whose effects are the largest. We consider three different p
values: p = 500, 1000, 2000. The number of selected methylation markers and the estimated direct
and indirect effects are provided in Table The PLSEM approach using Bonferroni correction

and the HIMA approach do not select any important mediators so we do not include it in the
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Figure 6: Top left: the estimated function of scaled age (continuous covariate) in the model to predict the cortisol
stress reactivity. Others: the estimated function of the scaled age (continuous covariate) in the model to predict the
identified mediators.

table. As we can see, the estimation results are consistent across different p values and different
methods. Generally speaking, the indirect effect is significant at v = 0.05 while the direct effect is
not, which indicates some important methylation markers regulate the impact of childhood trauma
on adulthood stress level. The selected methylation markers are displayed in Table There is
much overlap between LSEM 47, and PLSEM 45, approaches. In particular, the methylation marker
“cg27512205” is selected by both approaches when p = 500. This marker is found to be an important
locus on the KITLG gene that mediates the childhood trauma and cortisol stress reactivity based
on three independent samples (Houtepen et al., [2016). The total effect of the treatment on the
outcome is -13.69 (s.e.: 5.37 and p-value: 0.01). In mediation analysis, an important estimation

quantity is how much of the total effect that can be explained by the given mediator(s).
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Table 5: The selected mediators in real data analysis.

methods for a given p. The number under each mediator in parenthesis is &; Bj /Total Effect

The highlighted mediators are the ones selected by both

Method Selected Mediators
p = 500
LSEMar, cg27512205 ¢cg06957003  cgl6746576  cg26168148  cgll876022  cg04621676  cgl3946872
(0.212) (0.040) (0.138) (0.124) (0.013) (0.194) (0.137)
cg09573795  ¢gl4414944  cg03633948  cg00344209  cgl8087143  ¢g27512205  ¢g25458175
(0.026) (-0.036) (0.013) (0.021) (0.004) (0.019) (0.014)
PLSEM 47, cgl9695521  ¢g22073766  cgl6999495  cg00083399  cgl6512390  cg02381064  ¢g27155653
(0.007) (0.018) (0.025) (0.009) (0.014) (-0.034) (0.037)
cgl3341380 ¢g22120488  ¢cg04262938  cg06621358  cg06957003  cgl3539205  ¢g22396632
(0.020) (0.009) (0.037) (0.025) (0.068) (0.030) (0.043)
cg00229532  ¢cg06144990 cgl7880320 cgl6830861  ¢g23350558  cg26168148  ¢g21926402
(-0.001) (0.054) (-0.013) (0.011) (0.025) (0.017) (0.019)
cg22815785  ¢gl9386484  ¢cg21063480  cgl5604507  cg04621676  cg25652781  cgl3946872
(0.013) (0.006) (0.118) (-0.013) (0.011) (0.004) (0.051)
cg23402444
(0.017)
p = 1000
cgl6376036  cgl4414944  cg27512205 cg22073766 cg05333968  cg06957003  cg22396632
LSEM 4 (-0.023) (-0.058) (0.115) (0.035) (0.083) (0.046) (0.123)
cg26168148  ¢cg21063480 cgl3946872  cg21815667  cg22203081  cg20247596  cg23686508
(0.082) (0.096) (0.135) (-0.036) (0.057) (0.081) (0.015)
cg06019865  cg00719211  ¢cg02506717  cg09725013
(0.067) (0.047) (-0.013) (0.065)
cg09573795  ¢gl4414944  cg03633948  cg00344209  cg25458175  ¢g23092635  ¢g22073766
(0.038) (-0.063) (0.003) (0.018) (0.053) (-0.010) (0.074)
PLSEM 41, cgl6999495  cg00083399  cgl6512390 ¢cg27155653  cg04262938  cg06957003  cgl3539205
(-0.009) (-0.007) (0.006) (0.010) (0.046) (0.048) (-0.023)
cg22396632  cgl7880320 cgl6830861  cg23350558  cg26168148  cg02860705  ¢gl2947510
(0.023) (-0.021) (0.028) (0.018) (0.012) (0.016) (0.026)
cg19386484  ¢g21063480 cgl5604507 cg04621676  cgl3946872 cg23402444  cg21815667
(0.006) (0.102) (0.001) (0.131) (0.055) (0.022) (0.028)
cg08504448  ¢g20247596  cgl6150053  cg05971891  cgl0147507 cgl7840166  cg06019865
(0.040) (0.038) (-0.011) (0.077) (-0.038) (-0.063) (0.009)
cgl7189568  ¢g02506717  cg09725013  ¢cg24165747  cg00499707
(0.038) (-0.061) (-0.034) (-0.004) (0.113)
p = 2000
cg27512205  ¢g22073766 cg27155653  cg22396632 cgl9230917  cgl3946872  cg21815667
LSEM 4 (0.038) (0.156) (0.062) (0.040) (0.168) (0.134) (0.062)
cg22203081  cgl0147507 cgl2446629 cg03341991 cgl9975931  cg22713958  ¢g20707780
(0.198) (-0.017) (0.042) (0.148) (0.031) (-0.058) (0.050)
cgll753311  cgl6908740  cgl4843651  cg25626453
(-0.026) (0.126) (-0.009) (0.109)
cgl4414944  cg00344209 cgl8087143  cg25458175  ¢g23092635 ¢gl9695521  ¢g22073766
(-0.065) (-0.002) (0.006) (0.072) (0.019) (0.017) (-0.022)
PLSEM 47, ¢gl6512390 ¢cg04262938  cg05333968  cg22396632 cg00229532  cgl7880320  ¢g23350558
(0.014) (0.040) (0.076) (0.054) (0.006) (-0.013) (0.014)
cg22815785  ¢gl9386484  cg21063480  cg21815667  cg22203081  cg20247596  cgl0147507
(0.028) (0.011) (0.080) (0.038) (0.038) (0.057) (0.018)
cgl2446629  cg03341991  cg09725013  cg00499707  cg08118034  cgl9975931  cg07314988
(-0.016) (0.077) (-0.018) (0.026) (0.027) (-0.007) (-0.006)
cg05846894  ¢cgl6908740  cg04405414  cg05942970  cg25626453
(-0.015) (0.032) (0.013) (0.084) (0.094)
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6. Discussion

In this study we have examined the performance of a two-step procedure for mediation analysis
when the number of mediators is large. With the increasing capability to measure various kinds of

-omics data and the growing scientific interest to integrate information in a biologically meaningful

way (Richardson et al., [2016]), the analysis that can accommodate high-dimensional data will be

much needed. We emphasize the importance of incorporating the confounders for drawing causality
and allowing flexible models to account for nonlinearity. Although the individual indirect effect for

each mediator is generally unidentifiable unless we impose some restrictions on the joint distribution

of the mediators or on the correlation structure among the mediators (Wang et al. [2013)), the

parsimonious set of mediators obtained through the penalized framework provides a data-driven
selected mediators for possible downstream scientific investigation. We look into estimation of
mediation effects by examining the bias and coverage with the proposed standard error formula.
Despite the possible underestimation caused by ignorance of variability in the variable selection step,
the performance provides some evidence of the significance with conservativeness as expected.

In the two-step procedure, we choose to estimate Model first and pass the selected set of
mediators to Model for further selection. We note that an order-free approach is to use the full
set of mediators to estimate both Models and , and then choose the subset of mediators
that are selected in both models. Our choice is driven by the concern of high computation cost
in estimating Model where mediators are stacked to account for their correlation. Although
theoretically the selection should be the same regardless of the order of estimation, it is not the
case with real data given the high-dimensionality and finite sample size. If in practise, researchers
choose to use the order-free approach, we recommend to use SIS to bring down the dimension to
make the computation affordable and estimation more reliable. After all, the PLSEM approach
using the Bonferroni correction may return a very conservative set. Under our current framework,
researchers have flexibility if other smoothing methods or penalties are preferred. One limitation
of our two-step methods is that by separately selecting a’s and (’s, the proposed method may
miss the mediator which has a small signal on one but a large signal on the other. Although
in examining the estimate and confidence interval of the product term we choose to evaluate the
performance of the Sobel’s method using the refitted coefficients with those selected in each model,
we note that the refitting method is naive. The post-selection inference is an active research field

(Gao et al.| |2017; [Kuchibhotla et al., 2021) and more sophisticated methods such as the debiased
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method as reviewed in [Kuchibhotla et al.| (2021]) should be investigated in the future work. We

also acknowledge that, in terms of the confounding structure, the simulation settings are rather

simplistic. In the event where confounders are also high-dimensional, penalties can be applied on

the confounders as well. This is an active research area in causal inference (Shortreed and Ertefaie,

[2017 [Ye et al., [2021). In particular, we note that the confounder selection problem is not the same

as a typical variable selection problem in regression and researchers should follow the adjustment

criteria (e.g., VanderWeele| (2019))) to pick the confounders in mediation analysis.
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