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Summary

The widespread use of machine learning algorithms in radiomics has led to a proliferation of

flexible prognostic models for clinical outcomes. However, a limitation of these techniques is

their black-box nature, which prevents the ability for increased mechanistic phenomenological

understanding. In this article, we develop an inferential framework for estimating causal

e↵ects with radiomics data. A new challenge is that the exposure of interest is latent so that

new estimation procedures are needed. We leverage a multivariate version of partial least

squares for causal e↵ect estimation. The methodology is illustrated with applications to two

radiomics datasets, one in osteosarcoma and one in glioblastoma.
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1 Introduction

Radiomics explores relationships between image-derived characteristics of a tumor and

other parameters, including clinical outcomes and genomic profiles, including gene expres-

sion, somatic mutations, and DNA methylation [1]. In particular, several groups have built

classifiers to predict tumor molecular phenotypes using radiomic inputs (e.g., [2, 3, 4, 5]).

More recently, there has been tremendous interest in using modern machine learning and

in particular deep learning tools in order to build state-of-the-art classifiers for predictions

[6, 7, 8].

In spite of their state-of-the-art performance, use of these complex models comes at a cost.

Because many of these classifiers are “black-box” in nature, clinicians consequently have a

di�cult time understanding the predictions. More generally, most work in radiomics has

focused on pattern-based associations in the data with a machine learning viewpoint in one

of two ways. First, these analyses could take the form of clustering algorithms, such as t-SNE

or UMAP, in which interesting clusterings lead to followup discoveries. Second, a classification

or supervised learning framework could be adopted in which the radiomics features could be

used to predict a class label or phenotype of interest. For this approach, a typical evaluation

is classification accuracy of the ROC curve or F1 values where higher values are better. While

there has been tremendous successes in radiomics with these machine learning techniques, it

still remains elusive from the end goal of developing mechanistic insights into tumorigenesis.

In this article, we seek to introduce causal modelling concepts into radiomics. While there

has been much work on using these ideas in genomics (e.g., [9, 10]) and brain imaging (e.g.,

[11]), their application to radiomics has not occurred. We argue that adopting this viewpoint

in radiomics has the following advantages:

1. It allows one to view radiomics as measurements of properties of the tumor and its

characteristics.

2. Developing a causal model allows one to link tumorigenic mechanisms to observed data.

3. The causal inferential pathway is compatible with the trend towards systems biology

[12] while not being as purely reductionist as approaches such as those based on math-

ematical models or ordinary di↵erential equations.

However, a challenge that this approach introduces is that we must view the tumor as a

latent construct, and causal inference with latent structures is much more challenging. There

has been much recent interest in the use of latent class modelling of treatment e↵ects on

outcomes [13]. Bandeen-Roche et al. [14] proposed a latent class modelling approach in
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which pseudodraws from the inferred latent class distribution are then used to fit regression

models on the outcome. Multiple pseudodraws are generated, and the multiple regression

results are combined using Rubin’s imputation rules [15]. A simpler approach is to use a

classify/analyze approach [16] in which each individual is assigned to a latent class, and then

the group assignment is used as a covariate for which standard propensity score methods

can be applied. In a recent study, Schuler et al. [17] compared these approaches, along with

a joint modelling approach developed by Kang and Schafer from an unpublished technical

report at the Methodology Center of Penn State University. The approaches can be broadly

grouped as being 1-step versus 3-step approaches [18]. The former methods fit a joint model

describing both the latent classes as well as the latent classes’ e↵ect on the outcome. The

latter go through a series of three steps: (a) fit a model to describe the joint classes; (b) assign

membership of the individuals to these classes; (c) fit a regression model of the outcome on

the inferred latent class. Schuler et al. [17] provide a nice discussion of the strengths and

weaknesses of each approach. In their conclusions, they suggest that 1-step methods o↵er

many advantages but that one barrier to their implementation is computational. To be

precise, estimation based on a joint likelihood for both the latent class and causal e↵ect

modelling might have issues with numerical convergence.

Our new contributions to the literature in the current paper are the following:

1. Extension and formalization of the classical potential outcomes framework [19, 20] to

accomommodate latent treatment e↵ects. This entails developing the necessary assump-

tions for definition and identification of an appropriate causal estimand with observed

data. This leads to a new quantity, the local latent average causal e↵ect.

2. Development of a new estimation procedure for the local causal e↵ect with latent vari-

ables. This leverages techniques from su�cient dimension reduction and partial least

squares [21].

To our knowledge, the use of latent causal inferential techniques has not been developed for

e↵ect estimation in radiomics or genomics. The most related technique comes from genetics,

where principal components-type approaches are used to adjust for population stratification,

which is a type of confounding [22, 23]. However, in that setup, latent variables are used to

model confounders, not the main e↵ect of interest, which is the focus of the current article.

As a proof of concept, we apply our approach to two radiomics datasets in the literature, one

from glioblastoma, the other a public available data from osteosarcoma [24].
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2 Motivating Datasets:

In this article, we will use two datasets to illustrate the methodology as a proof of concept.

We use these because the distribution of the outcome is di↵erent. For the study described in

Section 2.1., the outcome is continuous, while for that in Section 2.2., the outcome is binary.

2.1 Glioblastoma multiforme study

Glioma is the most common type of brain cancer; it develops in the glial cells [25]. Among

these, glioblastoma multiforme (GBM) is the most frequent and malignant histologic type.

Patients with GBM have on average 3% 5-year survival after diagnosis [25]. The dataset we

work with comes from the Cancer Genome Atlas, consisting of data on 226 subjects with

GBM. For these subjects, imaging was done using three protocols: T1, T2 and FLAIR. In

this paper, we only focus on the first two. T1 and T2 refer to protocols that utilize two

di↵erent properties of fMRI. With fMRI, the magnetic current induces a magnetic field, and

T1 refers to the speed at which the electron spins in the blood realign with the recovery of

the longitudinal orientation. T2 refers to the loss of magnetization as a result of the loss

in phase coherence of the electrons. The T1 and T2 images were represented in DICOM

format, which was then converted to NIfTI format and processed for standardization with

1mm isovoxel resolution as follows:

1. Postcontrast T1-weighted images (T1C) were resampled to 1mm isovoxel resolution;

2. T2 images were registered to T1C images after skull stripping, using the FMRIB soft-

ware library (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL).

3. Image signal intensity was normalized using the WhiteStripe R package.

The tumor areas, defined as areas of T2 hyper-intense tumor and edema on FLAIR images,

were segmented by using semi-automatic methods, including signal intensity thresholding,

region growing, and edge detection, with an open source software (Medical Image Process-

ing, Analysis and Visualization, https://mipav.cit.nih.gov/). Radiomic features were

extracted from all isotropic voxel image segmented regions of interest (ROIs) using pyRa-

diomics [26]. Extraction settings were configured to features from original images, as well as

Wavelet filtered and Laplacian of Gaussian (LoG) filtered images and were calculated con-

sidering adjacent voxel in 3 dimensions. In total, 1046 radiomic features were extracted per

image.
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2.2 Osteosarcoma study

Osteosarcoma is a cancer that usually develops in the cells that form bone, the osteoclasts.

It happens most often in children, adolescents, and young adults. In a recent study, Zhang

et al. [27] conducted a study of 102 subjects with osteosarcoma who underwent neoadjuvant

chemotherapy. Prior to having treatment, they received a dynamic contrast-enhanced MRI

(DCE-MRI) scan. The Response Evaluation Criteria in Solid Tumors were used to evalu-

ate the neoadjuvant chemotherapy response as e↵ective (complete remission and/or partial

remission) or ine↵ective (stable and progressive disease).

Using the Radcloud software platform, Zhang et al. [27] extracted a total of 1,409 quanti-

tative imaging features. They can be divided into four groups: (a) Group 1 represent typical

summaries for the distribution of voxel intensities within the MR image; (b) Group 2 are

three-dimensional features that reflect the shape and size of the region; (c) Group 3 are

second-order texture features that quantify region heterogeneity di↵erences, calculated from

gray-level run length and gray-level co-occurrence texture matrices; (d) Group 4 contains

1,302 first-order statistics and texture features after applying Laplacian, logarithmic, expo-

nential, and wavelet filters on the image. The goal is to see whether or not radiomics can

predict treatment response.

3 Proposed Methodology

3.1 Potential outcomes framework

We first review the potential outcomes framework of Rubin [19] and Holland [20] and begin by

assuming that the treatment is observed. For the sake of exposition, we will assume that it is

continuous, similar to Imai and van Dyk [28]. Let Z denote the treatment, with possible values

z 2 Z. Define {Yi(z) : z 2 Z} to the set of potential outcomes for subject i, i = 1, . . . , n;

Yi(z) represents the potential outcome for subject i with the treatment equals z. In addition,

we assume the existence of a set of confounders X. For proper causal inference within the

potential outcomes framework, one needs the assumption based on strong ignorability of the

treatment:

{Y (z) : z 2 Z} || Z|X, (1)

which in words states that treatment assignment is conditionally independent of the set of

potential outcomes given covariates. In the case of binary treatment, Rosenbaum and Rubin

[29] refer to (1) as the strongly ignorable treatment assumption. Heuristically, what (1)

implies is that the potential outcomes can be viewed as predefined random variables. The

randomness in the populations occurs due to the nonignorable missing data mechanism, in
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the sense of Little and Rubin [15], that makes only one of the potential outcomes observable

for each subject. In addition, we make the assumption of consistency so that the the observed

outcome for a subject coincides with the corresponding potential outcome.

Based on the potential outcomes, we can define the following local causal e↵ect parameter

LCEi(z) = Yi(z + 1)� Yi(z), z 2 Z (2)

for i = 1, . . . , n. We also note the dependence of (2) on the treatment. If we assume that

the e↵ect is constant over levels of Z, then it would be possible to pool e↵ects to result in a

statistically more e�cient estimator of the local causal e↵ect.

Two more assumptions that are commonly invoked in the causal inference literature

are the positivity assumption and the common support condition. The former states that

E(Z|X) 6= 0 for all possible values of X. In other words, there exist no regions of the con-

founder distribution that preclude observe any possible value of the treatment. The common

support condition states that there is su�cient overlap in X across all values of Z.

If we were to average the local causal e↵ects (2) over all subjects (i = 1, . . . , n), then this

would correspond to a local average causal e↵ect. In the case where the treatment is binary,

this e↵ect reduces to the average causal e↵ect that has been considered in the literature.

Analogous to the propensity score of Rosenbaum and Rubin [29] in the case of binary

treatment, we can consider a quantity representing the conditional mean of treatment given

confounders, E(Z|X). This is a special case of the generalized propensity score of Imai and

van Dyk [28] and has several desirable properties. The first is that it reduces the modelling

of confounders to modelling a conditional mean of treatment, which reduces the dimension.

Second, provided E(Z|X) is correctly modelled, then it functions as a balancing score in that

if (1) holds, then {Y (z) : z 2 Z} || Z|E(Z|X). The properties of E(Z|X) lead to a natural

strategy for performing causal inference:

1. Fit a model for E(Z|X);

2. Given the predicted conditional mean in (1), perform a regression of Y on Z in which

an adjustment is made using E(Z|X).

There is a variety of approaches to perform adjustment in the second step of this algorithm.

These include inverse weighting methods, regression adjustment, matching, subclassification

or a combination thereof. Please see Lunceford and Davidian [30] for more discussion on

these methods.
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3.2 Latent treatment: model formulation and estimation

We now relax the assumption that the treatment Z be observed. Instead, we now have

available several observations U ⌘ (U1, . . . , UK) that capture the latent treatment variable

Z. A commonly used assumption here is the so-called local independence assumption [31],

which states that conditional on Z, U1, . . . , UK are conditionally independent. We can then

factorize the joint distribution of the potential outcomes (denoted here as Y (·)) Z, X and U

as

fY (·),Z,X,U = fY (·)|Z,X,UfZ|X,UfX,U

= fY (·)|U,XfZ|X,UfX,U,

where we have the assumption (1) to simplify the conditional distribution going from the

first line to the second. If we further assumption that the joint density fX,U are ancillary for

the causal parameters of interest, then we can base our approach to inference by specifying

likelihoods corresponding to fY (·)|U,X and fZ|X,U, respectively. Recapping, here are the

assumptions we need for valid causal e↵ect estimation of the LCE in the latent case:

1. Z || {Y (z) : z 2 Z};

2. The components of U are conditionally independent given Z;

3. The components of U are conditionally independent of any variable S given Z;

4. E(Z|X) exists for all X.

We note that Assumptions 2 and 3 look similar but are conceptually di↵erent. The former

deals with the radiomics features providing conditionally independent information given the

tumor and is referred to as local independence. By contrast, the latter has to do with

measurement invariance [32], namely that the radiomics measurements are capturing the

same concept independent of other variables. In fact, it is assumption 3 that is a very

important one if one wishes to have any chance of the radiomics data analyses reflecting

potentially generalizable findings.

Figure 1 depicts our conceptual model.

Figure 1 about here.

We could then convert Figure 1 into a causal diagram [33] which leverages the graphical model

for causation [34]. We can use the traditional rules about directed acyclic graphs to model

conditional independence. In particular, the observed radiomics data will be conditionally
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independent given the latent variable. In addition, the latent variable d-separates [34] the

confounders from U. The causal e↵ect we focus on in Figure 1 is that from the latent variable

to the clinical outcome. This separation of the scientific estimands (i.e., causal e↵ects) from

the data represent one of the appealing features of Figure 1.

We note that the structure of Figure 1 is related to diagrams used by practitioners of

structural equations modelling (SEM, [35]). In that literature, relationships between latent

variables are referred to as the structural model, while those relating latent to measured

are called measurement models. SEM combines the two types of models in order to induce

a joint distribution for the observed data which is then used for estimation and inference.

As described by Bollen and Pearl [35], the structural model is consistent with the potential

outcomes framework that we outlined in §3.1.

Thinking of the radiomics data as the main e↵ect in a causal analysis is consistent with

a tumor progression model in which the cancer’s behavior at clinical diagnosis matters, and

any biological preceding events can only play the role of confounders. Biologically, this means

that confounders increase the propensity for tumorigenesis to occur.

4 Methodology

4.1 Proposition and partial least squares

Based on the assumptions and conditional independence statements we have laid out in the

previous sections, we have following proposition.

Proposition 1. The random variable Z d-separates both U and X and Y and X.

While proposition 1 is quite simple in nature, it in fact reveals a powerful result and leads

to a new approach to causal e↵ect estimation. In particular, we can estimate Z as a latent

variable in two simultaneous regression models: (1) U on X; (2) Y on X. This simultaneous

estimation has potential benefits largely due to the absence of direct arrows from U to Y

in Figure 1. We have thus converted a causal e↵ect estimation problem into a multi-task

learning problem with a latent variable.

Our algorithms for causal e↵ect estimation will be based on partial least squares (PLS)

[36, 37]. PLS presumes that Ui and Xi (i = 1, . . . , n) are both linear functions of a set

of common latent factors. An alternative characterization for PLS was given by Stone and

Brooks [38]. Suppose that we are fitting the following model:

E(Yi|Zi) = ZT
i �0 (3)

Then Stone and Brooks [38] consider the following class of objective functions:

Var(ZT
i �)

2Cov(Yi,Z
T
i �)

↵/(1�↵)�1,
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where Var and Cov and short-hand notation for variance and covariance, and ↵ is a number

between 0 and 1. In this framework, values of ↵ = 0, ↵ = 1/2 and ↵ = 1 correspond to the

objective functions maximized by ordinary least squares (OLS), partial least squares (PLS)

and principal components regression (PCR), respectively. Using this framework, we find that

the PLS algorithm acts as some hybrid between the usual least squares estimator and the

principal components regression approach of Massy [39].

The algorithm for multivariate PLS that we will use is the kernel algorithm proposed by

Dayal and MacGregor [40]. We assume that the columns of U and X are centered and scaled.

Recall again that the PLS model formulation is given by
✓
X = TP0 +E
U = VQ0 + F

◆
, (4)

where T and V are n ⇥ l matrices, and P and Q are the so-called locaing matrices corre-

sponding to X and U, respectively. The dimension of P is p ⇥ l, while for Q, it is m ⇥ l.

The matrices E and F are the error terms with entries being independent and identically

distributed normal random variables with mean zero and variance �2.

The kernel algorithm proceeds as follows:

1. Compute the matrices X0X and X0U.

2. Let b = 1. Compute q1 as the eigenvector corresponding to the largest eigenvalue of

U0X0XU. Then set w0
b = (X0U)bqb and rescale the entries of wb to have unit norm.

For b = 1, (X0U)b = X0U; for b > 1, its definition will be given in (5).

3. Compute rb. For b = 1, r1 = w1, while for b > 1,

rb = wb �
t�1X

a=1

p0
awbrb.

4. Compute tb = Xrb, pb = t0bX/t0btb and q0
b = r0b(X

0U)/t0btb.

5. Compute

(X0U)b+1 = (X0U)b � pbq
0
b(t

0
btb) (5)

6. Repeat steps (2)-(5).

At the end, the regression coe�cients are given by the outer product of the matrix consisting

of rb and that consisting of qb. This kernel algorithm has been implemented in the kernelpls.fit

function that is available in the pls package [41].
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4.2 Theoretical justification

Partial least squares methods were given a justification for the single-index model by Naik and

Tsai [21]. This was done by incorporating ideas from the field of su�cient dimension reduction

[42]. This is a branch of statistics in which the goal is to develop ‘model-free’ procedures in

order to summarize data while preserving regression relationships. The field started with the

observation by Brillinger [43] in which ordinary least squares methods provide estimates that

were consistent up to a sign for regression parameters in more general single-index models.

A recent overview of the field can be found in Li [42].

We now develop a multivariate extension of the results of Naik and Tsai [21]. To do

this, we consider a multivariate response for each subject that can be summarized as a an

K�dimensional vector U along with a p�dimensional vector of covariates X.

We then formulate the following multivariate regression model:
0

B@
U1
...

UK

1

CA =

0

B@
g1(�0

1X, ✏1)
...

gK(�0
KX, ✏K),

1

CA (6)

where gj (j = 1, . . . ,K) are monotonic functions in both arguments and ✏1, . . . , ✏K are ran-

dom vectors representing the error distributions for the models. In (6), the p�dimensional

parameter vectors �1, . . . ,�K specify the directions of interest. In the case where K = 1,

model (6) reduces to a generalized single-index model. We make the following assumptions.

Assumption 1. X has a multivariate normal distribution.

Assumption 2. The covariance matrices n�1X0X and n�1X0U converge in probability to

limits ⌃xx and ⌃xu, respectively.

Assumption 3. Taken as an operator, the range of ⌃xx coincides with the range of ⌃xu.

Based on these three assumptions, we have the following result.

Theorem: Under Assumptions 1–3, the multivariate PLS estimator converges in probability

to a constant times (�1, . . . ,�m).

Proof: The multivariate PLS estimator can be expressed as R̂(R̂0n�1X0XR̂)�1R̂0n�1X0U,

where R̂ is the matrix derived from the Kryvlov sequence of matrices of n�1X0X and n�1X0U.

By assumption 2, this will converge to R(R0⌃xxR)�1R0⌃xu�⇤. By assumption 3, �⇤ will the

in the space spanned by R so that ⌃1/2
xx �⇤ will be in the space spanned by ⌃1/2

xx R. The

statement of the theorem then follows.

One of the major assumptions in traditional su�cient dimension reduction procedures

has been the linearity assumption, which is satisfied by multivariate normal distributions

and more generally, elliptically symmetric distributions. This gets violated in situations with

discrete predictors. Recently, Ghosh [44] has developed an interpretation of su�cient dimen-
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sion reduction methods from an information-theoretic point of view. In this interpretation,

the partial least squares algorithm can be viewed as an information-maximization operation

under less restrictive distributional assumptions than those required in Theorem 1 of the

paper.

4.3 Integration with causal modelling and implementation details

In examining Figure 1, we propose the following strategy for causal e↵ect estimation.

1. Run a multivariate PLS regression of the radiomics data on the confounders.

2. Using the scores as the inferred latent treatment from the output of the PLS regression,

perform causal inference of the treatment on outcome.

We have lots of choices on how to perform step 2. above. Our approach is to use regression

adjustment as a means of inferring causal e↵ects. For the standard error, we will use the

nonparametric bootstrap [45].

We note that the outcome of the multivariate PLS can be fairly general. These include

variables that are continuous, binary or unordered categorical. For right-censored failure time

variables, we use the suggestion of Keles and Segal [46] and compute a first-stage martingale

residual from a null model (i.e., one with no covariates). We then treat the residual as a

continuous variable to be input into the partial least squares algorithm.

5 Numerical examples

5.1 Glioblastoma multiforme study

The confounders available in this analysis are gender, grade and IDH mutation status. Mu-

tations of the isocitrate dehydrogenase (IDH1) gene has been shown to be a marker of onco-

genesis and is one of the most specific biomarkers in the diagnostic classification of secondary

GBM [47] Gliomas with mutated IDH have improved prognosis compared to gliomas with

wild-type IDH and are detected by immunohistochemistry and magnetic resonance (MR)

spectroscopy [48]. We first characterize survival in the population and by grade, IDH muta-

tion status and gender. These are presented in Figure 2.

Figure 2 about here.

Based on the plots, we see that there are di↵erences in survival based on grade and IDH

mutation status and not for gender. We also note that 22 subjects are missing IDH mutation,

while 1 is missing grade and gender.
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We next applied the latent causal e↵ect approach in the paper with two sets of con-

founders: (gender,grade) and (gender,grade,IDH mutation statu). We note that the former

analysis will have 225 subjects, while the latter will have 203. The results are shown in Table

1.

Table 1 about here.

The model that is being fit is for the adjusted survival time as a function of the latent

variable. Based on the analysis, we see that there is a highly significant e↵ect of the treatment

on outcome. Both analyses that higher values of the latent construct are associated with lower

adjusted times to death.

5.2 Osteosarcoma study

In this dataset, there is only one confounder, the stage of cancer (stage IIB versus not).

Of the 102 subjects, 75 were stage IIB. The e↵ect of radiomics on treatment response was

analyzed here. The multivariate PLS algorithm yields an average causal e↵ect of 0.099, with

an associated 95% confidence interval of (�0.13, 0.20). As an alternative, we computed the

first principal components using the radiomics data and fit a regression model of treatment

response Y on the principal component and stage. Based on the fitted model, we obtained

the following equation:

Y = 0.29� 0.02PC1 + 0.23Stage,

with associated standard errors of 0.01 and 0.11 for the principal component and stage. While

both variables are statistically significant at a 0.05 level of significance (p-values of 0.05 and

0.03 for PC score and stage, respectively), we note that the direction of the e↵ect is reverse

that from the multivariate PLS approach.

6 Discussion

In this article, we have introduced an approach to causal modelling with radiomics data.

The assumptions needed for identification of the causal e↵ects from observed data along with

an estimation procedure for causal e↵ects. We have demonstrated the application of the

methodology to two radiomics datasets in cancer. Further evaluations are need to demon-

strate validation of the methodology. To help readers, we have made code available to do the

analysis with the osteosarcoma data at the following location:

http://github.com/GhoshLab/CausalRadiomics
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An alternative approach to radiomics data is to treat it as a mediation variable in a causal

e↵ects analysis. There, it would be an intermediate variable, and genetic data would serve

as the main exposure. Viewing the radiomics as mediation variable makes explicit the role of

initiating events. In Figure 3, we suggest a DNA mutation as the beginning event, but other

choices could be entertained.

Figure 3 about here.

In this setup, the radiomics is viewed as a downstream event, and the mutation will have

e↵ects on survival as mediated through the radiomics and e↵ects outside the pathway. In

[9], the authors used microRNA as the exposure and gene expression from several pathways

as the mediators. For this setup, they develop tests of mediation and associated testing

procedures. More recently, in [10], a Bayesian approach to mediation analysis as developed,

in which methylation profiles were the high-dimensional mediators of a univariate exposure.

Their algorithm was based on a variable selection procedure with shrinkage priors to select

for mediators. Finally, we note the principal mediation directions approach of [11]. For their

application, subject-level functional magnetic resonance imaging profiles were the mediator,

and the goal was to understand the areas of the brain that mediated pain-invoked stimuli.

In [11], the authors used a supervised principal components approach similar to what is

presented here. We will explore extensions of our latent causal inference procedures to the

mediation problem in future work.
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Figure 1: A conceptual model diagram relating confounders, radiomics and outcome variables
in medical studies. The goal is to estimate the causal e↵ect corresponding from the arrow
from the ‘Latent variable’ circle to the clinical outcome
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Figure 2: Survival distribution plots for the subjects in the glioblastoma radiomics study. For
all plots, the x axis represents the time in weeks and the y-axis is the survival probability.
Figure (a) shows the Kaplan-Meier plot for the entire population, along with associated 95%
pointwise confidence intervals. Figure (b) shows the Kaplan-Meier estimates by grade (solid
= grade 2; dashed = grade 3; dotted = grade 4). In Figure (c), the survival distributions
by IDH mutation status (solid = mutant; dashed = wild-type) are presented. Finally, the
gender-specific survival distributions (solid=female; dashed = male) are given in Figure d.
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Figure 3: A framework for viewing the radiomics measurements as mediation variables. The
exposure here is a DNA mutation which leads to tumorigenesis that is captured by the
imaging and radiomics feature and which leads to a clinical outcome.
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Table 1: Latent causal e↵ects and associated confidence intervals in glioblastoma study.

Confounders n Estimate 95% Confidence Interval
Gender,Grade 225 -0.19 (-0.27,-0.08)
Gender,Grade,IDH 203 -0.20 (-0.26,-0.11)

The estimates denote the average latent local causal e↵ect of radiomics on survival. There
are two analyses reported here. The first row denotes an analysis in which gender and grade
are confounders. The second row represents an analysis in which gender, grade and IDH
mutation status are confounders. The n refers to the sample size used. The estimate is the
estimated causal e↵ect using the methods in §4. The 95% confidence intervals are obtained
using the nonparametric bootstrap.
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