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of intensive glycemic control on major adverse 
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trials: a machine-learning analysis
Justin A. Edward1, Kevin Josey2,3, Gideon Bahn4, Liron Caplan2,5, Jane E. B. Reusch2,6, Peter Reaven7, 
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Abstract 
Background: Evidence to guide type 2 diabetes treatment individualization is limited. We evaluated heterogene-
ous treatment effects (HTE) of intensive glycemic control in type 2 diabetes patients on major adverse cardiovascular 
events (MACE) in the Action to Control Cardiovascular Risk in Diabetes Study (ACCORD) and the Veterans Affairs 
Diabetes Trial (VADT).

Methods: Causal forests machine learning analysis was performed using pooled individual data from two rand-
omized trials (n = 12,042) to identify HTE of intensive versus standard glycemic control on MACE in patients with type 
2 diabetes. We used variable prioritization from causal forests to build a summary decision tree and examined the risk 
difference of MACE between treatment arms in the resulting subgroups.

Results: A summary decision tree used five variables (hemoglobin glycation index, estimated glomerular filtration 
rate, fasting glucose, age, and body mass index) to define eight subgroups in which risk differences of MACE ranged 
from − 5.1% (95% CI − 8.7, − 1.5) to 3.1% (95% CI 0.2, 6.0) (negative values represent lower MACE associated with 
intensive glycemic control). Intensive glycemic control was associated with lower MACE in pooled study data in sub-
groups with low (− 4.2% [95% CI − 8.1, − 1.0]), intermediate (− 5.1% [95% CI − 8.7, − 1.5]), and high (− 4.3% [95% CI 
− 7.7, − 1.0]) MACE rates with consistent directions of effect in ACCORD and VADT alone.

Conclusions: This data-driven analysis provides evidence supporting the diabetes treatment guideline recom-
mendation of intensive glucose lowering in diabetes patients with low cardiovascular risk and additionally suggests 
potential benefits of intensive glycemic control in some individuals at higher cardiovascular risk.
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Background
Type 2 diabetes is prevalent and costly, affecting nearly 
1 in 10 adults in the United States at an estimated health 
care cost of $327 billion [1] and affecting over 450 million 
individuals worldwide [2] Professional society guidelines 
recognize type 2 diabetes patient heterogeneity through 
recommendations for individualized treatment of type 2 
diabetes patients [3, 4]. Specifically, treatment guidelines 
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suggest consideration of comorbidity burden and age to 
guide glycemic control intensity and specific medica-
tion choice, acknowledging variation in the risks of over- 
versus under-treatment in different subgroups of type 
2 diabetes patients. Real-world data, however, suggests 
widespread clinical inertia in diabetes care [5–7], poten-
tially reflecting the paucity of evidence to guide treat-
ment individualization. "us, tools to identify individuals 
for whom intensive glycemic control may be beneficial 
are needed, especially for reducing risk of cardiovascular 
disease, which remains the leading cause of mortality in 
type 2 diabetes patients [8, 9].

Subgroup analyses of randomized trials may provide 
the best evidence to guide individualized intensification 
of glycemic control for cardiovascular risk reduction. 
"e Action to Control Cardiovascular Risk in Diabetes 
(ACCORD) study and the Veterans Affairs Diabetes Trial 
(VADT) did not find associations of intensive glycemic 
control with MACE [10, 11]. However, prior subgroup 
analyses of both the ACCORD and VADT trials sug-
gest heterogeneous treatment effects (HTE). Individuals 
without a history of cardiovascular events prior to ran-
domization or whose baseline hemoglobin A1c (HbA1c) 
was ≤ 8.0% in the ACCORD trial demonstrated a reduc-
tion in the primary outcome of MACE in the intensive 
treatment group [10]. Similarly, intensive glycemic con-
trol was associated with reduced cardiovascular events in 
VADT trial participants with lower coronary artery cal-
cium scores [12].

In contrast to these univariate, hypothesis-driven sub-
group analyses, machine learning provides hypothesis-
free approaches to evaluating patient subgroups based on 
combinations of variables [13]. In this study, we aimed to 
address evidence gaps for type 2 diabetes treatment indi-
vidualization to mitigate cardiovascular disease risk using 
a hypothesis-free, data-driven method—causal forests 
machine learning [14–16]—to identify HTE of intensive 
glycemic control on MACE in the ACCORD and VADT 
studies.

Materials and methods
Study samples
"e Colorado Multiple Institutional Review Board and 
local VA Research and Development Committee pro-
vided human subjects oversight and approval of the 
study. We included individual-level data from two ran-
domized clinical trials in this study. "e ACCORD and 
VADT studies have been described in detail previously 
[10, 11]. Both studies included adults with type 2 diabe-
tes and a hemoglobin A1c (HbA1c) ≥ 7.5% at enrollment. 
"e VADT study enrolled participants from Decem-
ber 2000 through May 2003, and follow-up continued 
through May 2008; median follow-up time in the VADT 

study was 5.6  years. "e ACCORD study enrolled par-
ticipants at high cardiovascular risk from January 2001 
to October 2005; follow-up in the ACCORD study con-
tinued until June 2009 with a median on-protocol follow-
up time of 3.7 years and a median total follow-up time of 
4.9 years. Both studies randomized participants to receive 
intensive or standard glycemic control. "e VADT study 
aimed to achieve a target of at least 1.5% lower HbA1c 
in participants randomized to intensive control com-
pared to standard control. In the ACCORD study, inten-
sive glycemic control participants were treated to a target 
HbA1c < 6% as compared to a target HbA1c of 7–7.9% 
for the standard glycemic control arm. In this secondary 
analysis, we included data from all 1791 VADT study par-
ticipants and 10,251 ACCORD study participants.

Outcome
"e primary outcome was major adverse cardiovascular 
events, defined as fatal or non-fatal myocardial infarction 
or stroke based on endpoint adjudication in the original 
trials. All-cause mortality was a secondary outcome.

Predictors
We included baseline variables that were common to the 
two studies: patient demographics, comorbidities, diabe-
tes medications, cardiovascular disease medications, and 
laboratory values (Table  1; Additional file  1 Table  S1). 
Estimated glomerular filtration rate (eGFR) was calcu-
lated using the Modification of Diet in Renal Disease 
Study Equation [17]. Hemoglobin glycation index (HGI) 
was estimated as the residual between measured HbA1c 
and HbA1c predicted by regressing on fasting glucose in 
the ACCORD study participants [18].

Statistical approach
We fit causal forests [14–16] to identify HTE of intensive 
glycemic control in the ACCORD and VADT studies. We 
first examined ACCORD and VADT studies separately 
and report the correlation between variable importance 
statistics from the two causal forests using Kendall’s tau 
b. We then fit another causal forest using pooled individ-
ual-level data from both studies. Finally, we used variable 
importance from the causal forest analysis of the pooled 
study data to construct a representative causal tree. All 
analyses with causal forests contained 5000 trees and 
a minimum node size of approximately 5% of the total 
sample size, with each tree fit using an honest splitting 
and estimation approach [14–16] from random sam-
ples representing half of the stratified samples. To avoid 
overfitting, each tree only considers half of the covari-
ates for splitting, randomly selected from the set of pre-
dictors. To compare contributions of variables to HTE, 
we employed a statistic included in the grf package in R 
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which generates a weighted average of importance for 
each variable [15, 16].

As there is not a consensus approach for translating 
causal forests to decision trees, we employed an approach 

that we have previously used to generate a summary 
decision tree from causal forests [19]. Specifically, we 
used the variable importance measure to identify the top 
variables contributing to HTE based on causal forests, 

Table 1 Study population characteristics

ACCORD action to control cardiovascular risk in diabetes study, VADT veterans a"airs diabetes trial, HbA1c hemoglobin A1c, DBP diastolic blood pressure, SBP systolic 
blood pressure, eGFR estimated glomerular #ltration rate, BMI body mass index, ALT alanine amino transferase, HDL high-density lipoprotein, LDL low-density 
lipoprotein, MI myocardial infarction, CHF congestive heart failure

ACCORD VADT ACCORD + VADT

Standard control Intensive control Standard control Intensive control Standard control Intensive control

N = 5123 N = 5128 N = 899 N = 892 N = 6022 N = 6020

Age, mean (SD) 62.8 (6.7) 62.8 (6.6) 60.3 (8.6) 60.5 (8.8) 62.4 (7.0) 62.4 (7.0)

Sex, n female (%) 1969 (38.4) 1983 (38.7) 26 (2.9) 26 (2.9) 1995 (33.1) 2009 (33.4)

Race, n (%)

 Black 956 (18.7) 997 (19.4) 147 (16.4) 152 (17.0) 1103 (18.3) 1149 (19.1)

 Hispanic 379 (7.4) 358 (7.0) 136 (15.1) 155 (17.4) 515 (8.6) 513 (8.5)

HbA1c (%), mean (SD) 8.3 (1.1) 8.3 (1.1) 9.4 (1.6) 9.4 (1.5) 8.5 (1.2) 8.5 (1.2)

Glucose (mg/dL), mean (SD) 175.7 (56.4) 174.7 (55.9) 205.9 (69.0) 203.5 (67.8) 180.2 (59.5) 179.0 (58.7)

Hgb glycation index (unit-
less), mean (SD)

− 0.07 (0.9) − 0.08 (1.0) 0.8 (1.4) 0.8 (1.4) 0.06 (1.1) 0.05 (1.1)

Total cholesterol (mg/dL), 
mean (SD)

183.3 (41.6) 183.3 (42.1) 184.7 (52.7) 181.6 (40.4) 183.5 (43.5) 183.1 (41.8)

Triglycerides (mg/dL), mean 
(SD)

189.4 (148.6) 190.9 (148.2) 222.8 (351.8) 200.8 (161.8) 194.4 (193.5) 192.4 (150.3)

LDL cholesterol (mg/dL), 
mean (SD)

104.9 (33.8) 104.9 (34.0) 108.2 (34.0) 107.0 (30.9) 105.4 (33.9) 105.2 (33.6)

HDL cholesterol (mg/dL), 
mean (SD)

41.9 (11.5) 41.8 (11.8) 35.8 (10.4) 36.2 (9.9) 41.0 (11.5) 41.0 (11.7)

Creatinine (mg/dL), mean 
(SD)

0.9 (0.2) 0.9 (0.2) 1.0 (0.2) 1.0 (0.2) 0.9 (0.2) 0.9 (0.2)

eGFR (mL/min/1.73m2), 
mean (SD)

91.3 (28.4) 90.8 (25.8) 87.5 (22.6) 87.3 (24.2) 90.7 (27.7) 90.3 (25.6)

ALT (mg/dL), mean (SD) 27.7 (14.9) 27.5 (17.4) 31.9 (17.4) 30.8 (15.2) 28.3 (15.3) 28.0 (17.1)

SBP (mmHg), mean (SD) 136.5 (17.2) 136.2 (17.0) 131.8 (16.8) 131.4 (16.6) 135.8 (17.2) 135.5 (17.1)

DBP (mmHg), mean (SD) 75.0 (10.7) 74.8 (10.7) 76.1 (10.2) 76.0 (10.4) 75.2 (10.6) 75.0 (10.6)

BMI (kg/m2), mean (SD) 32.2 (5.4) 32.2 (5.4) 31.2 (4.4) 31.3 (4.4) 32.1 (5.3) 32.1 (5.3)

Diabetes duration (years), 
mean (SD)

10.9 (7.6) 10.7 (7.6) 11.5 (7.2) 11.5 (7.8) 11.0 (7.6) 10.9 (7.6)

Insulin use, n (%) 1832 (35.8) 1750 (34.1) 467 (51.9) 466 (52.2) 2299 (38.2) 2216 (36.8)

Sulfonylurea use, n (%) 2707 (52.9) 2767 (54.0) 561 (62.4) 529 (59.3) 3268 (54.3) 3296 (54.8)

Metformin use, n (%) 3285 (64.1) 3269 (63.7) 632 (70.3) 605 (67.8) 3917 (65.1) 3874 (64.4)

Glinide use, n (%) 131 (2.6) 126 (2.5) 4 (0.4) 5 (0.6) 135 (2.2) 131 (2.2)

Acarbose use, n (%) 45 (0.9) 50 (1.0) 16 (1.8) 20 (2.2) 61 (1.0) 70 (1.2)

Thiazolidinedione use, n (%) 1125 (22.0) 1133 (22.1) 171 (19.0) 166 (18.6) 1296 (21.5) 1299 (21.6)

History of amputation, n (%) 106 (2.1) 111 (2.2) 27 (3.0) 28 (3.1) 133 (2.2) 139 (2.3)

History of eye surgery, n (%) 1169 (22.9) 1119 (21.9) 150 (18.3) 152 (18.9) 1319 (22.3) 1271 (21.5)

Current smoker, n (%) 607 (11.8) 640 (12.5) 145 (16.2) 154 (17.3) 752 (12.5) 794 (13.2)

History of MI, n (%) 803 (15.7) 787 (15.3) 170 (19.0) 166 (18.6) 973 (16.2) 953 (15.8)

History of stroke, n (%) 325 (6.3) 305 (5.9) 41 (4.6) 56 (6.3) 366 (6.1) 361 (6.0)

History of CHF, n (%) 245 (4.8) 249 (4.9) 48 (5.3) 61 (6.8) 293 (4.9) 310 (5.2)

History of angina, n (%) 560 (10.9) 608 (11.9) 166 (18.5) 167 (18.7) 726 (12.1) 775 (12.9)

Prior coronary revasculariza-
tion, n (%)

556 (10.9) 615 (12.0) 183 (20.4) 182 (20.4) 739 (12.3) 797 (13.2)
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which we then use to build a summary decision tree 
with the caveat that this approach will not always iden-
tify significant HTE subgroups in the data [15]. We found 
that a stable summary causal tree with eight subgroups 
based on five of the top eight variables resulted when we 
included 8, 9, or 10 of the most important variables based 
on causal forests analysis of pooled study data. "e sum-
mary causal tree once again required at least 5% of the 
total sample in every terminal node, and honest cross-
validation for tuning the shrinkage parameter [15]. To 
quantify HTE in the summary causal tree, we calculated 
the absolute risk difference in MACE (primary outcome) 
and all-cause mortality (secondary outcome) between 
the intensive and standard glycemic control arms within 
each terminal node subgroup of the summary causal tree 
using pooled data from both trials and in the ACCORD 
and VADT samples separately. We plotted cumulative 
incidence of MACE in the intensive and standard gly-
cemic control arms using pooled data from both the 
ACCORD and VADT studies in each of the subgroups 
of the summary causal tree and compared the incidence 
curves using a log-rank test.

All analyses were conducted in R (version 3.5.3, R 
Foundation for Statistical Computing, Vienna, Austria). 
Statistical code is available upon request.

Results
In comparison to the VADT study population, the 
ACCORD study group had a larger proportion of 
women, but a smaller proportion of participants with 
Hispanic ethnicity. ACCORD study participants had 
a lower HbA1c and were less likely to use insulin. "e 
VADT study population included more participants with 
a history of angina, prior history of MI and congestive 
heart failure, and prior coronary artery revascularization. 
Additional similarities and differences in baseline patient 
characteristics can be found in Table 1.

While several variables were highly ranked both when 
causal forests were applied to the ACCORD study and 
to the VADT study separately, variable importance ranks 
were only moderately correlated (Kendall’s tau-b of 0.632; 
Additional file  1: Fig. S1). Next, we repeated the causal 
forests analysis using pooled data from both studies 
and including an indicator variable for study (ACCORD 
or VADT). Out of 47 variables evaluated, the ten most 
highly prioritized variables (HGI, fasting glucose, diabe-
tes duration, total cholesterol, high-density lipoprotein 
cholesterol, eGFR, BMI, age, low-density lipoprotein 
cholesterol, and HbA1c) after applying causal forests 
to the pooled study data are shown in Additional file 1: 
Table  S2. Of these top variables, most were also among 
the most highly prioritized variables when performing 
the same analysis on each individual study (Additional 

file 1: Table S2). Notably, the study indicator variable had 
an importance score of 0.00.

We next generated a summary causal tree that defined 
specific HTE subgroups. "e summary causal tree was 
stable when including 8–10 of the most highly prioritized 
variables from the causal forest analysis of the pooled 
ACCORD and VADT study data, utilizing only five vari-
ables to divide the pooled sample into eight subgroups 
(Fig. 1). In subgroups 1–4, comprising 45% of the pooled 
sample, intensive glycemic control was associated with 
lower MACE (risk difference of −  4.3% [95% CI: −  7.7, 
− 1.0], − 5.1% [95% CI: − 8.7, − 1.5], − 4.5% [95% CI: 
− 8.1, − 1.0], and − 4.2% [95% CI: − 6.9, − 1.4], respec-
tively; Fig. 1), and lower cumulative incidence of MACE 
over the follow-up time (Fig. 2). Subgroup 4 comprising 
10% of the pooled sample also demonstrated consistent 
direction of effect and 95% confidence intervals exclud-
ing the null with intensive glycemic control associated 
with lower incidence of MACE in both the ACCORD 
and VADT studies (risk difference − 3.6% [95% CI: − 6.5, 
− 0.6] in ACCORD and − 7.6% [95% CI: − 14.9, − 0.3] 
in VADT). In two subgroups (subgroups 6 and 7) inten-
sive glycemic control was associated with higher MACE 
in the pooled sample (risk difference of 3.1% [95% CI: 0.2, 
6.0] and 3.1% [95% CI: 0.3, 5.9], respectively; Fig. 1), and 
with higher cumulative incidence of MACE over the fol-
low-up time (Fig. 2). Neither subgroup 6 nor 7 exhibited 
consistent and significant associations of intensive gly-
cemic control with higher MACE in the ACCORD and 
VADT study samples separately. "e direction of effect 
of intensive glycemic control on MACE in Subgroup 7 
was consistent in both study samples but with 95% con-
fidence intervals including the null in VADT (3.2% [95% 
CI: 0.3, 6.1] in ACCORD, and 2.6% [95% CI: − 6.9, 12.2] 
in VADT; Fig. 1).

As HTE can be a function of absolute event rates 
[20], we examined whether subgroup-specific effects 
of intensive glycemic control on MACE correlated with 
subgroup-specific MACE rates. Subgroup 4, in which 
intensive glycemic control was associated with lower 
MACE in pooled analysis of the ACCORD and VADT 
studies and when each study was examined separately, 
had the lowest MACE rate of the eight subgroups identi-
fied by causal forests (Fig. 3). We did not observe a dis-
cernible pattern in HTE in relation to increasing MACE 
rates across subgroups. In fact, intensive glycemic control 
was associated with lower MACE in both the subgroup 
with the lowest event rate (Subgroup 4) and the subgroup 
with the highest event rate (Subgroup 1) (Fig.  3; Addi-
tional file 1: Fig S2).

To determine if any beneficial effects of intensive gly-
cemic control on MACE were balanced by detrimental 
effects on mortality, we examined all-cause mortality 
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associated with intensive glycemic control in the 8 sub-
groups identified in the summary causal tree for HTE 
on MACE. In subgroup 4—in which intensive glycemic 
control was associated with lower MACE in pooled data 
analysis and in each trial separately—intensive glycemic 
control was not associated with all-cause mortality (risk 
difference of − 0.8% [95% CI: − 2.8, 1.2] in pooled sam-
ple, − 1.0% [95% CI: − 3.2, 1.2] in ACCORD, and 0.5% 
[95% CI: − 4.7, 5.7] in VADT; (Additional file 1: Table S3). 
Intensive glycemic control, however, was associated with 
higher all-cause mortality in subgroup 8 in analysis of 
pooled data from both trials and in ACCORD study 
data alone (Additional file  1: Table  S3), confirming the 

identification of HGI in prior work as a determinant of 
HTE of intensive glycemic control on all-cause mortality 
[13]. None of the other subgroups exhibited significant 
associations of glycemic control intensity with all-cause 
mortality (Additional file 1: Table S3).

Discussion
In this secondary analysis of the ACCORD and VADT 
trials, we found heterogeneous treatment effects of inten-
sive glycemic control on MACE. "e most influential 
variables for identifying HTE are factors known to be 
associated with either cardiovascular disease or diabe-
tes-related outcomes. A summary causal tree using the 

Fig. 1 Summary causal tree of heterogeneous treatment effects of intensive glycemic control on all-cause mortality. Splitting variables and 
cut-points for each split are shown, resulting in eight terminal subgroups (N (%) represent number and proportion of participants in pooled 
ACCORD + VADT sample in each subgroup). Units for splitting variables are mL/min for eGFR (estimated glomerular filtration rate), mg/dL for serum 
glucose, kg/m2 for BMI (body-mass index), and years for age. Risk difference of MACE and 95% confidence intervals in each subgroup in the pooled 
sample and in each study alone shown below diagram



Page 6 of 11Edward et al. Cardiovascular Diabetology           (2022) 21:58 

top variables from causal forests applied to pooled data 
from both trials defined eight HTE subgroups. "ree 
subgroups (34% of the combined ACCORD and VADT 
sample) had consistent associations of intensive glycemic 

control with cardiovascular benefit in pooled data and 
in ACCORD and VADT separately, and two subgroups 
(34% of the combined ACCORD and VADT sample) 
demonstrated worse cardiovascular outcomes associ-
ated with intensive glycemic control in pooled data and 
in ACCORD and VADT separately.

We did not observe a consistent pattern of cardiovas-
cular benefit or harm of intensive glycemic control in 
relation to cardiovascular risk in the subgroups. One 
subgroup (Subgroup 4) demonstrated lower MACE 
associated with intensive glycemic control in the pooled 
sample, the ACCORD trial, and the VADT trial sam-
ples. Aside from a BMI ≥ 28 kg/m2, this was a relatively 
healthy subgroup of trial participants: age < 61 years, glu-
cose ≤ 228  mg/dL, eGFR ≥ 69  mL/min/1.73m2, and low 
HGI bounded between −  0.3 and 0.84. Consistent with 
these clinical characteristics, this subgroup had the low-
est rate of MACE in the pooled sample of the ACCORD 
and VADT studies. Moreover, intensive glycemic con-
trol was not associated with all-cause mortality in this 
subgroup across both trials, providing reassurance that 
cardiovascular disease risk reduction was not offset by 
higher non-cardiovascular mortality. "e identification of 
this subgroup lends supportive evidence to current treat-
ment guidelines, which suggest that intensive glycemic 
control targets may be considered in diabetes patients 
who are younger with few medical comorbidities [3, 4].

On the other hand, our analysis also identified lower 
MACE associated with intensive glycemic control in Sub-
group 1, the subgroup with the highest risk of cardiovas-
cular events. We observed directional consistency of the 
HTE in Subgroup 1 in the ACCORD and VADT study 
samples separately, though with wide confidence inter-
vals that include the null in VADT. Similarly, Subgroups 
6, 7, and 8, which all exhibited higher MACE associated 
with intensive glycemic control in the pooled analysis of 
VADT and ACCORD, were at low-, intermediate-, and 
high-risk of MACE, respectively, in the pooled study 
sample. While HTE are often correlated with underly-
ing risk of the outcome—forming the basis for risk-based 
treatment recommendations in many clinical contexts 
[21, 22], the approach used here identified HTE of inten-
sive glycemic control that appear independent of MACE 
risk. "us, machine learning approaches may provide 
complementary information to cardiovascular risk esti-
mation to guide diabetes treatment individualization 
across the spectrum of cardiovascular disease risk.

Our finding that HGI was the most highly ranked vari-
able in the analysis of pooled data from the ACCORD 
and VADT trials extends prior work describing associa-
tions of glycemic variability with cardiovascular risk in 
diabetes patients. As mentioned above, HGI is the dif-
ference between measured HbA1c and the HbA1c that 

Fig. 2 Cumulative incidence curves for major adverse cardiovascular 
events within each subgroup identified by causal forests applied to 
pooled data from both the ACCORD and VADT studies. Cumulative 
incidence is represented by the lines with 95% confidence intervals 
indicated by the shaded regions with standard glycemic control 
arm in pink and intensive glycemic control arm in green for each 
subgroup
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would be predicted on the basis of a concomitant fast-
ing plasma glucose measurement. A high HGI, therefore, 
would indicate that an individual’s HbA1c is higher than 
would be predicted from fasting plasma glucose, poten-
tially implying high glucose variability not reflected in the 
fasting glucose measurement. "e identification of high 
HGI as an important determinant of adverse cardiovas-
cular effects of intensive glycemic control (Subgroup 8) 
supports prior work that has found associations of glu-
cose and HbA1c variability with microvascular and mac-
rovascular complications and hypoglycemia in diabetes 
patients, including in the VADT and ACCORD trials 
[10, 23–32]. While calculating HGI in routine care may 
be impractical as it is derived by regressing HbA1c on 
glucose in a population, our findings and the prior work 
on glycemic variability suggest that discordance between 
glycemia measured by HbA1c and fasting glucose may 
be a useful adverse prognostic indicator. When assess-
ing risk of microvascular complications, initial work from 
McCarter et al. concluded that HGI was an independent 
predictor of risk [33]. A follow up study by Lachlin et al. 
however, argued that HGI was highly correlated with the 
HbA1c level, and that it is not an independent predic-
tor of the risk of microvascular complications [34]. "eir 
conclusion was that the effect of the glycation index on 
risk can be explained by the associated level of HbA1c. 
While others have explored comparative risk of outcomes 
related to HbA1C and HGI, the prioritization of HGI 
more highly than HbA1c when including both variables 
in our analysis may suggest that HGI captures treatment-
related risk in ways that are not redundant with HbA1c.

Although we found one subgroup, Subgroup 4, in which 
intensive glycemic control was associated with fewer car-
diovascular events, we would not interpret this result as 
advocating for treating similar real-world patients to an 
HbA1c target < 6%. "at a similar benefit was observed 
in the VADT study and in the ACCORD study—which 
had very different HbA1c targets—suggests that a more 
intensive glycemic control strategy may be beneficial for 
certain patients without targeting specific HbA1c thresh-
olds. Given mounting evidence of the efficacy of gluca-
gon-like peptide-1 receptor agonists and sodium glucose 
co-transporter-2 inhibitors for improving cardiovascular 

outcomes in patients with diabetes independent of effects 
on glycemia [35–40], optimal cardiovascular disease pre-
vention through diabetes treatment may depend on both 
individualized glycemic control goals and medication 
choice. Future work examining HTE of the new cardio-
protective classes of diabetes medications may identify 
evidence-based strategies for tailoring diabetes treatment 
based on more than just underlying cardiovascular risk.

Identifying subpopulations of type 2 diabetes patients 
has been of great interest over the last several years with 
analyses focused on understanding predictors of dis-
ease progression and treatment response. Our analysis 
complements prior hypothesis-free, data-driven analy-
ses [41, 42] and hypothesis-based analysis using clinical 
features [43] to define diabetes patient subgroups with 
differential response to treatment. Prior secondary anal-
yses of the ACCORD study suggest that features of on-
trial HbA1c may be associated with trial outcomes [42, 
44]– an approach that contrasts with our study focused 
on baseline characteristics in which HbA1c was not used 
in the summary decision tree. In addition to highlight-
ing the urgent need to understand how diabetes patient 
heterogeneity might inform better tailoring of treatment, 
our study draws attention to important data and method-
ological gaps in advancing diabetes precision medicine. 
First, causal forests applied to each of the trials separately 
yielded only modest correlation in variable importance 
rankings, highlighting the value of pooling individual-
level data from multiple studies when examining HTE 
using machine-learning and the potential sensitivity of 
these methods to between-study heterogeneity in study 
populations and intervention design [19]. Differences in 
the trial designs of ACCORD (factorial) [10] and VADT 
(parallel treatment RCT) [11] may also have contrib-
uted to differences in results when analyzing the trials 
separately. To make the most of trial data, methods that 
can flexibly accommodate differences in trial design are 
needed. Second, there is a lack of consensus on how best 
to translate causal forests results to interpretable, mutu-
ally exclusive subgroups of real-world patients. In this 
study we used the most highly prioritized variables from 
causal forests to generate a summary decision tree, an 
approach that can improve interpretability of the causal 

Fig. 3 Comparison of subgroup effects based on subgroup-specific rates of major adverse cardiovascular events (MACE). Subgroups were ordered 
from left to right by event rates in pooled data including both ACCORD and VADT studies. A Event rates in each subgroup across both treatment 
arms (“All”, purple), among those randomized to standard glycemic control (“Standard”, blue), and among those randomized to intensive glycemic 
control (“Intensive”, green). Dotted lines show the event rates of MACE in the full sample (purple), in those randomized to standard glycemic 
control (blue), and in those randomized to intensive glycemic control (green). B Risk differences of MACE associated with standard versus intensive 
glycemic control, stratified by study and subgroup with subgroups ordered from left to right by increasing MACE event rates in the full sample 
including pooled data from both studies. Positive risk differences reflect higher MACE and negative risk differences reflect lower MACE in intensive 
glycemic control compared to standard glycemic control. Blue and green dotted lines represent the average treatment effect of intensive versus 
standard glycemic control on MACE in the ACCORD and VADT studies, respectively

(See figure on next page.)
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forests output but can also lead to overfitting. Given the 
substantial heterogeneity of type 2 diabetes patients, 
methodological advances in translating machine learning 
methods to clinical decision-making may prove impact-
ful to individualized diabetes care.

"ere are several limitations to acknowledge in this 
study. First, the interpretation of results should remain 
limited to the populations represented in the ACCORD 
and VADT studies. "ough pooling data from the two 
studies broadens the general population representation in 
our analysis, the resulting pooled sample is derived from 
select randomized trial samples and does not necessar-
ily represent the real-world diabetes patient population. 
Additional evaluation is needed to assess the perfor-
mance of the HTE subgroups in the summary causal tree 
in diabetes patients drawn from the general population 
and the VA health system. Second, the summary causal 
tree presented here is difficult to interpret from the per-
spective of relating variable cut-points to physiology and 
clinical outcomes and would be difficult to institute into 
clinical practice in its current form. "ird, the VADT 
study was considerably smaller than the ACCORD study, 
limiting statistical power for subgroup analyses in the 
VADT study—reflected by wide confidence intervals for 
the treatment effects—and granting greater weight to the 
ACCORD study in pooled analyses. Finally, we evaluated 
only one machine-learning algorithm for HTE detec-
tion—causal forests—in our analysis. Assessing whether 
similar variables are prioritized for HTE identification 
across disparate algorithms exceeds the scope of this 
manuscript but may be a valuable next step in translating 
results of machine learning subgroup analyses to clinical 
care.

Conclusions
In sum, using data from two randomized trials of inten-
sive glycemic control in type 2 diabetes patients, we 
found subgroups defined by combinations of HGI, eGFR, 
serum glucose, BMI, and age that exhibited different 
associations of intensive glycemic control with major 
adverse cardiovascular events. "is hypothesis-free, data 
driven approach identified a subset of patients consisting 
of younger trial participants with overweight/obesity, low 
HGI, preserved renal function, and lower serum glucose 
levels that may benefit from intensive glycemic control to 
lower MACE, consistent with contemporary guidelines 
for the care of diabetes patients. We also highlight that 
potential benefit of intensive glycemic control to lower 
MACE was not clearly correlated with underlying risk of 
MACE in subgroups, suggesting that clinical decision-
making for diabetes treatment intensity based primar-
ily on cardiovascular risk estimation may miss patient 

subgroups at high cardiovascular risk who might benefit 
from intensive glycemic control.
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