Edward et al. Cardiovascular Diabetology (2022) 21:58

https:/doi.org/10.1186/512933-022-01496-7 Cardiovascular Diabetol ogy

RESEARCH Open Access

®
Heterogeneous treatment effects At

of intensive glycemic control on major adverse

cardiovascular events in the ACCORD and VADT
trials: a machine-learning analysis

Justin A. Edward', Kevin Josey??, Gideon Bahn*, Liron Caplan®®, Jane E. B. Reusch?®, Peter Reaven’,
Debashis Ghosh? and Sridharan Raghavan®®®"

Abstract

Background: Evidence to guide type 2 diabetes treatment individualization is limited. We evaluated heterogene-
ous treatment effects (HTE) of intensive glycemic control in type 2 diabetes patients on major adverse cardiovascular
events (MACE) in the Action to Control Cardiovascular Risk in Diabetes Study (ACCORD) and the Veterans Affairs
Diabetes Trial (VADT).

Methods: Causal forests machine learning analysis was performed using pooled individual data from two rand-
omized trials (n=12,042) to identify HTE of intensive versus standard glycemic control on MACE in patients with type
2 diabetes. We used variable prioritization from causal forests to build a summary decision tree and examined the risk
difference of MACE between treatment arms in the resulting subgroups.

Results: A summary decision tree used five variables (hemoglobin glycation index, estimated glomerular filtration
rate, fasting glucose, age, and body mass index) to define eight subgroups in which risk differences of MACE ranged
from — 5.1% (95% Cl — 8.7, — 1.5) t0 3.1% (95% Cl 0.2, 6.0) (negative values represent lower MACE associated with
intensive glycemic control). Intensive glycemic control was associated with lower MACE in pooled study data in sub-
groups with low (— 4.2% [95% Cl — 8.1, — 1.0]), intermediate (— 5.1% [95% C| — 8.7, — 1.5]), and high (— 4.3% [95% CI
— 7.7, — 1.0]) MACE rates with consistent directions of effect in ACCORD and VADT alone.

Conclusions: This data-driven analysis provides evidence supporting the diabetes treatment guideline recom-
mendation of intensive glucose lowering in diabetes patients with low cardiovascular risk and additionally suggests
potential benefits of intensive glycemic control in some individuals at higher cardiovascular risk.
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Background

Type 2 diabetes is prevalent and costly, affecting nearly

1 in 10 adults in the United States at an estimated health

care cost of $327 billion [1] and affecting over 450 million
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suggest consideration of comorbidity burden and age to
guide glycemic control intensity and specific medica-
tion choice, acknowledging variation in the risks of over-
versus under-treatment in different subgroups of type
2 diabetes patients. Real-world data, however, suggests
widespread clinical inertia in diabetes care [5-7], poten-
tially reflecting the paucity of evidence to guide treat-
ment individualization. Thus, tools to identify individuals
for whom intensive glycemic control may be beneficial
are needed, especially for reducing risk of cardiovascular
disease, which remains the leading cause of mortality in
type 2 diabetes patients [8, 9].

Subgroup analyses of randomized trials may provide
the best evidence to guide individualized intensification
of glycemic control for cardiovascular risk reduction.
The Action to Control Cardiovascular Risk in Diabetes
(ACCORD) study and the Veterans Affairs Diabetes Trial
(VADT) did not find associations of intensive glycemic
control with MACE [10, 11]. However, prior subgroup
analyses of both the ACCORD and VADT trials sug-
gest heterogeneous treatment effects (HTE). Individuals
without a history of cardiovascular events prior to ran-
domization or whose baseline hemoglobin Alc (HbAlc)
was < 8.0% in the ACCORD trial demonstrated a reduc-
tion in the primary outcome of MACE in the intensive
treatment group [10]. Similarly, intensive glycemic con-
trol was associated with reduced cardiovascular events in
VADT trial participants with lower coronary artery cal-
cium scores [12].

In contrast to these univariate, hypothesis-driven sub-
group analyses, machine learning provides hypothesis-
free approaches to evaluating patient subgroups based on
combinations of variables [13]. In this study, we aimed to
address evidence gaps for type 2 diabetes treatment indi-
vidualization to mitigate cardiovascular disease risk using
a hypothesis-free, data-driven method—causal forests
machine learning [14—16]—to identify HTE of intensive
glycemic control on MACE in the ACCORD and VADT
studies.

Materials and methods

Study samples

The Colorado Multiple Institutional Review Board and
local VA Research and Development Committee pro-
vided human subjects oversight and approval of the
study. We included individual-level data from two ran-
domized clinical trials in this study. The ACCORD and
VADT studies have been described in detail previously
[10, 11]. Both studies included adults with type 2 diabe-
tes and a hemoglobin Alc (HbAlc)>7.5% at enrollment.
The VADT study enrolled participants from Decem-
ber 2000 through May 2003, and follow-up continued
through May 2008; median follow-up time in the VADT
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study was 5.6 years. The ACCORD study enrolled par-
ticipants at high cardiovascular risk from January 2001
to October 2005; follow-up in the ACCORD study con-
tinued until June 2009 with a median on-protocol follow-
up time of 3.7 years and a median total follow-up time of
4.9 years. Both studies randomized participants to receive
intensive or standard glycemic control. The VADT study
aimed to achieve a target of at least 1.5% lower HbAlc
in participants randomized to intensive control com-
pared to standard control. In the ACCORD study, inten-
sive glycemic control participants were treated to a target
HbAlc<6% as compared to a target HbAlc of 7-7.9%
for the standard glycemic control arm. In this secondary
analysis, we included data from all 1791 VADT study par-
ticipants and 10,251 ACCORD study participants.

Outcome

The primary outcome was major adverse cardiovascular
events, defined as fatal or non-fatal myocardial infarction
or stroke based on endpoint adjudication in the original
trials. All-cause mortality was a secondary outcome.

Predictors

We included baseline variables that were common to the
two studies: patient demographics, comorbidities, diabe-
tes medications, cardiovascular disease medications, and
laboratory values (Table 1; Additional file 1 Table S1).
Estimated glomerular filtration rate (eGFR) was calcu-
lated using the Modification of Diet in Renal Disease
Study Equation [17]. Hemoglobin glycation index (HGI)
was estimated as the residual between measured HbAlc
and HbAlc predicted by regressing on fasting glucose in
the ACCORD study participants [18].

Statistical approach

We fit causal forests [14—16] to identify HTE of intensive
glycemic control in the ACCORD and VADT studies. We
first examined ACCORD and VADT studies separately
and report the correlation between variable importance
statistics from the two causal forests using Kendall’s tau
b. We then fit another causal forest using pooled individ-
ual-level data from both studies. Finally, we used variable
importance from the causal forest analysis of the pooled
study data to construct a representative causal tree. All
analyses with causal forests contained 5000 trees and
a minimum node size of approximately 5% of the total
sample size, with each tree fit using an honest splitting
and estimation approach [14-16] from random sam-
ples representing half of the stratified samples. To avoid
overfitting, each tree only considers half of the covari-
ates for splitting, randomly selected from the set of pre-
dictors. To compare contributions of variables to HTE,
we employed a statistic included in the grf package in R
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Table 1 Study population characteristics
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ACCORD

VADT

ACCORD +VADT

Standard control

Intensive control

Standard control

Intensive control

Standard control

Intensive control

N=5123 N=5128 N=899 N=892 N=6022 N=6020

Age, mean (SD) 62.8 (6.7) 62.8 (6.6) 60.3 (8.6) 60.5 (8.8) 62.4 (7.0) 62.4(7.0)
Sex, n female (%) 1969 (38.4) 1983 (38.7) 26 (2.9) 26 (2.9) 1995 (33.1) 2009 (334)
Race, n (%)

Black 956 (18.7) 997 (19.4) 147 (16.4) 152 (17.0) 1103 (18.3) 1149 (19.1)

Hispanic 379 (7.4) 358(7.0) 136 (15.1) 155 (17.4) 515(8.6) 513(85)
HbA1c (%), mean (SD) 3(1.1) 83(1.1) 94 (1.6) 94 (1.5) 85(1.2) 5(1.2)
Glucose (mg/dL), mean (SD) ~ 175.7 (56.4) 174.7 (55.9) 2059 (69.0) 2035 (67.8) 180.2 (59.5) 179.0 (58.7)
Hgb glycation index (unit- —0.07 (0.9) —0.08(1.0) 0.8(1.4) 08(1.4) 0.06 (1.1) 0.05(1.1)
less), mean (SD)
Total cholesterol (mg/dL), 1833 (41.6) 1833 (42.1) 184.7 (52.7) 181.6 (40.4) 183.5 (43.5) 183.1 (41.8)
mean (SD)
Triglycerides (mg/dL), mean 1894 (148.6) 190.9 (148.2) 222.8(351.8) 200.8 (161.8) 194.4 (193.5) 1924 (150.3)
(SD)
LDL cholesterol (mg/dL), 104.9 (33.8) 104.9 (34.0) 108.2 (34.0) 107.0 (30.9) 1054 (33.9) 105.2 (33.6)
mean (SD)
HDL cholesterol (mg/dL), 419(11.5) 41.8(11.8) 35.8(104) 36.2 (9.9) 41.0(11.5) 41.0(11.7)
mean (SD)
Creatinine (mg/dL), mean 0.9(0.2) 0.9(0.2) 1.0(0.2) 1.0(0.2) 0.9(0.2) 0.9(0.2)
(SD)
eGFR (mL/min/1.73m?), 91.3(284) 90.8 (25.8) 87.5(22.6) 87.3(24.2) 90.7 (27.7) 90.3 (25.6)
mean (SD)
ALT (mg/dL), mean (SD) 27.7 (14.9) 27.5(17.4) 31.9(17.4) 30.8(15.2) 28.3(15.3) 28.0(17.1)
SBP (mmHg), mean (SD) 136.5(17.2) 136.2 (17.0) 131.8(16.8) 1314 (16.6) 135.8(17.2) 135.5(17.1)
DBP (mmHg), mean (SD) 75.0 (10.7) 74.8(10.7) 76.1 (10.2) 76.0 (10.4) 752 (10.6) 75.0 (10.6)
BMI (kg/m?), mean (SD) 322( 4) 32.2(54) 31 2( 4) 313 (44) 32.1(5.3) 1(5.3)
Diabetes duration (years), 9 (7.6) 10.7 (7.6) 5(7.2) 11.5(7.8) 11.0 (7.6) 109 (7.6)
mean (SD)
Insulin use, n (%) 1832 (35.8) 1750 (34.1) 467 (51.9) 466 (52.2) 2299 (38.2) 2216 (36.8)
Sulfonylurea use, n (%) 2707 (52.9) 2767 (54.0) 561 (624) 529 (59.3) 3268 (54.3) 3296 (54.8)
Metformin use, n (%) 3285 (64.1) 3269 (63.7) 632 (70.3) 605 (67.8) 3917 (65.1) 3874 (64.4)
Glinide use, n (%) 131 (2.6) 126 (2.5) 4(04) 5(0.6) 135(2.2) 131(2.2)
Acarbose use, n (%) 45 (0.9) 50 (1.0) 6(1.8) 20(2.2) 61(1.0) 70(1.2)
Thiazolidinedione use, n (%) 1125 (22.0) 1133 (22.1) 171 (19.0) 166 (18.6) 1296 (21.5) 1299 (21.6)
History of amputation, n (%) 106 (2.1) 11122 7 (3.0) 28 (3.1) 133(2.2) 139 (2.3)
History of eye surgery, n (%) 1169 (22.9) 1119 (21.9) 150(183) 152 (18.9) 1319 (22.3) 1271 (21.5)
Current smoker, n (%) 607 (11.8) 640 (12.5) 145 (16.2) 154 (17.3) 752 (12.5) 794 (13.2)
History of MI, n (%) 803 (15.7) 787 (15.3) 170 (19.0) 166 (18.6) 973 (16.2) 953 (15.8)
History of stroke, n (%) 325 (6.3) 305 (5.9) 41 (4.6) 56 (6.3) 366 (6.1) 361 (6.0)
History of CHF, n (%) 245 (4.8) 249 (4.9) 48 (5.3) 61 (6.8) 293 (4.9) 310(5.2)
History of angina, n (%) 560 (10.9) 608 (11.9) 166 (18.5) 167 (18.7) 726 (12.1) 775(12.9)
Prior coronary revasculariza- 556 (10.9) 615 (12.0) 183 (204) 182 (204) 739 (12.3) 797 (13.2)

tion, n (%)

ACCORD action to control cardiovascular risk in diabetes study, VADT veterans affairs diabetes trial, HbA1c hemoglobin A1c, DBP diastolic blood pressure, SBP systolic
blood pressure, eGFR estimated glomerular filtration rate, BMI body mass index, ALT alanine amino transferase, HDL high-density lipoprotein, LDL low-density
lipoprotein, MI myocardial infarction, CHF congestive heart failure

which generates a weighted average of importance for

each variable [15, 16].

As there is not a consensus approach for translating
causal forests to decision trees, we employed an approach

that we have previously used to generate a summary

decision tree from causal forests [19]. Specifically, we

used the variable importance measure to identify the top
variables contributing to HTE based on causal forests,
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which we then use to build a summary decision tree
with the caveat that this approach will not always iden-
tify significant HTE subgroups in the data [15]. We found
that a stable summary causal tree with eight subgroups
based on five of the top eight variables resulted when we
included 8, 9, or 10 of the most important variables based
on causal forests analysis of pooled study data. The sum-
mary causal tree once again required at least 5% of the
total sample in every terminal node, and honest cross-
validation for tuning the shrinkage parameter [15]. To
quantify HTE in the summary causal tree, we calculated
the absolute risk difference in MACE (primary outcome)
and all-cause mortality (secondary outcome) between
the intensive and standard glycemic control arms within
each terminal node subgroup of the summary causal tree
using pooled data from both trials and in the ACCORD
and VADT samples separately. We plotted cumulative
incidence of MACE in the intensive and standard gly-
cemic control arms using pooled data from both the
ACCORD and VADT studies in each of the subgroups
of the summary causal tree and compared the incidence
curves using a log-rank test.

All analyses were conducted in R (version 3.5.3, R
Foundation for Statistical Computing, Vienna, Austria).
Statistical code is available upon request.

Results

In comparison to the VADT study population, the
ACCORD study group had a larger proportion of
women, but a smaller proportion of participants with
Hispanic ethnicity. ACCORD study participants had
a lower HbAlc and were less likely to use insulin. The
VADT study population included more participants with
a history of angina, prior history of MI and congestive
heart failure, and prior coronary artery revascularization.
Additional similarities and differences in baseline patient
characteristics can be found in Table 1.

While several variables were highly ranked both when
causal forests were applied to the ACCORD study and
to the VADT study separately, variable importance ranks
were only moderately correlated (Kendall’s tau-b of 0.632;
Additional file 1: Fig. S1). Next, we repeated the causal
forests analysis using pooled data from both studies
and including an indicator variable for study (ACCORD
or VADT). Out of 47 variables evaluated, the ten most
highly prioritized variables (HGI, fasting glucose, diabe-
tes duration, total cholesterol, high-density lipoprotein
cholesterol, eGFR, BMI, age, low-density lipoprotein
cholesterol, and HbAlc) after applying causal forests
to the pooled study data are shown in Additional file 1:
Table S2. Of these top variables, most were also among
the most highly prioritized variables when performing
the same analysis on each individual study (Additional
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file 1: Table S2). Notably, the study indicator variable had
an importance score of 0.00.

We next generated a summary causal tree that defined
specific HTE subgroups. The summary causal tree was
stable when including 8—10 of the most highly prioritized
variables from the causal forest analysis of the pooled
ACCORD and VADT study data, utilizing only five vari-
ables to divide the pooled sample into eight subgroups
(Fig. 1). In subgroups 1-4, comprising 45% of the pooled
sample, intensive glycemic control was associated with
lower MACE (risk difference of — 4.3% [95% CI. — 7.7,
— 1.0], — 5.1% [95% CIL: — 8.7, — 1.5], — 4.5% [95% CI:
— 8.1, — 1.0], and — 4.2% [95% CI: — 6.9, — 1.4], respec-
tively; Fig. 1), and lower cumulative incidence of MACE
over the follow-up time (Fig. 2). Subgroup 4 comprising
10% of the pooled sample also demonstrated consistent
direction of effect and 95% confidence intervals exclud-
ing the null with intensive glycemic control associated
with lower incidence of MACE in both the ACCORD
and VADT studies (risk difference — 3.6% [95% CI: — 6.5,
— 0.6] in ACCORD and — 7.6% [95% CI: — 14.9, — 0.3]
in VADT). In two subgroups (subgroups 6 and 7) inten-
sive glycemic control was associated with higher MACE
in the pooled sample (risk difference of 3.1% [95% CI: 0.2,
6.0] and 3.1% [95% CI: 0.3, 5.9], respectively; Fig. 1), and
with higher cumulative incidence of MACE over the fol-
low-up time (Fig. 2). Neither subgroup 6 nor 7 exhibited
consistent and significant associations of intensive gly-
cemic control with higher MACE in the ACCORD and
VADT study samples separately. The direction of effect
of intensive glycemic control on MACE in Subgroup 7
was consistent in both study samples but with 95% con-
fidence intervals including the null in VADT (3.2% [95%
CI: 0.3, 6.1] in ACCORD, and 2.6% [95% CIL: — 6.9, 12.2]
in VADT; Fig. 1).

As HTE can be a function of absolute event rates
[20], we examined whether subgroup-specific effects
of intensive glycemic control on MACE correlated with
subgroup-specific MACE rates. Subgroup 4, in which
intensive glycemic control was associated with lower
MACE in pooled analysis of the ACCORD and VADT
studies and when each study was examined separately,
had the lowest MACE rate of the eight subgroups identi-
fied by causal forests (Fig. 3). We did not observe a dis-
cernible pattern in HTE in relation to increasing MACE
rates across subgroups. In fact, intensive glycemic control
was associated with lower MACE in both the subgroup
with the lowest event rate (Subgroup 4) and the subgroup
with the highest event rate (Subgroup 1) (Fig. 3; Addi-
tional file 1: Fig S2).

To determine if any beneficial effects of intensive gly-
cemic control on MACE were balanced by detrimental
effects on mortality, we examined all-cause mortality
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<69
1 2 3
N=1667 N=1253 N=1340
(14%) (10%) (11%)
ACCORD + VADT N=1667 N=1253 N=1340
Risk difference -4.3% -5.1% -4.5%
(95% Cl) (-7.7,-1.0) (-8.7,-1.5) (-8.1,-1.0)
ACCORD N=1439 N=1013 N=1217
Risk difference -4.2% -5.7% -5.1%
(95% ClI) (-7.7,-0.8) (-9.8,-1.7) (-8.8,-1.4)
VADT N=228 N=240 N=123
Risk difference -5.4% -2.3% 0.9%
(95% ClI) (-16.2,5.3) (-10.4,5.7) (-10.4,12.1)

sample and in each study alone shown below diagram

<0.84 20.84
269
>228 ° <228
228 <28
266 G <66
<61 261
2-0.3 <-0.3
4 5 6 7 8
N=1260 N=1242 N=1257 N=1766 N=2257
(10%) (10%) (10%) (15%) (19%)
N=1260 N=1242 N=1257 N=1766 N=2257
-4.2% -0.8% 3.1% 3.1% 2.4%
(-6.9,-1.4)  (-3.6,2.0) (0.2, 6.0) 0.3,59) (-04,5.2)
N=1076 N=1173 N=1195 N=1582 N=1556
-3.6% -0.9% 3.5% 3.2% 3.3%
(-65,-0.6) (-3.7,1.9) (0.6, 6.4) (0.3,6.1)  (0.0,6.6)
N=184 N=69 N=62 N=184 N=701
7.6% 3.0% 6.1% 2.6% 0.4%
(-14.9,-0.3) (-13.9,19.8) (23.9,11.8) (6.9,122) (-4.7,5.6)

Fig. 1 Summary causal tree of heterogeneous treatment effects of intensive glycemic control on all-cause mortality. Splitting variables and
cut-points for each split are shown, resulting in eight terminal subgroups (N (%) represent number and proportion of participants in pooled
ACCORD+VADT sample in each subgroup). Units for splitting variables are mL/min for eGFR (estimated glomerular filtration rate), mg/dL for serum
glucose, kg/m? for BMI (body-mass index), and years for age. Risk difference of MACE and 95% confidence intervals in each subgroup in the pooled

associated with intensive glycemic control in the 8 sub-
groups identified in the summary causal tree for HTE
on MACE. In subgroup 4—in which intensive glycemic
control was associated with lower MACE in pooled data
analysis and in each trial separately—intensive glycemic
control was not associated with all-cause mortality (risk
difference of — 0.8% [95% CI: — 2.8, 1.2] in pooled sam-
ple, — 1.0% [95% CI: — 3.2, 1.2] in ACCORD, and 0.5%
[95% CI: — 4.7, 5.7] in VADT; (Additional file 1: Table S3).
Intensive glycemic control, however, was associated with
higher all-cause mortality in subgroup 8 in analysis of
pooled data from both trials and in ACCORD study
data alone (Additional file 1: Table S3), confirming the

identification of HGI in prior work as a determinant of
HTE of intensive glycemic control on all-cause mortality
[13]. None of the other subgroups exhibited significant
associations of glycemic control intensity with all-cause
mortality (Additional file 1: Table S3).

Discussion

In this secondary analysis of the ACCORD and VADT
trials, we found heterogeneous treatment effects of inten-
sive glycemic control on MACE. The most influential
variables for identifying HTE are factors known to be
associated with either cardiovascular disease or diabe-
tes-related outcomes. A summary causal tree using the
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Fig. 2 Cumulative incidence curves for major adverse cardiovascular
events within each subgroup identified by causal forests applied to
pooled data from both the ACCORD and VADT studies. Cumulative
incidence is represented by the lines with 95% confidence intervals
indicated by the shaded regions with standard glycemic control

arm in pink and intensive glycemic control arm in green for each
subgroup

top variables from causal forests applied to pooled data
from both trials defined eight HTE subgroups. Three
subgroups (34% of the combined ACCORD and VADT
sample) had consistent associations of intensive glycemic
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control with cardiovascular benefit in pooled data and
in ACCORD and VADT separately, and two subgroups
(34% of the combined ACCORD and VADT sample)
demonstrated worse cardiovascular outcomes associ-
ated with intensive glycemic control in pooled data and
in ACCORD and VADT separately.

We did not observe a consistent pattern of cardiovas-
cular benefit or harm of intensive glycemic control in
relation to cardiovascular risk in the subgroups. One
subgroup (Subgroup 4) demonstrated lower MACE
associated with intensive glycemic control in the pooled
sample, the ACCORD trial, and the VADT trial sam-
ples. Aside from a BMI > 28 kg/m? this was a relatively
healthy subgroup of trial participants: age <61 years, glu-
cose <228 mg/dL, eGFR >69 mL/min/1.73m? and low
HGI bounded between — 0.3 and 0.84. Consistent with
these clinical characteristics, this subgroup had the low-
est rate of MACE in the pooled sample of the ACCORD
and VADT studies. Moreover, intensive glycemic con-
trol was not associated with all-cause mortality in this
subgroup across both trials, providing reassurance that
cardiovascular disease risk reduction was not offset by
higher non-cardiovascular mortality. The identification of
this subgroup lends supportive evidence to current treat-
ment guidelines, which suggest that intensive glycemic
control targets may be considered in diabetes patients
who are younger with few medical comorbidities [3, 4].

On the other hand, our analysis also identified lower
MACE associated with intensive glycemic control in Sub-
group 1, the subgroup with the highest risk of cardiovas-
cular events. We observed directional consistency of the
HTE in Subgroup 1 in the ACCORD and VADT study
samples separately, though with wide confidence inter-
vals that include the null in VADT. Similarly, Subgroups
6, 7, and 8, which all exhibited higher MACE associated
with intensive glycemic control in the pooled analysis of
VADT and ACCORD, were at low-, intermediate-, and
high-risk of MACE, respectively, in the pooled study
sample. While HTE are often correlated with underly-
ing risk of the outcome—forming the basis for risk-based
treatment recommendations in many clinical contexts
[21, 22], the approach used here identified HTE of inten-
sive glycemic control that appear independent of MACE
risk. Thus, machine learning approaches may provide
complementary information to cardiovascular risk esti-
mation to guide diabetes treatment individualization
across the spectrum of cardiovascular disease risk.

Our finding that HGI was the most highly ranked vari-
able in the analysis of pooled data from the ACCORD
and VADT trials extends prior work describing associa-
tions of glycemic variability with cardiovascular risk in
diabetes patients. As mentioned above, HGI is the dif-
ference between measured HbAlc and the HbAlc that
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would be predicted on the basis of a concomitant fast-
ing plasma glucose measurement. A high HGI, therefore,
would indicate that an individual’s HbAlc is higher than
would be predicted from fasting plasma glucose, poten-
tially implying high glucose variability not reflected in the
fasting glucose measurement. The identification of high
HGI as an important determinant of adverse cardiovas-
cular effects of intensive glycemic control (Subgroup 8)
supports prior work that has found associations of glu-
cose and HbAlc variability with microvascular and mac-
rovascular complications and hypoglycemia in diabetes
patients, including in the VADT and ACCORD trials
[10, 23-32]. While calculating HGI in routine care may
be impractical as it is derived by regressing HbAlc on
glucose in a population, our findings and the prior work
on glycemic variability suggest that discordance between
glycemia measured by HbAlc and fasting glucose may
be a useful adverse prognostic indicator. When assess-
ing risk of microvascular complications, initial work from
McCarter et al. concluded that HGI was an independent
predictor of risk [33]. A follow up study by Lachlin et al.
however, argued that HGI was highly correlated with the
HbAlc level, and that it is not an independent predic-
tor of the risk of microvascular complications [34]. Their
conclusion was that the effect of the glycation index on
risk can be explained by the associated level of HbAlc.
While others have explored comparative risk of outcomes
related to HbA1C and HG]I, the prioritization of HGI
more highly than HbAlc when including both variables
in our analysis may suggest that HGI captures treatment-
related risk in ways that are not redundant with HbAlc.
Although we found one subgroup, Subgroup 4, in which
intensive glycemic control was associated with fewer car-
diovascular events, we would not interpret this result as
advocating for treating similar real-world patients to an
HbAlc target<6%. That a similar benefit was observed
in the VADT study and in the ACCORD study—which
had very different HbAlc targets—suggests that a more
intensive glycemic control strategy may be beneficial for
certain patients without targeting specific HbAlc thresh-
olds. Given mounting evidence of the efficacy of gluca-
gon-like peptide-1 receptor agonists and sodium glucose
co-transporter-2 inhibitors for improving cardiovascular
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outcomes in patients with diabetes independent of effects
on glycemia [35-40], optimal cardiovascular disease pre-
vention through diabetes treatment may depend on both
individualized glycemic control goals and medication
choice. Future work examining HTE of the new cardio-
protective classes of diabetes medications may identify
evidence-based strategies for tailoring diabetes treatment
based on more than just underlying cardiovascular risk.
Identifying subpopulations of type 2 diabetes patients
has been of great interest over the last several years with
analyses focused on understanding predictors of dis-
ease progression and treatment response. Our analysis
complements prior hypothesis-free, data-driven analy-
ses [41, 42] and hypothesis-based analysis using clinical
features [43] to define diabetes patient subgroups with
differential response to treatment. Prior secondary anal-
yses of the ACCORD study suggest that features of on-
trial HbAlc may be associated with trial outcomes [42,
44]- an approach that contrasts with our study focused
on baseline characteristics in which HbAlc was not used
in the summary decision tree. In addition to highlight-
ing the urgent need to understand how diabetes patient
heterogeneity might inform better tailoring of treatment,
our study draws attention to important data and method-
ological gaps in advancing diabetes precision medicine.
First, causal forests applied to each of the trials separately
yielded only modest correlation in variable importance
rankings, highlighting the value of pooling individual-
level data from multiple studies when examining HTE
using machine-learning and the potential sensitivity of
these methods to between-study heterogeneity in study
populations and intervention design [19]. Differences in
the trial designs of ACCORD (factorial) [10] and VADT
(parallel treatment RCT) [11] may also have contrib-
uted to differences in results when analyzing the trials
separately. To make the most of trial data, methods that
can flexibly accommodate differences in trial design are
needed. Second, there is a lack of consensus on how best
to translate causal forests results to interpretable, mutu-
ally exclusive subgroups of real-world patients. In this
study we used the most highly prioritized variables from
causal forests to generate a summary decision tree, an
approach that can improve interpretability of the causal

(See figure on next page.)

Fig. 3 Comparison of subgroup effects based on subgroup-specific rates of major adverse cardiovascular events (MACE). Subgroups were ordered
from left to right by event rates in pooled data including both ACCORD and VADT studies. A Event rates in each subgroup across both treatment
arms ("All’, purple), among those randomized to standard glycemic control (“Standard’, blue), and among those randomized to intensive glycemic
control (“Intensive’, green). Dotted lines show the event rates of MACE in the full sample (purple), in those randomized to standard glycemic
control (blue), and in those randomized to intensive glycemic control (green). B Risk differences of MACE associated with standard versus intensive
glycemic control, stratified by study and subgroup with subgroups ordered from left to right by increasing MACE event rates in the full sample
including pooled data from both studies. Positive risk differences reflect higher MACE and negative risk differences reflect lower MACE in intensive
glycemic control compared to standard glycemic control. Blue and green dotted lines represent the average treatment effect of intensive versus
standard glycemic control on MACE in the ACCORD and VADT studies, respectively
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forests output but can also lead to overfitting. Given the
substantial heterogeneity of type 2 diabetes patients,
methodological advances in translating machine learning
methods to clinical decision-making may prove impact-
ful to individualized diabetes care.

There are several limitations to acknowledge in this
study. First, the interpretation of results should remain
limited to the populations represented in the ACCORD
and VADT studies. Though pooling data from the two
studies broadens the general population representation in
our analysis, the resulting pooled sample is derived from
select randomized trial samples and does not necessar-
ily represent the real-world diabetes patient population.
Additional evaluation is needed to assess the perfor-
mance of the HTE subgroups in the summary causal tree
in diabetes patients drawn from the general population
and the VA health system. Second, the summary causal
tree presented here is difficult to interpret from the per-
spective of relating variable cut-points to physiology and
clinical outcomes and would be difficult to institute into
clinical practice in its current form. Third, the VADT
study was considerably smaller than the ACCORD study,
limiting statistical power for subgroup analyses in the
VADT study—reflected by wide confidence intervals for
the treatment effects—and granting greater weight to the
ACCORD study in pooled analyses. Finally, we evaluated
only one machine-learning algorithm for HTE detec-
tion—causal forests—in our analysis. Assessing whether
similar variables are prioritized for HTE identification
across disparate algorithms exceeds the scope of this
manuscript but may be a valuable next step in translating
results of machine learning subgroup analyses to clinical
care.

Conclusions

In sum, using data from two randomized trials of inten-
sive glycemic control in type 2 diabetes patients, we
found subgroups defined by combinations of HGI, eGFR,
serum glucose, BMI, and age that exhibited different
associations of intensive glycemic control with major
adverse cardiovascular events. This hypothesis-free, data
driven approach identified a subset of patients consisting
of younger trial participants with overweight/obesity, low
HGI, preserved renal function, and lower serum glucose
levels that may benefit from intensive glycemic control to
lower MACE, consistent with contemporary guidelines
for the care of diabetes patients. We also highlight that
potential benefit of intensive glycemic control to lower
MACE was not clearly correlated with underlying risk of
MACE in subgroups, suggesting that clinical decision-
making for diabetes treatment intensity based primar-
ily on cardiovascular risk estimation may miss patient
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subgroups at high cardiovascular risk who might benefit
from intensive glycemic control.
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