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In many clinical trials, individuals in di�erent subgroups may experience di�erential treatment11

e�ects. This leads to the need to consider individualized di�erences in treatment benefit. The12

general concept of predictive directions, which are risk scores motivated by potential outcomes13

considerations, is introduced. These techniques borrow heavily from the literature from su�cient14

dimension reduction (SDR) and causal inference. Initially directions assuming an idealized15

complete data structure are formulated. Then a new connection between SDR and kernel machine16

methodology for detection of treatment-covariate interactions is developed. Simulation studies17

and a real data analysis from AIDS Clinical Trials Group (ACTG) 175 data show the utility of18

the proposed approach.19

20

1. Introduction21

In many clinical trials, the average treatment e�ect is the primary interest. After finding the e�ect, one of the22

researchers’ interests would be in understanding how covariates a�ect the treatment e�ect. Developing methods for23

identification of appropriate patient subgroups for which the treatment might be of major benefit has become a topic of24

intense interest in the statistical literature. Gail and Simon (1985) introduced methods for identification of qualitative25

treatment covariate interactions. The Subpopulation Treatment E�ect Pattern Plot (STEPP) was developed by Cai,26

Tian, Wong and Wei (2011a) as a graphical summary for subgroup identification with attendant permutation testing27

procedures. Using a working model and training/test set paradigm, Cai et al. (2011a) developed a modelling strategy to28

identify subgroups of patients who would benefit from the treatment; we comment on their approach in §3.2. Tree-based29

and related machine learning approaches (e.g., Kehl and Ulm (2006); Su, Zhou, Yan, Fan and Yang (2008); Su, Tsai,30

Wang, Nickerson and Li (2009); Foster, Taylor and Ruberg (2011); Imai, Ratkovic et al. (2013); Wager and Athey31

(2018)) for finding treatment subgroups have also been proposed. Much of these methodologies have been focused on32

the issue of identification of subgroups at a subpopulation level, where the subgroups are defined based on covariates33

that have interactions with treatment. VanderWeele, Luedtke, van der Laan and Kessler (2019) take this notion to a34

person-specific level and described four problems in personalized medicine. They show that for each question, the35

optimal rule has a form that takes the di�erence in individual-specific responses conditional on covariates. They use36

the potential outcomes framework (Rubin, 1974; Holland, 1986) to derive these results. An important takeaway from37

their work is the necessity of moving away from testing individual treatment-covariate interactions towards holistic38

testing of multiple interactions simultaneously.39

In this work, inspired by ideas from causal inference and its links with su�cient dimension reduction (SDR)40

methods (Ghosh, 2011; Luo, Zhu and Ghosh, 2017), we develop a concept termed the predictive direction. The idea41

is to posit potential outcomes for the subject under each of the possible treatments and to then model their di�erence.42

In the hypothetical case where the complete potential outcomes are available, we can then exploit su�cient dimension43

reduction methods in order to estimate the predictive direction.44

While we describe the predictive directions concept within the potential outcomes framework in Section 2, for most45

situations, there are two problems. First, the counterfactuals are never simultaneously observed. Second, the classical46
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Subgroup analysis using kernel machines

su�cient dimension reduction framework requires a linearity condition that might not be feasible in most applications.47

To deal with the former issue, we impute the outcomes using random forests (Breiman, 2001), a step that was also48

applied in the ‘virtual twins’ method of Foster et al. (2011). For the second issue, we develop a new link between49

su�cient dimension reduction methodology and kernel machine methods (Liu, Lin and Ghosh, 2007). This kernel50

machine method has an advantage over the virtual twins method by not depending on this linearity and has flexibility51

of accommodating nonlinear interaction. In addition, we are able to prove some technical results about our procedure52

in Theorem 1 in the paper.53

The structure of the paper is as follows. In Section 2, we outline the background material on the potential outcomes54

framework as well as computation of the predictive direction using SDR methodology. Section 3 describes a general55

methodology to address the latter issue from Section 2. Section 4 describes a new nonlinear extension of the approach56

to relax the linearity assumption and yields approximations using kernel machine methods (Liu et al., 2007). Section57

5 describes simulation studies to evaluate the finite-sample properties of our methodology. We apply our methodology58

in Section 6 to data from AIDS Clinical Trial Group (ACTG) 175. Some discussion concludes Section 7.59

2. Potential outcomes framework and applications to risk modelling60

We work within the potential outcomes framework of Rubin (1974) and Holland (1986). Assume that for i =
1,… , n,

{Yi(0), Yi(1), Ti,Zi},
is a random sample from the triple (Y (0), Y (1), T ,Z), where (Y (0), Y (1)) represents the counterfactuals, T denotes the
treatment group, and Z, a p-dimensional vector of covariates, is observed for all subjects. Let T take the values {0, 1}
so that the treatment is binary. Note that we are merely using the setup to be able to define the predictive directions.
Also, we will be working within the context of a clinical trial where T will be randomized so that it can be assumed
to be independent of Z. As described in Rosenbaum and Rubin (1983), the standard assumption needed for causal
inference is that

T ⌅⌅ {Y (0), Y (1)}Z, (1)

i.e. treatment assignment is conditionally independent of the set of potential outcomes given covariates. Rosenbaum61

and Rubin (1983) refer to (1) as the strongly ignorable treatment assumption; it allows for the estimation of causal62

e�ects. Since we have randomized clinical trials, this strongly ignorable assumption holds.63

We now exploit the work of Ghosh (2011) and impose further conditional independence assumptions from the
su�cient dimension reduction literature Cook (2009). Assume that there exists a p ù q matrix A, q f p, such that
treatment is conditionally independent of Z, given A®Z. This can be expressed as

T ⌅⌅ ZA®Z. (2)

Assumption (2) is a crucial one for defining the estimand targetted by most su�cient dimension reduction methods. In
particular, if S(A) represents the subspace generated by the columns of A, then the smallest subspace containing all
possible spaces is known as the central subspace (Cook, 2009). It most problems, the central subspace typically exists
under some mild assumptions. Combining assumptions (2) and (1), we have

T ⌅⌅ {Y (0), Y (1)}A®Z, (3)

so that the columns of A capture the essential information about the potential outcomes. These columns are what we
term the directions in the outcome data. Note that (3) implies that

T ⌅⌅ g({Y (0), Y (1)})A®Z

for any function g(y, z) whose domain is R2 and whose range is R. Next, we define the function

g(y, z) = y * z.

Of course, many other functions are possible, but in the current article, we focus on this choice of g. We then define64

the columns of A corresponding to g as the predictive directions.65
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3. Ideal algorithm and limitations66

As noted by Ghosh (2011), with the sequence of conditional assumptions being invoked in §2., one can then employ67

su�cient dimension reduction procedures in order to compute the predictive directions. The proposed algorithm is as68

follows:69

A. Compute Y <
i
í g{Yi(1), Yi(0)} for subject i, i = 1,… , n.70

B. Perform su�cient dimension reduction of Y <
i

on Zi (i = 1,… , n) in order to estimate the directions (i.e., the71

columns of A).72

As pointed out before, in practice, we cannot implement the high-level algorithm in the previous paragraph due to73

the inability to observe both potential outcomes. Instead of {Yi(0), Yi(1)}, we observe Yi = TiYi(1) + (1* Ti)Yi(0). We74

thus modify the algorithm by including an imputation step before step A.75

We make several remarks about this algorithm. First, since the data come from a randomized clinical trial, separate76

prediction within treatment arms is a valid approach for imputing potential outcomes. Second, the approach is agnostic77

to the choice of imputation algorithm; one could use other alternatives (e.g., Raghunathan, Lepkowski, Van Hoewyk,78

Solenberger et al. (2001); Van Buuren (2018)). Third, the imputation step corresponds to that needed in algorithms79

such as the ‘virtual twins’ algorithm of Foster et al. (2011); however, their subsequent steps are di�erent from ours.80

For the choice of su�cient dimension reduction procedure, one can consider sliced inverse regression (SIR) (Li,
1991). Alternative methods could also be used, such as SAVE (Cook and Weisberg, 1991) and MAVE (Xia, Tong, Li
and Zhu, 2002). However, SIR requires the linearity condition for its validity. For a p*dimensional random vector x,
the linearity condition assumes that

E(x�®x) = Px,
where P í ⌃�(�®⌃�)*1�® is a p ù p matrix and ⌃ is the covariance matrix of x. The linearity condition is viewed
as restrictive, as it is mainly satisfied by elliptically symmetric distributions. The p*dimensional random vector x is
elliptically symmetric distributed if and only if there exists a p-dimensional vector �, a p ù r matrix B with maximal
rank r, and a nonnegative random variable V , such that

x = � + V Bu,

in distribution, where the r*dimensional random vector u is independent of V and is uniformly distributed on the81

r*dimensional unit sphere (Paindaveine, 2014).82

4. Methodology83

4.1. SDR, metric spaces and a new link84

To overcome this restriction of linear SDR, we consider nonlinear SDR. An alternative for SIR has been kernel-85

based SDR approaches. Such approaches can be found in Ferré and Yao (2003), Fukumizu, Bach and Jordan (2004);86

Fukumizu, Bach, Jordan et al. (2009), Wu (2008), Wu, Liang and Mukherjee (2013), Li, Artemiou and Li (2011) and87

Lee, Li, Chiaromonte et al. (2013). The approaches of Li et al. (2011) and Lee et al. (2013) completely avoid the88

linearity condition by formulating a more general notion of su�ciency and develop estimation procedures based on89

constructional of kernel matrices and eigenvalue/eigenvector decomposition to estimate fitted functions.90

While the starting points of SDR and kernel methods appear di�erent at first glance, we show how the two are91

connected in this section. To prove the main result in this section, we will require the definitions of positive definite92

and completely monotone functions.93

Definition 1. A real-valued function f is said to be positive definite if for any set of real numbers x1,… , xn, the nù n94

matrix A with (i, j)th entry aij = f (xi * xj) (i = 1,… , n; j = 1,… , n) is positive definite.95

Definition 2. A real-valued function f is said to be completely monotone if for all r À {0, 1, 2,…},

(*1)rf (r)(x) g 0,

where f (r) denotes the r*th derivative of f .96
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A function f (t) (t À R) is positive definite if and only if f (t) = g(t2), where g is completely monotone. The other97

key fact is that any positive definite function will define a kernel (Aronszajn, 1950). Thus, for any positive definite98

function f , we have that K(Z, ÉZ) = f (ÒZ * ÉZÒ) is a proper kernel. As in Schoenberg (1938), we will study spaces99

of positive definite functions that are defined on proper metric spaces. The space Rp with the Euclidean distance can100

also be viewed as a metric space. Let B(E) denote the space of positive definite functions for a metric space E. One101

result of Schoenberg (1938) was that if E1 and E2 are metric spaces with E1 œ E2, then B(E1) – B(E2). If we take102

E1 to be the restriction of Rp to random vectors Z that satisfy the linearity condition and E2 to be random vectors103

which are elliptically symmetric, then we have B(E1) – B(E2). For B(E2), we have the following characterization104

from Schoenberg (1938):105

Lemma 1. A p*dimensional random vector W is elliptically symmetric if and only if its characteristic function can
be written as  (ÒwÒ2), where w À R

p and  (t) has the form

 (t) =
 

ÿ

0
!p(r2t)dF (r), (4)

where !p is the characteristic function for a p*dimensional random vector that is distributed uniformly on the unit
sphere in Rp, and F (r) is a distribution function on [0,ÿ). We note that the form of !p(t) is given by

!p(t) = �
⇠
p

2

⇡⇠2
t

⇡(p*2)_2
J(p*2)_2(t),

where �(a) í î
ÿ
0 u

a*1 exp(*u)du denotes the Gamma function and

J↵(x) í
ÿ…
m=0

(*1)m
m!�(m + ↵ + 1)

⇠
x

2

⇡2m+↵
,

represents the Bessel function.106

Given the definitions of E1 and E2 above, we define a sequence of metric spaces in the following way: let E2+i be
a metric space consisting of elliptically symmetric random vectors in Rp+i for i = 1, 2,… ,. We have that elliptical
symmetry in higher dimensions implies elliptical symmetry in lower dimensions. This yields the following chain of
inclusion relations:

B(E1) – B(E2) – B(E3) –5 – B(Eÿ). (5)

In addition, Schoenberg (1938) provides a characterization of B(Eÿ) in (5), which is given in the following result:107

Lemma 2. A random element W exists in Eÿ if and only if W’s characteristic function can be written as  (ÒwÒ2),
where  (t) has the form

 (t) =
 

ÿ

0
exp(*r2t)dF (r), t > 0, (6)

and F (r) is a distribution function on [0,ÿ).108

Note that by the nested structure of the space of positive definite functions in (5), it is also the case that

B(Eÿ) = „ÿ
i=1B(Ei).

Thus, B(Eÿ) is the smallest space containing B(Ei) for all i. In this sense, the object B(Eÿ) can be interpreted as an109

infinite-dimensional analog to the central subspace that was described in §2. Combining all the results above leads us110

to the following result.111

Proposition. A random element exists in B(Eÿ) if and only if its associated kernel is of the form

K(X, ÉX) =  (ÒX * ÉXÒ), (7)
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Table 1
Examples of kernels that are members of B(Eÿ). Here K

⌫
denotes the modified Bessel function of the second kind of order

⌫.

Kernel K(z, Éz) Parameter ranges

Gaussian exp{*Òz * Éz Ò2_⇢} ⇢ > 0
Matérn

2⌫*1

�(⌫)

⇠
Òz* ÉzÒ
c

⇡⌫
K
⌫

⇠
Òz* ÉzÒ
c

⇡
c, ⌫ > 0

Generalized Cauchy

⌧
1 +

⇠
Òz* ÉzÒ
c

⇡↵�*⌧_↵
c, ⌧ > 0, 0 < ↵ f 2

Dagum

Powered Exponential exp{*
⇠

Òz* ÉzÒ
c

⇡↵
} c > 0, 0 < ↵ f 2

where  is generated via (6). The proposition shows that the kernels in B(Eÿ) only depend on the interpoint distances112

between points.113

We note that we arrive at kernels as in Lee et al. (2013) but with a very di�erent starting point and a di�erent set of114

assumptions. We do so through an alternative construction that did not rely on the generalized notions of su�ciency115

that are considered by Lee et al. (2013). The nesting function space argument in this paper allows one to transition from116

distributional assumptions (e.g., elliptical distribution for X) to functional definitions that can be characterized using117

kernels. We also note that because we are modelling the di�erence in mean potential outcomes using kernel machines,118

we are less reliant on the central subspace object in su�cient dimension reduction and could instead have started with119

the central mean subspace (Cook and Li, 2002) instead. This is what was used in Luo et al. (2017).120

We recall an earlier example from the SDR literature that violates the linearity condition. The example is the
regression model

Y = (�®X)2 + ✏,
where X and ✏ have normal distributions. A method such as SIR will estimate the direction to be zero. Using the121

theoretical framework that is presented here, we would see that this regression relationship would not exist in B(Eÿ).122

Formally, the regression model would correspond to a kernel of the form K(X, ÉX) = (< X, ÉX > +1) which has been123

referred to as the polynomial kernel of order one in the machine learning literature. By the proposition, such a kernel124

does not have the form (7) so that it would not be in B(Eÿ). Thus, the theorem provides new insights as to situations125

in which SDR methodologies will fail to capture the correct directions.126

Each element of B(Eÿ) will have a unique kernel associated with it and vice versa. One example of a kernel that
would exist in B(Eÿ) is the Gaussian Kernel, whose kernel is given by

K(z, Éz) = exp{*Òz * Éz Ò2_⇢},
where Òz* ÉzÒ2 = ≥p

k=1(zk * Ézk)2 and ⇢ > 0 represents a scale parameter. The Gaussian kernel generates the function127

space spanned by radial basis functions, a complete overview for which can be found in Bühmann (2003). Other128

examples of kernels that reside in B(Eÿ) can be found in Table 1.129

Remark 1. While we have defined the predictive direction in a linear way in Section 2, the development here allows130

us for one to define a nonlinear predictive direction. In particular, it will be an element Éb À B(Eÿ) such that T is131

independent of {Y (0), Y (1)} given the �*algebra generated by Éb. This is in spirit to a definition of nonlinear su�cient132

dimension reduction given in Lee et al. (2013).133

4.2. Proposed Algorithm and some theoretical guarantees134

The results in the previous section lead to a modification of the algorithm in Section 3. It now proceeds as follows:135

1. Fit random forests for Yi as a function of Ti,Zi, and TiZi, i = 1,… , n . Such an algorithm will allow for136

computation of ( ÇYi(1), ÇYi(0)) based on the observed covariates Zi, i = 1,… , n.137

2. Compute the variable ÉYi = g{ ÇYi(1), ÇYi(0)} for subject i, i = 1,… , n.138

3. Divide the dataset into training data {( ÉYi,Zi)}
n1
i=1 and test data {( ÉYi,Zi)}

n1+n2
i=n1+1

where n1 and n2 are number of139

observations in the training and test datasets, respectively. Let n = n1 + n2. Fit a kernel machine regression140

model of ÉYi on Zi, i = 1,… , n1 using the training data.141
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4. Predict the outcome based on the fitted kernel machine regression model with the test data Zi, i = n1+1,… , n1+142

n2 and obtain predictions for ÉYn1+1,… ÉYn1+n2 .143

One then gets fitted values from the kernel machine model applied to the input covariate vectors, and these can be144

treated as functionals of nonlinear extensions of the predictive directions defined in §2.1. Note that the third step145

amounts to fitting a support vector regression model (Cristianini, Shawe-Taylor et al., 2000). More details of kernel146

machine regression are provided in Appendix A of in this paper.147

Without loss of generality, we picked a Gaussian kernel provided in Table 1 to build our algorithm. The Gaussian148

kernel is one of the most widely used kernels in the literature mainly because the corresponding RKHSHK is universal.149

This means that the function space HK spanned by the Gaussian kernel is dense in C(Rp), the collection of all150

continuous functions defined on Rp (Steinwart, 2001). Equivalently, for any arbitrary function g À C(Rp) and every151

✏ > 0, there exists always a function f À HK such that supzÀRp f (z)* g(z) < ✏. The universality property states that152

there always exists a function in the Gaussian RKHS that is arbitrarily close to the true functional relation between153

potential outcomes and covariates as long as such a functional relationship is continuous. This is a much weaker154

assumption than that used for most parametric outcome regression models in the causal inference literature. This155

universal property of Gaussian RKHS is very appealing in our framework as we want our regression model to be156

correctly specified and a broad function space would gain some robustness against model misspecification, which is a157

crucial factor in causal inference.158

To study the theoretical guarantees of estimator Çh(�) of the kernel machine regression y = �0 + h(z) + ✏, we
first calculate the L2-distance between the estimated function öh(�) (explicit form given in Appendix A) and the true
underlying h(�) using

öh * h
L2(PZ) :=

4
 
Rp

öh(z) * h(z)2dPZ(z)
51_2

,

where PZ is a probability distribution for covariate vector Z. This metric has been widely used in the literature of159

causal inference (Hill, 2011; Alaa and Schaar, 2018). The major result in this paper on the kernel machine regression160

estimator is presented in the following theorem:161

Theorem 1: Let (Yi,Zi), i = 1,… , n be i.i.d. samples randomly drawn from the joint distribution PYZ satisfying
Y  fM almost surely and PZ be the marginal distribution ofZ, whose domain is compact. Assume the true regression
surface of regression model h(�) = E[Y Z = �] À HK , the RKHS spanned by the Gaussian kernel. Then, for any
0 < � < 1, the following error bound holds with probability 1 * �:

öh * h
L2(PZ) f Cn

* 1
4 , (8)

where C = log(4_�)(8M +
˘
8h

HK
) is a function that does not depend on n.162

The crucial factor in the error bound of Theorem 1 is h
HK

, which is finite by the assumption that true regression163

surface h lies in the RKHS HK . This assumption is relatively weak given the fact that the Gaussian RKHS is dense in164

the collection of all continuous functions defined on Rp. The results in Theorem 1 is consistent with findings reported165

in the literature of causal inference that the learning rate of estimating causal e�ects is mainly determined by the more166

complex of the surfaces of outcome regression models (Alaa and Schaar, 2018). The proof of this theorem is provided167

in Appendix B in this paper. In our algorithm, the working outcomes ÉYi = ÇYi(1)* ÇYi(0) of the kernel machine regression168

model are calculated based on imputed values from random forests models. The following remark accounts for this169

fact.170

Remark 2. Let öh ÉY denote the kernel machine regression estimator calculated from the working outcomes ÉY . Then,
under the assumptions of Theorem 1, we have

Pr

⌧
öh ÉY * h

L2(PZ) f Cn
* 1

4  ÉY
�
g 1 * �.

Finally, we note that a related approach to using kernel machines was taken in Shen and Cai (2016). While their171

approach shares similarities with the algorithm developed here, we note that the motivation and starting points are172

completely di�erent. Furthermore, they were focused more on the issue of testing, while our goal here is that of173

computing and estimating of the nonlinear directions.174
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4.3. Treatment selection rules and evaluation of predictive directions175

Based on our approach to predictive direction estimation, we can use the estimated directions to guide optimal
treatment strategies inspired by VanderWeele et al. (2019). Our proxy rule is to use

D
10

> k, (9)

where D10 is the predictive direction-derived score.176

To evaluate the predictive direction as a scoring rule, we need a training and testing set in which both studies are177

randomized and consist of the same treatments. In addition, outcome variables need to be measured in both studies.178

The proposal is related to one discussed in Vickers, Kattan and Sargent (2007). To simplify the discussion, we will179

deal with the case of two treatment groups. The procedure works as follows:180

(a). Estimate the predictive direction using the training dataset.181

(b). Using the estimated direction, compute scores for all subjects in the test set.182

(c). Based on the scores, determine which treatment each subject should receive in the test set using treatment rules183

of the form (9).184

(d). For the subjects whose predicted treatment match their randomized treatment in the test set, compare the185

outcomes between the two treatment groups.186

We mention some points at this stage. First, we note that for step (b), the outcome information in the test set is not used187

at all. Only the covariate information is used to compute the scores. The outcome information is needed in step (d) in188

order to compute the measure of treatment e�ect between the two groups. Note also that the fact that the test set also189

comes from a clinical trial is a necessary feature here. In step (d), we will be excluding two types of subjects in the190

test set: those who were predicted to have greatest benefit from one treatment group but were observed to receive the191

other one. Thus, we are performing a subgroup analysis in step (d) based on subjects in the test set whose predicted192

and actual treatment assignments are concordant. The randomization of treatment is necessary in order to ensure that193

the subgroup analysis will also be the same as the overall treatment e�ect.194

5. Simulation studies195

5.1. Simulation I196

We first conducted numerical studies to evaluate the theoretical guarantees stated in Theorem 1 on the kernel-
based estimation algorithm of predictive directions presented in §4.2. There are many aspects of the design that
may be important to consider including the sample size, forms of function h(�) and the correlations between the Z’s.
Specifically, we considered p = 10 covariates with varied sample sizes n = 100, 200, 400 or 800. The p covariates
(Z1,… ,Zp) were simulated from two di�erent distributions: 1) independently form uniform distribution between 0
and 1, that is, Zj Ì unif (0, 1), i.i.d.; 2) multivariate normal distribution Z0 = (Z01,… ,Z0p) Ì Np(0,⌃r), where ⌃r
was the compound symmetry covariance structure with all diagonal elements being 1 and o�-diagonal elements being
r. Here we used r = 0, 0.4 and 0.8 to represent low (or independence), moderate and high correlation level among
covariates. Notice that Theorem 1 requires the domain of Z to be compact. Hence, we made further transformation
from Z0 to Z by setting Zj = 1 if Z0j > 1, Zj = *1 if Z0j < *1, and Zj = Z0j otherwise, j = 1,… , p. For ease
of presentation, we term this distribution of covariates as the truncated normal (TN) hereafter. After covariates were
simulated, we next generated the di�erence in potential outcomes as

ÉYi = 1 + h(Zi1,… ,Zip) + ✏i, i = 1,… , n,

where error ✏i was generated from the standard normal distribution N(0, 1), and h(�) = h1(�) or h2(�) given by:

h1(Z1,… ,Zp) = 2cos(Z1) * 3Z2
2 + 2Z4e

*Z3 * 1.6sin(Z5)cos(Z3) + 4Z1Z5,

and

h2(Z1,… ,Zp) = 2Z1 * 3Z2 *Z3 + 2Z4 + 4Z5.

Y. Cho, X. Zhan and D. Ghosh: Preprint submitted to Elsevier Page 7 of 15



Subgroup analysis using kernel machines

Table 2
Mean squared error of kernel machine regression (KMR) and linear regression (LR). The results are averaged over 200

replicates.

h = h1 h = h2

P
Z

Method n = 100 200 400 800 n = 100 200 400 800

Unif KMR 0.241 0.167 0.116 0.072 0.127 0.065 0.037 0.022

LR 1.048 1.119 1.155 1.167 0.898 0.949 0.972 0.981

TN0 KMR 0.428 0.302 0.190 0.115 0.263 0.172 0.110 0.063

LR 6.278 6.583 6.931 6.998 0.901 0.944 0.979 0.986

TN4 KMR 0.393 0.311 0.217 0.133 0.272 0.177 0.114 0.072

LR 7.205 8.563 8.847 9.100 0.910 0.942 0.965 0.981

TN8 KMR 0.290 0.245 0.184 0.121 0.216 0.151 0.097 0.062

LR 5.222 6.311 6.943 7.112 0.901 0.947 0.974 0.989

It is of note that function h(�) is sometime referred to as the interaction term between treatment and covariates on197

the outcome in literature (Foster et al., 2011). Our simulation design allows for nonlinear interaction terms, which198

is a feature typically ignored or infeasible in many other existing methods. Finally, we used the simulated data199

( ÉYi,Zi), i = 1,… , n to fit a kernel machine regression (KMR) model described in Appendix A. As a comparison,200

we included a linear regression (LR) model fitted to the same data ( ÉYi,Zi), i = 1,… , n. To evaluate the criterion in201

Theorem 1, we calculated the mean squared errors (MSE)
≥n

i=1[ ÉYi *
öÉY i]2_n of two regression models and report their202

values across di�erent simulation configurations in Table 2.203

As can be seen in Table 2, under the distributions of the covariate (PZ ) and forms of the interactions (h1_h2), the
mean squared error of kernel machine regression decays towards zero when the sample size increases, as guaranteed
by Theorem 1. As an example, taking PZ to correspond to the Unif(0,1) distribution and h = h1 as an example, it can
be easily calculated that the MSEs of KMR under di�erent sample sizes satisfy the following relationship:

0.241
0.167 ˘ 0.167

0.116 ˘ 0.116
0.072 ˘

˘
2.

In other words, the MSE of KMR decays nearly at a rate that is around the square root of ratio of sample sizes, which204

is the rate guaranteed by Theorem 1. On the other hand, traditional linear regression does not enjoy such a property.205

Finally, when the linear model is true and the sample size goes to infinity, the MSE of linear regression will converge206

to the variance of error, which seems to be the case in Table 2.207

5.2. Simulation II208

In the second set of simulations, we conducted numerical experiments to evaluate the potential of using predictive
directions as a guideline for optimal treatment selection or subgroup analysis as described in §4.3. We mainly
followed the design of the original virtual twins-based subgroup identification paper (Foster et al., 2011) and generated
randomized trials of (Yi, Ti,Zi) with n = 400, 800 or 1600 patients, where T was generated from Bernoulli (0.5) and
Z = (Z1,… ,Z10) were generated as independent Zj Ì Unif (0, 1). We considered the following model for outcome
data generation

Y = *1 + 0.1T + 0.5Z1 + 0.5Z2 * 0.5Z3 + 0.5Z2Z4 + Th(Z) + ✏,

where function h(Z) is given in Simulation I. Then, we split n data points into two parts: a training set (Y t
i
, T

t

i
,Zt

i
), i =

1,… , n1 and a test set (Yi, Ti,Zi), i = 1,… , n2, where n1 = n2 = n_2. We applied the predictive directions estimation
algorithm in §4.2 the training set (Y t

i
, T

t

i
,Zt

i
), i = 1,… , n1 to obtain Çh(�), and then applied this estimated function to test

set Zt
i
, i = 1,… , n2 to obtain the predicted direction scoresD10

i
= Ç�0+ Çh(Zi), i = 1,… , n2, which were used to perform

the subgroup analysis. Our proxy rule is to define subgroup using {D10
> k}. Without specific context-dependent

information, we selected the threshold k in a data-adaptive way by using quantiles of the predicted predicted direction
scoresD10

i
, i = 1,… , n2. Recall that predictive scores are estimations of di�erences in potential outcomes and a larger

Y. Cho, X. Zhan and D. Ghosh: Preprint submitted to Elsevier Page 8 of 15



Subgroup analysis using kernel machines

Table 3
Estimation of enhanced treatment effects by KMR and VTR. The results are averaged over 200 replicates. A paired

two-sample t-test was used to calculate the p-values. Larger values correspond to better performance.

h = h1 h = h2

n KMR VTR p-value KMR VTR p-value

400 0.799 0.755 7.3e-02 1.797 1.316 5.8e-44

800 0.816 0.782 4.9e-02 1.796 1.320 8.8e-60

1600 0.849 0.810 3.0e-04 1.811 1.289 5.0e-93

score indicates that the subject is more likely to benefit from treatment T = 1 than T = 0. Therefore, we assigned
ÇTi = 1 for subject i of the test set if its predicted direction score D10

i
is greater than the 66.6%-quantile of all predicted

direction scores D10
i
, i = 1,… , n2, and ÇTi = 0 if its score is lower than the 33.3%-quantile. Here, quantiles (33.3%

and 66.6%) are arbitrarily picked to evaluate the potential usefulness of predictive directions in subgroup analysis. For
the remaining one third of subjects, more information is needed to determine the appropriate treatment they should
receive. Finally, following step (d) of the procedure described in §4.3, we selected subjects whose predicted treatment
match their randomized treatment and compare the outcomes between two groups. That is,

Q =
⌅
E(Y T = 1 „ ÇT = 1) * E(Y T = 0 „ ÇT = 0)

⇧
* [E(Y T = 1) * E(Y T = 0)] .

The di�erenceQ is also referred to as the enhanced treatment e�ect (Foster et al., 2011). As pointed out by a reviewer,209

it is possible that other forms of Q statistics are appropriate for evaluation, such as replacing the second term with210

E(Y T = 0 „ ÇT = 1). We stick with the current form to match with the procedure described in §4.3. Clearly, larger211

values of Q are more desirable if our predictive directions-guided treatment selection rule is to be useful.212

A natural competitor of our predictive directions-based subgroup analysis rules is the original virtual twins method
Foster et al. (2011), which uses the virtual twins in a di�erent manner to estimate a region ÇA of covariates such that
a subject should receive a treatment if his/her covariates measurement belong to that region. Correspondingly, their
enhanced treatment e�ect associated with the subgroup (or region) is defined as

Q =
⌅
E(Y T = 1 „ Z À ÇA) * E(Y T = 0 „ Z À ÇA)

⇧
* [E(Y T = 1) * E(Y T = 0)] .

In this Simulation II, we compared the enhanced treatment e�ect (i.e., Q value) of our KMR-based subgroup analysis213

and that of the original virtual twins method (Foster et al., 2011). We adapted the original virtual twins regression214

(VTR) method a little bit to handle continuous outcomes, and also used the threshold c = E[Y tT = 1] * E[Y tT =215

0]+0.05 calculated from training set to determine ÇA in VTR. When sample size is relatively small, {T = 1„Z À ÇA} = Á216

or {T = 0 „ Z À ÇA} = Á occasionally happened in VTR. If either case happened, we set the corresponding VTR Q217

value as zero.218

The enhanced treatment e�ects of KMR and VTR are reported in Table 3. On the basis of the table, the enhanced219

treatment e�ect of KMR is consistently better than that of VTR across all scenarios being evaluated. Such an220

improvement is significant under the nominal level ↵ = 0.05 (except for the scenario with n = 400 and h = h1). It221

seems that the predictive directions is a better subgroup analysis tools when the interaction function h = h2 compared222

to h1. One possible reason is because the estimation error is controlled by the complexity of the interaction function223

(i.e., term h
HK

in the constant C in Theorem 1). The function h2 is simpler than h1 and hence the estimation of224

predictive directions of h2 is more accurate leading to more powerful subgroup identification analysis in the sense of225

larger enhanced treatment e�ects.226

6. Data analysis227

To illustrate the methods, we consider data from the AIDS Clinical Trial Group (ACTG) 175 study (Hammer,228

Katzenstein, Hughes, Gundacker, Schooley, Haubrich, Henry, Lederman, Phair, Niu et al., 1996). This dataset was229

analyzed in Wang, Zhou, Song and Sherwood (2018) and Cho and Ghosh (2021). The response variable is CD4230

cell count from 200-500 per cubic millimeter from patients with human immunodeficiency virus type 1 (HIV-1). By231
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removing ineligible patients, we obtain 2467 patients. We use the following 13 covariates in the analysis: age, existence232

of hemophilia, Karnofsky score, sex, days of antiretroviral therapy before ACTG 175, dichotomized race (white vs non-233

white), homosexual activity, history of intravenous drug use, symptomatic/asymptomatic status, antiretroviral therapy234

history, weight, zidovudine (ZDV) use prior to ACTG 175 (yes/no), Non-ZDV antiretroviral therapy prior to ACTG235

175 (yes/no). the original treatment has four levels : Zidovudine, Zidovudine & Didanosine, Zidovudine & Zalcitabine,236

Didanosine, but we dichotomize our treatment variable into Zidovudine only versus the others (Cho and Ghosh, 2021).237

We also standardized these 13 variables. Note that due to the presence of discrete variables, the linearity condition in238

Section 3 is violated, necessitating the new methods developed in the paper.239

We use random forests to impute potential outcomes. As in the simulation section, we used the mean squared error240

to evaluate performance of our proposed estimator and the virtual twins method. The mean squared error of our RKHS241

method is 0.178 and that using linear regression is 0.266.242

Next, we divided the data into training (1233 observations) and test datasets (1234 observations). We fit both243

RKHS and linear regression on the training data and computed mean square error with the imputed test dataset. For244

mimicking the simulation study, we repeat this process 100 times. Figure 1 shows the boxplot of RKHS and linear

RKHS Linear reg

0
.0

8
0

.1
0

0
.1

2
0

.1
4

Figure 1: MSE comparison with 100 imputation of ACTG 175 dataset.

245

regression. Clearly, our approach is better than linear regression.246

We also calculatedQ (defined in Section 5) to compare the performance between our proposed approach and virtual247

twins for several cuto� values. We use the same threshold (33.3% and 66.6%) as simulation section for assignment of248

treatment. We repeated this process 100 times. Note that as in the simulation studies, {T = 1 „ Z À ÇA} = Á or249

{T = 0„Z À ÇA} = Á occasionally happened in VTR. If either case happened, we set the corresponding VTRQ value250

as zero. We examine various c values to see change of number of these empty sets. Figure 2 shows the boxplot of our251

proposed method and VTR for various values of c.252

Table 4shows that our proposed method yields a higher Q-value than VTR at any cuto� level. The enhanced253

treatment e�ect of KMR is better than that of VTR as well. The p-value associated with Figure 2 for comparing the254

di�erence in metrics is less than 0.005, which shows statistically significant evidence of a benefit of our procedure at255

a 5% level of significance.256
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Figure 2: Enhanced treatment comparison with 100 imputation of ACTG 175 dataset. Higher values denote better

performance.

c value test statistic p-value number of VTR Q values being 0

� + 0.05 0.097 0.001 69

� + 0.025 0.074 0.0001 46

� + 0.01 0.064 2.363e-05 29

� + 0.001 0.064 5.714e-07 23

Table 4
Test statistic for paired t-test, p-values and number of VTR Q values being 0 with respect to various c values

7. Discussion257

In this article, we have developed the concept of predictive directions for identification of person-specific e�ects258

in clinical trials. In a linear, idealized case, we are able to obtain linear combinations of the covariates that have a risk259

score interpretation. However, the validity of predictive directions requires strong distributional assumptions, so we260

proposed a novel nonlinear extension based on the connection between nonlinear SDR and kernel machine. We also261

showed that our approach is advantageous over traditional subgroup approach.262

There are several potential extensions of this work that are currently under investigation. First, the issue of263

dimension estimation and subsequent post-model selection inference has not been addressed. In the current paper,264

we have bypassed the issue by fixing the dimension to be one. In the situation where there are multiple directions265

(i.e., multiple columns of A in (3)), a natural question arises as to how to use them to inform selection of optimal266

treatment as discussed in §4. Second, the aforementioned advantages of nonlinear predictive direction extension267

come at a price. The computational complexity of our method is O(n3), which mainly depends on calculating the268

inversion of a n ù n kernel matrix. Taking the real data application in Section 6 as an example, the average computing269
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time handling around 2500 samples in Figure 1 is about 5 hours and the average computation handling around 1250270

samples in Figure 2 is about 1.5 hours. Moreover, comparing to a linear counterpart, it is much more di�cult to271

evaluate the importance of each individual covariate in the nonlinear kernel machine regression. While the KNIFE272

approach (Allen, 2013) can be potentially useful, more investigation is needed in future research. Third, as pointed out273

by a referee, it is promising to use more than one imputation for the counterfactual di�erence and to account for the274

impact of uncertainties of imputation in Theorem 1. However, there is substantial work to do in terms of evaluation275

of its properties and performance, as it represents a counterfactual extension of stability selection (Meinshausen and276

Bühlmann, 2010). We leave these to future investigations.277

Moreover, it may be interesting to extend our method in survival data. Cai, Tonini and Lin (2011b) propose kernel278

machine methodology by using Cox model. We can adopt potential outcome into survival context. However, that use279

of that framework would then require rephrasing the potential outcomes model and attendant assumptions in §2.1.280
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Appendix A: Kernel machine methodology285

The kernel machine regression model (Liu et al., 2007) is given by

Yi = �0 + h(Zi) + ✏i, (10)

where �0 is an intercept term, h(Zi) is an unknown centered smooth function, and the error term ✏i (i = 1,… , n)
is assumed to be a random sample from a N(0, �2) distribution. The kernel machine methodology assumes that
h(�) lies in a reproducing Kernel Hilbert space (RKHS) and further details about RKHS can be found in literature
(Aronszajn, 1950; Wahba, 1990; Berlinet and Thomas-Agnan, 2011). Let HK denote the corresponding RKHS, which
is a Hilbertian function space that satisfies the property that for any function in HK , its pointwise evaluation is a
continuous linear functional. As shown in Aronszajn (1950), there exists a one-to-one correspondence between HK

with a so-called kernel function K(z, z<) is a bounded, symmetric, positive function satisfying

 
K(z, z<)h(z)h(z<)dzdz< g 0, (11)

for any arbitrary square integrable function h(z) and all z, z< À R
p. The kernel function can be viewed as a measure286

of similarity between two values of the covariate vector z and z<.287

Any function h(z) in the function space HK defined by a kernel K(�, �) can have a primal representation directly
using the basis functions (features) of HK , and it can equivalently have a dual representation using the kernel function
K(z, z<) directly. Specifically, for an arbitrary function h(z) À HK , its primal representation takes the form

h(z) =
J…
j=1

!j�j(z) = �(z)T!, (12)

where �(�) = {�1(�),5 ,�J (�)}T is a J ù 1 vector of the standardized orthogonal basis functions (features), i.e.,
standardized Mercer features of the function space Hk, and the ! = (!1,5 ,!J )® is a vector of some constants. The
square norm of h(�) can be written as

ÒhÒ2
HK

=
J…
j=1

!
2
j
= !T!. (13)

Alternatively, the sameh(z) can be equivalently written in a dual representation using the kernel functionK(�, �) directly
as

h(z) =
L…
l=1

↵lK(z<
l
, z), (14)
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for some integer L, some constants ↵l and some {z<1 ,5 , z<
L
} À R

p. Justifications of these results and more details288

about the RKHS can be found in Chapter 3 of Cristianini et al. (2000).289

Based on regression model (10), it is common to study the following Tikhonov regularized least squares problem
(Smale and Zhou, 2007) with � > 0 to avoid model over-fitting:

öh = arg min
hÀHK

T
1
n

n…
i=1

[Yi * �0 * h(Zi)]2 + �ÒhÒ2HK

U
. (15)

Exploiting a primal/dual equivalence from Karush-Kuhn-Tucker theory for (15), one can show that the estimator of
the nonparametric function h(�) evaluated at the design points (Z1,5 ,Zn)T is estimated as

öh = K(K + �I)*1y, (16)

where y í (Y1,… , Yn). For a new observation Z<, the predicted function value is given by:

öh(Z<) = [K(Z<
,Z1),5 ,K(Z<

,Zn)](K + �I)*1y. (17)

It has been shown that the estimates of h in (16) can be derived as arising from a random e�ects model of the following
form (Liu et al., 2007):

y = �0 + h + e, (18)

where h is an n ù 1 vector of random e�ects following h Ì N(0, ⌧K), ⌧ is a scale parameter, and e Ì N(0, �2I).290

Because of this equivalence, all regression parameters in the model can be estimated by maximum likelihood, while291

the variance component parameters (including ⌧, �2 and other potential parameters involved in the kernel function292

K(�, �) or equivalently the kernel matrix K) can be estimated by restricted maximum likelihood (Liu et al., 2007).293

Appendix B: Proof of Theorem 1294

The proof of Theorem 1 mostly follows the pioneering work of Smale and Zhou (2007) on the learning theories295

of integral operators. We first build a connection between the RKHS considered in the current paper with integral296

operators and then utilize the previous results on integral operators (Smale and Zhou, 2007) to prove our results on297

RKHS estimators as presented in Theorem 1 of the main text.298

For ease of presentation, let X denote the covariate vector lies in a compact metric space X (e.g., a closed set in
R
p) with probability measure PX , and L2(PX) denote the collection of all square-integrable functions, that is,

L
2(PX) :=

<
f (x) :

 
X

f
2(x)dPX < ÿ

=
.

The type of integral operators considered in Smale and Zhou (2007) is LK : L2(PX) ≠ HK defined by:

LK (f )(x) :=
 
X

K(x, x®)f (x®)dPX(x®) , x À X ,

where K(x, x®) is a reproducing (Mercer) kernel considered in §3 of the main text.299

Since Tk is a linear operator, the eigenvalues and eigenfunctions of Tk are well-defined. Let �i À L
2(PX) be the

normalized eigenfunctions of Tk (in fact {�i} form an orthonormal basis ofL2(PX)) associated with eigenvalues �i > 0
sorted in non-increasing order. Then, the Mercer’s theorem state that kernel K has the representation

K(x, x®) =
ÿ…
i=1

�i�i(x)�i(x®),

where the convergence is absolute and uniform. This representation can be used to define integral operator L1_2
K

by

L
1_2
K

(f )(x) :=
 
X

ÿ…
i=1

˘
�i�i(x)�i(x®)f (x®)dPX(x®). (19)
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Furthermore, the Mercer’s theorem implies that the corresponding RKHS HK can be characterized as

HK =
T
f À L

2(PX) : f 2
HK

=
ÿ…
i=1

< f ,�i >
2

�i

< ÿ
U

, (20)

where < �, � > is the inner product in L2(PX), and the specific inner product in this RKHS is given by

< f , g >
HK

=
ÿ…
i=1

< f ,�i >< g,�i >

�i

.

We now elaborate on (19) and (20) to show that HK = Im(T 1_2
K

), where Im(T 1_2
K

) denotes the range of integral
operator L1_2

K
. On the one hand, according to (20), ≈f À HK , we have f (x) = ≥ÿ

i=1 fi�i(x) with
≥ÿ
i=1 f

2
i
_�i < ÿ,

where fi =< f ,�i >. On the other hand, according to (19), ≈g À Im(T 1_2
K

), there exists a function h À L
2(PX) such

that g(x) = L
1_2
K

(h)(x) = ≥ÿ
i=1

˘
�i�i(x)hi, where hi = î

X
�i(x®)h(x®)dPX(x®). The fact that h À L

2(PX) implies
that

≥ÿ
i=1 h

2
i
< ÿ. Combining both characterizations of f and g, we have:

HK = Im(T 1_2
k

) :=
T
f À L

2(PX) : f =
ÿ…
i=1

ai

˘
�i�i, s.t.

ÿ…
i=1

a
2
i
< ÿ

U
. (21)

This established connection between RKHS and integral operator TK makes it possible to utilize previous learning
theories of integral operators. Specifically, the RKHS scenario considered in Theorem 1 corresponds to the case of
r = 1_2 in Corollary 5 of Smale and Zhou (2007). At first glance, the main result presented in Theorem 1 looks a
bit di�erent from the r = 1_2 result presented in Corollary 5 of Smale and Zhou (2007). Notice that the constant
 :=

˘
supxÀXK(x, x) = 1 for the Gaussian kernel used in this paper, and the only remaining thing we need to prove

is:
T *1_2

K
f 

L2(PX ) = f 
HK

.

To show this, we use our results on the connection between HK and Im(T 1_2
k

). For an arbitrary f À HK , the300

equivalence result (21) indicates that f = ≥ÿ
i=1 ai

˘
�i�i with f 

HK
=
t≥ÿ

i=1 a
2
i
< ÿ. On the other hand, equation301

(19) implies that L1_2
K

(≥ÿ
i=1 ai�i)(x) = f (x). That is, L*1_2

K
(f ) = ≥ÿ

i=1 ai�i and T *1_2
K

f 
L2(PX ) =

t≥ÿ
i=1 a

2
i
=302

f 
HK

. Combining all equivalence/equality results, the integral operator statement of Corollary 5 exactly reduces to303

the RKHS statement made in Theorem 1 of the current paper, which completes the proof to Theorem 1.304
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