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Abstract— This paper investigates the potential of
model-based extended Kalman filtering (EKF) for
hemodynamic monitoring in a hemorrhage resuscitation-
sedation case study. To the best of our knowledge, it may
be the first model-based state estimation study conducted
in the context of hemodynamic monitoring. Built upon a
grey-box mathematical model with parametric uncertainty
as process noise, the EKF can estimate cardiac output (CO)
and total peripheral resistance (TPR) continuously from
mean arterial pressure (AP) measurements against inter-
individual physiological and pharmacological variability.
Its unique practical strengths include: it does not require
AP waveform as in existing AP-based pulse-contour CO
(PCCO) monitors; and it can estimate CO and TPR with
explicit account for the effect of sedative drugs. The
efficacy of the EKF-based hemodynamic monitoring was
evaluated based on a large number of plausible virtual
patients generated using a collective inference algorithm,
which demonstrated that it has significant advantage over
open-loop pure prediction, and that its accuracy is
comparable to PCCO.

Index Terms— Extended Kalman Filtering, Hemorrhage,
Sedation, Hemodynamic Monitoring, Virtual Patient

|. INTRODUCTION

otivated by the recent findings that critical care
Mtreatments may be automated to assist clinicians

with patient monitoring and titration tasks [1], [2],
there is an ever-increasing interest in the development of
closed-loop control systems to enable critical care automation,
in the areas of fluid resuscitation [3], vasopressor therapy [2],
[4], anesthesia and analgesia [5], [6], and mechanical
ventilation [7], [8] to list a few.

Each treatment given to a patient induces multiple changes
in the patient’s physiological state (including, of course, the
intended change), some of which are not desired. However,
most prior work on closed-loop automation of critical care
therapy has focused on the intended treatment endpoint while
neglecting other aspects of patient responses, raising concerns
related to the safety of closed-loop automation. The situation
becomes even more convoluted when multiple closed-loop
controlled treatments are to be given to a patient. For example,
our prior work demonstrated that hemorrhage resuscitation and
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intravenous (IV) sedation can interfere with each other in a
conflicting manner, possibly driving a patient to a dangerous
physiological state [9]: (i) hemorrhage resuscitation to achieve
an arterial pressure (AP) target dilutes the sedative drug in the
blood and weakens its intended effect, while (ii) IV sedative
interrupts hemorrhage resuscitation by lowering AP. For these
reasons, although closed-loop controlled treatments appear to
successfully drive a patient to desired AP and sedation targets,
the patient’s internal hemodynamics represented by cardiac
output (CO) and total peripheral resistance (TPR) can often be
driven to an unacceptably dangerous state [9]. However, CO
and TPR cannot be readily measured in clinical practice. Such
a limitation presents opportunities related to online estimation
of hemodynamics in a patient receiving critical care therapy.

This paper examines the potential of model-based extended
Kalman filtering (EKF) for hemodynamic monitoring in a
hemorrhage resuscitation-sedation case study. To the best of
our knowledge, it is the first model-based state estimation study
conducted in the context of hemodynamic monitoring. Built
upon a grey-box mathematical model with parametric
uncertainty as process noise, the EKF can estimate CO and TPR
continuously from mean AP measurements against inter-
individual physiological and pharmacological variability. Its
unique practical strengths include: (i) it does not require AP
waveform as in existing AP-based pulse-contour CO (PCCO)
monitors and (ii) it can estimate CO and TPR with explicit
account for the effect of sedative drugs. The evaluation of the
EKF-based hemodynamic monitoring using a large number of
plausible virtual patients generated using a collective inference
algorithm demonstrated that (i) it has significant advantage
over open-loop pure prediction, and that (ii) its accuracy is
comparable to PCCO.

Il. METHODS

A. Mathematical Model

We used a mathematical model to replicate the combined
physiological effects of hemorrhage resuscitation and IV
sedation developed in a prior work [9] (Fig. 1). In brief, the
mathematical model is composed of (i) blood volume (BV)
kinetics in the arterial and venous circulations, (ii) capillary-
tissue fluid exchange, (iii) autonomic regulation of CO, TPR,
and unstressed venous BV, and (iv) sedative pharmacology.
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Fig. 1. A mathematical model to replicate the combined
physiological effects of hemorrhage resuscitation and
intravenous (V) sedation.

First, BV kinetics represents the changes in arterial and venous
BV as well as BP in response to blood loss and fluid gain:
I:/A(t) = Q) — [P4(®) = Py(D]/R(®) — Ju(®) = Jg(®) (1)
Vy () = Q&) + [P4(t) — Py(D]/R(8) + Jr(8) 2
Ve () = —Ju (©)Vrec (O [Va(®) + V(8] (3)
where Vy, V;, and Vg are arterial and venous BV (including
plasma and red blood cell (RBC) volumes) as well as RBC
volume, Q is CO, R is TPR, P, and Py are arterial and venous
BP, and Jy, J, and J are the rates of blood loss, fluid gain, and
capillary-tissue fluid exchange rate. P, and Py, relate to V/, and
Vy by arterial and venous capacitances:

Py(t) = Pao = (Va(t) = Vo) /Ca “4)
Py(t) = Py = (Vy () = Vo — Wiy (©) = Vyruo))/ Gy (5)
where Py, and Py, are nominal arterial and venous BP, V,;; is
unstressed venous BV, Vy,, Vo, Vyyo are nominal arterial,
venous, and unstressed venous BV, and C, and C, are arterial
and venous capacitances. Total BV, V, is given by the sum of
V, and Vy:

V() = V() + W (©) (6)
Second, capillary-tissue fluid exchange is modeled
phenomenologically to replicate the combined capillary
filtration-lymphatic return responses to the change in BV, so
that a pre-set fraction of fluid loss and gain leads to the change
in BV while the remaining fraction induces the change in the
fluid volume in the tissues. Denoting 5 (t) the pre-set change
in BV in the steady state in response to Ji and Jg:

rs(8) = o J Je(@dt = S [ Ju (2)de (7)

aR
where ay and ay denote the ratio between the changes in BV
and tissue fluid volumes in the steady state resulting from
cumulative fluid gain and blood loss. The capillary-tissue fluid
exchange is modeled as a proportional compensation:
Je=Kg(V(®) = Vo —1(D)) (®)
where V, is nominal BV, and Ky is a gain constant. Third,
autonomic regulation to maintain BP are phenomenologically
modeled so that (i) CO cancels the perturbation in venous BP
(i.e., preload); (ii) TPR counteract the change in AP and also
reacts to the change in blood viscosity; and (iii) unstressed
venous BV counteracts the change in AP. In the Laplace
domain:

AQ(s) = K¢

s+z¢
2 4Py (5) ©)

N

Amg=—m;iuacyugmﬂg—ﬁgw) (10)

AVyy(s) = =Kyy 5= APA(S) + Gyy Ce(s) (11)

where A4Q(t) = Q(t) — Qy, AR(t) = R(t) — Ry, AP,(t) =
P,(t) — Py, AP, (t) = P,(t) — Pyo with Q, and R, being
nominal CO and TPR, AH(t) = H(t) — H, where H(t) is
blood hematocrit defined as H(t) = _Vrec®)
Va@©)+vy(6)
nominal value, K, Kz, Ky, and Ky,; are gain constants, p, and
z. are the pole and zero related to the CO dynamics, py is the
pole related to the vasomotor tone dynamics, and Gy and Gy
are gains related to vasodilation and venodilation effects of the
sedative drug. Fourth, the pharmacology of the sedative drug
is modeled as a 3-compartment drug mixing model (12)-(14), a
I%-order effect site delay model (15), and drug effect models
(10)-(11) and (16) associated with the IV propofol:

My (8) = —(kyo + ki + kiz)my (t) + kyym,(2) +

and H, is its

k3yms(t) + Jp(t) (12)
1y (t) = kypmy () — kyymy(t) (13)
3 (t) = kyzmy () — k3yms(t) (14)
, _ Vpkeomy (t)

Ce ) = —keoCe(t) + Vp(Va®)+Vy(£)-VRrpc(t)) (15)
BIS(t) = FBIS(Ce(t)) (16)

where m,, m,, and m; are mass in the central, fast peripheral,
and slow peripheral compartments, kg, k12, K13, k21, and k3;
are rate constants, Jp is propofol administration rate, C, is
sedative concentration at the effect site, k, is effect site time
constant, Vj, and Vp are nominal central distribution and plasma
volumes, and Fg;(*) is a sigmoidal function relating C, to BIS,
a widely used sedation measure [10]. Note that the
mathematical model in Fig. 1 was extensively validated with
multiple unpresented datasets, which demonstrated its ability to
produce physiologically plausible hemodynamic responses to
hemorrhage resuscitation and I'V sedation [9].

B. Generation of Virtual Patients

Using the above mathematical model, we derived a virtual
patient (VP) generator in the form of probabilistic distributions
defined over the model parameters. No experimental data
containing the collective hemodynamic responses in a species
to simultaneous hemorrhage resuscitation and IV sedation was
available. Hence, the VP generator was derived sequentially by
(1) deriving a physiological VP generator for (1)-(11) using a
dataset, then (ii) deriving a pharmacological VP generator for
(10)-(11) using another dataset by leveraging the derived
physiological VP generator.

We derived a VP generator for the physiology component
(1)-(11) using a collective variational inference (C-VI)
algorithm we developed [11] and data collected from 5 sheep
undergoing hemorrhage and colloid resuscitation [12]. We
structurized the hierarchical relationship between a cohort and
subjects therein into a VP generator in the form of the
probabilistic graphical model (PGM) in Fig. 2. This PGM
represents the dependence between the latent parameters that
specify the VP generator (¢), subject-specific characteristics
(8;’s), and sensor noise (n;;’s) pertaining to the mathematical
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Fig. 2. A probabilistic graphical model that structurizes the
hierarchical relationship between a cohort and subjects
therein into a VP generator.

model and the output signals created by the VP in response to
inputs given to the VP. ¢ denotes the beliefs on the cohort-
level model parameters, while 6; denotes the beliefs on the
model parameters associated with subject i (both in the form of
diagonal Gaussian densities). y;; is the output signal j in
subject i, which can be computed by giving the input signal u;
to the mathematical model in II.A parameterized with 6;. n;;
denotes the SD of the Gaussian noise corrupting y;;.

Then, we estimated the latent parameters in the PGM using the
experimental data in [12]. Note that estimating the latent
parameters from given data reduces to inferring the following
exact yet intractable posterior density:

where  p(¢,0,n,u,y) = p()p(0|9)p(y|6,n, w)p(n)p(u)
and 6, n, u, and y denote the collections of all the latent
parameters 6;’s and n;;’s as well as the data u;’s and y;;’s.
Using modern variational inference methods [13], [14], we
specified an approximate posterior density q(¢, 8, n|v) and
inferred it by minimizing the K-L divergence Dy, (v) between
p in (17) and g with respect to the variational parameters v
(which specifies mean and SD of the elements in q expressed
by a family of diagonal Gaussian densities):

Dy, ('U) = IEq [IOg q(¢l 0, nlv) - lng(¢, 0, nlu' }’)] (18)
We derived an evidence lower bound (19) by substituting (17)
into (18), and estimated v by maximizing (19) with stochastic
optimization algorithms [15], [16]:

L(v) =logp(y) — Dg,(v) = E4[logp(y|0,n,u) +
logp(8]¢) + logp(n) +logp(¢) —logq(¢,0,nlv)]  (19)
Then, we derived the physiological VP generator in the form of
the probability distributions associated with the cohort-level
model parameters based on ¢ obtained from v.

We derived a VP generator related to the pharmacological
effect of IV sedative on vasodilation and venodilation (G and
Gyy in (10)-(11)) using the above physiological VP generator
and an extensively validated VP generator for the IV sedative
pharmacology applicable to (12)-(16) [17]. We defined a VP
generator given by a family of diagonal Gaussian densities
associated with Gp and Gyy, with mean and SDs as latent
parameters. Then, we estimated the latent parameters using the
experimental data in [18], by minimizing the discrepancy
between the mean and SD associated with mean AP, CO, and
TPR responses to IV sedative in [18] versus those predicted by
the mathematical model in II.A characterized by a large number
of model parameters sampled from the VP generator (including

physiological ¢, sedative pharmacological in [17], and G and
Gyy)-

By construction, the VP generator derived here can provide
model parameter samples (i.e., VPs) that can replicate a wide
range of variability in hemodynamic behaviors as observed in
the data. We used the VP generator in developing the EKF-
based hemodynamic monitoring and evaluating it in silico.

C. Extended Kalman Filter Design

We reformulated the mathematical model presented in I1I.A
to a state space representation by defining a state vector x
{x1,-+, %10}, wWhere x; = AV, x, = AV, x5 = AVyy, X4
So =AQ — KcAPy, x5 = AR, x¢ = 1g, X; = AC,, Xg = Amy,
X9 = Am,, and x,, = Amz, where all the deviations (i.e., 4s in
x) are defined with respect to an initial state (i.e., when the EKF
is recruited):

x(t) = f(?;)(t),U(t), 6)+w(®)

76 = [ s )] = hx@) + w60
where 6 is the vector of model parameters, w and v are the
process and sensor noises, and t;, is a measurement time instant.
Noting that the most prominent source of process noise is the
parametric uncertainty, we defined w(t) and its covariance
matrix as follows [19]:

w(t) = Jo()A6(t), Qu(t) = Jo(t)QaJj (t) 1)
where J4(t) is the Jacobian of f(x, u, 8) with respect to 6, and
Q.,(t) and Qg are the covariance matrices associated with w(t)
and 6, respectively. Note that Qg is available from the VP
generator described in II.B. On the other hand, noting that y
consists of direct measurements, we attributed v(t;) to sensor
noise with its covariance matrix Qp expressed by a diagonal
matrix having the noise variances associated with P,(t) and
BIS(t) as its elements.

We constructed the EKF based on (20)-(21) as well as the
mean (to define the nominal plant) and SD (to define Qg, the
parametric covariance) of the model parameter values given by
the VP generator in II.B. Then, we derived nominal CO and
TPR estimates and their confidence intervals using the EKF via
its recursive prediction and update procedure. In the prediction
step between measurement time instants, the EKF solved (20)
and its associated covariance equation to predict the
propagation of state and its covariance:

27 () = 2(te-) + [ FRO,u(0),0)dt
P=(t) = P(ti-y) + [1* FOP®) + POFT(®) + Qu(6)dt

e

(20)

(22)
which was solved via numerical integration, where F(t) =
a L
o . In the update step at measurement time instants,
oxlzu),.0
the EKF corrected the state estimate and its covariance using
the measurements:

K(ty) = P (tp ) HT () [H(t )P~ (6 )HT (t) + Qr1™t (23)
2(ty) =27 () + K(tk)[y(tk) - h(f_(tk))]
P(ty) = [I = K(t ) H(t)]P~ (tx) (24)

where H(t) = Z_:L?(t)e

state and its covariance at t = t; before sensor measurements

, and X7 (t,) and P~(t;) are predicted
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TABLE |
CARDIAC OUTPUT (CO) AND TOTAL PERIPHERAL RESISTANCE (TPR) ESTIMATION ACCURACY ASSOCIATED WITH EKF AND
PURE PREDICTION. ME: MEAN ERROR. MAE: MEAN ABSOLUTE ERROR. SD: STANDARD DEVIATION. IQR: INTER-QUARTILE
RANGE. *: P<0.05 (PAIRED T-TEST). t:P<0.05 (WILCOXON RANK-SUM TEST).

EKF Pure Prediction
ME MAE r ME MAE r
(MeanSD) (Median (IQR)) (Mean%SD) (MeanSD) (Median (IQR)) (Mean%SD)
20.120.6° 0.4 (0.2-0.5)" . 02+17 0.6 (0.3-0.9)
CO [lpm] (-1.0+9.4%)" (5.4% (2.4%-8.3%))" 0.98+0.03 (-2.0£16.0%) (7.2% (4.2%-13.6%)) 0.82+0.04
0.1£1.3 0.8 (0.4-1.5)" . 0.6+2.2 12(0.7-2.3)
TPR [mmHg/lpm] (1.4+8.2%)" (4.9% (2.7%-9.1%))" 0.990.00 (8.3£20.0%) (8.3% (5.5%-17.5%)) 0.80+0.01

become available. Then, we derived 4Q(t;) and AR(t;,) using
(9) and (10) based on the EKF estimates.

D. In Silico Evaluation

The EKF-based hemodynamic monitoring was evaluated in
silico using 100 VPs, obtained by sampling many VPs from the
VP generator in II.B and removing the VPs associated with
unrealistic CO and TPR values according to the ranges of CO
(2-7 lpm) and TPR (9-40 mmHg/lpm) observed in several in
vivo datasets [12], [20], [21]. To rigorously and
comprehensively evaluate the EKF, we applied many diverse
colloid and propofol infusion regimens to the VPs to elicit a
wide range of hemodynamic trajectories, and evaluated the
accuracy of CO and TPR estimation. To determine if the EKF
has any advantage over prediction, we compared the EKF with
open-loop pure prediction (i.e., with K(t;) = 0 in (23)). We
used the mean error (ME: mean of the estimation error time
series in a hemodynamic trajectory) and mean absolute error
(MAE: mean of the absolute estimation error time series in a
hemodynamic trajectory) as the metrics of accuracy, and the r
value as the metric of trending ability. Further, we also
compared the EKF with existing PCCO monitors using the
limit of agreement (LoA) as the metric of accuracy.

1. RESULTS

Fig. 3 shows BP-BIS and CO-TPR spaces encompassed by
the 100 VPs. Table I summarizes ME, MAE, and the r value
associated with the EKF and open-loop pure prediction in
estimating CO and TPR. Fig. 4 presents the cumulative
distribution of the MAE associated with CO and TPR
pertaining to the EKF and open-loop pure prediction. Fig. 5
shows representative examples of successful (corresponding to
the circle in Fig. 4), typical (corresponding to the triangle in
Fig. 4), and less successful (corresponding to the square in Fig.
4) estimation of CO and TPR based on the EKF associated with
a therapeutic regimen. Fig. 6 presents the cumulative
distribution of the MAE associated with the state variables
responsible for CO (x,, x5, and x,) and TPR (x5) estimation in
(25) pertaining to the EKF. Fig. 7 presents a representative
example of true versus EKF-estimated state variables
associated Fig. 5(a).

[V. DISCUSSION

Naive application of closed-loop automation to critical care
treatments based on intended endpoints alone can put a patient
into an undesired physiological state through multi-faceted
physiological changes (especially undesired side effects) in

response to the treatments. Hence, closed-loop automation of
critical care must be accompanied by the ability to monitor a
patient’s overall hemodynamics beyond what is available from
rudimentary sensor measurements. This paper concerns the
development of hemodynamic monitoring capability that can
estimate CO and TPR in order to preserve patient safety during
closed-loop controlled hemorrhage resuscitation and sedation
therapy.

The VPs used in the in silico evaluation encompassed a wide
range of AP, BIS, CO, and TPR (Fig. 3), suggesting that the in
silico evaluation was rigorous and extensive.

The EKF exhibited significantly superior accuracy to pure
prediction in both accuracy and trending ability (Table I). In
addition, MAE associated with the EKF was small in most VPs,
with only a small number of VPs having large MAE (for
example, only 10 out of 100 VPs were associated with CO
MAE>1 Ipm, in contrast to 34 VPs with the same MAE level in
case of pure prediction; Fig. 4). The EKF achieved tight
tracking of CO and TPR in many VPs (Fig. 5), which is based
on the adequate estimation of all the state variables (Fig. 6 and
Fig. 7). In particular, the estimation accuracy associated with
all the state variables pertaining to CO (x,, x3, and x,) and TPR
(x5) were consistently reasonable in many VPs (Fig. 6): (i) the
MAE associated with x, and x; was <10% in most VPs, while
(i) the MAE associated with x, and x; was <=15% and
<=10%, respectively, for >=80% of VPs. Collectively, the
results presented here suggest that the EKF-based CO and TPR
estimation with AP measurement feedback has clear
advantages in enhancing the accuracy and trending ability of
hemodynamic monitoring compared to open-loop pure
prediction. To the best of our knowledge, our work is perhaps
the first study conducted on hemodynamic monitoring via
closed-loop model-based state estimation.

In addition to its superiority to open-loop pure prediction,
the EKF-based hemodynamic monitoring appeared to exhibit
CO estimation accuracy and trending ability comparable to the
existing PCCO monitors. The limit of agreement (LoA) in CO
estimation associated with the EKF was -1.3-1.1 Ipm (Table I),
which was superior to 9 out of 10 PCCO monitors reported in
a recent review article that were tested under comparable
degree of changes in CO (approximately 5 Ipm) [22], as well as
the LoA pooled from 37 prior studies in another review article
[23]. In addition, the r value associated with the EKF-based
CO tracking was higher on the average than the pooled r value
associated with the PCCO monitors reported in a recent review
article (r=0.71) [22]. On top of its efficacy comparable to the
existing PCCO monitors, the EKF-based hemodynamic
monitoring has a few unique practical advantages relative to the
PCCO monitors. First, it uses only mean AP measurement,
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which can be ubiquitously acquired using non-invasive blood
pressure monitors. In contrast, all the PCCO monitors require
the entire AP waveform measurement, which requires invasive
arterial catheterization. Second, the EKF-based hemodynamic
monitoring allows for CO and TPR estimation with an explicit
account for the vasodilation and venodilation effects of IV
sedation (via the pharmacological model (12)-(16) embedded
in the EKF). In contrast, the PCCO monitors are inherently
blinded to the influences of sedative drugs. Considering that
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Fig. 5(a). Red dashed lines: true states. Blue solid lines:
EKF-estimated states. Grey shades: confidence
intervals (+2 standard deviations).

the PCCO monitors tend to suffer from poor accuracy in low
TPR states [24], their accuracy may be compromised during the
administration of sedative drugs eliciting vasodilation. In sum,
the EKF-based hemodynamic monitoring approach has
accuracy comparable to the PCCO monitors as well as unique
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advantages favorable to its clinical deployment and robustness
against diverse physiological state. Hence, model-based state
estimation (including the EKF) has the potential to advance
hemodynamic monitoring in critically ill patients. Hence, the
EKF-based hemodynamic monitoring has the potential to
advance hemodynamic monitoring in critically ill patients.

Despite its demonstrated promise and proof-of-concept, this
work has a few limitations. First, the VP generator was created
using two independent datasets. Feedback control of multiple
critical care treatments is an emerging area of research, and an
ideal dataset including the effects of simultaneous hemorrhage
resuscitation and I'V sedation was not available. The sheep data
used to build the physiological VP generator had plausible AP,
CO, and TPR levels comparable to humans. Hence, the results
obtained from this work may be adequate. Regardless, future
work must ascertain the efficacy of the EKF using ideal
datasets. Second, the evaluation was in silico. The evaluation
utilized diverse VPs based on a validated mathematical model.
However, mathematical model cannot completely replicate the
pathophysiology and pharmacology in critically ill patients as
well as the actuator/sensor dynamics and delays. Thus, future
work must ascertain the efficacy of the EKF via hardware-in-
the-loop simulations as well as in vivo studies. Third, the EKF
involves linear approximation of the nonlinear plant dynamics.
Despite its promising results, future work to study the potential
of nonlinear filtering methods may lead to even more advances
in the quality of hemodynamic monitoring.

V. CONCLUSION

This paper illustrated that the EKF may provide a viable
solution to hemodynamic monitoring problems during closed-
loop controlled hemorrhage resuscitation and IV sedation. Its
potential to outperform the state-of-the-art PCCO monitors
may foster extensive follow-up research on model-based state
estimation approach to hemodynamic monitoring and its use in
a broad spectrum of critical care automation challenges, which
may all in all revolutionize hemodynamic monitoring to enable
holistic tracking of dynamic changes in a patient’s
physiological state during automated critical care treatments.
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