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Abstract— This paper investigates the potential of 

model-based extended Kalman filtering (EKF) for 
hemodynamic monitoring in a hemorrhage resuscitation-
sedation case study.  To the best of our knowledge, it may 
be the first model-based state estimation study conducted 
in the context of hemodynamic monitoring.  Built upon a 
grey-box mathematical model with parametric uncertainty 
as process noise, the EKF can estimate cardiac output (CO) 
and total peripheral resistance (TPR) continuously from 
mean arterial pressure (AP) measurements against inter-
individual physiological and pharmacological variability.  
Its unique practical strengths include: it does not require 
AP waveform as in existing AP-based pulse-contour CO 
(PCCO) monitors; and it can estimate CO and TPR with 
explicit account for the effect of sedative drugs.  The 
efficacy of the EKF-based hemodynamic monitoring was 
evaluated based on a large number of plausible virtual 
patients generated using a collective inference algorithm, 
which demonstrated that it has significant advantage over 
open-loop pure prediction, and that its accuracy is 
comparable to PCCO. 
 

Index Terms— Extended Kalman Filtering, Hemorrhage, 
Sedation, Hemodynamic Monitoring, Virtual Patient   

I. INTRODUCTION 
otivated by the recent findings that critical care 
treatments may be automated to assist clinicians 
with patient monitoring and titration tasks [1], [2], 

there is an ever-increasing interest in the development of 
closed-loop control systems to enable critical care automation, 
in the areas of fluid resuscitation [3], vasopressor therapy [2], 
[4], anesthesia and analgesia [5], [6], and mechanical 
ventilation [7], [8] to list a few. 

Each treatment given to a patient induces multiple changes 
in the patient’s physiological state (including, of course, the 
intended change), some of which are not desired.  However, 
most prior work on closed-loop automation of critical care 
therapy has focused on the intended treatment endpoint while 
neglecting other aspects of patient responses, raising concerns 
related to the safety of closed-loop automation.  The situation 
becomes even more convoluted when multiple closed-loop 
controlled treatments are to be given to a patient.  For example, 
our prior work demonstrated that hemorrhage resuscitation and 

 
This work was supported in part by the U.S. Office of Naval Research 

(N00014-19-1-2402) and the U.S. National Science Foundation CAREER 
Award (CNS-1748762). (Corresponding author: J.-O. Hahn).  

intravenous (IV) sedation can interfere with each other in a 
conflicting manner, possibly driving a patient to a dangerous 
physiological state [9]: (i) hemorrhage resuscitation to achieve 
an arterial pressure (AP) target dilutes the sedative drug in the 
blood and weakens its intended effect, while (ii) IV sedative 
interrupts hemorrhage resuscitation by lowering AP.  For these 
reasons, although closed-loop controlled treatments appear to 
successfully drive a patient to desired AP and sedation targets, 
the patient’s internal hemodynamics represented by cardiac 
output (CO) and total peripheral resistance (TPR) can often be 
driven to an unacceptably dangerous state [9].  However, CO 
and TPR cannot be readily measured in clinical practice.  Such 
a limitation presents opportunities related to online estimation 
of hemodynamics in a patient receiving critical care therapy. 

This paper examines the potential of model-based extended 
Kalman filtering (EKF) for hemodynamic monitoring in a 
hemorrhage resuscitation-sedation case study.  To the best of 
our knowledge, it is the first model-based state estimation study 
conducted in the context of hemodynamic monitoring.  Built 
upon a grey-box mathematical model with parametric 
uncertainty as process noise, the EKF can estimate CO and TPR 
continuously from mean AP measurements against inter-
individual physiological and pharmacological variability.  Its 
unique practical strengths include: (i) it does not require AP 
waveform as in existing AP-based pulse-contour CO (PCCO) 
monitors and (ii) it can estimate CO and TPR with explicit 
account for the effect of sedative drugs.  The evaluation of the 
EKF-based hemodynamic monitoring using a large number of 
plausible virtual patients generated using a collective inference 
algorithm demonstrated that (i) it has significant advantage 
over open-loop pure prediction, and that (ii) its accuracy is 
comparable to PCCO. 

II. METHODS 

A. Mathematical Model 
We used a mathematical model to replicate the combined 

physiological effects of hemorrhage resuscitation and IV 
sedation developed in a prior work [9] (Fig. 1).  In brief, the 
mathematical model is composed of (i) blood volume (BV) 
kinetics in the arterial and venous circulations, (ii) capillary-
tissue fluid exchange, (iii) autonomic regulation of CO, TPR, 
and unstressed venous BV, and (iv) sedative pharmacology.  
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First, BV kinetics represents the changes in arterial and venous 
BV as well as BP in response to blood loss and fluid gain: 
𝑉̇𝑉𝐴𝐴(𝑡𝑡) = 𝑄𝑄(𝑡𝑡) − [𝑃𝑃𝐴𝐴(𝑡𝑡) − 𝑃𝑃𝑉𝑉(𝑡𝑡)] 𝑅𝑅(𝑡𝑡)⁄ − 𝐽𝐽𝐻𝐻(𝑡𝑡) − 𝐽𝐽𝐸𝐸(𝑡𝑡) (1) 
𝑉̇𝑉𝑉𝑉(𝑡𝑡) = −𝑄𝑄(𝑡𝑡) + [𝑃𝑃𝐴𝐴(𝑡𝑡) − 𝑃𝑃𝑉𝑉(𝑡𝑡)] 𝑅𝑅(𝑡𝑡)⁄ + 𝐽𝐽𝑅𝑅(𝑡𝑡) (2) 
𝑉̇𝑉𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡) = −𝐽𝐽𝐻𝐻(𝑡𝑡)𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡)[𝑉𝑉𝐴𝐴(𝑡𝑡) + 𝑉𝑉𝑉𝑉(𝑡𝑡)] (3) 
where 𝑉𝑉𝐴𝐴, 𝑉𝑉𝑉𝑉, and 𝑉𝑉RBC are arterial and venous BV (including 
plasma and red blood cell (RBC) volumes) as well as RBC 
volume, 𝑄𝑄 is CO, 𝑅𝑅 is TPR, 𝑃𝑃𝐴𝐴 and 𝑃𝑃𝑉𝑉 are arterial and venous 
BP, and 𝐽𝐽𝐻𝐻, 𝐽𝐽𝑅𝑅, and 𝐽𝐽𝐸𝐸 are the rates of blood loss, fluid gain, and 
capillary-tissue fluid exchange rate.  𝑃𝑃𝐴𝐴 and 𝑃𝑃𝑉𝑉 relate to 𝑉𝑉𝐴𝐴 and 
𝑉𝑉𝑉𝑉 by arterial and venous capacitances: 
𝑃𝑃𝐴𝐴(𝑡𝑡) − 𝑃𝑃𝐴𝐴0 = (𝑉𝑉𝐴𝐴(𝑡𝑡) − 𝑉𝑉𝐴𝐴0) 𝐶𝐶𝐴𝐴⁄  (4) 
𝑃𝑃𝑉𝑉(𝑡𝑡) − 𝑃𝑃𝑉𝑉0 = �𝑉𝑉𝑉𝑉(𝑡𝑡) − 𝑉𝑉𝑉𝑉0 − (𝑉𝑉𝑉𝑉𝑉𝑉(𝑡𝑡) − 𝑉𝑉𝑉𝑉𝑉𝑉0)� 𝐶𝐶𝑉𝑉⁄  (5) 
where 𝑃𝑃𝐴𝐴0 and 𝑃𝑃𝑉𝑉0 are nominal arterial and venous BP, 𝑉𝑉𝑉𝑉𝑉𝑉 is 
unstressed venous BV, 𝑉𝑉𝐴𝐴0, 𝑉𝑉𝑉𝑉0, 𝑉𝑉𝑉𝑉𝑉𝑉0 are nominal arterial, 
venous, and unstressed venous BV, and 𝐶𝐶𝐴𝐴 and 𝐶𝐶𝑉𝑉 are arterial 
and venous capacitances.  Total BV, 𝑉𝑉, is given by the sum of 
𝑉𝑉𝐴𝐴 and 𝑉𝑉𝑉𝑉: 
𝑉𝑉(𝑡𝑡) = 𝑉𝑉𝐴𝐴(𝑡𝑡) + 𝑉𝑉𝑉𝑉(𝑡𝑡) (6) 
Second, capillary-tissue fluid exchange is modeled 
phenomenologically to replicate the combined capillary 
filtration-lymphatic return responses to the change in BV, so 
that a pre-set fraction of fluid loss and gain leads to the change 
in BV while the remaining fraction induces the change in the 
fluid volume in the tissues.  Denoting 𝑟𝑟𝐵𝐵(𝑡𝑡) the pre-set change 
in BV in the steady state in response to JH and JR: 
𝑟𝑟𝐵𝐵(𝑡𝑡) = 1

1+𝛼𝛼𝑅𝑅
∫ 𝐽𝐽𝑅𝑅(𝜏𝜏)𝑑𝑑𝑑𝑑𝑡𝑡
0 − 1

1+𝛼𝛼𝐻𝐻
∫ 𝐽𝐽𝐻𝐻(𝜏𝜏)𝑑𝑑𝑑𝑑𝑡𝑡
0  (7) 

where 𝛼𝛼𝑅𝑅 and 𝛼𝛼𝐻𝐻 denote the ratio between the changes in BV 
and tissue fluid volumes in the steady state resulting from 
cumulative fluid gain and blood loss.  The capillary-tissue fluid 
exchange is modeled as a proportional compensation: 
𝐽𝐽𝐸𝐸 = 𝐾𝐾𝐸𝐸�𝑉𝑉(𝑡𝑡) − 𝑉𝑉0 − 𝑟𝑟𝐵𝐵(𝑡𝑡)� (8) 
where 𝑉𝑉0 is nominal BV, and 𝐾𝐾𝐸𝐸 is a gain constant.  Third, 
autonomic regulation to maintain BP are phenomenologically 
modeled so that (i) CO cancels the perturbation in venous BP 
(i.e., preload); (ii) TPR counteract the change in AP and also 
reacts to the change in blood viscosity; and (iii) unstressed 
venous BV counteracts the change in AP.  In the Laplace 
domain: 
𝛥𝛥𝛥𝛥(𝑠𝑠) = 𝐾𝐾𝐶𝐶

𝑠𝑠+𝑧𝑧𝐶𝐶
𝑠𝑠+𝑝𝑝𝐶𝐶

𝛥𝛥𝑃𝑃𝑉𝑉(𝑠𝑠) (9) 

𝛥𝛥𝛥𝛥(𝑠𝑠) = −𝐾𝐾𝑅𝑅
1

𝑠𝑠+𝑝𝑝𝑅𝑅
𝛥𝛥𝑃𝑃𝐴𝐴(𝑠𝑠) + 𝐾𝐾𝐻𝐻𝛥𝛥𝛥𝛥(𝑠𝑠) − 𝐺𝐺𝑅𝑅𝐶𝐶𝑒𝑒(𝑠𝑠) (10) 

𝛥𝛥𝑉𝑉𝑉𝑉𝑉𝑉(𝑠𝑠) = −𝐾𝐾𝑉𝑉𝑉𝑉
1

𝑠𝑠+𝑝𝑝𝑅𝑅
𝛥𝛥𝑃𝑃𝐴𝐴(𝑠𝑠) + 𝐺𝐺𝑉𝑉𝑉𝑉𝐶𝐶𝑒𝑒(𝑠𝑠) (11) 

where 𝛥𝛥𝛥𝛥(𝑡𝑡) = 𝑄𝑄(𝑡𝑡) − 𝑄𝑄0, 𝛥𝛥𝛥𝛥(𝑡𝑡) = 𝑅𝑅(𝑡𝑡) − 𝑅𝑅0, 𝛥𝛥𝑃𝑃𝐴𝐴(𝑡𝑡) =
𝑃𝑃𝐴𝐴(𝑡𝑡) − 𝑃𝑃𝐴𝐴0, 𝛥𝛥𝑃𝑃𝑉𝑉(𝑡𝑡) = 𝑃𝑃𝑉𝑉(𝑡𝑡) − 𝑃𝑃𝑉𝑉0 with 𝑄𝑄0 and 𝑅𝑅0 being 
nominal CO and TPR, 𝛥𝛥𝛥𝛥(𝑡𝑡) = 𝐻𝐻(𝑡𝑡) − 𝐻𝐻0 where 𝐻𝐻(𝑡𝑡) is 
blood hematocrit defined as 𝐻𝐻(𝑡𝑡) = 𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡)

𝑉𝑉𝐴𝐴(𝑡𝑡)+𝑉𝑉𝑉𝑉(𝑡𝑡)
 and 𝐻𝐻0 is its 

nominal value, 𝐾𝐾𝐶𝐶, 𝐾𝐾𝑅𝑅, 𝐾𝐾𝐻𝐻, and 𝐾𝐾𝑉𝑉𝑉𝑉 are gain constants, 𝑝𝑝𝐶𝐶 and 
𝑧𝑧𝐶𝐶 are the pole and zero related to the CO dynamics, 𝑝𝑝𝑅𝑅 is the 
pole related to the vasomotor tone dynamics, and 𝐺𝐺𝑅𝑅 and 𝐺𝐺𝑉𝑉𝑉𝑉 
are gains related to vasodilation and venodilation effects of the 
sedative drug.  Fourth, the pharmacology of the sedative drug 
is modeled as a 3-compartment drug mixing model (12)-(14), a 
1st-order effect site delay model (15), and drug effect models 
(10)-(11) and (16) associated with the IV propofol: 
𝑚̇𝑚1(𝑡𝑡) = −(𝑘𝑘10 + 𝑘𝑘12 + 𝑘𝑘13)𝑚𝑚1(𝑡𝑡) + 𝑘𝑘21𝑚𝑚2(𝑡𝑡) +
𝑘𝑘31𝑚𝑚3(𝑡𝑡) + 𝐽𝐽𝑃𝑃(𝑡𝑡) (12) 
𝑚̇𝑚2(𝑡𝑡) = 𝑘𝑘12𝑚𝑚1(𝑡𝑡) − 𝑘𝑘21𝑚𝑚2(𝑡𝑡) (13) 
𝑚̇𝑚3(𝑡𝑡) = 𝑘𝑘13𝑚𝑚1(𝑡𝑡) − 𝑘𝑘31𝑚𝑚3(𝑡𝑡) (14) 
𝐶̇𝐶𝑒𝑒(𝑡𝑡) = −𝑘𝑘𝑒𝑒0𝐶𝐶𝑒𝑒(𝑡𝑡) + 𝑉𝑉𝑃𝑃𝑘𝑘𝑒𝑒0𝑚𝑚1(𝑡𝑡)

𝑉𝑉𝐷𝐷(𝑉𝑉𝐴𝐴(𝑡𝑡)+𝑉𝑉𝑉𝑉(𝑡𝑡)−𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡))
 (15) 

𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡) = 𝐹𝐹𝐵𝐵𝐵𝐵𝐵𝐵�𝐶𝐶𝑒𝑒(𝑡𝑡)� (16) 
where 𝑚𝑚1, 𝑚𝑚2, and 𝑚𝑚3 are mass in the central, fast peripheral, 
and slow peripheral compartments, 𝑘𝑘10, 𝑘𝑘12, 𝑘𝑘13, 𝑘𝑘21, and 𝑘𝑘31 
are rate constants, 𝐽𝐽𝑃𝑃 is propofol administration rate, 𝐶𝐶𝑒𝑒 is 
sedative concentration at the effect site, 𝑘𝑘𝑒𝑒0 is effect site time 
constant, 𝑉𝑉𝐷𝐷 and 𝑉𝑉𝑃𝑃 are nominal central distribution and plasma 
volumes, and 𝐹𝐹𝐵𝐵𝐵𝐵𝐵𝐵(∙) is a sigmoidal function relating 𝐶𝐶𝑒𝑒 to BIS, 
a widely used sedation measure [10].  Note that the 
mathematical model in Fig. 1 was extensively validated with 
multiple unpresented datasets, which demonstrated its ability to 
produce physiologically plausible hemodynamic responses to 
hemorrhage resuscitation and IV sedation [9]. 

B. Generation of Virtual Patients 
Using the above mathematical model, we derived a virtual 

patient (VP) generator in the form of probabilistic distributions 
defined over the model parameters.  No experimental data 
containing the collective hemodynamic responses in a species 
to simultaneous hemorrhage resuscitation and IV sedation was 
available.  Hence, the VP generator was derived sequentially by 
(i) deriving a physiological VP generator for (1)-(11) using a 
dataset, then (ii) deriving a pharmacological VP generator for 
(10)-(11) using another dataset by leveraging the derived 
physiological VP generator. 

We derived a VP generator for the physiology component 
(1)-(11) using a collective variational inference (C-VI) 
algorithm we developed [11] and data collected from 5 sheep 
undergoing hemorrhage and colloid resuscitation [12].  We 
structurized the hierarchical relationship between a cohort and 
subjects therein into a VP generator in the form of the 
probabilistic graphical model (PGM) in Fig. 2.  This PGM 
represents the dependence between the latent parameters that 
specify the VP generator (𝜙𝜙), subject-specific characteristics 
(𝜃𝜃𝑖𝑖’s), and sensor noise (𝑛𝑛𝑖𝑖𝑖𝑖’s) pertaining to the mathematical 

 
Fig. 1. A mathematical model to replicate the combined 
physiological effects of hemorrhage resuscitation and 
intravenous (IV) sedation. 
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model and the output signals created by the VP in response to 
inputs given to the VP.  𝜙𝜙 denotes the beliefs on the cohort-
level model parameters, while 𝜃𝜃𝑖𝑖 denotes the beliefs on the 
model parameters associated with subject 𝑖𝑖 (both in the form of 
diagonal Gaussian densities).  𝑦𝑦𝑖𝑖𝑖𝑖 is the output signal 𝑗𝑗 in 
subject 𝑖𝑖, which can be computed by giving the input signal 𝑢𝑢𝑖𝑖 
to the mathematical model in II.A parameterized with 𝜃𝜃𝑖𝑖.  𝑛𝑛𝑖𝑖𝑖𝑖 
denotes the SD of the Gaussian noise corrupting 𝑦𝑦𝑖𝑖𝑖𝑖. 
Then, we estimated the latent parameters in the PGM using the 
experimental data in [12].  Note that estimating the latent 
parameters from given data reduces to inferring the following 
exact yet intractable posterior density: 
𝑝𝑝(𝜙𝜙,𝜽𝜽,𝒏𝒏|𝒖𝒖,𝒚𝒚) = 𝑝𝑝(𝜙𝜙,𝜽𝜽,𝒏𝒏,𝒖𝒖,𝒚𝒚) 𝑝𝑝(𝒖𝒖,𝒚𝒚)⁄   (17) 
where 𝑝𝑝(𝜙𝜙,𝜽𝜽,𝒏𝒏,𝒖𝒖,𝒚𝒚) = 𝑝𝑝(𝜙𝜙)𝑝𝑝(𝜽𝜽|𝜙𝜙)𝑝𝑝(𝒚𝒚|𝜽𝜽,𝒏𝒏,𝒖𝒖)𝑝𝑝(𝒏𝒏)𝑝𝑝(𝒖𝒖) 
and 𝜽𝜽, 𝒏𝒏, 𝒖𝒖, and 𝒚𝒚 denote the collections of all the latent 
parameters 𝜃𝜃𝑖𝑖’s and 𝑛𝑛𝑖𝑖𝑖𝑖’s as well as the data 𝑢𝑢𝑖𝑖’s and 𝑦𝑦𝑖𝑖𝑖𝑖’s.  
Using modern variational inference methods [13], [14], we 
specified an approximate posterior density 𝑞𝑞(𝜙𝜙,𝜽𝜽,𝒏𝒏|𝒗𝒗) and 
inferred it by minimizing the K-L divergence 𝐷𝐷𝐾𝐾𝐾𝐾(𝒗𝒗) between 
𝑝𝑝 in (17) and 𝑞𝑞 with respect to the variational parameters 𝒗𝒗 
(which specifies mean and SD of the elements in 𝑞𝑞 expressed 
by a family of diagonal Gaussian densities): 
𝐷𝐷𝐾𝐾𝐾𝐾(𝒗𝒗) = 𝔼𝔼𝑞𝑞[log 𝑞𝑞(𝜙𝜙,𝜽𝜽,𝒏𝒏|𝒗𝒗) − log𝑝𝑝(𝜙𝜙,𝜽𝜽,𝒏𝒏|𝒖𝒖,𝒚𝒚)] (18) 
We derived an evidence lower bound (19) by substituting (17) 
into (18), and estimated 𝒗𝒗 by maximizing (19) with stochastic 
optimization algorithms [15], [16]: 
𝐿𝐿(𝒗𝒗) = log𝑝𝑝(𝒚𝒚) − 𝐷𝐷𝐾𝐾𝐾𝐾(𝒗𝒗) = 𝔼𝔼𝑞𝑞[log𝑝𝑝(𝒚𝒚|𝜽𝜽,𝒏𝒏,𝒖𝒖) +
log𝑝𝑝(𝜽𝜽|𝜙𝜙) + log𝑝𝑝(𝒏𝒏) + log𝑝𝑝(𝜙𝜙) − log 𝑞𝑞(𝜙𝜙,𝜽𝜽,𝒏𝒏|𝒗𝒗)] (19) 
Then, we derived the physiological VP generator in the form of 
the probability distributions associated with the cohort-level 
model parameters based on 𝜙𝜙 obtained from 𝒗𝒗. 

We derived a VP generator related to the pharmacological 
effect of IV sedative on vasodilation and venodilation (𝐺𝐺𝑅𝑅 and 
𝐺𝐺𝑉𝑉𝑉𝑉 in (10)-(11)) using the above physiological VP generator 
and an extensively validated VP generator for the IV sedative 
pharmacology applicable to (12)-(16) [17].  We defined a VP 
generator given by a family of diagonal Gaussian densities 
associated with 𝐺𝐺𝑅𝑅 and 𝐺𝐺𝑉𝑉𝑉𝑉, with mean and SDs as latent 
parameters.  Then, we estimated the latent parameters using the 
experimental data in [18], by minimizing the discrepancy 
between the mean and SD associated with mean AP, CO, and 
TPR responses to IV sedative in [18] versus those predicted by 
the mathematical model in II.A characterized by a large number 
of model parameters sampled from the VP generator (including 

physiological 𝜙𝜙, sedative pharmacological in [17], and 𝐺𝐺𝑅𝑅 and 
𝐺𝐺𝑉𝑉𝑉𝑉). 

By construction, the VP generator derived here can provide 
model parameter samples (i.e., VPs) that can replicate a wide 
range of variability in hemodynamic behaviors as observed in 
the data.  We used the VP generator in developing the EKF-
based hemodynamic monitoring and evaluating it in silico. 

C. Extended Kalman Filter Design 
We reformulated the mathematical model presented in II.A 

to a state space representation by defining a state vector 𝑥𝑥 ≜
{𝑥𝑥1,⋯ , 𝑥𝑥10}, where 𝑥𝑥1 = 𝛥𝛥𝑉𝑉𝐴𝐴, 𝑥𝑥2 = 𝛥𝛥𝑉𝑉𝑉𝑉, 𝑥𝑥3 = 𝛥𝛥𝑉𝑉𝑉𝑉𝑉𝑉, 𝑥𝑥4 =
𝑠𝑠𝑄𝑄 = Δ𝑄𝑄 − 𝐾𝐾𝐶𝐶Δ𝑃𝑃𝑉𝑉, 𝑥𝑥5 = 𝛥𝛥𝛥𝛥, 𝑥𝑥6 = 𝑟𝑟𝐵𝐵, 𝑥𝑥7 = 𝛥𝛥𝐶𝐶𝑒𝑒, 𝑥𝑥8 = 𝛥𝛥𝑚𝑚1, 
𝑥𝑥9 = 𝛥𝛥𝑚𝑚2, and 𝑥𝑥10 = 𝛥𝛥𝑚𝑚3, where all the deviations (i.e., 𝛥𝛥s in 
𝑥𝑥) are defined with respect to an initial state (i.e., when the EKF 
is recruited): 
𝑥̇𝑥(𝑡𝑡) = 𝑓𝑓(𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡),𝜃𝜃) + 𝑤𝑤(𝑡𝑡) 

𝑦𝑦(𝑡𝑡𝑘𝑘) = � 𝑃𝑃𝐴𝐴
(𝑡𝑡𝑘𝑘)

𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡𝑘𝑘)� = ℎ�𝑥𝑥(𝑡𝑡𝑘𝑘)� + 𝑣𝑣(𝑡𝑡𝑘𝑘) (20) 

where 𝜃𝜃 is the vector of model parameters, 𝑤𝑤 and 𝑣𝑣 are the 
process and sensor noises, and 𝑡𝑡𝑘𝑘 is a measurement time instant.  
Noting that the most prominent source of process noise is the 
parametric uncertainty, we defined 𝑤𝑤(𝑡𝑡) and its covariance 
matrix as follows [19]: 
𝑤𝑤(𝑡𝑡) = 𝐽𝐽𝜃𝜃(𝑡𝑡)𝛥𝛥𝛥𝛥(𝑡𝑡), 𝑄𝑄𝑤𝑤(𝑡𝑡) = 𝐽𝐽𝜃𝜃(𝑡𝑡)𝑄𝑄𝜃𝜃𝐽𝐽𝜃𝜃𝑇𝑇(𝑡𝑡) (21) 
where 𝐽𝐽𝜃𝜃(𝑡𝑡) is the Jacobian of 𝑓𝑓(𝑥𝑥,𝑢𝑢,𝜃𝜃) with respect to 𝜃𝜃, and 
𝑄𝑄𝑤𝑤(𝑡𝑡) and 𝑄𝑄𝜃𝜃 are the covariance matrices associated with 𝑤𝑤(𝑡𝑡) 
and 𝜃𝜃, respectively.  Note that 𝑄𝑄𝜃𝜃 is available from the VP 
generator described in II.B.  On the other hand, noting that 𝑦𝑦 
consists of direct measurements, we attributed 𝑣𝑣(𝑡𝑡𝑘𝑘) to sensor 
noise with its covariance matrix 𝑄𝑄𝑅𝑅 expressed by a diagonal 
matrix having the noise variances associated with 𝑃𝑃𝐴𝐴(𝑡𝑡) and 
𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡) as its elements. 

We constructed the EKF based on (20)-(21) as well as the 
mean (to define the nominal plant) and SD (to define 𝑄𝑄𝜃𝜃, the 
parametric covariance) of the model parameter values given by 
the VP generator in II.B.  Then, we derived nominal CO and 
TPR estimates and their confidence intervals using the EKF via 
its recursive prediction and update procedure.  In the prediction 
step between measurement time instants, the EKF solved (20) 
and its associated covariance equation to predict the 
propagation of state and its covariance: 
𝑥𝑥�−(𝑡𝑡𝑘𝑘) = 𝑥𝑥�(𝑡𝑡𝑘𝑘−1) + ∫ 𝑓𝑓(𝑥𝑥�(𝑡𝑡),𝑢𝑢(𝑡𝑡),𝜃𝜃)𝑑𝑑𝑑𝑑𝑡𝑡𝑘𝑘

𝑡𝑡𝑘𝑘−1
  

𝑃𝑃−(𝑡𝑡𝑘𝑘) = 𝑃𝑃(𝑡𝑡𝑘𝑘−1) + ∫ 𝐹𝐹(𝑡𝑡)𝑃𝑃(𝑡𝑡) + 𝑃𝑃(𝑡𝑡)𝐹𝐹𝑇𝑇(𝑡𝑡) + 𝑄𝑄𝑤𝑤(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑘𝑘
𝑡𝑡𝑘𝑘−1

 
 
 (22) 
which was solved via numerical integration, where 𝐹𝐹(𝑡𝑡) =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑥𝑥�(𝑡𝑡),𝑢𝑢(𝑡𝑡),𝜃𝜃

.  In the update step at measurement time instants, 

the EKF corrected the state estimate and its covariance using 
the measurements: 
𝐾𝐾(𝑡𝑡𝑘𝑘) = 𝑃𝑃−(𝑡𝑡𝑘𝑘)𝐻𝐻𝑇𝑇(𝑡𝑡𝑘𝑘)[𝐻𝐻(𝑡𝑡𝑘𝑘)𝑃𝑃−(𝑡𝑡𝑘𝑘)𝐻𝐻𝑇𝑇(𝑡𝑡𝑘𝑘) + 𝑄𝑄𝑅𝑅]−1 (23) 
𝑥𝑥�(𝑡𝑡𝑘𝑘) = 𝑥𝑥�−(𝑡𝑡𝑘𝑘) + 𝐾𝐾(𝑡𝑡𝑘𝑘)�𝑦𝑦(𝑡𝑡𝑘𝑘) − ℎ�𝑥𝑥�−(𝑡𝑡𝑘𝑘)�� 
𝑃𝑃(𝑡𝑡𝑘𝑘) = [𝐼𝐼 − 𝐾𝐾(𝑡𝑡𝑘𝑘)𝐻𝐻(𝑡𝑡𝑘𝑘)]𝑃𝑃−(𝑡𝑡𝑘𝑘) (24) 
where 𝐻𝐻(𝑡𝑡) = 𝜕𝜕ℎ

𝜕𝜕𝜕𝜕
�
𝑥𝑥�(𝑡𝑡),𝜃𝜃

, and 𝑥𝑥�−(𝑡𝑡𝑘𝑘) and 𝑃𝑃−(𝑡𝑡𝑘𝑘) are predicted 

state and its covariance at 𝑡𝑡 = 𝑡𝑡𝑘𝑘 before sensor measurements 

 
Fig. 2. A probabilistic graphical model that structurizes the 
hierarchical relationship between a cohort and subjects 
therein into a VP generator. 
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become available.  Then, we derived 𝛥𝛥𝛥𝛥(𝑡𝑡𝑘𝑘) and 𝛥𝛥𝛥𝛥(𝑡𝑡𝑘𝑘) using 
(9) and (10) based on the EKF estimates. 

D. In Silico Evaluation  
The EKF-based hemodynamic monitoring was evaluated in 

silico using 100 VPs, obtained by sampling many VPs from the 
VP generator in II.B and removing the VPs associated with 
unrealistic CO and TPR values according to the ranges of CO 
(2-7 lpm) and TPR (9-40 mmHg/lpm) observed in several in 
vivo datasets [12], [20], [21].  To rigorously and 
comprehensively evaluate the EKF, we applied many diverse 
colloid and propofol infusion regimens to the VPs to elicit a 
wide range of hemodynamic trajectories, and evaluated the 
accuracy of CO and TPR estimation.  To determine if the EKF 
has any advantage over prediction, we compared the EKF with 
open-loop pure prediction (i.e., with 𝐾𝐾(𝑡𝑡𝑘𝑘) = 0 in (23)).  We 
used the mean error (ME: mean of the estimation error time 
series in a hemodynamic trajectory) and mean absolute error 
(MAE: mean of the absolute estimation error time series in a 
hemodynamic trajectory) as the metrics of accuracy, and the r 
value as the metric of trending ability.  Further, we also 
compared the EKF with existing PCCO monitors using the 
limit of agreement (LoA) as the metric of accuracy. 

III. RESULTS 
Fig. 3 shows BP-BIS and CO-TPR spaces encompassed by 

the 100 VPs.  Table I summarizes ME, MAE, and the r value 
associated with the EKF and open-loop pure prediction in 
estimating CO and TPR.  Fig. 4 presents the cumulative 
distribution of the MAE associated with CO and TPR 
pertaining to the EKF and open-loop pure prediction.  Fig. 5 
shows representative examples of successful (corresponding to 
the circle in Fig. 4), typical (corresponding to the triangle in 
Fig. 4), and less successful (corresponding to the square in Fig. 
4) estimation of CO and TPR based on the EKF associated with 
a therapeutic regimen.  Fig. 6 presents the cumulative 
distribution of the MAE associated with the state variables 
responsible for CO (𝑥𝑥2, 𝑥𝑥3, and 𝑥𝑥4) and TPR (𝑥𝑥5) estimation in 
(25) pertaining to the EKF.  Fig. 7 presents a representative 
example of true versus EKF-estimated state variables 
associated Fig. 5(a). 

IV. DISCUSSION 
Naïve application of closed-loop automation to critical care 

treatments based on intended endpoints alone can put a patient 
into an undesired physiological state through multi-faceted 
physiological changes (especially undesired side effects) in 

response to the treatments.  Hence, closed-loop automation of 
critical care must be accompanied by the ability to monitor a 
patient’s overall hemodynamics beyond what is available from 
rudimentary sensor measurements.  This paper concerns the 
development of hemodynamic monitoring capability that can 
estimate CO and TPR in order to preserve patient safety during 
closed-loop controlled hemorrhage resuscitation and sedation 
therapy. 

The VPs used in the in silico evaluation encompassed a wide 
range of AP, BIS, CO, and TPR (Fig. 3), suggesting that the in 
silico evaluation was rigorous and extensive. 

The EKF exhibited significantly superior accuracy to pure 
prediction in both accuracy and trending ability (Table I).  In 
addition, MAE associated with the EKF was small in most VPs, 
with only a small number of VPs having large MAE (for 
example, only 10 out of 100 VPs were associated with CO 
MAE>1 lpm, in contrast to 34 VPs with the same MAE level in 
case of pure prediction; Fig. 4).  The EKF achieved tight 
tracking of CO and TPR in many VPs (Fig. 5), which is based 
on the adequate estimation of all the state variables (Fig. 6 and 
Fig. 7).  In particular, the estimation accuracy associated with 
all the state variables pertaining to CO (𝑥𝑥2, 𝑥𝑥3, and 𝑥𝑥4) and TPR 
(𝑥𝑥5) were consistently reasonable in many VPs (Fig. 6): (i) the 
MAE associated with 𝑥𝑥2 and 𝑥𝑥3 was <10% in most VPs, while 
(ii) the MAE associated with 𝑥𝑥4 and 𝑥𝑥5 was <=15% and 
<=10%, respectively, for >=80% of VPs.  Collectively, the 
results presented here suggest that the EKF-based CO and TPR 
estimation with AP measurement feedback has clear 
advantages in enhancing the accuracy and trending ability of 
hemodynamic monitoring compared to open-loop pure 
prediction.  To the best of our knowledge, our work is perhaps 
the first study conducted on hemodynamic monitoring via 
closed-loop model-based state estimation. 

In addition to its superiority to open-loop pure prediction, 
the EKF-based hemodynamic monitoring appeared to exhibit 
CO estimation accuracy and trending ability comparable to the 
existing PCCO monitors.  The limit of agreement (LoA) in CO 
estimation associated with the EKF was -1.3-1.1 lpm (Table I), 
which was superior to 9 out of 10 PCCO monitors reported in 
a recent review article that were tested under comparable 
degree of changes in CO (approximately 5 lpm) [22], as well as 
the LoA pooled from 37 prior studies in another review article 
[23].  In addition, the r value associated with the EKF-based 
CO tracking was higher on the average than the pooled r value 
associated with the PCCO monitors reported in a recent review 
article (r=0.71) [22].  On top of its efficacy comparable to the 
existing PCCO monitors, the EKF-based hemodynamic 
monitoring has a few unique practical advantages relative to the 
PCCO monitors.  First, it uses only mean AP measurement, 

TABLE I 
CARDIAC OUTPUT (CO) AND TOTAL PERIPHERAL RESISTANCE (TPR) ESTIMATION ACCURACY ASSOCIATED WITH EKF AND 
PURE PREDICTION.  ME: MEAN ERROR.  MAE: MEAN ABSOLUTE ERROR.  SD: STANDARD DEVIATION.  IQR: INTER-QUARTILE 
RANGE.  *: P<0.05 (PAIRED T-TEST).  †: P<0.05 (WILCOXON RANK-SUM TEST). 

 EKF Pure Prediction 

 ME 
(Mean±SD) 

MAE 
(Median (IQR)) 

r 
(Mean±SD) 

ME 
(Mean±SD) 

MAE 
(Median (IQR)) 

r 
(Mean±SD) 

CO [lpm] -0.1±0.6* 
(-1.0±9.4%)* 

0.4 (0.2-0.5)† 
(5.4% (2.4%-8.3%))† 0.98±0.03* -0.2±1.7 

(-2.0±16.0%) 
0.6 (0.3-0.9) 

(7.2% (4.2%-13.6%)) 0.82±0.04 

TPR [mmHg/lpm] 0.1±1.3* 
(1.4±8.2%)* 

0.8 (0.4-1.5) † 
(4.9% (2.7%-9.1%))† 0.99±0.00* 0.6±2.2 

(8.3±20.0%) 
1.2 (0.7-2.3) 

(8.3% (5.5%-17.5%)) 0.80±0.01 
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which can be ubiquitously acquired using non-invasive blood 
pressure monitors.  In contrast, all the PCCO monitors require 
the entire AP waveform measurement, which requires invasive 
arterial catheterization.  Second, the EKF-based hemodynamic 
monitoring allows for CO and TPR estimation with an explicit 
account for the vasodilation and venodilation effects of IV 
sedation (via the pharmacological model (12)-(16) embedded 
in the EKF).  In contrast, the PCCO monitors are inherently 
blinded to the influences of sedative drugs.  Considering that 

the PCCO monitors tend to suffer from poor accuracy in low 
TPR states [24], their accuracy may be compromised during the 
administration of sedative drugs eliciting vasodilation.  In sum, 
the EKF-based hemodynamic monitoring approach has 
accuracy comparable to the PCCO monitors as well as unique 

 
Fig. 3. AP-BIS and CO-TPR spaces encompassed by 
100 virtual patients. 

 
Fig. 4. Cumulative distribution of MAE associated with 
CO and TPR pertaining to the EKF and open-loop pure 
prediction. 

 
Fig. 5. Representative examples of (a) successful, (b) 
typical, and (c) less successful estimation of CO and 
TPR based on the EKF. 

 
Fig. 6. Cumulative distribution of MAE associated with 
the state variables responsible for CO (𝑥𝑥2, 𝑥𝑥3, and 𝑥𝑥4) 
and TPR (𝑥𝑥5) estimation pertaining to the EKF. 

 
Fig. 7. A representative example of true versus EKF-
estimated states.  These state estimates correspond to 
Fig. 5(a).  Red dashed lines: true states.  Blue solid lines: 
EKF-estimated states.  Grey shades: confidence 
intervals (±2 standard deviations). 
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advantages favorable to its clinical deployment and robustness 
against diverse physiological state.  Hence, model-based state 
estimation (including the EKF) has the potential to advance 
hemodynamic monitoring in critically ill patients.  Hence, the 
EKF-based hemodynamic monitoring has the potential to 
advance hemodynamic monitoring in critically ill patients. 

Despite its demonstrated promise and proof-of-concept, this 
work has a few limitations.  First, the VP generator was created 
using two independent datasets.  Feedback control of multiple 
critical care treatments is an emerging area of research, and an 
ideal dataset including the effects of simultaneous hemorrhage 
resuscitation and IV sedation was not available.  The sheep data 
used to build the physiological VP generator had plausible AP, 
CO, and TPR levels comparable to humans.  Hence, the results 
obtained from this work may be adequate.  Regardless, future 
work must ascertain the efficacy of the EKF using ideal 
datasets.  Second, the evaluation was in silico.  The evaluation 
utilized diverse VPs based on a validated mathematical model.  
However, mathematical model cannot completely replicate the 
pathophysiology and pharmacology in critically ill patients as 
well as the actuator/sensor dynamics and delays.  Thus, future 
work must ascertain the efficacy of the EKF via hardware-in-
the-loop simulations as well as in vivo studies.  Third, the EKF 
involves linear approximation of the nonlinear plant dynamics.  
Despite its promising results, future work to study the potential 
of nonlinear filtering methods may lead to even more advances 
in the quality of hemodynamic monitoring. 

V. CONCLUSION 
This paper illustrated that the EKF may provide a viable 

solution to hemodynamic monitoring problems during closed-
loop controlled hemorrhage resuscitation and IV sedation.  Its 
potential to outperform the state-of-the-art PCCO monitors 
may foster extensive follow-up research on model-based state 
estimation approach to hemodynamic monitoring and its use in 
a broad spectrum of critical care automation challenges, which 
may all in all revolutionize hemodynamic monitoring to enable 
holistic tracking of dynamic changes in a patient’s 
physiological state during automated critical care treatments. 
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