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Abstract— Objective: To develop a high-fidelity mathematical 

model intended to replicate the cardiovascular (CV) responses of 
a critically ill patient to vasoplegic shock-induced hypotension and 
vasopressor therapy. Methods: The mathematical model consists 
of a lumped-parameter CV physiology model with baroreflex 
modulation feedback and a phenomenological dynamic dose-
response model of a vasopressor. The adequacy of the proposed 
mathematical model was investigated using an experimental 
dataset acquired from 10 pigs receiving phenylephrine (PHP) 
therapy after vasoplegic shock induced via sodium nitroprusside 
(SNP). Results: Upon calibration, the mathematical model could 
(i) faithfully replicate the effects of PHP on dynamic changes in 
blood pressure (BP), cardiac output (CO), and systemic vascular 
resistance (SVR) (root-mean-squared errors between measured 
and calibrated mathematical responses: mean arterial BP 2.5+/-
1.0 mmHg, CO 0.2+/-0.1 lpm, SVR 2.4+/-1.5 mmHg/lpm; r value: 
mean arterial BP 0.96+/-0.01, CO 0.65+/-0.45, TPR 0.92+/-0.10) 
and (ii) predict physiologically plausible behaviors of unmeasured 
internal CV variables as well as secondary baroreflex modulation 
effects. Conclusion: This mathematical model is perhaps the first 
of its kind that can comprehensively replicate both primary (i.e., 
direct) and secondary (i.e., baroreflex modulation) effects of a 
vasopressor drug on an array of CV variables, rendering it ideally 
suited to pre-clinical virtual evaluation of the safety and efficacy 
of closed-loop control algorithms for autonomous vasopressor 
administration once it is extensively validated. Significance: This 
mathematical model architecture incorporating both direct and 
baroreflex modulation effects may generalize to serve as part of an 
effective platform for high-fidelity in silico simulation of CV 
responses to vasopressors during vasoplegic shock.   
 

Index Terms—Vasopressor, Vasoplegia, Phenylephrine, Digital 
twin, Autonomous critical care, Physiological closed-loop control 
 

I. INTRODUCTION 
ASOPLEGIA is a state of uncontrolled vasodilation that can 
occur after sepsis, cardiopulmonary bypass and other 

surgical procedures, ischemia reperfusion, hemorrhage, burns, 
etc. [1], [2].  Vasopressor administration for maintaining blood 
pressure (BP) at a target level has long been the widely used 
approach to vasoplegia treatment in clinical practice [3].  It has 
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been widely observed that critically ill patients are susceptible 
to frequent episodes of hypotension, probably due to challenges 
associated with clinicians’ bandwidth to continuously monitor 
a patient’s hemodynamics, control an infusion pump, and 
maintain the patient’s BP at a target level [4], [5].  Hence, there 
has been an increasing interest in developing computerized 
systems to automatically titrate vasopressors to maintain a 
patient’s BP [6], [7]. 

Understanding the performance of computerized automated 
therapeutic systems requires extensive performance evaluation.  
Credible evaluation must cover a wide range of physiological 
responses and disturbance scenarios they may be presented with 
in clinical environments, in terms of not only the therapeutic 
endpoints (e.g., BP in the case of vasopressors) but also the 
overall physiological state (e.g., key cardiovascular (CV) 
variables such as cardiac output (CO) and systemic vascular 
resistance (SVR)).  Demonstrating such performance under 
diverse conditions with in vivo animal and human subject 
studies alone can be challenging due to the excessive amount of 
requisite time and cost.  Hence, computational modeling and 
simulation technology can potentially reduce the time and cost 
burdens of in vivo studies as well as to enable extensive stress 
testing of computerized automated therapeutic systems in the 
extremes of physiological states [8]–[11]. 

A therapeutic drug administered to a patient typically elicits 
multifaceted physiological responses in the patient, which are 
aggregated to elicit the change in the treatment endpoint.  In the 
case of vasopressor administration, although the treatment 
endpoint is usually an increase in BP, different vasopressors 
increase BP in different ways (i.e., by cardiac changes, vascular 
changes, or both).  Hence, a mathematical model suited to the 
in silico evaluation of computerized vasopressor administration 
systems must be able to simulate not only the BP response in a 
patient itself but also various physiological mechanisms (i.e., 
actuations) responsible for the BP response.  Specifically, 
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observed BP response to a vasopressor consists of CV variables 
(e.g., CO, SVR, and venous blood volume (BV)) subject to 
primary drug effects and secondary baroreflex modulation 
effects (i.e., autonomic-cardiac feedback) [12].  In this regard, 
prior work has not properly distinguished the drug effects and 
the baroreflex modulation effects in simulating the 
physiological response to vasopressors.  Rather, experimentally 
observed effects were regarded as vasopressor effects with no 
explicit account for baroreflex modulation effects.  In a prior 
work on epinephrine (EPI) [13], a set of EPI-specific CV 
parameters (including ventricular end-systolic elastances and 
arterial and pulmonary elastances) were estimated at multiple 
levels of EPI infusion rates.  However, there was no account for 
pharmacokinetics-pharmacodynamics (PKPD) and autonomic-
cardiac regulatory feedback.  Hence, those EPI-specific 
parameters thus estimated represented the combined effects of 
both EPI and autonomic-cardiac regulatory compensation in the 
steady state.  In addition, dynamic changes in the EPI-specific 
parameters and the resulting change in BP cannot be simulated.  
In some prior work [14], [15], empiric PKPD models were used 
to simulate the effects of vasopressors (including phenylephrine 
(PHP), dopamine (DOP), and dobutamine (DOB)) on BP, but 
again with no account for baroreflex feedback.  Hence, the BP 
response represents the combined effects of vasopressor and 
autonomic-cardiac regulatory compensation.  In addition, these 
mathematical models cannot simulate vasopressor-induced 
changes in CV variables other than BP (such as CO, SVR, and 
venous BV), which may be important in assessing the safety 
profile of the computerized vasopressor administration 
systems.  In a prior work on norepinephrine (NEP) [7], the 
effects of NEP on arterial resistance and venous capacitance 
were modeled by a Frank-Starling-baroreceptor CV system 
model and a re-circulatory PKPD model [16].  However, the 
baroreflex modulation effects in the Frank-Starling-
baroreceptor CV system model were incomplete: it included 
heart rate (HR) compensation but missed SVR and venous BV 
compensation (which is important in that NEP alters SVR as 
well as stressed and unstressed venous BV [17], and may also 
elicit baroreflex modulation effects on these variables).  In 
another prior work on NEP, the effects of NEP on BP through 
heart rate and SVR was modeled as a black-box model [18].  
The structure of the mathematical model correctly captured the 
interaction of direct NEP effects and secondary baroreflex 
effects.  However, the mathematical model adopted linear 
transfer functions which may have limitations in replicating 
NEP PKPD across a wide range.  In that vasopressors affect 
only a subset of CV variables while the remaining CV variables 
are all affected by baroreflex modulation, the ability to 
separately replicate the effects of vasopressors and baroreflex 
modulation may be an important attribute of a mathematical 
model intended for use in the in silico evaluation of 
computerized vasopressor administration systems.  Hence, 
there are research gaps and rooms for potential improvement in 
the development of mathematical models that can simulats a 
comprehensive set of physiological responses to vasopressors, 
which are critical to assessing the holistic safety and efficacy 
profile of emerging computerized vasopressor administration 

systems. 
This paper presents a high-fidelity mathematical model 

intended to replicate the CV responses of a critically ill patient 
to vasoplegic shock-induced hypotension and PHP-based 
therapy.  The mathematical model is perhaps the first of its kind 
that can comprehensively replicate both direct and baroreflex 
modulation effects of PHP on an array of CV variables, 
rendering it ideally suited to pre-clinical virtual evaluation of 
the safety and efficacy profile of computerized vasopressor 
administration systems once it is extensively validated.  In 
addition, the modeling methodology can be readily generalized 
to build mathematical models that can simulate the drug-
induced and compensatory responses to various vasopressors. 

II. METHODS 

A. Mathematical Model 
The mathematical model was developed by improving a 

lumped-parameter CV physiology model with baroreflex 
modulation feedback [19], [20] and integrating into it a 
phenomenological dynamic vasopressor dose-response model 
developed in our prior work [21].  In this way, the mathematical 
model is equipped with all the physiological mechanisms 
required to simulate both direct and secondary effects of PHP 
administration (Fig. 1). 

CV hemodynamics is given by the conservation of BV: 
�̇�𝑣𝐴𝐴(𝑡𝑡) = 𝑄𝑄(𝑡𝑡) − 𝑝𝑝𝐴𝐴(𝑡𝑡)−𝑝𝑝𝑉𝑉(𝑡𝑡)

𝑅𝑅(𝑡𝑡)
, �̇�𝑣𝑉𝑉(𝑡𝑡) = 𝑝𝑝𝐴𝐴(𝑡𝑡)−𝑝𝑝𝑉𝑉(𝑡𝑡)

𝑅𝑅(𝑡𝑡)
− 𝑄𝑄(𝑡𝑡) 

                       (1) 
where 𝑣𝑣𝐴𝐴 and 𝑣𝑣𝑉𝑉 are arterial and venous blood volume (BV), 𝑝𝑝𝐴𝐴 
and 𝑝𝑝𝑉𝑉 are arterial and venous BP, 𝑄𝑄 is CO, and 𝑅𝑅 is SVR.  BP 

 
 
Fig. 1. Mathematical model capable of simulating direct drug-induced and 
secondary baroreflex modulation effects of phenylephrine (PHP) 
administration on cardiovascular variables.  𝑣𝑣𝐴𝐴, 𝑣𝑣𝑉𝑉: arterial and venous blood 
volumes.  𝑣𝑣𝑉𝑉𝑉𝑉, 𝑣𝑣𝑉𝑉𝑉𝑉: unstressed and stressed venous blood volumes.  𝑝𝑝𝐴𝐴, 𝑝𝑝𝑉𝑉: 
arterial and venous blood pressures.  𝑄𝑄: cardiac output.  𝑅𝑅: systemic vascular 
resistance.  Δ𝑅𝑅, Δ𝑣𝑣𝑉𝑉𝑉𝑉: deviations in 𝑅𝑅 and 𝑣𝑣𝑉𝑉𝑉𝑉 from initial steady-state values.  
𝐽𝐽𝑃𝑃𝑃𝑃𝑃𝑃: PHP infusion rate.  𝐷𝐷𝑅𝑅, 𝐷𝐷𝑉𝑉𝑉𝑉: PHP-induced changes in systemic vascular 
resistance and unstressed venous blood volume.  
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and BV are related by Δ𝑝𝑝𝐴𝐴 = 𝐾𝐾𝐴𝐴Δ𝑣𝑣𝐴𝐴 and Δ𝑝𝑝𝑉𝑉 = 𝐾𝐾𝑉𝑉(Δ𝑣𝑣𝑉𝑉 −
Δ𝑣𝑣𝑉𝑉𝑉𝑉), where 𝐾𝐾𝐴𝐴 and 𝐾𝐾𝑉𝑉 are arterial and venous elastances, 𝑣𝑣𝑉𝑉𝑉𝑉 
is unstressed venous BV, and Δ𝑝𝑝𝐴𝐴 = 𝑝𝑝𝐴𝐴 − 𝑝𝑝𝐴𝐴0, Δ𝑝𝑝𝑉𝑉 = 𝑝𝑝𝑉𝑉 −
𝑝𝑝𝑉𝑉0, Δ𝑣𝑣𝐴𝐴 = 𝑣𝑣𝐴𝐴 − 𝑣𝑣𝐴𝐴0, Δ𝑣𝑣𝑉𝑉 = 𝑣𝑣𝑉𝑉 − 𝑣𝑣𝑉𝑉0, and Δ𝑣𝑣𝑉𝑉𝑉𝑉 = 𝑣𝑣𝑉𝑉𝑉𝑉 −
𝑣𝑣𝑉𝑉𝑉𝑉0  are the deviations of the respective variables from initial 
steady-state values. 

Cardiac function is given by a phenomenological model that 
replicates the regulation of CO against perturbations in preload 
(i.e., 𝑝𝑝𝑉𝑉) [19]: 
 �̇�𝑥𝑄𝑄(𝑡𝑡) = −𝑝𝑝𝑄𝑄𝑥𝑥𝑄𝑄(𝑡𝑡) + �𝑧𝑧𝑄𝑄 − 𝑝𝑝𝑄𝑄�Δ𝑃𝑃𝑉𝑉(𝑡𝑡)       (2a) 
 Δ𝑄𝑄(𝑡𝑡) = 𝐾𝐾𝑄𝑄�𝑥𝑥𝑄𝑄(𝑡𝑡) + Δ𝑃𝑃𝑉𝑉(𝑡𝑡)�          (2b) 
where 𝑥𝑥𝑄𝑄 is an internal state describing the CO dynamics, and 
𝐾𝐾𝑄𝑄, 𝑝𝑝𝑄𝑄, and 𝑧𝑧𝑄𝑄 are the parameters characterizing the cardiac 
function.  Note that (2) dictates that Δ𝑄𝑄 caused by Δ𝑃𝑃𝑉𝑉 (e.g., 
due to PHP) reduces to 𝐾𝐾𝑄𝑄

𝑧𝑧𝑄𝑄
𝑝𝑝𝑄𝑄
Δ𝑃𝑃𝑉𝑉 as 𝑡𝑡 → ∞, meaning that it can 

replicate the asymptotic recovery of CO against perturbations 
in Δ𝑃𝑃𝑉𝑉 if 𝐾𝐾𝑄𝑄, 𝑝𝑝𝑄𝑄, and 𝑧𝑧𝑄𝑄 are properly chosen so that 𝐾𝐾𝑄𝑄

𝑧𝑧𝑄𝑄
𝑝𝑝𝑄𝑄
≪ 1. 

The changes in SVR and unstressed venous BV due to PHP 
administration and baroreflex modulation are likewise 
expressed by phenomenological models [19], [20]: 
 �̇�𝑥𝑅𝑅(𝑡𝑡) = −𝜏𝜏𝑅𝑅𝑥𝑥𝑅𝑅(𝑡𝑡) − 𝐾𝐾𝑅𝑅Δ𝑃𝑃𝐴𝐴(𝑡𝑡) 
Δ𝑅𝑅(𝑡𝑡) = 𝑥𝑥𝑅𝑅(𝑡𝑡) + 𝐷𝐷𝑅𝑅(𝑡𝑡)             (3a) 
�̇�𝑥𝑉𝑉𝑉𝑉(𝑡𝑡) = −𝜏𝜏𝑉𝑉𝑉𝑉𝑥𝑥𝑉𝑉𝑉𝑉(𝑡𝑡) − 𝐾𝐾𝑉𝑉𝑉𝑉Δ𝑃𝑃𝐴𝐴(𝑡𝑡)  
Δ𝑣𝑣𝑉𝑉𝑉𝑉(𝑡𝑡) = 𝑥𝑥𝑉𝑉𝑉𝑉(𝑡𝑡) + 𝐷𝐷𝑉𝑉𝑉𝑉(𝑡𝑡)           (3b) 

where 𝑥𝑥𝑅𝑅(𝑡𝑡) and 𝑥𝑥𝑉𝑉𝑉𝑉(𝑡𝑡) are internal states describing the SVR 
and unstressed venous BV, 𝐾𝐾𝑅𝑅 and 𝜏𝜏𝑅𝑅 are the sensitivity and 
time constant associated with the baroreflex-based SVR 
control, and 𝐾𝐾𝑉𝑉𝑉𝑉 and 𝜏𝜏𝑉𝑉𝑉𝑉 likewise are the sensitivity and time 
constant associated with the baroreflex-based venoconstriction 
control.  The terms 𝐷𝐷𝑅𝑅(𝑡𝑡) and 𝐷𝐷𝑉𝑉𝑉𝑉(𝑡𝑡) are the PHP-induced 
changes in SVR and unstressed venous BV.  From (2)-(3), CO, 
SVR, and unstressed venous BV are given by 𝑄𝑄 = Δ𝑄𝑄 + 𝑄𝑄0, 
𝑅𝑅 = Δ𝑅𝑅 + 𝑅𝑅0, and 𝑣𝑣𝑉𝑉𝑉𝑉 = Δ𝑣𝑣𝑉𝑉𝑉𝑉 + 𝑣𝑣𝑉𝑉𝑉𝑉0, where 𝑄𝑄0, 𝑅𝑅0, and 
𝑣𝑣𝑉𝑉𝑉𝑉0 are initial steady-state values to be estimated.  The stressed 
venous BV is given by 𝑣𝑣𝑉𝑉𝑉𝑉 = 𝑣𝑣𝑉𝑉 − 𝑣𝑣𝑉𝑉𝑉𝑉. 

The pharmacokinetics (PK) and pharmacodynamics (PD) of 
PHP is given by a dose-response model relating the infusion 
rate of PHP to its vasoconstriction and venoconstriction effects.  
The PK of PHP is expressed by a first-order dynamics [21]: 
 𝐼𝐼�̇�𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) = −𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) + 𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃𝐽𝐽𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)      (4) 
where 𝐽𝐽𝑃𝑃𝑃𝑃𝑃𝑃 is the intravenous PHP infusion rate and 𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃 is the 
hypothetical PHP infusion rate at the site of drug action (i.e., 
arterial and venous blood vessels), while 1

𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃
 is the PK time 

constant.  The PD of PHP is given by nonlinear functions 
relating 𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃 to the increase in SVR and the decrease in 
unstressed venous BV [21]: 

𝐷𝐷𝑅𝑅(𝑡𝑡) = 𝑅𝑅0𝑘𝑘𝜎𝜎 ln 𝑥𝑥𝑅𝑅(𝑡𝑡)
2−𝑥𝑥𝑅𝑅(𝑡𝑡)

, 𝑥𝑥𝑅𝑅(𝑡𝑡) = 1 − 𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃
𝜆𝜆𝑅𝑅 (𝑡𝑡)

𝐼𝐼𝜎𝜎,𝑅𝑅
𝜆𝜆𝑅𝑅+𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃

𝜆𝜆𝑅𝑅 (𝑡𝑡)
  (5a) 

𝐷𝐷𝑉𝑉𝑉𝑉(𝑡𝑡) = 𝜂𝜂𝑉𝑉𝑉𝑉𝑣𝑣0
𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃
𝜆𝜆𝑉𝑉𝑉𝑉(𝑡𝑡)

𝐼𝐼𝜎𝜎,𝑉𝑉𝑉𝑉
𝜆𝜆𝑉𝑉𝑉𝑉+𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃

𝜆𝜆𝑉𝑉𝑉𝑉(𝑡𝑡)
           (5b) 

where 𝑅𝑅0 and 𝑣𝑣0 = 𝑣𝑣𝐴𝐴0 + 𝑣𝑣𝑉𝑉0 denote initial steady-state values 
of SVR and BV, a user-specifiable parameter 0 < 𝜎𝜎 < 100 
denotes a certain percentage of the maximum vasoconstriction 

effect of PHP, 𝑘𝑘𝜎𝜎 = −0.01 𝜎𝜎
ln3

 is a constant, 𝐼𝐼𝜎𝜎,𝑅𝑅 and 𝐼𝐼𝜎𝜎,𝑉𝑉𝑉𝑉 are 
the hypothetical PHP infusion rates at the site of action 
corresponding to 𝜎𝜎% of maximum vasoconstriction and 
venoconstriction effects, 𝜆𝜆𝑅𝑅 and 𝜆𝜆𝑉𝑉𝑉𝑉 are cooperativity constants 
defining the nonlinearity of dose-response relationships, and 
𝜂𝜂𝑉𝑉𝑉𝑉 denotes the fraction of BV that can be involved in 
venoconstriction.  The value of 𝜂𝜂𝑉𝑉𝑉𝑉 was set to 0.21 based on the 
literature [22], [23].  It is noted that 𝑥𝑥𝑅𝑅(𝑡𝑡) decreases from unity 
to zero as 𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃 increases, which in turn leads to 𝑥𝑥𝑅𝑅

2−𝑥𝑥𝑅𝑅
→ 0 as 

𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃 → ∞, resulting in 𝐷𝐷𝑅𝑅 → ∞, i.e., 𝐷𝐷𝑅𝑅 increases as 𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃 
increases. 

 For an individual subject 𝑖𝑖, the mathematical model is 
characterized by the vector of parameters 𝜃𝜃𝑖𝑖 given by: 
 𝜃𝜃𝑖𝑖 =
�𝐾𝐾𝐴𝐴,𝐾𝐾𝑉𝑉 ,𝐾𝐾𝑄𝑄,𝑝𝑝𝑄𝑄 , 𝑧𝑧𝑄𝑄,𝐾𝐾𝑅𝑅 , 𝜏𝜏𝑅𝑅 ,𝐾𝐾𝑉𝑉𝑉𝑉 , 𝜏𝜏𝑉𝑉𝑉𝑉 ,𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃 , 𝐼𝐼𝜎𝜎,𝑅𝑅 , 𝜆𝜆𝑅𝑅 , 𝐼𝐼𝜎𝜎,𝑉𝑉𝑉𝑉 , 𝜆𝜆𝑉𝑉𝑉𝑉 ,𝑝𝑝𝐴𝐴0,𝑝𝑝𝑉𝑉0,𝑣𝑣0,𝑣𝑣𝑉𝑉𝑉𝑉0,𝑄𝑄0� 
                       (6) 
Note that (6) includes 5 initial condition parameters for arterial 
BP (𝑝𝑝𝐴𝐴0), CVP (𝑝𝑝𝑉𝑉0), BV (𝑣𝑣0), unstressed venous BV (𝑣𝑣𝑉𝑉𝑉𝑉0), 
and CO (𝑄𝑄0). 

B. Experimental Dataset 
To investigate the preliminary adequacy of the mathematical 

model in replicating CV responses to PHP administration, we 
performed a calibration exercise using an in vivo dataset 
consisting of data collected from 10 anesthetized pigs.  The 
experiments were conducted at the University of Texas Medical 
Branch under the approval of its Institutional Animal Care and 
Use Committee (IACUC; approval number: 1907063). 

In each animal, anesthesia was induced with ketamine and 
telazol and then maintained with propofol until the study ended.  
Surgical procedures were performed to place a femoral artery 
catheter for arterial BP monitoring as well as a femoral venous 
catheter for the administration of PHP and a second femoral 
venous catheter for the administration of sodium nitroprusside 
(SNP).  In addition, a catheter was placed in the jugular vein, 
through which a Swan-Ganz catheter was inserted for 
monitoring of cardiac functions (including CO and central 
venous pressure (CVP)). 

Each animal was instrumented for its baseline state for >30 
min before any interventions were given.  Then, the animal 
received 10-min infusions of PHP concentrated at 40mcg/ml at 
multiple rates ranging 10-120 ml/hr.  In a subset of animals 
(N=4), SNP was infused to induce vasoplegic shock [24].  SNP 
was given at a constant infusion rate tailored in each animal to 
achieve mean arterial BP of 30-60 mmHg.  During the course 
of the experiment, arterial BP and CVP were measured at a 
sampling rate of 1 kHz, while CO was measured every 10 min. 

From the collected data, beat-by-beat mean arterial BP and 
CVP were computed as the intra-beat average of arterial BP and 
CVP signals.  At the times CO was measured, SVR was 
computed by subtracting CVP from mean arterial BP and then 
dividing the difference by the measured CO.  Finally, the beat-
by-beat mean arterial BP and the intermittently measured CO 
and SVR were subsequently used to assess the adequacy of the 
mathematical model. 
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C. System Identification via Collective Variational Inference  
To execute the calibration exercise, we employed a novel 

computational algorithm developed in our prior work called the 
collective variational inference (C-VI) method (code 
repository: https://github.com/alitivay/collective-variational-
inference.git) [19].  For a mathematical model, the C-VI 
method analyzes a dataset including data collected from a 
cohort of subjects to calibrate the mathematical model to all the 
subjects in the cohort and derive subject-specific parameters, as 
well as to infer cohort-level parameters representative of (i.e., 
capturing the commonalities of) all the subjects belonging to 
the cohort.  It fulfills these tasks by structuring the hierarchical 
relationship between a cohort and subjects therein in the form 
of the probabilistic graphical model (PGM) in Fig. 2.  The PGM 
embodies the reliance of the inputs (𝑢𝑢𝑖𝑖’s) given to and outputs 
(𝑦𝑦𝑖𝑖𝑖𝑖’s) created by the mathematical model on the latent 
parameters that characterize the cohort-level mathematical 
model parameters (𝜙𝜙), subject-specific mathematical model 
parameters (𝜃𝜃𝑖𝑖’s), and measurement noise (𝑛𝑛𝑖𝑖𝑖𝑖’s).  Here, 𝜙𝜙 
denotes the beliefs on the cohort-level mathematical model 
parameters, while 𝜃𝜃𝑖𝑖 denotes the beliefs on the mathematical 
model parameters associated with subject 𝑖𝑖 (both in the form of 
diagonal Gaussian densities).  𝑦𝑦𝑖𝑖𝑖𝑖 is the output 𝑗𝑗 in subject 𝑖𝑖, 
which can be computed by giving the inputs 𝑢𝑢𝑖𝑖 to the 
mathematical model in II.A parameterized with 𝜃𝜃𝑖𝑖.  𝑛𝑛𝑖𝑖𝑖𝑖 denotes 
the standard deviation (SD) of the Gaussian noise corrupting 
𝑦𝑦𝑖𝑖𝑖𝑖. 

The C-VI method estimates the latent parameters in the PGM 
from the given dataset by inferring the posterior density: 
𝑝𝑝(𝜙𝜙,𝜽𝜽,𝒏𝒏|𝒖𝒖,𝒚𝒚) = 𝑝𝑝(𝜙𝜙,𝜽𝜽,𝒏𝒏,𝒖𝒖,𝒚𝒚)

𝑝𝑝(𝒖𝒖,𝒚𝒚)
           (7) 

where 𝑝𝑝(𝜙𝜙,𝜽𝜽,𝒏𝒏,𝒖𝒖,𝒚𝒚) = 𝑝𝑝(𝜙𝜙)𝑝𝑝(𝜽𝜽|𝜙𝜙)𝑝𝑝(𝒚𝒚|𝜽𝜽,𝒏𝒏,𝒖𝒖)𝑝𝑝(𝒏𝒏)𝑝𝑝(𝒖𝒖) 
and 𝜽𝜽, 𝒏𝒏, 𝒖𝒖, and 𝒚𝒚 denote the collections of all the latent 
parameters 𝜃𝜃𝑖𝑖’s and 𝑛𝑛𝑖𝑖𝑖𝑖’s as well as the data 𝑢𝑢𝑖𝑖’s and 𝑦𝑦𝑖𝑖𝑖𝑖’s.  
Noting that inferring the posterior density in (7) is not usually 
tractable, the C-VI method exploits modern variational 
inference techniques [25], [26] to define an approximate 
posterior density 𝑞𝑞(𝜙𝜙,𝜽𝜽,𝒏𝒏|𝒗𝒗) and infer it by minimizing the K-
L divergence 𝐷𝐷𝐾𝐾𝐾𝐾(𝒗𝒗) between 𝑝𝑝 in (7) and 𝑞𝑞 with respect to the 
variational parameters 𝒗𝒗, which in the case of this paper defines 
mean and SD of the elements in 𝑞𝑞 expressed by a family of 
diagonal Gaussian densities: 
 𝐷𝐷𝐾𝐾𝐾𝐾(𝒗𝒗) = 𝔼𝔼𝑞𝑞[log 𝑞𝑞(𝜙𝜙,𝜽𝜽,𝒏𝒏|𝒗𝒗) − log𝑝𝑝(𝜙𝜙,𝜽𝜽,𝒏𝒏|𝒖𝒖,𝒚𝒚)] (8) 

The C-VI method estimates 𝒗𝒗 by maximizing the evidence 
lower bound (ELBO) in (9), obtained from (7)-(8), based on 
stochastic optimization algorithms [27], [28]: 
 𝐿𝐿(𝒗𝒗) = log𝑝𝑝(𝒚𝒚) − 𝐷𝐷𝐾𝐾𝐾𝐾(𝒗𝒗) 

= 𝔼𝔼𝑞𝑞[log𝑝𝑝(𝒚𝒚|𝜽𝜽,𝒏𝒏,𝒖𝒖) + log𝑝𝑝(𝜽𝜽|𝜙𝜙) + log𝑝𝑝(𝒏𝒏) +
log𝑝𝑝(𝜙𝜙) − log 𝑞𝑞(𝜙𝜙,𝜽𝜽,𝒏𝒏|𝒗𝒗)]            (9) 
Finally, the mathematical model parameters calibrated to each 
subject (i.e., 𝜃𝜃𝑖𝑖 in (6)) as well as the cohort-level mathematical 
model parameters (𝜙𝜙 in Fig. 2) can be obtained from 𝒗𝒗.  Full 
details of the C-VI method are described in [19]. 

D. Mathematical Model Evaluation 
We calibrated the mathematical model in II.A by fitting it to 

the dataset in II.B.  With the goal of establishing the initial 
adequacy of the mathematical model as a basis to replicate CV 
response to PHP, we used the entire dataset, i.e., the entire time 
period of all the animals pertaining to PHP administration.  
Leveraging the C-VI method in II.C, we derived both subject-
specific and cohort-level probability density distributions of all 
the mathematical model parameters in (6) by maximizing the 
ELBO in (9) in conjunction with the mathematical model and 
the experimental data.  Then, the preliminary adequacy of the 
mathematical model was evaluated in several aspects.  First, its 
ability to replicate experimentally observed CV responses was 
assessed via calibration accuracy in terms of the root-mean-
squared errors (RMSEs) and r values associated with mean 
arterial BP, CO, and SVR.  Second, its physiological 
plausibility was assessed by examining the legitimacy of the 
simulated internal (i.e., unmeasured) CV variables (including 
arterial and venous BVs).  Third, its practical identifiability 
characteristics was assessed by comparing subject-specific and 
cohort-level distributions of the mathematical model 
parameters derived from the C-VI method.  Fourth, we analyzed 
the effect of sample size and omitting subcomponent models 
(including PHP-induced vasoconstriction and venoconstriction, 
by setting 𝐷𝐷𝑅𝑅(𝑡𝑡) = 𝐷𝐷𝑉𝑉𝑉𝑉(𝑡𝑡) = 0 in (3), as well as baroreflex-
based modulation of vasoconstriction and venoconstriction, by 
setting 𝐾𝐾𝑅𝑅 = 𝐾𝐾𝑉𝑉𝑉𝑉 = 0) in the mathematical model on the C-VI 
inference outcomes. 

III. RESULTS 
Table 1 shows the RMSEs and r values associated with 

subject-specific calibration, i.e., fitting the mathematical model 
to the data pertaining to individual animals.  Fig. 3 shows a 
representative example of mathematical model simulations in 
the (a) absence and (b) presence of SNP-induced vasoplegic 
shock in an animal, including (i) measured mean arterial BP, 
CO, and SVR versus the same variables predicted by the 
calibrated mathematical model (which are of importance due to 
PHP’s vasoconstriction effects) as well as (ii) internal (i.e., 
unmeasured) CV variables of arterial BV and unstressed venous 
BV predicted by the calibrated mathematical model (which are 
of importance due to PHP’s venoconstriction effects).  In Fig. 
3, “net effect” means “PHP effect” minus the baroreflex 
modulation effect.  Fig. 4 compares (a) direct PHP responses 
and (b) net responses in SVR and unstressed venous BV as well 
as (c) cardiac sensitivity in the absence vs presence of SNP-

 
 
Fig. 2. A probabilistic graphical model (PGM) that structures the hierarchical 
relationship between a cohort and subjects therein. 

https://github.com/alitivay/collective-variational-inference.git
https://github.com/alitivay/collective-variational-inference.git
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induced vasoplegia.  Fig. 5 shows the probability density 
distributions of the mathematical model parameters, except the 
initial conditions 𝑝𝑝𝐴𝐴0, 𝑝𝑝𝑉𝑉0, 𝑣𝑣𝑉𝑉𝑉𝑉0, and 𝑄𝑄0 (whose distributions 
were trivially consistent with the experimental data as well as 
anticipated trends), in the (a) absence and (b) presence of SNP-
induced vasoplegic shock.  The parametric distributions 

pertaining to the absence of vasoplegic shock (“No SNP” in Fig. 
5) were derived from the 11 data corresponding to the 10 pigs 
which did not receive SNP (one animal received 2 PHP infusion 
interventions), while those pertaining to the presence of 
vasoplegic shock (“SNP” in Fig. 5) were derived from the 4 
data corresponding to the 4 pigs which received SNP.  Fig. 6 

 
 
Fig. 3. Representative example of measured versus subject-specific fitted mean arterial BP, CO, and SVR responses and internal (i.e., unmeasured) CV variables 
predicted by the mathematical model in an animal.  (a) No vasoplegia (SNP).  (b) Vasoplegia (SNP).  Δ𝑣𝑣𝐴𝐴: change in arterial blood volume.  Δ𝑣𝑣𝑉𝑉𝑉𝑉: change in 
unstressed venous blood volume. 
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shows the subject-specific and cohort-level probability density 
distributions of the mathematical model parameters.  Each plot 
shows the cohort-level probabilistic distribution of a parameter 
(“Cohort-Level” in Fig. 6) and 15 subject-specific probabilistic 
distribution of the same parameter associated with the 10 
animals (“Subject-Specific” in Fig. 6).  Table II compares the 
RMSEs associated with subject-specific calibration of the 
mathematical model when subcomponent models were omitted. 

IV. DISCUSSION 
There are various CV variable responses involved in the 

mechanisms of action of the vasopressor, e.g., CO, SVR, and 
unstressed venous BV, which are affected by both the direct 
drug effects and the secondary baroreflex modulation effects.  
A mathematical model suited to the in silico evaluation of 
computerized vasopressor systems must ideally be able to 
simulate all these CV variable responses in detail.  This paper 
presents a mathematical model capable of simulating the effects 
of PHP on mean arterial BP as well as the physiological 
mechanisms involved in PHP-induced changes in mean arterial 
BP (i.e., vasoconstriction and venoconstriction).  

Once fitted to each animal, the mathematical model could 
replicate the experimentally measured CV variable responses of 
BP, CO, and SVR to PHP administration at a wide range of dose 

levels (Table 1, Fig. 3).  The goodness of fit associated with BP, 
CO, and SVR appeared to be adequate consistently across all 
the animals (maximum BP<5.3 mmHg, CO<0.6 lpm, 
SVR<5.4mmHg/lpm).  Remarkably, the mathematical model 
could replicate CV variable responses both in the absence (Fig. 
3(a)) and presence (Fig. 3(b)) of SNP-induced vasoplegia.  In 
addition to the experimentally measured CV variables, the 
mathematical model predicted physiologically plausible 
responses in the internal CV variables of arterial BV and venous 
BV (e.g., relaxed baroreflex modulation effects to hypotension 
(i.e., vasoconstriction and venoconstriction) in response to PHP 
administration [29]).  All in all, the results suggest that the 
mathematical model may be able to simulate CV variable 
responses to PHP under a broad range of vasoplegic shock 
severity. 

Deeper scrutiny of the mathematical model simulations 
provided additional insights on the impact of vasoplegic shock 
on the PHP-induced vasoconstriction and venoconstriction 
effects.  For this analysis, we used the data from the 4 pigs 
containing PHP responses both with and without SNP-induced 
vasoplegia.  Fig. 3 reveals that the resultant change in mean 
arterial BP in response to PHP was comparable in the absence 
versus presence of SNP-induced vasoplegia.  However, the 
mechanism underlying the change in mean arterial BP was quite 

TABLE I 
Root-mean-squared errors (RMSEs) and r values associated with subject-specific fitting.  RMSEs and r values were computed in each animal using all the 
measurements, and then were summarized as mean+/-SD. 
 

 No SNP SNP All 

MAP 
RMSE [mmHg] 2.1+/-0.6 3.0+/-1.0 2.5+/-1.0 

r 0.96+/-0.01 0.96+/-0.01 0.96+/-0.01 

CO 
RMSE [lpm] 0.2+/-0.1 0.1+/-0.1 0.2+/-0.1 

r 0.82+/-0.21 0.31+/-0.54 0.65+/-0.45 

SVR 
RMSE [mmHg/lpm] 2.7+/-1.3 1.6+/-1.1 2.4+/-1.5 

r 0.94+/-0.06 0.87+/-0.15 0.92+/-0.10 
 

 
Fig. 4. Comparison of (a) direct PHP responses and (b) net responses in SVR and unstressed venous BV as well as (c) cardiac sensitivity in the absence vs presence 
of SNP-induced vasoplegia.  The responses and sensitivity were calculated by dividing the response corresponding to the maximum dose by the maximum dose 
itself (which is an indicative of the slope of the dose-response relationship). 
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distinct.  First, SNP-induced vasoplegia substantially decreased 
the direct vasoconstriction efficacy of PHP (i.e., in increasing 
SVR; compare the orange SVR responses in Fig. 3(a) vs Fig. 
3(b)) as well as the resultant (i.e., combined PHP and baroreflex 
modulation) vasoconstriction response (compare the blue SVR 
responses in Fig. 3(a) vs Fig. 3(b)).  This observation appears 
to be consistent with the existing knowledge related to vascular 
hypo-reactivity to vasopressors in vasoplegic shock [2].  
Second, SNP-induced vasoplegia did not appear to alter the 
direct venoconstriction efficacy of PHP (i.e., in decreasing 
unstressed venous BV; compare the orange unstressed venous 
BV responses in Fig. 3(a) vs Fig. 3(b)), whereas it substantially 
decreased the resultant venoconstriction response (compare the 
blue unstressed venous BV responses in Fig. 3(a) vs Fig. 3(b)).  
This observation suggests that baroreflex modulation pertaining 
to unstressed venous BV was weakened due to the SNP-induced 
vasoplegia (in that venoconstriction response when PHP was 
administered decreased more in vasoplegic condition than in 
non-vasoplegic condition). But, it is a speculation that needs to 
be confirmed).  Third, SNP-induced vasoplegia lowered cardiac 
sensitivity (i.e., contractility and heart rate) to the change in 
preload (i.e., stressed venous BV; as can be seen in much 
smaller change in CO in the case of SNP-induced vasoplegia in 
Fig. 3).  The above observations are summarized in Fig. 4 using 
the data aggregated from the 4 pigs.  It is noted that the 
statistical significance of the observed differences was not 
established due to the small sample size (N=4). 

The above observations could be ascertained in terms of 
mathematical model parameters (Fig. 5).  First, the PHP PD 
parameters pertaining to vasoconstriction (𝐼𝐼𝜎𝜎,𝑅𝑅, 𝜆𝜆𝑅𝑅, and 𝑅𝑅0) 
collectively changed to desensitize SVR response to PHP under 
SNP-induced vasoplegia: (i) 𝐼𝐼𝜎𝜎,𝑇𝑇𝑃𝑃𝑅𝑅 increased (Fig. 5), (ii) 𝜆𝜆𝑅𝑅 
decreased (Fig. 5), and (iii) 𝑅𝑅0 decreased (not shown).  On the 
other hand, the PHP PK parameter (𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃) did not notably 
change.  Second, the parameters related to CO (𝐾𝐾𝑄𝑄, 𝑝𝑝𝑄𝑄, and 𝑧𝑧𝑄𝑄) 
collectively changed to desensitize CO response to the change 
in preload (i.e., Δ𝑃𝑃𝑉𝑉): 𝐾𝐾𝑄𝑄 decreased, 𝑝𝑝𝑄𝑄 increased, and 𝑧𝑧𝑄𝑄 
decreased to decrease the effective gain 𝐾𝐾𝑄𝑄

𝑧𝑧𝑄𝑄
𝑝𝑝𝑄𝑄

 of the CO 

function.  It is noted that the parameters related to the baroreflex 
modulation of unstressed venous BV (specifically, a decrease 
in 𝐾𝐾𝑉𝑉𝑉𝑉 and an increase in 𝜏𝜏𝑉𝑉𝑉𝑉 in the case of simulated 
vasoplegia) indicated its modest desensitization due to 
vasoplegia, but it was not comparable to the decrease in cardiac 
sensitivity. 

Comparison of subject-specific and cohort-level model 
parameter distributions revealed that most of the parameters in 
the mathematical model may be practically identifiable with 

frequent mean arterial BP measurement in conjunction with 
relatively sparse CO and SVR measurements.  Using the C-VI 
method, the practical identifiability of an individual parameter 
can be (at least qualitatively) assessed by comparing its subject-
specific versus cohort-level distributions: a parameter can be 
viewed practically identifiable if its subject-specific probability 
density distributions have diverse mean values and spreads 
narrower than the cohort-level spread.  Most parameters in the 
mathematical model exhibited such characteristics (Fig. 6).  
Exceptions were a small number of parameters pertaining to the 
dynamics of baroreflex modulation (𝜏𝜏𝑟𝑟, 𝜏𝜏𝑉𝑉𝑉𝑉, 𝑧𝑧𝑄𝑄): in many 
subjects, subject-specific probability density distributions show 
mean values and spreads quite comparable to the cohort-level 
probability density distributions.  These parameters are 
associated with time constants much less than a minute and thus 
may not be accurately inferred with CO and SVR measurement 
intervals of 10 min.  These parameters may exert low sensitivity 
to the measurements and may not be practically identifiable.  
However, these parameters may potentially be made practically 
identifiable by invoking more frequent measurements of CO 
and SVR, e.g., using pulse contour CO monitors [30]. 

Comparison of cohort-level model parameter distributions 
with respect to sample size suggested that the model parameter 
distributions may be adequate.  Indeed, the cohort-level model 
parameter distributions remained highly consistent even when 
the sample size used in the C-VI was reduced to 12, 9, and 6.  It 
may thus be concluded that the size of the experimental dataset 
used in this work is adequate. 

Examining the impact of omitting subcomponent models on 
the quality of the resulting subject-specific mathematical model 
furnished a few interesting insights on the structural adequacy 
of the proposed mathematical model.  First, the quality (in terms 
of goodness-of-fit) of the mathematical model was in general 
deteriorated when a subcomponent model was omitted (Table 
II).  Specifically, BP error was preserved, but CO and/or SVR 
errors were deteriorated.  This may be interpreted as follows: 
the mathematical model fits the dataset to replicate BP (whose 
measurement is much more frequent than CO and SVR) while 
compromising its ability to replicate CO and SVR.  In any case, 
the results indicate that the proposed mathematical model may 
be structurally adequate.  Second, omitting the direct PHP effect 
components yielded more drastic impact on the goodness-of-fit 
than omitting the baroreflex control components (i.e., compare 
“No PHP Effect on SVR” versus “No SVR Baroreflex Effect” 
as well as “No PHP Effect on Unstressed Venous BV” versus 
“No Unstressed Venous BV Baroreflex Effect” in Table II).  
This may be interpreted as follows: (i) when the baroreflex 
control effect is omitted, the mathematical model absorbs the 

TABLE II 
Root-mean-squared errors (RMSEs) associated with subject-specific fitting of the mathematical model when subcomponent models were omitted.  RMSEs were 
computed in each animal using all the measurements, and then were summarized as mean+/-SD.  *: p<0.05. 
 

 MAP RMSE [mmHg] CO RMSE [lpm] SVR RMSE [mmHg/lpm] 
Mathematical Model w/ No Omission 2.5+/-1.0 0.2+/-0.1* 2.4+/-1.5* 

No PHP Effect on SVR  2.7+/-1.5 1.0+/-0.4* 11 +/-4.6* 
No PHP Effect on Unstressed Venous BV 2.9+/-1.2 0.3+/-0.2* 3.2+/-1.9* 

No SVR Baroreflex Effect 2.5+/-1.0 0.3+/-0.3* 2.9+/-1.8* 
No Unstressed Venous BV Baroreflex Effect 2.5+/-1.1 0.2+/-0.2* 2.8+/-1.9* 
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baroreflex control effect in the PHP dose-response relationship, 
thereby mitigating the deterioration in the goodness-of-fit; on 
the contrary, (ii) when the direct PHP effect is omitted, the 
mathematical model views the PHP-induced changes in BP, 
CO, and SVR as disturbances caused by unknown sources, 
thereby making the calibration much more challenging.  In any 
case, although omitting the baroreflex control components does 
not appear to substantially worsen the goodness-of-fit, it may 

still be desirable for a mathematical model to have explicit 
baroreflex control components in order to replicate various 
critical care treatment scenarios, since there are many external 
stimulations other than vasopressors (e.g., hemorrhage) which 
trigger compensatory vasoconstriction and venoconstriction.  
Third, omitting the vasoconstriction components yielded more 
drastic impact than omitting the venoconstriction components 
(i.e., compare “No PHP Effect on SVR” versus “No PHP Effect 

 
Fig. 5. Cohort-level model parameter distributions associated with no SNP (red dashed) and SNP (blue solid) data. 
 

 
Fig. 6. Subject-specific and cohort-level model parameter distributions (all data).  The magnitudes are normalized for ease of comparison.  Low-sensitivity 
parameters (𝜏𝜏𝑟𝑟, 𝜏𝜏𝑉𝑉𝑉𝑉, and 𝑧𝑧𝑄𝑄) tend to exhibit comparable subject-specific and cohort-level distributions. 
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on Unstressed Venous BV” as well as “No SVR Baroreflex 
Effect” versus “No Unstressed Venous BV Baroreflex Effect” 
in Table II).  This may just be specific to this work in which 
SVR but not unstressed BV was included in the calibration 
dataset.  Accordingly, it is speculated that including 
measurements relevant to BV (e.g., hematocrit) in the 
calibration dataset can increase the relative importance of 
venoconstriction components.  

In summary, the mathematical model presented in this paper 
was able to faithfully simulate mean arterial BP, CO, and SVR 
responses to PHP administration as well as predicted 
physiologically plausible internal variable responses during 
SNP-induced vasoplegia.  The mathematical model also 
suggests that the potency of PHP in vasoconstriction and the 
cardiac function may be depressed in the presence of severe 
vasoplegic shock.  Lastly, the mathematical model is to a large 
extent practically identifiable with frequent mean arterial BP 
and intermittent CO and SVR measurements. 

This study has limitations in the context of independent 
validation: we demonstrated the ability of the mathematical 
model subject-specifically calibrated to individual animals to 
replicate the same animals’ responses.  However, the 
mathematical model was not validated with independent 
experimental datasets.  Being able to demonstrate that the 
mathematical model can accurately reproduce data not 
presented in the calibration phase would support its use for in 
silico testing of computerized vasopressor administration 
systems [10], [31]. 

V. CONCLUSION 
This paper presented a mathematical model suited for 

simulating comprehensive CV responses to PHP 
administration.  By virtue of its ability to simulate both direct 
PHP-induced and secondary baroreflex modulation responses, 
the mathematical model may play an important role in pre-
clinical safety and performance assessment of next-generation 
computerized PHP administration systems (and perhaps similar 
systems for a wide range of vasopressors) in the near term 
pending extensive independent validation.  In the longer term, 
the mathematical model may be extended to have the capability 
to simulate more complex polytrauma scenarios, making it even 
more suited to assess the safety and efficacy of a wide range of 
computerized trauma resuscitation systems.  Such a potential 
impact of the mathematical model is highly responsive to the 
emerging interest in medical digital twins and its use in efficient 
pre-clinical evaluation of physiological closed-loop control 
systems.  Hence, future work directed to the application of the 
mathematical model to pre-clinical evaluation of automated 
PHP administration systems as well as the extension of the 
mathematical model to enable its use for various vasopressors, 
other intravenous drugs (e.g., sedatives and opioids), and fluids 
and blood products will further its utility and impact. 
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