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Abstract— Objective: Existing burn resuscitation protocols 

exhibit a large variability in treatment efficacy.  Hence, they must 
be further optimized based on comprehensive knowledge of burn 
pathophysiology.  A physics-based mathematical model that can 
replicate physiological responses in diverse burn patients can serve 
as an attractive basis to perform non-clinical testing of burn 
resuscitation protocols and to expand knowledge on burn 
pathophysiology.  We intend to develop, optimize, validate, and 
analyze a mathematical model to replicate physiological responses 
in burn patients. Methods: Using clinical datasets collected from 
233 burn patients receiving burn resuscitation, we developed and 
validated a mathematical model applicable to computer-aided in-
human burn resuscitation trial and knowledge expansion.  Using 
the validated mathematical model, we examined possible 
physiological mechanisms responsible for the cohort-dependent 
differences in burn pathophysiology between younger versus older 
patients, female versus male patients, and patients with versus 
without inhalational injury. Results: We demonstrated that the 
mathematical model can replicate physiological responses in burn 
patients associated with wide demographic characteristics and 
injury severity, and that an increased inflammatory response to 
injury may be a key contributing factor in increasing the mortality 
risk of older patients and patients with inhalation injury via an 
increase in the fluid retention. Conclusion: We developed and 
validated a physiologically plausible mathematical model of 
volume kinetic and kidney function after burn injury and 
resuscitation suited to in-human application. Significance: The 
mathematical model may provide an attractive platform to 
conduct non-clinical testing of burn resuscitation protocols and 
test new hypotheses on burn pathophysiology.   
 

Index Terms—Burn injury and resuscitation, computer-aided 
clinical trial, digital twin, volume kinetics, kidney function. 
 

I. INTRODUCTION 
URN is a leading cause of unintentional injury and death in 
the United States.  According to a recent fact sheet from 

the American Burn Association, burn injury is the 8th leading 
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cause of death in adults >65 years old, 3rd in children 5-9 years 
old, and 5th in children 1-4 years old [1].  Each year, there are 
nearly 500,000 burn injury incidences only across the United 
States, among which 40,000 are hospitalized.  Burn injury 
results in severe inflammatory responses that lead to increased 
leakage of intravascular water into the tissues, which, if not 
treated, engenders fatal consequences such as hypovolemic 
shock, ischemia, multiple organ failure, and generalized edema 
[2], [3].  The majority of burn patients treated in burn centers 
survive, but many of them suffer from complications [4], [5]. 

Currently, treatment of burn patients involves a resuscitation 
protocol in which the dose of the resuscitation fluid is titrated 
frequently to maintain the urinary output (UO) response in a 
burn patient to a therapeutic target range (e.g., 30-50 ml/hr or 
0.5-1.0 ml/kg∙h [6]) [7].  Yet, existing resuscitation protocols 
exhibit a large variability in treatment efficacy, due to many 
factors such as the inter-patient differences in response to burn 
injury and resuscitation as well as the incomplete knowledge of 
the pathophysiology underlying burn injury, which collectively 
complicates therapeutic decision-making.  Hence, there is an 
ongoing effort to optimize burn resuscitation protocols [8]–
[10].  However, due to the ongoing limitations, today’s burn 
resuscitation often starts with an established burn resuscitation 
protocol but is subsequently titrated in an ad-hoc fashion to the 
physiological responses (including UO) in an individual patient 
to hopefully optimize the therapeutic efficacy.  Unfortunately, 
current treatments tend to over-resuscitate the patients [11], 
which would exacerbate edema and expose the patients to an 
elevated risk of side effects, e.g., pulmonary edema, limb and 
abdominal compartment syndrome, necrosis, and death, due to 
the accumulation of resuscitation fluid (known as “fluid creep”) 
[12], [13].  Hence, burn resuscitation regimens must be 
optimized based on complete knowledge of burn 
pathophysiology in order to best maintain organ functions in 
burn patients while minimizing adverse complications.  

Development and optimization of burn resuscitation 
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protocols is challenging, because (i) burn injury is less common 
than other widespread injuries (i.e., protocol optimization is 
hampered by the small number of burn injury cases) and (ii) it 
is unethical to test a new treatment protocol with unproven 
efficacy and safety in critically ill burn patients.  From this 
standpoint, a mathematical model that can replicate 
physiological responses to burn injury and resuscitation in 
diverse burn patients can serve as an attractive basis to (i) 
perform non-clinical testing of emerging burn resuscitation 
protocols as medical digital twin [14], [15] and (ii) expand 
knowledge on burn pathophysiology [16].  However, existing 
mathematical models are not yet ideal for such purposes for at 
least three reasons.  First, some mathematical models cannot be 
applied to test many existing burn resuscitation protocols based 
on UO, simply because they were not developed to predict UO 
responses to burn injury and resuscitation [17]–[21].  Second, 
most existing mathematical models have not been extensively 
proven in humans.  In fact, the ability of existing mathematical 
models to replicate UO and other physiological responses to 
burn injury and resuscitation was validated in a prohibitively 
small number of patients [22]–[27] or only at the group level 
[17]–[21].  Third, some mathematical models (especially those 
reported early) [22]–[27] do not reflect up-to-date knowledge 
of burn-related physiology and pathophysiology gained in 
recent experimental and clinical investigations, regarding in 
particular the burn-induced perturbations in volume kinetics, 
kidney function, lymphatic flow, and tissue pressure-volume 
relationships [2], [28]–[30].  Hence, closing these gaps may 
lead us to an enhanced mathematical model of burn injury and 
resuscitation ideally suited to the development and testing of 
emerging burn resuscitation protocols and algorithms as well as 
to the expansion of our knowledge of burn pathophysiology. 

In this paper, we intend to develop, extensively validate, and 
analyze a mathematical model capable of replicating volume 
kinetic and kidney function responses to burn injury and 
resuscitation in burn patients.  By leveraging clinical datasets 
collected from 233 real burn patients receiving resuscitation, we 
developed a mathematical model suited to computer-aided in-
human burn resuscitation trial and knowledge expansion, by 
expanding our prior work and utilizing systematic parametric 
sensitivity analysis and regularization.  We investigated the 
validity of the mathematical model by testing its physiological 
plausibility in a dedicated test dataset.  Using the validated 
mathematical model, we examined possible mechanisms 
responsible for the cohort-dependent differences in burn 
pathophysiology by comparing the mathematical models fitted 
exclusively to younger versus older patients, female versus 
male patients, and patients with versus without inhalational 
injury.  To the best of our knowledge, our mathematical model 
may be the first mathematical model extensively validated for 
use as digital twin of real burn patients. 

This paper is organized as follows.  Section II provides an 
overview of the mathematical model as well as the details of the 
clinical dataset and data analysis.  Section III presents the 
results.  Section IV is devoted to the discussion of major 
findings.  Section V concludes the paper with future directions. 
Full details of mathematical equations and parameter values are 

provided in the Supplementary Document (Appendix and Table 
AI).   

II. MATERIALS AND METHODS 

A. Mathematical Model 
We continued to develop a mathematical model capable of 

predicting volume kinetic and kidney function responses to 
burn injury and resuscitation developed in our prior work [31].  
The mathematical model consists of (i) volume kinetics to 
replicate water volume and protein concentration dynamics in 
the intravascular and the tissue compartments (“Volume 
Kinetics” in Fig. 1(a); see Appendix A provided in 
Supplementary Document), (ii) kidney functions to replicate 
UO response to changes in intravascular water and protein 
volumes (“Kidneys” in Fig. 1(a); see Appendix B provided in 
Supplementary Document), and (iii) transient perturbations in 
volume kinetics induced by burn as a chain of biochemical, 
molecular, and mechanical events (“Burn Perturbations to 
Volume Kinetics” in Fig. 1(b); see Appendix C provided in 
Supplementary Document).  The volume kinetics was 
represented using a three-compartmental model with 
intravascular space (including arterial and venous vessels, 
shown as “Plasma” in Fig. 1), intact tissues, and burnt tissues 
as separate compartments.  These compartments describe the 
volumes of water (𝑉𝑉𝑃𝑃, 𝑉𝑉𝐼𝐼𝐼𝐼, 𝑉𝑉𝐵𝐵𝐵𝐵; whose dynamics is governed by 
Eq. (4)) and protein therein (𝐴𝐴𝑃𝑃, 𝐴𝐴𝐼𝐼𝐼𝐼, 𝐴𝐴𝐵𝐵𝐵𝐵; whose dynamics is 
governed by Eq. (5)) as functions of time.  It was assumed that 
albumin serves as the surrogate of all the protein contributing 
to capillary filtration and colloid oncotic balance [32].  As 
shown in Fig. 1, the change in these volumes are dictated by (i) 
inter-compartmental flows of the lymphatic drainage (water 𝐽𝐽𝐿𝐿 
and protein 𝑄𝑄𝐿𝐿; Eq. (8)-(9)) and capillary filtration (𝐽𝐽𝐶𝐶 and 𝑄𝑄𝐶𝐶; 
Eq. (6) and Eq. (10)); (ii) external inputs representing the gain 
via burn resuscitation (𝐽𝐽𝐹𝐹 and 𝑄𝑄𝐹𝐹); and (iii) outputs representing 
the kidneys’ net filtration and reabsorption of renal plasma flow 
(i.e., UO 𝐽𝐽𝑈𝑈; Eq. (15) and Eq. (26)), as well as burn-induced 
evaporation (𝐽𝐽𝐸𝐸𝐸𝐸 ; Eq. (34)) and exudation (𝐽𝐽𝐸𝐸𝐸𝐸  and 𝑄𝑄𝐸𝐸𝐸𝐸 ; Eq. 
(35)).  The kidney function was represented by a lumped-
parameter model developed in our prior work [31], which 
includes a hybrid combination of first-principles and 
phenomenological elements that describe UO control governed 
by the kidneys, including the glomerular filtration rate (GFR; 
𝐽𝐽𝐺𝐺𝐺𝐺𝐺𝐺  in Fig. 1 and Eq. (16)-(18)) modulated by the Starling 
forces due to the change in the intravascular water and protein 
volumes (i.e., plasma volume), the reabsorption by the 
glomerulotubular balance (𝐽𝐽𝑅𝑅𝑅𝑅,𝐺𝐺𝐺𝐺 in Fig. 1 and Eq. (19)-(20)), 
and the reabsorption and sodium osmosis modulated by the 
antidiuretic hormone (ADH; 𝐽𝐽𝑅𝑅𝑅𝑅,𝐴𝐴𝐴𝐴𝐴𝐴  in Fig. 1 and Eq. (19)-
(25)).  The transient perturbations in volume kinetics and 
kidney function triggered by burn injury were represented by 
an array of time-varying phenomenological models acting on 
various parameters and variables in the mathematical model of 
volume kinetics to replicate local and systemic 
pathophysiological changes caused by burn injury, including (i) 
partial destruction of capillaries in burnt tissues (a in Fig. 1; Eq. 
(28)-(29)), (ii) denaturation of protein in burnt tissues (b in Fig. 
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1; Eq. (31)), (iii) transient negative hydrostatic pressure in burnt 
tissues (c in Fig. 1; Eq. (32)), (iv) increased dermal fluid loss (d 
in Fig. 1; Eq. (34)-(35)), (v) time-dependent changes in 
capillary filtration and albumin permeability (e in Fig. 1; Eq. 
(28)-(30)), and (vi) vasodilation (f in Fig. 1; Eq. 36)).  The 
disruption of the kidney function was the consequence of the 
perturbations occurring in volume kinetics as governed by Eq. 
(16)-(26). The equations associated with the mathematical 
model is summarized in Appendix provided in Supplementary 
Document.  

B. Clinical Dataset 
The clinical dataset used in this paper was furnished from 

two sources.  The first source included 207 burn patients 
admitted to a burn intensive care unit (ICU) in December 2007-
June 2009 [33].  These patients were treated with the aid of a 
clinical decision support system capable of recommending the 
hour-by-hour dose of lactated ringer (LR) to maintain UO at a 
target range of 30-50 ml/hr [10].  The care providers had the 
authority to override the recommendation.  The dataset included 
hourly UO and LR dose as well as demographics including age, 

gender, and weight, total burn surface area (TBSA), the 
presence of inhalation injury, and the time of arrival.  The 
second source included 53 burn patients.  29 patients were 
treated with the aid of the same clinical decision support 
system, while 24 patients were treated with the contemporary 
resuscitation protocols.  The dataset included hourly UO and 
LR dose as well as demographics including age and weight, 
TBSA, and the time of arrival (gender and presence of 
inhalation injury were not known).  Collectively, age, weight, 
and TBSA of the patients in the dataset were 47±18 years, 
87±22 kg, and 40±18%, respectively. The overall mortality rate 
of the patients was 30%.  In the first source, 77% of the patients 
were male and 11% of the patients were associated with 
inhalation injury. 

We randomly split the clinical dataset into training dataset to 
enhance and optimize the mathematical model (N=120) and test 
dataset (N=113) to validate the optimized mathematical model 
after excluding 27 burn injury patients associated with 
prohibitively small number of UO measurements (≤10).  The 
demographic and injury severity of the burn patients in the 

 
Fig. 1. Mathematical model capable of predicting volume kinetic and kidney function responses to burn injury and resuscitation.  Fig. 1(a) shows normal state, 
where the water (blue background) and protein (pink dots) balance between the intravascular compartment (“Plasma”) and the tissue is preserved by the capillary 
filtration through the capillary pores (thin rectangles in the capillary wall) and lymph flow.  The plasma is filtered by the renal plasma flow into the kidney by way 
of the renal regulatory mechanisms including the glomerulotubular balance and the Antidiuretic hormone.  Upon the onset of burn injury, the water and protein 
volumes in the plasma decrease, while tissue compartment is divided into intact and burnt tissue compartments associated with water and protein content higher 
than normal state (“Burnt Tissue” and “Intact Tissue”) (Fig.1(b)).  J: water flow.  Q: albumin flow.  Subscripts: C (capillary filtration); L (lymph flow); F (fluid 
infusion); U (UO); RPF (renal plasma flow); GFR (glomerular filtration rate); RR,GT (reabsorption rate by glomerulotubular balance); RR,ADH (reabsorption 
rate by Antidiuretic hormone); EX (exudation); EV (evaporation); PD (protein denaturation); BT (burnt tissues); IT (intact tissues).  The yellow circles represent 
the perturbations that lead to the redistribution of water and protein.  a: Partial destruction of capillaries in burnt tissues (shown as occluded capillary pores).  b: 
Denaturation of protein in burnt tissues.  c Transient negative hydrostatic pressure in burnt tissues, which draws water into the burnt tissues.  d: Increased dermal 
fluid loss.  e: Time-varying changes in capillary filtration and albumin permeability (shown as enlarged capillary pores).  [f]: Vasodilation, which pushes water out 
of plasma.  X� represents X in normal (pre-burn) state. 
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training and test datasets were comparable (age: 45±19 years 
versus 49±18 years; weight: 85±18 kg versus 86±22 kg; TBSA 
41.5±17.6% versus 38±18).  The average hourly UO 
measurements in the training and test datasets were 23±2 
samples and 20±4 samples, respectively. 

C. Analysis 
We conducted the analysis of the clinical dataset to continue 

to develop, optimize and validate the mathematical model to 
enable its in-human application (Fig. 2).  First, we continued to 
develop the mathematical model by (i) including TBSA and 
weight dependency as well as human-compatible parameters to 
make it globally applicable to burn injury patients associated 
with diverse demographic characteristics and injury severity 
(“Model Enhancement” in Fig. 2), and then (ii) optimizing the 
mathematical model, by systematically reducing the parameter 
dimension using the training dataset, to make it compatible with 
sparse clinical measurements (“Model Optimization” in Fig. 2).  
Second, we validated the optimized mathematical model using 
the test dataset in terms of its predictive capability and 
physiological plausibility (“Model Analysis” in Fig. 2).  Third, 
we scrutinized the mathematical models determined 
specifically for various categorical patient cohorts to gain 
insights on meaningful pathophysiological characteristics in 
these categorical patient cohorts (“Model Analysis” in Fig. 2).  
Details regarding the continued development, optimization, and 
analysis of the mathematical model are given in II.C.1, II.C.2, 
and II.C.3 below and are summarized in Table II.  
1) Mathematical Model Enhancement 

The clinical dataset presents major challenges in estimating 
all the parameters in the mathematical model on an individual 
patient basis.  First, the burn patients in the clinical dataset 
exhibit large variability in the demographic characteristics as 
well as in the severity of burn injury (TBSA ranging between 
16% and 100%), both of which increase the inter-individual 
variability in physiological responses to burn injury and 
resuscitation.  Second, the number of parameters in the 
mathematical model is excessively large relative to the 
available measurements (i.e., hourly resuscitation dose and UO 
are the only measurements available to characterize these burn 
patients).  To address these challenges and seamlessly apply the 
mathematical model to real burn patients, we leveraged the 
training dataset to further develop the mathematical model by 
(i) extending it to accommodate the variability in weight, 
TBSA, and species as well as (ii) systematically reducing the 
number of parameters to be estimated using the clinical dataset. 

First, we categorized the parameters in the mathematical 
model into subject-invariant and subject-specific parameters.  

We categorized as subject-invariant parameters (i) those whose 
values appear consistent in multiple prior literatures (mostly 
associated with extensive properties and first principles 
components in the mathematical model, e.g., nominal water 
volume and albumin content in the intravascular and tissue 
compartments and the hydrostatic pressure in Bowman’s 
capsule) and (ii) those whose values must be selected to yield 
mechanistically relevant physiological responses (e.g., 
parameters associated with the tissue compliance model, which 
must be chosen to result in physically relevant tissue hydrostatic 
pressure for a range of tissue volumes).  The values of these 
subject-invariant parameters were mostly determined based on 
the existing literature (see Table AI provided in Supplementary 
Document for specific literatures we leveraged to determine 
these values).  We categorized as subject-specific parameters (i) 
those whose values can exhibit large variability across burn 
injury patients (e.g., parameters pertaining to burn-induced 
perturbations and nominal glomerular filtration coefficient), (ii) 
those whose values have rarely been reported in the literature 
(e.g., capillary elastance and nominal lymphatic drainage rate), 
and (iii) those whose values are inherently unknown (e.g., 
parameters associated with phenomenological elements in the 
mathematical model).  After all, a total of 58 parameters were 
categorized into 34 subject-invariant (“I” in Table AI) and 24 
subject-specific (“S” and “SS” Table AI) parameters. 

Second, we improved the mathematical model to 
accommodate the variability in weight and injury severity in the 
clinical dataset as well as to increase its suitability to real burn 
patients.  To incorporate the weight dependence into pertinent 
parameters, we employed a linear allometric relationship by 
making them linear functions of weight, so that they assume 
typical values reported in the literature in case of a reference 
man (70 kg).  These parameters include extensive parameters 
such as the water and protein volumes in the intravascular (𝑉𝑉�𝑃𝑃 
and 𝐴̅𝐴𝑃𝑃 in Table AI), intact tissue (V�IT and 𝐴̅𝐴𝐼𝐼𝐼𝐼 in Table AI), and 
burnt tissue (𝑉𝑉�𝐵𝐵𝐵𝐵 and 𝐴̅𝐴𝐵𝐵𝐵𝐵 in Table AI) compartments, capillary 
filtration rate (𝐽𝐽𝐶̅𝐶  in Table AI), and lymphatic drainage (𝐽𝐽𝐿̅𝐿  in 
Table AI) to list a few.  One exception to the linear allometric 
relationship was the total body surface area (𝑆𝑆𝐵𝐵 in Table AI), 
which was made a function of weight through the Haycock 
formula (Eq. (34c)) and the weight-height relationship reported 
in the literature [34].  To incorporate the TBSA dependence into 
pertinent parameters, we (i) made the extensive parameters 
associated with the burnt tissue compartment functions of 
TBSA (𝜀𝜀𝐵𝐵 in Table AI) and (ii) expanded the plausible ranges 
of subject-specific parameter values associated with burn-
induced pathophysiological responses so that the estimated 
parameter values avoid saturation at the pre-specified upper and 

 
Fig. 2. Analysis procedure.  (i) The mathematical model was enhanced to enable in-human application by incorporating TBSA and weight dependence and human-
compatible parameter values.  (ii) The enhanced mathematical model was optimized to enable its use with limited clinical measurements by model fitting analysis 
with regularization.  The optimized model was internally validated using training dataset consisting of 120 burn patients.  (iii) The mathematical model was 
externally validated using testing dataset consisting of 113 burn patients.  The mathematical model was analyzed to garner insights on the pathophysiological 
differences depending on age, gender, and inhalation injury. 
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lower bounds.  These parameters include those representing the 
intensity of the inflammatory responses induced by burn injury 
such as the maximum increase in the capillary pore radius to 
albumin radius ratio (i.e. pore ratio) in the intact (𝑀𝑀𝛼𝛼𝐼𝐼𝐼𝐼 in Table 
AI) and burnt (𝑀𝑀𝛼𝛼𝐵𝐵𝐵𝐵  in Table AI) tissue capillary bed, the 
maximum drop in the burnt tissue hydrostatic pressure (𝑀𝑀𝑃𝑃𝐵𝐵𝐵𝐵 
in Table AI), and the maximum increase in the capillary 
hydrostatic pressure (𝑀𝑀𝑃𝑃𝐶𝐶  in Table AI) to list a few.  To make 
the mathematical model (which was initially developed based 
on the dataset collected from animals in our prior work [31]) 
more compatible with human burn patients, we refined the 
values of a number of parameters that are inherently different 
between animals and humans according to the literature (see 
Table AI for references).  These parameters include nominal 
albumin concentration in the intravascular ([𝐴̅𝐴𝑃𝑃] in Table AI), 
intact tissue ([𝐴̅𝐴𝐼𝐼𝐼𝐼] in Table AI), and burnt tissue ([𝐴̅𝐴𝐵𝐵𝐵𝐵] in 
Table AI) compartments, colloid oncotic pressure constant (𝐶𝐶𝑂𝑂 
in Table AI), nominal capillary hydrostatic pressure (𝑃𝑃�𝐶𝐶  in 
Table AI), and the total body surface area (𝑆𝑆𝐵𝐵 in Table AI). 
2) Mathematical Model Optimization, Training, and 
Validation 

Using the training dataset, we optimized the mathematical 
model for in-human use by reducing the number of the subject-
specific parameters that must be estimated on an individual 
patient basis.  As described above, we down-selected 24 
subject-specific parameters in the mathematical model that 
must be estimated using the hourly UO and LR dose 
measurements.  Noting that the information content in the 
hourly UO and LR dose measurements may not be sufficient to 
robustly estimate all these 24 parameters, we capitalized on the 
training dataset to split the subject-specific parameters into 
parameters sensitive versus insensitive to the LR dose-UO 
input-output relationship.  Then, we estimated the sensitive 
subject-specific parameters on an individual patient basis while 
fixing the insensitive parameters (together with the 34 subject-
invariant parameters) at their typical (i.e., group average) 
values.  First, we determined the typical values of all the 24 
subject-specific parameters by fitting the mathematical model 
to the LR dose-UO measurements pertaining to all the patients 
in the training dataset based on the pooled approach [35].  This 
task was accomplished by solving the following optimization 
problem using a multi-start gradient descent method 
(“globalsearch” in conjunction with “fmincon”) in MATLAB 
(MathWorks, Natick, MA): 

𝜃̅𝜃 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃

𝐽𝐽(̅𝜃𝜃) 

= 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃

∑ ��∑ �𝑢𝑢𝑢𝑢𝑖𝑖
𝑑𝑑(𝑡𝑡𝑘𝑘)−𝑢𝑢𝑢𝑢𝑖𝑖(𝑡𝑡𝑘𝑘,𝜃𝜃)�

𝑈𝑈𝑈𝑈𝑖𝑖
 𝐷𝐷𝑖𝑖

𝑘𝑘=1 �
2

𝑁𝑁
𝑖𝑖=1 ,          (1) 

where 𝜃̅𝜃  is the vector of typical values of subject-specific 
parameters, 𝜃𝜃  is the vector of 24 subject-specific parameters 
(i.e., a vector containing the 24 subject-specific parameters in 
Table AI), 𝑁𝑁 is the number of subjects, 𝐷𝐷𝑖𝑖 is the number of UO 
measurements for the subject 𝑖𝑖 during the treatment, 𝑢𝑢𝑢𝑢𝑖𝑖𝑑𝑑(𝑡𝑡𝑘𝑘) is 
the value of UO associated with the subject 𝑖𝑖 measured at time 
𝑡𝑡𝑘𝑘, 𝑢𝑢𝑢𝑢𝑖𝑖(𝑡𝑡𝑘𝑘,𝜃𝜃) is the value of UO associated with the subject  𝑖𝑖 at 
time 𝑡𝑡𝑘𝑘 predicted by the mathematical model for a given 𝜃𝜃, and 

𝑈𝑈𝑈𝑈𝑖𝑖  is the normalization factor for UO associated with the 
subject 𝑖𝑖, which is defined as the range of 𝑢𝑢𝑢𝑢𝑖𝑖𝑑𝑑 multiplied by 𝐷𝐷𝑖𝑖.  
Second, we classified the subject-specific parameters into 
sensitive and insensitive groups by quantifying and comparing 
the degree of inter-individual variability associated with all the 
subject-specific parameters.  This task was accomplished by 
solving the following optimization problem for fitting with 
regularization [36] on an individual patient basis using a multi-
start gradient descent method (“globalsearch” in conjunction 
with “fmincon”) in MATLAB (MathWorks, Natick, MA): 

𝜃𝜃𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃

𝐽𝐽𝑖𝑖(𝜃𝜃) 

= 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃

��∑ �𝑢𝑢𝑢𝑢𝑖𝑖
𝑑𝑑(𝑡𝑡𝑘𝑘)−𝑢𝑢𝑢𝑢𝑖𝑖(𝑡𝑡𝑘𝑘,𝜃𝜃)�

𝑈𝑈𝑈𝑈𝑖𝑖
 𝐷𝐷𝑖𝑖

𝑘𝑘=1 �
2

+ 𝜆𝜆𝑝𝑝 ∑ �𝜃𝜃(𝑙𝑙)−𝜃𝜃�(𝑙𝑙)
𝛩𝛩𝑙𝑙

�24
𝑙𝑙=1 , 

                      (2) 
where 𝜃𝜃𝑖𝑖  is the vector of 24 subject-specific parameters 
associated with the subject 𝑖𝑖, 𝜆𝜆𝑝𝑝  is the regularization weight, 
and 𝛩𝛩𝑙𝑙 is the normalization factor for the 𝑙𝑙-th element 𝜃𝜃(𝑙𝑙) of 
𝜃𝜃 , which was defined so that all the elements in 𝜃𝜃  are 
homogeneously ranged approximately between 0 and 1. The 
regularization discourages the parameters from deviating from 
their respective typical values unless really needed to achieve 
superior goodness of fit.  Hence, the subset of subject-specific 
parameters exhibiting deviations from the typical values in 
many subjects may be viewed as subject-specific parameters 
sensitive to the LR dose-UO input-output relationship.  In this 
paper, we selected sensitive subject-specific parameters as 
those whose deviations exceeded a threshold value when 
averaged across all the 120 patients in the training dataset.  
Third, we ascertained the ability of the mathematical model 
(with the chosen sensitive subject-specific parameters) to 
faithfully replicate the UO responses to the LR dose in the 
training dataset, as well as its physiological plausibility.  To this 
aim, we estimated the sensitive subject-specific parameters by 
solving the following optimization problem on an individual 
patient basis using a multi-start gradient descent method 
(“globalsearch” in conjunction with “fmincon”) in MATLAB 
(MathWorks, Natick, MA) while fixing the remaining 
(insensitive subject-specific and subject-invariant) parameters 
at the respective typical values: 

𝜃𝜃�𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃�

𝐽𝐽𝑖𝑖�𝜃𝜃�� = 𝑎𝑎𝑟𝑟𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃�

��∑ �𝑢𝑢𝑢𝑢𝑖𝑖
𝑑𝑑(𝑡𝑡𝑘𝑘)−𝑦𝑦𝑖𝑖�𝑡𝑡𝑘𝑘,𝜃𝜃���

𝑈𝑈𝑈𝑈𝑖𝑖
 𝐷𝐷𝑖𝑖

𝑘𝑘=1 �
2
(3) 

where 𝜃𝜃� is the vector of sensitive subject-specific parameters 
selected by solving Eq. (2) (i.e., it is a subset of 𝜃𝜃), and 𝜃𝜃�𝑖𝑖 is 𝜃𝜃� 
estimated for the subject 𝑖𝑖.  Then, we examined the faithfulness 
of the mathematical model in terms of (i) normalized mean 
absolute error (NMAE) [31], (ii) correlation coefficient, and 
(iii) UO range agreement, all between measured versus model-
replicated UO on an individual patient basis, and (iv) Bland-
Altman statistics between all measured versus model-replicated 
UO.  We computed the UO range-based agreement by 
specifying UO ranges of interest and then for each range 
computing the percentage of actual UO in the range whose 
model-predicted UO also resides in the same range.  In addition, 
we examined the physiological plausibility of the mathematical 
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model in terms of (i) both typical and subject-specific model 
parameter values (e.g., by comparing them with the values 
reported in the existing literature) as well as (ii) the plausibility 
of the volume kinetic and kidney function responses predicted 
by the mathematical model equipped with typical parameter 
values.  We repeated the above procedure to optimize the 
mathematical model (i.e., Eq. (1)-(3)) so that it can yield 
minimal number of sensitive subject-specific parameters and 
adequate faithfulness and physiological plausibility. 

Using the test dataset, we externally validated the 
faithfulness and physiological plausibility of the optimized 
mathematical model on an individual patient basis, in terms of 
the same metrics used above. 
3) Mathematical Model Analysis 

In addition to the optimization and validation of the 
mathematical model for in-human application (II.C.1-II.C.2), 
we also sought to garner in-depth insights and expand the 
knowledge on burn pathophysiology using the mathematical 
model.  In particular, existing literature suggests that patients 
who are older [37], female [38]–[40], and associated with 
inhalation injury [37], [41], as well as those who are associated 
with severe burn injury [37] and/or receive delayed treatment 
[42] have a higher risk of mortality.  The mathematical model 
already incorporates TBSA and arrival time post-burn, thereby 
allowing it to predict more severe responses to burn injury 
associated with large TBSA and delayed resuscitation 
treatments.  However, it does not explicitly account for the 
effect of age, gender, and inhalation injury. 

 To investigate if the mathematical model can elucidate the 
age-, gender-, and inhalation injury-dependent differences in 
the burn physiological and pathophysiological mechanisms, we 
fitted the (optimized and validated) mathematical model 
separately to (i) younger versus older patients, (ii) female 
versus male patients, and (iii) patients with versus without 
inhalation injury.  We used the patients in the training dataset 
(N=120), since they were associated with consistent treatment 
durations (i.e., 24 hours monitoring in most patients) compared 
to the test dataset. We excluded 16 patients since they did not 
have gender specification.  We defined older patients as those 
with age above the median age of the 104 patients (45 years), 
and younger patients otherwise.  Using these 104 patients in the 
training dataset, we built the group-average mathematical 
models associated with younger (N=52) versus older (N=52) 
patients, (ii) female (N=22) versus male (N=82) patients, and 
(iii) patients with (N=11) versus without (N=93) inhalation 
injury, all by solving a hybrid of the optimization problems in 
Eq. (1) and Eq. (3) (specifically, solving Eq. (1) only with 
respect to sensitive subject-specific parameters rather than all 
the sensitive parameters) based on the dataset associated with 
the specific patient groups.  Then, we examined if the model 
parameter values for the two groups in each of the three 
categories (age, gender, and inhalation injury) exhibited 
meaningful contrasting differences that provide clinically 
important physiological insights.  

III. RESULTS 
The iterative optimization of the mathematical model using 

the training dataset resulted in a mathematical model with seven 

sensitive subject-specific parameters in total, including the 
nominal capillary pore radius to albumin radius ratio (𝛼𝛼�), the 
maximum increase in the pore ratio in the intact (𝑀𝑀𝛼𝛼𝐼𝐼𝐼𝐼) and the 
burnt (𝑀𝑀𝛼𝛼𝐵𝐵𝐵𝐵) tissue capillary bed, the maximum increase in the 
capillary hydrostatic pressure (𝑀𝑀𝑃𝑃𝐶𝐶) , the slow decay rate 
associated with the increase in the capillary hydrostatic pressure 
(𝜆𝜆1,𝑃𝑃𝐶𝐶), the tubule-glomerular feedback sensitivity (𝐾𝐾𝑇𝑇𝑇𝑇𝑇𝑇), and 
the nominal water reabsorption rate in the collecting ducts 
(𝐽𝐽𝑅̅𝑅𝑅𝑅,𝐴𝐴𝐴𝐴𝐴𝐴).  Table I summarizes NMAE, correlation coefficient, 
UO range-based agreement pertaining to < 30, 30< <50, and 
>50 ml/h, or <0.5, 0.5< <1, and >1 ml/kg∙hr, and the Bland-
Altman statistics (i.e., the limits of agreement), all associated 
with the optimized mathematical model.  Fig. 3 presents 
examples of actual versus model-predicted UO responses 
associated with eight patients with various burn injury severity 
in the test dataset (details discussed in IV.A).  Fig. 4 presents 
volume kinetic and kidney function responses to burn injury 
and burn resuscitation predicted by the group-average 
mathematical model in response to group-average burn 
resuscitation LR dose (details discussed in IV.A).  Fig. 5 shows 
the weight-normalized PV, intravascular water gain (LR dose) 
and loss (capillary filtration in excess of lymphatic flow), and 
the burn resuscitation effectiveness (defined as the weight-
normalized intravascular water gain rate (i.e., LR dose minus 
capillary filtration in excess of lymphatic flow) divided by the 
weight-normalized LR dose) throughout the 24-hour treatment 
period as predicted by the group-average mathematical model 
(details discussed in IV.B).  Table II summarizes (i) 
demographics, (ii) statistical characteristics of fluid retention 
and UO relative to its treatment target range (30-50 ml/hr), and 
(iii) group-average model parameter values related to burn-
induced inflammatory perturbations, all associated with the two 
patient groups in the three categories. 

IV. DISCUSSION 
Developing treatment strategies and expanding knowledge 

associated with burn injury present formidable challenges due 
to its complex pathophysiology, large inter-patient variability, 
and its less common incidence compared to other widespread 
injuries despite its devastating impact on the mortality and the 
quality of life.  High-fidelity mathematical models capable of 
replicating volume kinetic and kidney function responses to 
burn injury and resuscitation has the potential to advance both 
treatment development and knowledge expansion aspects of 
burn resuscitation.  Regardless, to the best of our knowledge, 
no mathematical model exists that has been developed and 
extensively validated using clinical datasets from real burn 
patients.  In this paper, we present our continued development, 
extensive in-human validation, and analysis of a mathematical 
model for the study of burn injury and resuscitation, which is 
equipped with contemporary knowledge on the burn-related 
physiology and pathophysiology. 

A. In-Human Credibility 
The enhanced/optimized mathematical model based on the 

training dataset exhibited adequate predictive capability for UO 
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response to burn injury and resuscitation in both training and 
test datasets (Table I and Fig. 3).  In particular, the mathematical 
model worked equally well in both training and test datasets, 
both in terms of average statistics and robustness (e.g., NMAE 
was 15% with small IQR of 6%; Table I).  Further, it could 
capture the physiological differences in burn patients across 
diverse TBSA range, including those associated with 
comparable weight ((a) versus (e) and (c) versus (g) in Fig. 3) 
and those associated with distinct weight ((b) versus (f) and (d) 
versus (h) in Fig. 3).  In addition, the mathematical model 
showed a high degree of UO range-based agreement (>90% 
(when weight-normalized) and >78% (when not weight-

normalized) of model-predicted UO resided in the same range 
to actual UO; Table I).  Noting that existing burn resuscitation 
protocols determine the hourly resuscitation dose based on the 
range of UO, the results suggest that the mathematical model 
may serve as a valuable platform for non-clinical testing of burn 
resuscitation protocols and algorithms. 

In addition to UO, the mathematical model was able to 
predict the overall volume kinetic and kidney function 
responses to burn injury and resuscitation in a realistic way: the 
behaviors of the internal volume kinetic and kidney variables 
were consistent with the contemporary knowledge on burn 
pathophysiology as well as findings from recent studies (Fig. 4).  

 
Fig. 3. Actual versus model-predicted urinary output (UO) responses of eight burn patients associated with various injury severity and weight.  Circles: actual UO.  
Solid lines: model-predicted UO.  (a) TBSA 27% with 80 kg weight.  (b) TBSA 36% with 66 kg weight.  (c) TBSA 46% with 90 kg weight.  (d) TBSA 60% with 
71 kg weight.  (e) TBSA 24% with 81 kg weight.  (f) TBSA 35% with 94 kg weight.  (g) TBSA 50% with 89 kg weight.  (h) TBSA 60% with 102 kg weight. 

 
Fig. 4. Volume kinetic and kidney function responses to burn injury and burn resuscitation during initial 24 hours post-burn, predicted by the group-average 
mathematical model.  V/V0: water volume relative to its initial value.  FACC: accumulated fluid.  RFADH: reabsorption fraction due to ADH (see Appendix B provided 
in Supplementary Document).  α: capillary pore radius ratio (see Appendix C provided in Supplementary Document).  JC: capillary filtration.  QC: albumin transport 
across the capillary wall.  JL: lymphatic flow.  (b) and (d): Blue solid, brown dashed, and orange dash-dot lines correspond to plasma, intact tissues, and burnt 
tissues, respectively.  (c): Blue solid and orange dash-dot lines are weight-normalized accumulated resuscitation LR volume and water loss to tissues (i.e., capillary 
filtration in excess of lymphatic flow), respectively.  (i)-(l): Brown dashed and orange dash-dot lines correspond to intact and burnt tissues, respectively.  IT: intact 
tissues.  BT: burnt tissues. 
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Specifically, the group-average mathematical model predicted 
that (i) plasma volume and UO showed an anticipated trend of 
initial decline upon the onset of burn injury and subsequent 
recovery with the initiation of burn resuscitation and later with 
the return of resuscitation fluid leaked into the tissues back to 
the blood (Fig. 4(b), Fig. 4(c), and Fig. 4(e)) [43], [44]; (ii) burnt 
and intact tissue volumes increased up to nearly twice their 
initial values, peaking and starting to decay approximately at 24 
hours post-burn (Fig. 4(b)) [45]–[47]; (iii) plasma albumin was 
transported into burnt and intact tissues due to the perturbations 
in albumin reflection and permeability-surface area coefficients 
(Fig. 4(d) and Fig. 4(k)) triggered by burn-induced increase in 
the capillary pore size that decreased the capillary pore radius 
ratio in both burnt and intact tissue (Fig. 4(i)) [48]; (iv) GFR 
increased just a few hours post-burn even before plasma volume 
(Fig. 4(f)) [49]; and (v) sodium concentration decreased after 
burn injury and resuscitation (Fig. 4(h)) [50]. 

Importantly, the mathematical model could predict UO as 
well as physiologically plausible volume kinetic and kidney 
function responses once physiologically acceptable values were 
assigned to its parameters.  In fact, the majority of the 
parameters equipped with physiological implications assumed 
values comparable to typical values and/or those reported in the 
literature both on the individual and population-average basis 
(Table AI).  

In sum, we demonstrated that the mathematical model can 
faithfully replicate the volume kinetic and kidney function 
responses in a wide range of burn patients, both in terms of the 
adequacy of the model-predicted responses and the plausibility 
of the model parameter values. 

B. Insights on Burn Resuscitation Effectiveness 
One strength of the mathematical model presented in this 

paper is its ability to replicate overall responses of a burn patient 
to injury and resuscitation, including those that cannot be 
clinically measured.  Exploiting this advantage, we sought to 
garner insights on the effectiveness of burn resuscitation in a 
typical patient subject to burn injury.  It is known that the 

homeostasis in volume kinetics is severely disrupted after burn 
injury due to the activation of multiple inflammatory mediators, 
which in turn causes a large portion of the resuscitation fluid to 
leak out of the intravascular compartment via capillary 
filtration.  Although this leakage is partially recovered by the 
increase in lymphatic flow, >50% of the resuscitation fluid can 
leak out of the intravascular compartment in the initial hours 
post-burn in extensive burn injury [51], [52].  In this regard, 
burn resuscitation effectiveness represents the portion of the 
resuscitation fluid actually used to expand plasma volume.  
Based on the investigation and interpretation of >50 
physiological variables including those presented in Fig. 4 and 
Fig. 5, we could garner the following insights on the important 
physiological and pathophysiological mechanisms responsible 
for the effectiveness of burn resuscitation during the initial 24 
hours post-burn.  Initially, there is a large and fast fluid shift 
from the blood to the intact and burnt tissues immediately after 
burn injury for up to one hour, leading to a large decrease in the 
plasma volume (Fig. 4(j) and Fig. 5(a)).  Our mathematical 
model suggests that major mechanisms responsible for this 
initial loss of plasma volume may be negative hydrostatic 
pressure, protein denaturation in burnt tissues, and systemic 
increase in the capillary hydrostatic pressure.  After this initial 
phase, a decrease in the capillary filtration and the self-
regulation of plasma volume occur for up to one hour.  Our 
mathematical model suggests that major mechanisms 
responsible for this phase may be the reduction in the plasma 
volume and the resulting decrease in the capillary hydrostatic 
pressure, the recovery of hydrostatic pressure in the burnt 
tissues, and the increase in the lymphatic flow (Fig. 4(l)).  The 
effectiveness of burn resuscitation during this phase is very high 
(>100%), meaning that plasma volume is expanded based on 
almost all the resuscitation fluid as well as the fluid returning 
from the edematous (burnt and intact) tissues (Fig. 5(c)).  
Subsequently, burn resuscitation effectiveness is deteriorated 
quickly as the capillary filtration of water and protein increases 
again due to the opened capillary pores (Fig. 4(i)) and the 
increase in the plasma volume.  Our mathematical model 
suggests that major mechanisms responsible for this phase may 
include the increase in the protein concentration in both burnt 
and intact tissues as well as the hypoproteinemia in the blood 
(Fig. 4(d)), which altogether increase the osmotic pressure 
gradient toward tissues and promote capillary filtration of both 
water and protein (thereby forming a vicious circle).  Burn 
resuscitation effectiveness reaches its minimum level of 2%-
15% at 10-15 hours after the initiation of treatment, which is in 
close agreement with the literature suggesting maximal edema 
formation in this period post-burn [45].  Finally, burn 
resuscitation effectiveness increases back to approximately 
40% at 24 hours after the initiation of treatment.  Our 

Table I. Normalized mean absolute error (NMAE: median (IQR)), correlation coefficient (r value), Bland-Altman statistics (bias±2×SD), and range-based 
agreement (median (IQR)) associated with urinary output (UO) prediction by the mathematical model. 

 
 Training Dataset (N=120) Test Dataset (N=113) 

NMAE [%] 14.8 (6.0) 15.4 (6.0) 
Correlation Coefficient (r Value) 0.67 0.82 

Limits of Agreement [ml/hr] -3±57 +2±45 
UO Range-Based Agreement [%] 

(< 30, 30< <50, and >50 ml/h) 78 (15) 83 (14) 

UO Range-Based Agreement [%] 
(<0.5, 0.5< <1, and >1 ml/kg∙h) 90 (16) 92 (16) 

 
 

 
Fig. 5. Group-average prediction of (a) weight-normalized plasma volume 
(PV), (b) weight-normalized intravascular water gain (LR dose: blue solid) and 
loss (capillary filtration minus lymphatic flow: orange dashed) rates, and (c) 
burn resuscitation effectiveness (BRE). 
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mathematical model suggests that major mechanisms 
responsible for this recovery may include the recovery of 
lymphatic flow to return excessive water and protein to the 
blood as well as the gradual decrease in the capillary pore size, 
which altogether decreases the fluid extravasation rate.  

C. Cohort-Dependent Differences in Burn Pathophysiology 
The analysis of datasets associated with various categorical 

patient cohorts (with respect to age, gender, and inhalation 
injury) provided meaningful insights on the cohort-dependent 
differences in burn physiology and pathophysiology (Table II).  
To begin with, the mathematical model was able to replicate 

UO response to burn injury and resuscitation associated with all 
the categorical patient cohorts (younger versus older, female 
versus male, and patients with and without inhalation injury).  

First, between younger versus older patients, the latter had 
much higher mortality rate and higher portion of UO responses 
below the target therapeutic range than the former despite its 
smaller group-average TBSA and higher level of weight-
normalized LR dose, which leads to higher fluid retention in the 
latter (Table II(a)).  Comparing the mathematical models fitted 
to younger versus older burn patients, the latter was associated 
with higher inflammation factors (including the larger increase 
in capillary pore size in the burnt tissues ( MαBT ) and the 
capillary hydrostatic pressure (MPC)).  

Second, between patients with versus without inhalation 
injury, the former likewise had >1.3 times higher mortality rate 
and higher portion of UO responses below the target therapeutic 
range than the latter (Table II(c)).  Comparing the mathematical 
models fitted to burn patients with versus without inhalation 
injury, the former exhibited higher inflammation factors 
(including the larger increase in capillary pore size (𝑀𝑀𝛼𝛼𝐼𝐼𝐼𝐼 and 
𝑀𝑀𝛼𝛼𝐵𝐵𝐵𝐵) and capillary hydrostatic pressure (𝑀𝑀𝑃𝑃𝐶𝐶)) similarly to the 
older patient cohort.  Existing literature shows the possible 
association between fluid retention and edema versus mortality 
and complication rates in burn patients [12].  In addition, both 
literature and our dataset indicate higher fluid retention and 
edema as well as higher mortality rates in older patients and 
patients with inhalation injury [53], [54].  From this standpoint, 
our mathematical model analysis predict that higher 
inflammation may be a key contributing factor in increasing the 
mortality risk of older patients and patients with inhalation 
injury via an increase in the fluid retention.  Our prediction is 
in fact consistent with the contemporary knowledge in the 
literature identifying inflammation as an important mediator of 
increased fluid retention and edema with the increased 
mortality rate in older patients [55], [56] and patients with 
inhalation injury [57], [58], although other causes can play a 
role (e.g., degraded cardiovascular efficiency in elderly burn 
patients [59]).  Although our mathematical model analysis 
reveals possible mechanisms responsible for higher mortality 
rate, the exact cause is yet to be clearly elucidated.  Regardless, 
lower burn resuscitation effectiveness in older patients and 
patients with inhalation injury relative to younger patients and 
patients without inhalation injury remains true, and our 
mathematical model was able to replicate the age- and 
inhalation injury-dependent differences in burn resuscitation 
effectiveness.  Hence, our mathematical model may serve as an 
effective basis to develop and validate burn resuscitation 
protocols and algorithms suited to these categorical patient 
cohorts. 

Third, between female and male patients, neither the dataset 
nor the mathematical model showed any meaningful difference 
in terms of inflammation and fluid retention (Table II(b)).  This 
contrasts against some literature identifying the female gender 
as a mediator of mortality risk associated with burn injury, as 
confirmed by our dataset (1.3 times the mortality rate in males).  
Hence, our mathematical model analysis suggests that higher 
mortality risk in female burn patients may be attributed to 
factors other than an increase in the inflammation and the 
corresponding increase in the fluid retention, especially those 

Table II: Demographics, characteristics of fluid resuscitation, fluid retention, 
and urinary output (UO) relative to its treatment target range (30-50 ml/hr), and 
group-average model parameter values related to burn-induced inflammatory 
perturbations, all associated with the two patient groups in (a) age (younger 
versus older patients), (b) gender (female versus male patients), and (c) 
inhalation injury (patients with versus without inhalation injury) categories.  
Fluid retention is computed as the total resuscitation fluid (LR) volume minus 
the total UO during the 24 hours of treatment.  Fluid resuscitation and fluid 
retention are shown in mean±SD, while UO is shown in median (IQR).   𝑀𝑀𝛼𝛼𝐵𝐵𝐵𝐵, 
𝑀𝑀𝛼𝛼𝐼𝐼𝐼𝐼 , and 𝑀𝑀𝑃𝑃𝐶𝐶  are group-average values of burn-induced inflammatory 
perturbation parameters in the mathematical model. 
 
 (a) Age 

 Younger 
(N=52) 

Older 
(N=52) 

Weight [kg] 86 (21) 84 (15) 
Injury Severity (TBSA) [%] 44 (17) 38 (17) 

Mortality Rate [%] 18 42 
Fluid Resuscitation [ml/kg∙%] 3.27±1.18 4.20±1.59 

Fluid Retention [ml/kg∙%] 2.78±1.16 3.75±1.6 
30 ml/hr≤UO≤50 ml/hr 26 (15) 23 (16) 

UO<30 ml/hr 21 (14) 34 (20) 
UO>50 ml/hr 53 (18) 42 (20) 

𝑀𝑀𝛼𝛼𝐵𝐵𝐵𝐵 0.23 0.54 
𝑀𝑀𝛼𝛼𝐼𝐼𝐼𝐼  0.19 0.19 
𝑀𝑀𝑃𝑃𝐶𝐶 0.05 1.70 

 
(b) Gender 

 Female 
(N=22) 

Male 
(N=82) 

Weight [kg] 74 (17) 88 (17) 
Injury Severity (TBSA) [%] 38 (13) 43 (19) 

Mortality Rate [%] 37 27 
Fluid Resuscitation [ml/kg∙%] 4.0±1.24 3.67±1.52 

Fluid Retention [ml/kg∙%] 3.43±1.2 3.2±1.5 
30 ml/hr≤UO≤50 ml/hr 28 (14) 24 (16) 

UO<30 ml/hr 32 (15) 26 (20) 
UO>50 ml/hr 40 (16) 50 (20) 

𝑀𝑀𝛼𝛼𝐵𝐵𝐵𝐵 0.32 0.48 
𝑀𝑀𝛼𝛼𝐼𝐼𝐼𝐼  0.16 0.15 
𝑀𝑀𝑃𝑃𝐶𝐶 2.26 1.73 

 
(c) Inhalation Injury 

 Injury 
(N=11) 

No Injury 
(N=93) 

Weight [kg] 77 (15) 86 (18) 
Injury Severity (TBSA) [%] 46 (14) 41 (18) 

Mortality Rate [%] 40 29 
Fluid Resuscitation [ml/kg∙%] 4.33±1.19 3.66±1.49 

Fluid Retention [ml/kg∙%] 3.9±1.2 3.0±1.5 
30 ml/hr≤UO≤50 ml/hr 24 (16) 24 (15) 

UO<30 ml/hr 31 (23) 27 (18) 
UO>50 ml/hr 44 (19) 48 (20) 

𝑀𝑀𝛼𝛼𝐵𝐵𝐵𝐵 0.52 0.31 
𝑀𝑀𝛼𝛼𝐼𝐼𝐼𝐼  0.19 0.18 
𝑀𝑀𝑃𝑃𝐶𝐶 1.47 0.13 
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not manifested in the initial 24 hours post-burn.  In fact, a prior 
study performed on mice showed that the difference in the 
inflammatory responses in female and male subjects was not 
clear until 6 days post-burn [60].  The exact mechanisms 
responsible for the gender difference in burn-induced mortality 
risk are still unknown and must be unveiled. 

V. CONCLUSIONS 
The main outcome of this paper is a physiologically plausible 

mathematical model capable of replicating volume kinetic and 
kidney function responses to burn injury and resuscitation 
suited to in-human application.  To the best of our knowledge, 
the mathematical model presented in this paper may be the first 
of its kind developed and extensively validated using large 
clinical datasets from real burn patients.  We anticipate that the 
mathematical model may provide an attractive platform to 
conduct non-clinical testing of burn resuscitation protocols and 
test new hypotheses on burn pathophysiology.  Future effort 
must be exerted to investigate the potential of the mathematical 
model as medical digital twin for disciplined development and 
rigorous stress testing of emerging burn resuscitation 
algorithms and as a cornerstone to expand our understanding of 
burns. 
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