Q-PIM: A Genetic Algorithm based Flexible DNN
Quantization Method and Application to
Processing-In-Memory Platform

Yun Long, Edward Lee, Daechyun Kim and Saibal Mukhopadhyay
yunlong, elee359, daehyunkim@gatech.edu, saibal.mukhopadhyay @ece.gatech.edu

Abstract—This paper presents a genetic algorithm (GA) based
training free layer-wise gquantization method, named as GAQ,
to reduce model complexity of arbitrary DNN architectures.
The proposed algorithm formulates an optimization problem to
determine the quantization level for each DNN layer under the
constrain of maximum accuracy degradation and uses genetic
algorithm to solve the problem at the inference stage of any pre-
trained DNN models. The experimental results on various DNNs
for image classification demonstrate 5x to 17x weight compression
rate with insignificant (< 29%) accuracy loss, comparable with ex-
isting quantization algorithms which typically require multi-pass
retraining and handcrafted tuning. To evaluate the computational
benefits of GA(}, we present a SRAM bhased flexible precision all-
digital processing-in-memory (PIM) architecture, named as Q-
PIM, that leverages GAQ to optimally control precision for each
DNN layer to enhance efficiency. The simulation in 28nm CMOS
shows potential for significant energy and latency advantage over
fixed-precision PIM architectures.

I. INTRODUCTION

The parameter and activation gquantization has been explored
as a promising technique to reduce the complexity of deep neu-
ral network (DNN) models and can be particularly beneficial
for resource-constrained platform such as mobile devices, ToT
edge devices, and other real-time systems. Recent DNN quan-
tization works have demonstrate very promising compression
rate with isignificant accuracy loss (1.e. less than 2% drop
on ImageNet) [1]-{7]. But the existing techniques suffer from
lack of quantization granularity, need for refraining, and low
flexibility as discussed below.

Coarse guantization granularity. It has been observed that
each layer of a given model has varying sensitivity to quanti-
zation [5]. However, most of existing works either employ
uniform quantization or semi-uniform quantization, for ex-
ample, quantizing most layers to a predefined precision and
employing floatmg-point for rest of the layers [1].

Training requirement. Most of the existing quantization
approaches require single or multiple passes of training. The
training of large DNN models is not only computationally
expensive, but also requires access to large-scale training
dataset. Obtaining such dataset for domain specific tasks such
as autonomous driving can be expensive as well as vulnerable
to data privacy/security challenges.

Inflexible algovithms with handcraffed funing. Bxisting
DNN quantization algorithms rely on empirical method to

This work was supported in part by the National Science Foundation (NSF-
E2CDA #1740197) and in part by the Semiconductor Research Corporation.

978-1-7281-1085-1/20/$31.00 ©2020 IEEE

determine precision reduction. For example, Apprentice [1]
reserves the precision of the first/final layers in floating point
and lowers the precision of the rest layers to 2-bit. PACT
[6] keeps the shortcut convolution layer (Conv layer) of
ResNet in floating point and quantizes other layers to 2-bit.
Unfortunately, empirical (handerafted) tuning of one DNN
model may not guarantee performance for a different DNN.

This paper presents ¢ geretic algorithm (GA) based and re-
training free layer-wise quantization method, named as GAQ,
to reduce model complexity of arbitrary DNN architectures.
DNN quantization is treated as an optimization problem where
the objective is to automatically decide a quantization level for
each layer, under the constrain of a accuracy loss. The devel-
oped optimization problem is solved using genetic algorithm,
a well-known technique in artificial intelligence. GAQ is re-
training free and only works on inference stage with a small
evaluation dataset. Moreover, the GAQ ensures that layer-wise
quantization is performed i a fully automated manner (with-
out handcrafted tuning) for any DNN architecture, making it
flexible and scalable.

While GAQ is a hardware-agnostic algorithm, we demon-
strate the performance and energy-efficiency impact of GAQ
on a DNN accelerator considering Processing-In-Memory
(PIM) platform [8]-[10]. Specially, we present @ SRAM based
[flexible precision PIM inference accelerator, named as Q-
PIM, that uses GAQ to optimally control precision for
different DNN layers. The Q-PIM adapts the in-memaory
bit accumulation based all-digital PIM designs [10] with
redesigned memory peripherals and system architecture to
enable computation with tunable (4/8/16/32-bit) precision.

We evaluate GAQ across various DNN models with dif-
ferent dataset, resulting to 5x - 17x weight compression
rate with < 2% accuracy loss. We implement Q-PIM with
28nm CMOS, demonstraing the state-of-the-art computing
efficiency. Moreover, algorithm-hardware co-simulation shows
that compared to 16-bit fixed point precision running on Q-
PIM platform, the Q-PIM with GAQ results in 2.8x to 13x
lower latency and 3.3 to 17x lower energy for benchmarks
DNNs including LeNet, AlexNet, VGG, and ResNet-18/34/50.

II. BACKGROUND
A. DNN guantization algorithms

Early stage of the research on DNN quantization algorithms
suffers from large accuracy drop when testing on deep mod-

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 19,2023 at 15:20:33 UTC from IEEE Xplore. Restrictions apply.

els and large dataset. Recent works minimize the accuracy
degradation. For example, Deep-compression [7] reduces the
bit-precision of Conv layer and fully-connected layer to §-
bit and 5-bit, respectively. Combining with pruning, Deep-
compression achieves negligible accuracy loss for AlexNet
on ImageNet. Apprentice [1] leverages the knowledge distil-
lation techniques and reduces the bit-precision of intermediate
layer to 2-bit weight and 8-bit activation, resulting to 2.1%
accuracy loss for ResNet on ImageNet. LQ-NETs [3] employs
an adaptive quantization strategy, shows 0.3% accuracy loss
for ResNet with 4-bit weight and floating pomt activation.
Several other waorks, such as UNIQ [4], and PACT [6],
also demonstrates good compression rate with insignificant
accuracy drop. However, most of them requires re-training,
large scale training dataset, additional trainable parameters,
and handcrafted tuning. Moreover, empirical precision tuning
for each layer to achieve layer-wise quantization is prohibitive
for very deep models and can’t guarantee the optimal tradeoff
between accuracy and compression. An automated, flexible,
and efficient quantization algorithm is still missing.

B. Basics of Genetic Algorithm

Genetic algorithm is a widely used heuristic search and
optimization algorithm inspired by the process of natural se-
lection and evolution. GA starts from an initialization process
where a set of mitial populations (i.e. candidate solutions
for the targeting problem) are generated. Next an iterative
process is used to evolve the initial population to an optimal
solution. Given a target problem, a fitness function is used
to evaluate the effectiveness of the candidates. Candidates
with low fitness value are eliminated while candidates with
high fimess value are kept to generate a new generation via
crossover and mutation (i.e. re-generation). This process is
repeated until a satisfactory solution is reached.

C. PIM Architecture

The PIM architecture using SRAM, DRAM, resistive RAM
(ReRAM), and ferroelectric FET (FeFET) have been explored
as promising solutions for energy-efficient acceleration of
DNN [8]-[12]. Majority of the prior PIM accelerators explore
analog computations using bit-line cwrrent summation, requir-
ing data conversion between internally analog and externally
digital domain. Since DAC and ADC introduce power/latency
overheads and increases design complexity, digital PIM con-
figurations have been proposed, including in-memory logic
[9], [11], [12] and in-memory bit accumulation [10]. The
all-digital design eliminates the need for ADC/DAC and
demonstrates good energy-efficiency, specifically, for higher
precision operations. In particular, we consider the all-digital
PIM based on in-memory bit accumulation as our baseline
design [10]. In this configuration, the array is accessed i
row-by-row (sequential) manner; the AND operation (i.e. 1-
bit multiplication) is performed between the word-line input
data and the bit value stored m the cell. Digital accumulation
is performed after the sense-amplifier for each clock cycle.

a [Set upperlower boundanes]
=, Candidates
é initialization
o [Generate intial candidates J
=
[Inference with candidates]
Evaluation
g [Calculate fitness values]
®
2 L Knock out bad candidates J
Re-generation
[Reproduce with good candldatesJ
ol
© ! 1
by .{ Fine tuning i [Greedy search] H
z i
o

Fig. 1. The overall GAQ flow.

Essentially, bit accumulation performs multiplication using
multiple consecutive accumulation operation.

IIT. GAQ BASED DNN LAYER-WISE QUANTIZATION

Figure 1 shows the proposed GAQ flow. For simplicity, we
use LeNet, a 5 layer CNN containing 3 conv layers and 2
fully-connected layer as an example. Parameter quantization
(conversion from floating point to N-bit fixed point) in GAQ
follows the same rule in existing works, namely, finding the
parameter range and perform truncation evenly [1], [5]. GAQ
is implemented in 4 steps.

Step @: Candidates initialization. Each initial candidate in
GAQ is a vector containing NV integers where NV equals to the
number of layers in the target DNN model and each number
in that vector represents the bitwidth of a corresponding layer.
For example, with LeNet, a possible candidate could be [8 8 8
5 5], indicating that 3 Conv layers are quantized to 8-bit and
2 fully-connected layers are quantized to 5-bit. To ensure the
convergence speed, we first constrain the search space, namely,
define the upper bound (U5} and lower bound (L B) for the
GA exploration. The upper bound is defined in a heuristic
way, for example, upper bound is defined as [8 8§ 8 § 8] for
LeNet since 8-bit i1s good enough to guarantee the accuracy
of LeNet on MNIST dataset. The lower bound is determined
by the sensitivity of each layer. As shown in Figure 2 (a), the
lower bound precision for a layer is defined as the bit-width
that, once quantized, violates the accuracy constrain. All other
layers are reserved in floating point precision when evaluating
a given layer’s sensitivity. For LeNet, the lower bound is set
tobe[12 12 1] under a < 2% accuracy drop constrain. With
the upper/lower bound, an mitial candidate can be generated
with equation 1.

C = [rand(high = UB;,low = LB;) vie [0..N]] (1)

rand is the function to generate random integer between high
and {ow. IV is the number of layers in the given DNN model
(N =5 for LeNet). Figure 2 (b) shows several possible initial
candidates generated based on the upper and lower bound.

Authorized licensed use limited to: Georgia Institute of Technology. Dowvinloaded on January 19,2023 at 15:20:33 UTC from IEEE Xplore. Restrictions apply.

Upper bound ~ay

Bit precision

C oML EO® - ®©

‘;‘L'ower bound

Candiciates for next
generation

Candidates + fitness for
current generation

-0.325
-0.22

™ e
B N
ww
W G

eliminated

Candidates with

Convl Corv2 Conv3

== | per bound
Individual 2
=== ndlividual 4

Initial populations with upper.
[5, 8,8 8,8]

B B2 E3 54 S H6 B7 HE ES EI0

Upper bound: [8, 8, 8, 8, 6]
Lower bound: [1,2,1,2,1]

(@ (b)

FC1 FC2
me=ndividual 1

Individual 3
ame=|_ower bound
Tlower bound:

_02
0612
0616

0630
0843
0850
0708
0,795

GEtsEEE TEE
Mewly generated
e

e

Parents

Sl o
B [G0t P o
= B 3 o0 w0 00 on
e e RS =2}

Direct copy

candidates for low fithess are

re-generation

©

Fig. 2. (a) Layer sensitivity towards quantization for LeNet to determine the lower bound, (b) randomly generated initial candidates constrained by the upper

bound and lower bound, and (¢) procedure for re-generation of candidates.

Step @: Evaluation. The fitness function (F') evaluates two
metrics of each candidate (C): the compression ratio and the
computing accuracy. The fitness function is given by:

N
—a Y CiW; - B Err

F{C)
= @
A Err— Err acc > threshold
BARPE = inf ace < threshold

where C' is the candidate solution (i.e. a vector with N
integers); C; is the bitwidth of i-th layer of the DNN and W;
is the number of weight parameters in that layer; Erv is the
error introduced by quantization and a penalty (inf or oo) is
applied to the fitness function if the error exceeds a pre-defined
threshold; o and /3 are weighting factors for compression rate
and accuracy, respectively. It is worth to mention that we
directly quantize a pre-trained model and perform inference,
no re-training is required.

Step ©: Re-generation (Crossover and mutation). Based
on the fitness value, good candidates (ie. candidates with
high fitness) are reserved to reproduce the next generation
populations and the bad candidates are eliminated. Each
generation is composed of 15 independent candidates, ranked
based on their fitness value (Figure 2 (c)). The bottom 5
candidates (candidates with best fitness) are used for re-
generation. To generate a new child candidate, two parent
candidates are randomly picked from the 5 good candidates.
The child candidate is generated based on the range described
by the two parent candidates, regulated by equation 3.

C' = [randi(high = maz;,low = min;) for i in [0..N]]
where maz; =maz(A;, B+ 1 (3)

min; = min(4;, B;) — 1
where A; and B; are the bitwidth of the i-th layer defined by
the randomly picked parent candidates A and B, respectively.
Essentially, the two parents candidates define the upper/lower
bound to reproduce a new candidate. To ensure the best results
and fast convergence, at each iteration, 3 candidates with
highest. fitness value from last generation is append to the

newly generated individuals (i.e. direct copy).

Step O: Fine tuning after GA. While standalone GA works

perfectly on shallow models such as LeNet and AlexNet,

we observe that the output (layer-wise quantization strategy)
from GA alone for deep models still has room to be further
compressed. Therefore, we apply the greedy search (GS)
algorithm to the output of GA to further reduce the bitwidth
of layers that are robust toward precision reduction. GS is an
iterative method but performs search in a "greedy’ approach.
At each step, GS iteratively reduces 1-bit for a layer and
checks which layer shows the best robusiness towards bit
reduction; Then the precision for the most robust layer will
be reduced accordingly. The GAQ with GS shows 5%-10%
higher compression (same accuracy) for VGG and ResNet.

Again, for all steps, a pre-trained model is quantized and
only inference is performed, no re-training is required.

Quantization for activation. We observe that the quanti-
zation sensitivity for activation are closely correlated with the
sensitivity of weight parameters and in most cases, tend to
be less robust (i.e. larger accuracy drop when using the same
precision of the weight in the same layer). We determine the
precision for the activation using

P eaminl(Py By v D) (4

weg

a

weight in fth layer, respectively. P, is a dataset-dependent
value which is used to constrain the maximum possible
precision for activation. For MNIST and CIFAR-10, P, is 8-
bit; for ImageNet, P, 1s 12-bit.

where, P}, and P}_, are the precision for activation and

IV. Q-PIM HARDWARE ARCHITECTURE

Q-PIM architecture stems from the in-memory bit accu-
mulation configuration but is enhanced to support dynamic
precision. Figure 3 shows the Q-PIM architecture with three
levels hierarchy: VMM (vector matrix multiplication) engine,
PIM core, and system implementation.

VMM engine. VMM engine is used for vector-matrix
multiplication and is the basic computing unit in the Q-
PIM architecture. VMM engine is composed of one memory
crosshar, WL/BL peripherals, input activation buffer, and a
simple control logic. Note, PIM architecture is a weight
stationary computing machine where the weight parameter is
static while the activation changed dynamically.

Autharized licensed use limited to: Georgia Institute of Technology. Downloaded on January 19,2023 at 15:20:33 UTC from IEEE Xplore. Restrictions apply.

HERERGE
P Acc accumulator

H

H

i@ E—’Acc=Acc+8.m+ 453 + 25 + 55
:

¢
H
H
IR, I-—» Sgope = Z*decy + Acc,
H
L

TEEMEIZIl05 67 6543 21
Sense amplifiers

—» Results for 8-bit precision

Results for 16-hit precision

Control \ag\cl Word-line peripherals

Input . Others-
I L L e e R] 5 (divider, etc)|
— e E—~_:——I i Relll
o [{ | H 2ooma

hlultiplier

Dataflow
controller

TEw e o e e o
— e i e e e e ﬂ
Eypass[| 18
'

v

output

e e e o e e s 4m

-
PIM core = Router == Systemn bus
Smart-PIM architecture

]
[}
[}

L

L Y 1
= = S L

L

1

\
5
!
H
b

PIM core

[J¥MM engine Router

Fig. 3. The Q-PIM system architecture showing the hierarchy of VMM engine
(top), PIM core (left), and top-level system (right) organization.

The flexible bit precision is achieved by a set of hierarchical
organized shifter & adder units (top of Figure 3). Assuming
we have a memory crossbar contains 16 BLs and each weight
parameter is a 4-bit number (be programmed to 4 adjacent
cells), each first level accumudator accepts results from 4 BLs.
After accumulating results from all rows, the result can be
directly sent to the output buffer via the bypass connections
(blue lines). Alternatively, if the data precision is 8-bit, the
results from two adjacent accumulators are routed to the
first level shifter & adder which can perform the shifting
and adding operation over the output from the above two
accumulators (corresponding to ¥ bitlines). Eventually, with
a larger memory array and more hierarchical shifter & adder
blocks, we can perform fixed point MAC operation with
different bit precision in the same place. The design overhead
for enabling flexible precision is discussed in Section V-B.

PIM core. PIM core is composed of multiple VMM engines
placed in a 2-D plate, interconnected with a customized hier-
archical network-on-chip (H-NoC) [10] to support flexible bit-
precision. Additionally, function units supporting non-matrix
operation such as element-wise multiplication and activation
functions are implemented, ensuring the flexibility to support
computations beyond matrix operation.

System architecture. At the top level, we implement Q-
PIM system architecture where PIM cores are connected by the
routing architecture. Q-PIM is an inference only accelerator
and the data back-propagation is not considered. Therefore,
there are three possible routing/mapping scenarios depending
on the DNN layer size: (i) One layer is mapped to one PIM
core. The router receives activation, dispatches data into PIM
core for computing, and then sends the new activation to the
next PIM core. (ii) Multiple small layers are mapped to one
PIM core. (111} A large layer is mapped to multiple consecutive
PIM cores {only happens for fully-connected layer in our
experiments).

1=
09 L Standalone Greedy Search

£ o8 N GAQ (GA + Greedy fine-tuning)
~
4 0.7 Best compression ratio with
2 06 uniform quantization
g o5
o L
8 04 i e L ——————————————
5 03
2 02 |1
01 Best compression ratio
! with manual tuning
0

l’-mm\—mr-lnmvmrvmﬂ:gvmr-mqrm
OMOO—FNOG IO =~ 00N G =
<+ 010

56 7
59.5
623

e NN N OO S
Algorithms running time (s

Fig. 4. Convergence behavior (achieved compression ratio) of GAQ showing
as a function of running time. GAQ shows faster convergence than vsing a
standalone Greedy Search. The red dash line is the compression ratio for the
uniform quantization (3-bit) under < 2% accuracy drop constrain. The green
dash is the optimal compression strategy by handcrafted tuning under the
same constrain, [1 3 2 2 2] bits for the 5 layers of LeNet.

20
5
s 515
=0
: E 10
{ o 1 1
@ 23
0 .
£5 °
kg
5% o
LeNet AlexNet VGG-19 VGG-19-GS
Accuracy drop threshold 2% m5% m10%
N 8
3
2s 6
g
£
) £5 *
s E
£3 2
Eg
Q 0
ResMet-18 ResMNet-34 Reshet-50
ResMNet-18 ResNet-34 ReshNet-50 s e fersy
Accuracy drop threshold u2% 5% 10%
10 GAQ quantized ResNet-18 with 2% accuracy drop threshold
58
% g
=]
C
() g4
=
i I
0
23 45867 8 9101112131415161718 1920212223
Layer index
Parameter size/accuracy before and after compression (2% accuracy drop)
Reshlet- | Reshet- | Reshet-
LeNet AlexNet VGG 18 2 50
Dataset MNIST Cifar-10 ImageMet
Flogting pomt 025MB | 320mB | 172MB | 267mB | s7AMB | 102MB
parameter size
GA compressed 002MB | 278 ME 11.0 MB 758 MB 13.1MB 17.6 MB
Float-paint accuracy 98.5% 84 7% 91.7% 70.4% 73.8% 76.4%
Compressed accuracy A6 7% 82 9% 89 T 65 9% 71.9% T4 6%

Fig. 5. Parameter compression rate for (a) LeNet, AlexNet, VGG-19 and
(b) ResNet-18/34/50 under different accuracy drop constrains (2%, 5%, and
10%). (¢} Layer-wise quantization for ResNet-18 with 2% accuracy drop
constrain. Insert table shows the parameter size in MB before and after
compression.

V. SIMULATION RESULTS

A. GAQ algorithm evaluation

GAQ is implemented with Tensorflow. The benchmarks
includes: LeNet for MNIST dataset, AlexNet/VGG for CIFAR-
10 dataset, and ResNet-18/34/50 for ImageNet dataset.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 19,2023 at 15:20:33 UTC from IEEE Xplore. Restrictions apply.

Convergence Behavior of GAQ. Figure 4 shows the con-
vergence behavior of GAQ for LeNet on MNIST dataset. The
GAQ shows more compression than a uniform quantization for
same accuracy loss target, and achieves the same optimal com-
pression obtained by manual tuning. We also compare GAQ
with a standalone greedy search algorithm. The standalone GS
shows decent compression rate even though the convergence is
slower than GAQ. However, a standalone GS does not scale
to deeper models as the computational complexity increase
dramatically (O(N2M) where N is the number of layers in
DNN model and M represents the computation complexity
in that model). For instance, with VGG, standalone GS take
4x longer time than GAQ to reach convergence while the
compressed model is 15% larger. Overall, GAQ shows better
compression rate and faster convergence (O(M)).

Evaluation on MNIST and CIFAR-10. Figure 5 (a) shows
the weight compression rate for LeNet, AlexNet and VGG
under different accuracy drop constrain (2%, 5%, 10%). For
VGG, GS based fine tuning is applied to bring another ~ 10%
compression. With 2% accuracy drop constrain, the average
compression is 13.7x across the DNN models and the number
becomes 16.7x for 10% constrain.

Evaluation on ResNet with ImageNet Dataset. ResNet
are much more sensitive to quantization. Without GS based
fine tuning, the average weight compression is 4.9x with 2%
accuracy drop constrain (Figure 5 (b)). The model size can
be further reduced using GS (named as ResNet-xx-GS in
Figure 5), resulting to 6.3x reduction. Figure 5 (c) shows the
GAQ layer-wise quantization results for ResNet-18 with 2%
accuracy drop constrain. The insert table in Figure 5 shows the
compressed weight parameter size for the benchmark DNN
models.

Comparison with other DNN quantization works. Table
I shows a detailed comparison between the proposed algo-
rithm and other state-of-the-art DNN quantization methods,
including LQ-NETs [3], UNIQ [4], DoReFa [2], Apprentic
[1], PACT [6], and AQN [5]. We only include works that
contain results for ResNet on ImageNet dataset into our
comparison. Except AQN, all other works rely on multi/one
pass training. For Apprentice and PACT which achieve 2-bit
weight precision (i.e.best weight compression rate), handcraft
tuning is required to determine which layers are reserved in
floating-point precision. Although, AQN is a fully automated
approach but the compression rate is less compared to GAQ.

On average, GAQ reduces the weight parameter to ~ 5-bit
with insignificant accuracy drop (< 2%). While our approach
shows less compression than the 2-bit quantization algorithms
such as Apprentice [1] and PACT [6], we argue the key
advantage over other algorithms is that GAQ works without
time consuming training nor large training dataset. Further,
our algorithm is much flexible with no requirement of manual
tuning for layer-wise quantization.

B. Q-PIM hardware evaluation

We implement an illustrative Q-PIM with 6-T SRAM in
28nm technology. We consider 256 x 256 memory crossbar

TABLE I
COMPARISON AGAINST OTHER SOTA DNN QUANTIZATION WORKS WITH
FOCUSES ON RESNET AND IMAGENET DATASET.

ResNet-18:
. e Training Top-1 Top-1 .
Algorithms Quantization complexity floating quantized Degradation
LQ-NETs WA4/A32 Multi-pass 70.3 70.0 0.3
PACT W2IAzand 0 oace 70.4 67.0 34
floating point
DoReFa Binary One-pass 70.2 62.6 7.6
Layer-wise
Our work Avg. 5.1-bit No need 70.4 68.9 1.8
ResNet-34:
. N Training Top-1 Top-1 .
Algorithms Quantization complexity floating quantized Degradation
. W2/A8 and .
Apprentice floating point Multi-pass 73.6 715 21
Layer-wise
Our work Avg. 5.1-bit No need 73.8 71.9 1.9
ResNet-50:
. . Training Top-1 Top-1 .
Algorithms Quantization complexity floating quantized Degradation
UNIQ WA4/A8 One-pass 76.0 73.4 26
PACT ﬂw2(A2 and One-pass 76.9 742 27
oating point
" Layer-wise
AQN Avg. ~ 6-bit No need 76.4 748 1.2
Layer-wise
Our work Avg. 5.2-bit No need 76.4 74.6 1.8

*Results for AQN is projected from the figures in [5].

| Parametrized Digital Cores! H Synthesis? H Place & Route?

Memory
Bit-cell

Testbench®

Post-PEX |

Memory type — | Memory layout generation | —> Area

Memory capacity — — Power

Sub-array size N | Synthesis and Place & Route | > Timing

Digital core size —— — Layout

| Parameter controlled digital cores |
—> Gate netlist

Data width —

Fig. 6. The design automation flow for generating Q-PIM.

and design the SRAM to operate at 4 GHz while the digital
logic at 1 GHz, all verified using SPICE simulation. The inter
and intra PIM core NoC bandwidth are set to be 256 GB/s. We
develop design automation tool flow to automatically generate
full-chip physical of Q-PIM (Figure 6). Additionally, the EDA
flow performs design space exploration to generate a Q-PIM
architecture given a target on-chip memory capacity.

Our illustrative Q-PIM design contains 20 PIM cores with
20MB on-chip memory capacity. The physical design based
power, timing, and area are used to drive our analysis.
Table II illustrates the detailed system implementation and
throughput/efficiency under different precision. The Q-PIM

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 19,2023 at 15:20:33 UTC from IEEE Xplore. Restrictions apply.

Latency reduction for Q-PIM with GAQ

Energy reduction for Q-PIM with GAQ

Latency distribution Q-PIM with GAQ com pressed

100% e

latency 1B-hit 8- hit GAD Reduction latency 16-hit B-hit GAD Reduction a0%
LeMet 2582us | 211us | D4Tus | BIwb1x LeMet 346ud | 25870l [0040 | 77k Tx G0%
AlexMet | 015 ms | 008 ms | 0.03ms | 573 1x AlexNet [031 md | 0168 md [0.05m | B4x/33x 40%
VGG 083 ms | 048 ms | 0.07 ms | 13.0x7.0x VGG 188md | 087 mJ |01 md| 16.8x8 7x ?
ResMet18[409ms | 231 ms | 1.22ms | 34x/1.8x Reshiet 18] 8.35 md [442 mJd [214 m)| 38x2.1x 20%
FesMet34 | 713ms | 424 ms | 245 ms | 2.8x1.7x Reshlet-34 | 14.03 mJ | 765 mJ [416 mJ | 34x1 8x 0%

ResMet-50 [10.17ms| 618 ms | 3.67 ms | 2.8x1.7x Reshet-50(18.71 mJ 1087 md[B.77 mJ | 3.3x18x LeMet AlexMet VGG Resietls ResMet3d Reshetso

mdata

@ cormpLting

Fig. 7. Per image inference latency (table on the left) and energy (table in the middle) comparison between 16-bit precision (16-bit activation), 8-bit precision
(16-bit activation), and GAQ compressed DNN models mnning on Q-PIM hardware, The sub figure on the right shows the latency distribution.

TABLE II
Q-PIM IMPLEMENTATION DETAILS.

It is worth to mention that while the GAQ compressed

SRAM based Q-PIM implementation

models can have arbitrarily bit precision, Q-PIM hardware
only supports 4/8/16/32-bit precision, therefore, we round-up
the precision to make sure there 1s no additional accuracy loss.

VI. CONCLUSION

This paper presents a genetic algorithm (GA) based training
free layer-wise quantization method, named as GAQ, to reduce
model complexity of arbitrary DNN architectures. The paper
demonstrates GAQ on a SRAM based flexible-precision all-
digital PIM architecture (Q-PIM). The simulation in 28nm
CMOS shows potential for significant energy and latency
advantage using GAQ and Q-PIM over fixed-precision PIM
architectures. As the DNN model complexity continues to
grow, Q-PIM will be an attractive candidate for energy-
efficient acceleration of deep learning. Integration of Q-PIM

oton_| Pover o | aros ey | Memoy Cepsety | FESRTEA Y
SRAM 315w 765mm? |20 MB (20PIM cores) | 41 TOPs (Clk_mem: 4 GHz)
System throughput at different precision
4-bit 8-pit 16-bit 32-hit
Throughput 1638 TOPs 410TOPs 102TOPs 26TOPs
Density 1072 GOPsimm? | 268 GOPsimm? | 6.8 GOPsimm?2 | 17 0 GOPs/mm?
Efficiency 2588 GOPsAY 848 GOPsAN 161 GOPsiY 41 GOPsAY
TABLE IIT
COMPARISON WITH OTHER DNN ACCELERATORS.
Hardware :La;:i:r% Precision P:tr:::eer CI:E?Tr:::'T;t::yg
DabianMNao ASIC Mo 16/32-bit eDRAM 286 GOPsAY
TPU-v2 ASIC Yes 8-bit, 16-bit bfloat DR AM 180 GOPsAN
Deep train NP Yes 8-bit, 32-bit float DR AR 566 GOPsAN
ISAAC PIn Mo 16-bit ReRAM 381 GOPsAY
Meural Cache Pt MNa Arbitrary SRAM 529 GOPsiW
FERA PIt Mo 8-bit FeFET 443 GOPsA
Q-PIM {Ours) PIM No 418116i32-bit SRAM 649 GOPs/W

NP Mear memory processing

demonstrates the state-of-the art performance (under 8-bit
precision) as shown m Table IIT

Overhead for flexible precision. Assuming we perform 8-
bit fixed point operation using a 256 x 256 memory array, it
takes 256 x 8 = 2048 cycles to accumulate data (i.e. the 256
rows are iterated 8 times). Another 3 clock cycles are required
for the data going through the shifter & adder hierarchy.
The overhead due to flexible bit-precision is trivial in terms
of latency (< 1%) and power (7%). However, our design
introduces large area overhead (47%) due to the registers for
intermediate data storage mside shifter & adder.

System performance with GA(Q. Without any re-training
or fine tuning, directly quantizing a pre-trained model pa-
rameters to 16-bit yields the same accuracy of floating point
precision for all benchmark DNN models. However, further
reducing weight parameter to 8-bit introduces large accuracy
drop (> 10% for ResNet). Figure 7 shows the per image in-
ference latency and energy for benchmark models with 16-bit,
8-bit, and GAQ compressed precision in Q-PIM platform. With
the same hardware, GAQ compressed models demonstrate
2.8x to 13x latency reduction and 3.3x to 16.9x energy
reduction over the 16-bit precision with only msignificant
accuracy loss, respectively.

with pruning and knowledge distillation for further compres-
sion or better accuracy are important future works.

(1

[2]

[3]

[4]
[5]
[€]
[7]

[8]

K]l
[10]

[11]

[12]

REFERENCES

Asit Mishra and Debbie Marr. Apprentice: Using knowledge distillation
techniques to improve low-precision network accuracy. arXiv preprint
arXiv: 171105852, 2017,

Shuchang Zhou et al. Dorefa-net: Training low bitwidth convolu-
tional neural networks with low bitwidth gradients. arXiv preprin:
arXiv:1606.06160, 2016.

Dongging Zhang et al. Lg-nets: Learned quantization for highly accurate
and compact deep neural networks. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 365-382, 2018.
Chaim Baskin et al. Uniq: Uniform noise injection for non-uniform
quantization of neural networks. arXiv preprint arXiv: 1804.10969, 2018.
Yiren Zhou et al. Adaptive quantization for deep neural network. In
Thirty-Second AAAI Conference on Artificial Intelligence, 2018,
Jungwook Choi et al. Accurate and efficient 2-bit quantized neural
networks. In SysML 2019, 2019,

Song Han et al. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint
arXiv: 1510.00149, 2015,

Ali Shafiee et al. Isaac: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars. ACM SIGARCH Computer
Architecture News, 44(3):14-26, 2016,

Charles Eckert et al. Neural cache: Bit-serial in-cache acceleration of
deep nevral networks. arXiv preprint arXiv:15805.03718, 2018.

Yon Long et al. A ferroelectric fet based processing-in-memory
architecture for dnn acceleration. IEEE Journal on Exploratory Solid-
State Compurarional Devices and Circuits, 2019.

Shvangchen Li et al. Drsa: A dram-based reconfigurable in-situ
accelerator. In 2017 50th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 288-301. IEEE, 2017.

Mohsen Imani et al. Floatpim: In-memory acceleration of deep neural
network training with high precision. In Proceedings of the 46ith
International Symposium on Computer Architecture, pages 802-815.
ACM, 2019,

Authorized licensed use limited to: Georgia Institute of Technology. Dowvinloaded on January 19,2023 at 15:20:33 UTC from IEEE Xplore. Restrictions apply.

	Q-PIM_A_Genetic_Algorithm_based_Flexible_DNN_Quantization_Method_and_Application_to_Processing-In-Memory_Platform_Page_1
	Q-PIM_A_Genetic_Algorithm_based_Flexible_DNN_Quantization_Method_and_Application_to_Processing-In-Memory_Platform_Page_2
	Q-PIM_A_Genetic_Algorithm_based_Flexible_DNN_Quantization_Method_and_Application_to_Processing-In-Memory_Platform_Page_3
	Q-PIM_A_Genetic_Algorithm_based_Flexible_DNN_Quantization_Method_and_Application_to_Processing-In-Memory_Platform_Page_4
	Q-PIM_A_Genetic_Algorithm_based_Flexible_DNN_Quantization_Method_and_Application_to_Processing-In-Memory_Platform_Page_5
	Q-PIM_A_Genetic_Algorithm_based_Flexible_DNN_Quantization_Method_and_Application_to_Processing-In-Memory_Platform_Page_6

