LARGE-AMPLITUDE SOLITARY WAVES IN TWO-LAYER DENSITY
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ABSTRACT. We present a large-amplitude existence theory for two-dimensional solitary
waves propagating through a two layer body of water. The domain of the fluid is bounded
below by an impermeable flat ocean floor and above by a free boundary at constant pres-
sure. For any piecewise smooth upstream density distribution and laminar background
current, we construct a global curve of solutions. This curve bifurcates from the back-
ground current and, following along the curve, we find waves that are arbitrarily close to
having horizontal stagnation points.

The small-amplitude waves are constructed using a center manifold reduction tech-
nique. The large-amplitude theory is obtained through analytical global bifurcation to-
gether with refined qualitative properties of the waves.
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1. INTRODUCTION

Internal waves are a common sight in the vicinity of complex coastline structures and
narrow passages such as straits or fjords | ]. They are a product of the density
heterogeneity brought on by variations in temperature and salinity. Together, these effects
result in the water being stratified into superposed layers, and it is the interfaces between
these layers along which internal waves move. While comparatively slow, they can be large
in amplitude and carry enormous amounts of energy. In the Lombok Strait, for instance,
internal waves have been observed with amplitude exceeding 100 meters and average speed
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of approximately 1.96 m/s | ]. They play a pivotal role in general ocean dynamics
by transporting and mixing biogenic and non-biogenic components in the water bulk.

The present work concerns the existence of two-dimensional internal solitary waves in a
stratified body of water. Solitary here means that the waves take the form of a spatially
localized disturbance moving over a background current. These have been the subject of
extensive research, beginning in the 19*" century with the famous observations of Russel
[ ]. Exact existence results for steady water waves took nearly a century more to
prove, but this theory has progressed considerably in recent decades due to advancements
in nonlinear functional analysis, harmonic analysis, and PDE theory. In particular, local
and global bifurcation techniques have been used to construct small- and large-amplitude
traveling water waves in a number of physical settings. Most of these works study the
irrotational and homogeneous density case; see, for example, surveys in | , .
A major challenge when considering internal waves is that stratification generically creates
vorticity, and thus it is necessary to work in the rotational regime.

The first rigorous existence theory in the heterogeneous setting was obtained by Dubreil-
Jacotin | | who constructed small-amplitude periodic waves. Ter-Krikorov | | later
showed the existence of infinitesimal solitary water waves as the limit of periodic waves
taking period to infinity. For large-amplitude stratified solitary water waves, the first result
can be found in the work of Amick | | and Amick—Turner [ ]. They considered
heterogeneous fluid bounded above and below by infinitely long rigid walls with uniform
background current.

Our primary contribution in this paper is to establish the existence of large-amplitude
solitary waves allowing an arbitrary piecewise smooth background current and density
distribution. This is done via a global bifurcation theoretic argument that furnishes a
locally analytic curve of solutions. We further prove that, following this family to its
extreme, one finds waves that come arbitrarily close to horizontal stagnation. This is
consistent with the limiting behavior of homogeneous density irrotational solitary waves
[ ], which are known to terminate at a wave of greatest height with a stagnation point
at its crest. A similar result was obtained by Chen, Walsh, and Wheeler | | for
continuously stratified solitary waves. The two-layered stratified case is considerably more
complicated, however, and a definitive proof of the stagnation limit requires substantial
new analysis.

1.1. Governing equation. Let us now formulate the problem mathematically. We con-
sider waves propagating through a two-dimensional body of water. They are traveling in
the sense that they evolve by translating to the right with a fixed wave speed ¢ > 0. By
adopting a moving reference frame, all time dependence in the system can therefore be
eliminated. Suppose the water is organized into two continuously density stratified layers
that are separated by a free boundary. The lower layer is bounded from below by an im-
permeable bed at {y = —d} for a fixed d > 0. The upper layer lies below a free boundary
above which is vacuum at constant pressure. We, therefore, write the fluid domain as
Q=041 UQ_, where Q4 is the upper layer

Qy = {(z,y) e R*: {(z) < y < n(a)},
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y = n(x)

FiGurE 1. Configuration of the fluid domain

and €2_ is the lower layer
Q- ={(z,y) e R?: —d <y < ()}

This assumes that the internal and upper interfaces are the graphs of the a priori unknown
functions ¢ and 7, respectively. For solitary waves, we must have that ¢ and 7 limit to
some far-field heights as x — +00. We let d+ denotes the asymptotic thickness of the layer
Q4, so that d = d4 + d_; see Figure 1.

Denote by (u,v) : Qy UQ_ — R? the fluid velocity, P : © — R the pressure, and let
0:Q,UQ_ — R be the density. For physical reasons, we require that o be strictly positive
and that y — o(-,y) is non-increasing. It is important to note here that the velocity and
density will in general not be continuous over the internal interface.

In the moving frame, traveling water waves are governed by the incompressible steady
Euler system:

Uy + vy =0

o(u — c)ug + ovuy = —P; in Q, (1.1)
o(u — ¢)vg + ovvy = =Py — go

where g > 0 is the gravitational constant. We also assume mass conservation along the
flow which is formulated in the following form

(u—c)oz +voy =0 inQ. (1.2)
On the boundaries, we impose the standard kinematic and dynamic conditions,
(v =0 ony = —d,
v=(u—cn,  ony=n(z),
v=(u—c)Gz  ony=((2), (1.3)
P = Py 0ny:77(90),
[P]=0 ony = ((x).

Here P,y is the (constant) atmospheric pressure. Note also that the third equation in (1.3)
implies that v/(u — ¢) is continuous over the internal interface. Throughout the paper, we
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use the notation [-] := (-)|a, —(-)|a_ to denote the jump operator over the internal interface

y = ().

We also require that there is no horizontal stagnation:
u—c<0 inf. (1.4)

This assumption will be crucial for our reformulation of the problem later. Recall that
the streamlines are the integral curves of the relative velocity field (u — ¢,v). The first
three equations in (1.3) ensure that the bed, internal interface, and upper boundary are
streamlines. As a consequence of (1.4), every streamline extends from —oo to oo and is
given by the graph of a single-valued function of x.

To study solitary waves, we must also specify the background current. This takes the
form of the asymptotic conditions

(u,v) = (@,0), ¢—0, n—0, (——dy  asl|z|> o (1.5)

where the convergence is uniform in y. Here, @ := u(y) is the far field horizontal velocity
profile and ¢ = ¢(y) is the far field density profile. It is convenient to replace @ by the
scaled asymptotic relative horizontal velocity u* given by

u=c— Fu". (1.6)

The parameter F' > 0 is referred to as the Froude number and can be thought of as the
dimensionless wave speed. From the literature of traveling waves, it is expected that there
exists a critical Froude number Fi, that separates the regimes where periodic waves and
solitary waves exist. In particular, (nontrivial) solitary waves must be supercritical in that
F > Ft,. This fact has recently been proved for the case of homogeneous density by Kozlov,
Lokharu, and Wheeler | |. A rigorous definition of F, for the present system is given
in Section 3.

Lastly, we recall some terminology describing the qualitative properties of water waves.
A laminar flow is a wave whose streamlines are all parallel to the bed; these form the
class of trivial solutions of the problem. A solitary wave of elevation is a wave where each
streamline lies above its limiting height upstream and downstream. In particular, given our
coordinates system, this implies 7 is strictly positive. A traveling wave is called symmetric
provided that v and 7 are even in x while v is odd. Finally, a symmetric waves is monotone
if the slope of the streamlines, v/(u — ¢), is negative to the left of the crest at = 0 and
above the bed.

1.2. Statement of results. Our first contribution is a systematic existence theory for
large-amplitude stratified solitary waves with arbitrary piecewise smooth density distribu-
tion and horizontal velocity profile at infinity.

Theorem 1.1 (Large-amplitude solitary waves). Fixz Hélder exponent o € (0,1), wave
speed ¢ > 0, far-field depths dy,d_ > 0, gravitational constant g > 0. For any (strictly
positive) asymptotic relative velocity and density profiles

U*a QO € 08+a([_d7 _dJr]a ]RJr) N C8+a([_d+7 0}7R+)’ (17)



SOLITARY WAVES IN TWO-LAYER STRATIFIED WATER 5

there exists a continuous global curve

¢ = {(u(s),v(s),n(s),{(s), F(s)) : s € (0,00)} (1.8)
of solitary wave solutions to (1.1)—(1.5), exhibiting the regularity
u(s), v(s) € C¥(Q4(s)) NC¥(Q_(s)),  n(s), ¢(s) € CUT(R) (1.9)

where (s) := Q4 (s) UQ_(s) is the corresponding fluid domain. The global solution curve
% enjoys the following properties:

(a) (Stagnation limit) Following €, we encounter waves that are arbitrarily close to
having horizontal stagnation:

lim inf |c — u(s)|= 0.
§—00 Q(s)

(b) (Critical laminar flow) The curve begins at the critical laminar flow:

ll_l%(u(‘s% U(S)a 77(3)7 ¢(s), F(S)) = (C — Fou®, 0,0, —d, Fer).

(¢) (Symmetry and monotonicity) All solutions on € are symmetric waves of elevation,
monotone, and supercritical.

Remark 1.2. Let us make a few remarks.

(i) This result assumes a single discontinuity in the far-field density profile. In fact,
the theory easily extends to finitely many discontinuities with the only cost being
more cumbersome notation. The resulting waves would then be organized into many
layers.

(ii) The C8+ regqularity asked for here is almost certainly much more than necessary.
We impose it in order to satisfy the hypothesis of the center manifold reduction
method from | |, which in turn only needs it due to the technical lemma
[ , Lemma 2.1]. We conjecture that the regularity of u* and ¢ in each layer
can be relazed to C*T°, which will then give solutions with

u, v € C*T(Qy) N C?*T(Q0), n, ¢ € C3T*(R). (1.10)

A proof of this fact would require a lengthy digression into the details of those
two papers, and so we do not pursue it here. Following the approach in | 1,
moreover, one expects that it should be possible to take u* to be merely Lipschitz
continuous in each layer.

We also establish a number of qualitative properties of stratified solitary waves. These
are of independent interest but also crucially important to the proof of Theorem 1.1. We
list here the two most significant, but others can be found in Section 4.

The first result states that supercritical solitary waves of elevation are necessarily sym-
metric and monotone. This is achieved through a moving planes argument in the spirit of
Li [Li91] and Maia [ ]
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Theorem 1.3 (Symmetry). Let (u,v,n,(, F') be a supercritical wave of elevation that solves
(1.1)~«(1.4) and enjoys the regularity (1.10) with

ullez@ynez @iy Ivllez@pynez sy » 1lles @y » €T s )y < oc-
Suppose that
(u,v) = (1,0)
uniformly as x — 400 or as (x — —o0), then after an appropriate translation, the wave is
a monotone and symmetric solitary wave.

The second theorem gives a uniform upper bound on the velocity for stratified solitary
waves in terms of a lower bound on the Froude number and a bound away from horizontal
stagnation.

Theorem 1.4 (Velocity bound). Let (u,v,n,(, F') be a solution to (1.1)—(1.6) that enjoys
the regularity (1.10) and satisfies
F>Fy>0, sup(u —¢) < =9 < 0.
Q
Then,
sup ((u — c)? + v2) <,
Q

for a constant C = C(Fy,d,u*,0) > 0.

Note that through Bernoulli’s law, the above theorem can also be used to control the
pressure. A result of this type is proved by Chen, Walsh, Wheeler [ ] for one-
layer stratified waves based on Varvaruca’s | | treatment of the constant density case.
That method, however, is not sufficient for the present setting, as the maximum principle
argument it relies on struggles with the discontinuity of the velocity across the layers. Our
approach combines pressure bounds in the bulk with the “almost monotonicity formula”
of Caffarelli-Kenig—Jerison [ ] to control the velocity near the internal interface.

Finally, we provide an upper bound on the Froude number in terms of a bound away
from stagnation along the crest line; see Theorem 4.4. An analogous result was obtained by
Chen, Walsh, and Wheeler | |, which forms the basis for our argument. Without
this bound, one must allow for the possibility that the Froude number blows up along
the global bifurcation curve even though stagnation is never approached. This alternative
was in the original work of Wheeler [ ] on solitary homogeneous density waves but
eliminated in the paper [ ]

1.3. Plan of the paper. Let us now outline the general structure of the paper while
explaining the main mathematical difficulties and how we will approach them.

We begin in Section 2 by non-dimensionalizing the governing equations. Applying the
Dubreil-Jacotin transformation sends the fluid domain €2 to a slitted rectangular strip. In
these variables the incompressible steady Euler system becomes a quasilinear elliptic PDE
coupled with nonlinear transmission boundary conditions. Written as an abstract operator
equation, it takes the form

F(w, F) =0,
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where w is a new unknown measuring the deviation of the streamlines relative to the
background current. To lay the ground work for the small-amplitude theory, in Section 3,
we investigate the linearized operator at w = 0. Restricting its domain to laminar flows,
we arrive at a Sturm—Liouville type problem with a transmission condition. It is shown
that there exists a critical value of the Froude number, F' = F¢,, for which 0 is the principal
eigenvalue.

As further preparation for the existence theory, in Section 4 we prove the qualitative
results mentioned above. We also present a result on asymptotic monotonicity and nodal
pattern of the solutions. The main tools used here are the maximum principle as well as
integral identities.

Section 5 is where the small-amplitude existence theory is established. These solutions
lie on a local curve, denoted by %oc, that bifurcates from (w, F') = (0, F¢;). For periodic
waves, small solutions are usually found via the classical Lyapunov—Schmidt reduction.
However, this method can not be applied directly here because Fy, (0, F¢;) is not Fred-
holm as a consequence of the unboundedness of the domain and the definition of Ft,.
This analytical challenge is intrinsic to the study of (small-amplitude) solitary waves. For
constant density rotational waves, Hur | | constructed solutions using a Nash—Moser
technique that generalized Beale’s [ | treatment of the irrotational case. Considering
the same problem, Groves and Wahlén in | | used a Hamiltonian spatial dynamics
approach. This argument was adapted by Chen, Walsh, and Wheeler | | to the
one-layer continuously stratified regime, and by Wang | | for two-phase flows with
constant density in each layer. In the present paper, however, we employ a center manifold
reduction “without a phase space” based the recent paper | ].

In Section 6, we continue %, globally to obtain the curve % that extends into the
large-amplitude regime. Again, the unboundedness of the domain presents a significant
obstruction to standard bifurcation theoretic techniques. For example, it is not a priori
clear that F~1(0) is locally pre-compact or that F is locally proper. This is not just a
technical concern. Indeed, it is well-known that in other stratified regimes, solitary waves
may broaden into an infinitely long “table top”; see, for example, [ ]. Because these
waves remain bounded in any Holder space but do not converge to a localized solution,
this scenario implies a lack of compactness for the zero set of F.

The classical strategy for constructing large-amplitude solitary waves is to view them as
the limit of periodic waves as the period tends to infinity. This is done, for example, by
Amick and Toland | | in their study of the constant density irrotational wave case.
They first construct global families of periodic waves, then take the period to infinity using
a uniform estimates and an application of the Whyburn lemma. This results in a global
connected set of solutions.

Our approach is based on the analytic global bifurcation theory introduced by Chen,
Walsh, and Wheeler | | which is a variant of the classical work of Dancer | ,

| and Buffoni-Toland | ]. Essentially, we treat the loss of compactness as
an alternative and show that it must manifest as the broadening phenomena mentioned
above. In particular, we prove that if a bounded sequence of solutions is not pre-compact,
then there is a translated subsequence converging (locally) to a monotone heteroclinic
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solution whose far-field limits are distinct. In the literature, these types of waves are called
(monotone) “fronts” or “bores.” Using the qualitative theory, we can then rule out this
possibility leaving only the stagnation limit.

Lastly, for the convenience of the reader, Appendix A contains some results from the
literature that are drawn upon throughout the paper.

2. FORMULATION

In this section, we introduce several reformulations of the problem that will make it more
amenable to analysis. We also record a number of notational conventions used throughout
the paper.

2.1. Non-dimensionalization. Let us denote the density along the free surface as follows:
00 := 0(0). (2.1)

Next, we normalize the u* to satisfy

0
/_ Ve W) dy = Voo (2.2)

In addition, we consider the (relative) pseudo-volumetric mass m > 0:

()
m = d Vo, g)(c — ulz,y)) dy. (2.3)

One can check that m is independent of z. Letting |z|— oo, we obtain

0 0
m= [ VEe—utw)dy=F [ VE )y
Using the above equation and (2.2), we see that

good® 1

= (2.4)

We non-dimensionalize the coordinates using the asymptotic depth d as the characteristic
length scale, which gives us

(@.9) = Swy), W)= gnle), @)= C(a)

Likewise, the density is rescaled using gg in (2.1)

. 1 5 1,
o(z,9) = —olz,y), o0(y) = —o(y),
Qo 0]
and the velocity is non-dimensionalized via the Froude number

@)=Yy, 0@ = Yy,

VOl i) = Y gy).

9
m

=41
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Finally, the pressure is rescaled by taking

- d?
P(:Evy) = W (P(:L'v y) - Patm) . (25&)
Rewriting (1.1) and (1.2), we finally obtain the non-dimensionalized system
Uz + ’IN)g =0
ol — &)tz + gbily = —P; ]
L L - 1 in Q,
o(t — ¢)uz + ovug = —Py — 720

(@ — ¢)oz + 0oy =0
where Q is the rescaled domain:
Q= {(%,9) €R*: —1 < § < ((&) UL(E) <y <ij(&)}.

The boundary conditions after rescaling read

(V= ony = —1,
U= (t—c)iz on § = 1)(z),
v=@-0G  ong=((), (2.6)
P = Patm on § = 7j(%),
[Pl=0 on § = {(%).
Moreover, the asymptotic condition in (1.5) become
(@, 9) — (2,0), §—0, 7—0, (— —% as |&]— oo. (2.7)
Combining (2.4) and (1.5) gives us
s I,
u(y) —c= ~ad" (9)- (2.8)

Note that this means that the asymptotic state in (2.7) is independent of F.
For the sake of cleaner notation, in what follows we will use the dimensionless variables
but drop the tildes.

2.2. Stream function formulation. Let us introduce the following relative pseudo stream

function :
Yo = —v/0v, Yy = o(u—c).

In comparison to the classical definition of the stream function, the pseudo version intro-
duced by Yih | | takes into account the effects of stratification by including a factor
of \/o. The existence of 1 is guaranteed by the incompressibility of the flow and the fact
that density is constant along the streamlines. Indeed, from this definition we see that
the streamlines are precisely the level sets of 1. In particular, the kinematic boundary
condition tells us that 1 is constant on the surface, internal interface, and bed. Without
loss of generality, we may set ¥» = 0 on {y = n(x)}. Thanks to equation (2.3) together
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with the rescaling of coordinate, density and velocities, we then have ¢ = 1 on the floor
{y = —1}. Let us denote its value on {y = ()} by —p; the reason for this will become
clear in the next subsection. Observe that the assumption of no horizontal stagnation (1.4)
becomes:
Py <0 in Q. (2.9)
Via the mass conservation in (1.2), we know that density is transported, hence constant,
along each stream line. That allows us to rewrite the density in terms of ¥, otherwise
known as streamline density function:

Q('Ia y) = P(_¢($, y))

Naturally, p is determined by the limiting density profile ¢. It is easily verified that the

regularity assumption (1.7) implies p € C¥T([—1,]) N C¥F%([p,0]). As the stratification

here is assumed to be stable, moreover, we have that p’ < 0 in upper and lower domain.
By Bernoulli’s law, we know that the quantity

1
E= g((u—c)2+v2)+P+ﬁQy (2.10)

is constant along each streamline. This fact together with the no horizontal stagnation
implies that there exists a so-called Bernoulli function 8 such that

Zf; = —pB(¢) inQ. (2.11)
Since it is constant on streamlines, all of which extend fully upstream and downstream,
B can be reconstructed from the background current and density profile; see Remark 2.1
below. In particular, for the regularity assumed in (1.7), we find that 3 € C"+*([0, —p]) N
C™([~p,1]). Note that the somewhat odd looking choice to view p as a function of —1)
while £ is a function of v is done here to be in accordance with previous results in the

literature.

Following | , Lemma A.2], the governing equations in (1.1) with the absence stag-
nation can be reformulated as Yih’s equation:
1 .
A = —5yp () + B) =0 in Q. (2.12)
Likewise, the boundary conditions become
( Y =0 on y = 7(x),
2
Vel +zoly+1) =Q"  ony=n(w),
9 (2.13)
[Vel] + 7l (y+1) =@ ony=((a),
\ =1 ony=—1,

where

nd @ =2 (L8] + 5 1]

Q":=2 <E—|—;2Q>

y=n(x) y=((z)
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FIGURE 2. The fluid domain with (non-dimensionalized) streamline values
labeled. The thick lines represent the upper and internal free boundaries.
Also depicted are the height function h and asymptotic height H.

are constants. Lastly, the asymptotic conditions in (1.5) now read

Vi — ((), \/B(fl—c)>, n—0, ¢(——dy, o0—0 as|z|— . (2.14)

For later use, we introduce the convention that 1+ denotes the restriction of ¢ to {21.. Via
the continuity of the pressure and Bernoulli’s law on the internal interface, we have

1 [o]

5 (Vs P=I1ve ) = By~ [5]. (215)
Remark 2.1. The Bernoulli function 8 can be expressed in terms of ¢ and u as follows.
Letting y(p) be the asymptotic y-coordinate of the streamline {1 = —p}, and defining

U(p) :=u(y(p)), by (2.14) we have:

P
1
am—/' —ds— L. (2.16)
S1Vp) (= U(s))

Solving for (B in equation (2.12), sending x — ‘oo and applying (2.14), we obtain

1. 17/- 2 . .
B(-p) = <FQZ/— B (U—C> )Pp+P<U—C> Up-
2.3. Height function formulation. The fact that the Yih’s equation is scalar is already
a considerable simplification of the system in (1.1). However, due to the free boundary, the
domain €2 remains a priori unknown which presents a serious difficulty for existence theory.

To get around this, we employ the Dubreil-Jacotin transformation to send the domain €2
into a fixed slitted rectangular strip R:

(x,y) = (xv _1/}) =: (q’p)’ (2-17)

where

R:=RTUR ={(¢,p) eR*:pe (-1,p)}U{(q.p) €R*:p€ (,0)}.
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The free boundary {y = n(z)}, floor {y = 0}, and internal interface {y = {(x)} are mapped
toT :={p =0}, B:={p=—1} and I := {p = p}, respectively. The new coordinates
(¢, p) are often referred to as semi-Lagrangian variables.

Define the height function which measures the height above the flat ocean floor,

h(g,p) =y +1>0 inR.
See Figure 2 for an illustration. Via elementary computations, we obtain
v 1
hy=———,
" Vele—u)

where the left-hand side is evaluated at (g, p) and the right-hand side is evaluated at (z,y).
As a consequence, the absence of horizontal stagnation now translates to

hg =

)
u—=c

hy > 0.
Furthermore, the asymptotic conditions in (1.5) become

h(q,p) = H(p), he(q,p) =0, hy(q,p) = Hp(p) as |g|— oco.

From equations (2.8), (2.14), and (2.16), we can view the asymptotic height function H
(downstream and upstream) as the solution to the following boundary value problem

1 . A .
Hy(p) = m ()1 in [-1,p) and [p,0),
H(-1)=0, H®p) = _Td++1, H(0) =1.

Yih’s equation in (2.12) and the boundary conditions in(2.13) can be written as the fol-
lowing quasi-linear PDE with transmission boundary condition:

(( 1+h2 1 h 1
_ ¢4 - fa) _ — ,(h—H) = i
( 212 + 212 p-i- <hp>q FQPP( )=0 inR,

1+h2 1 1
2n2  2H2 ' F

1+ h; 1 1
NZ}L%N—HQI{;:H‘FFQHPHUL—H):O OHI,

h=0 on B.

(h—1)=0 onT, (2.18)

The PDE in (2.18) is elliptic as long as infph, > 0. The boundary condition on I is
of transmission type, while that on T is oblique. Observe that for stably stratified flow,
—pp > 0, and hence the maximum principle cannot be applied directly. This is a well-
known feature of the problem that we will have to contend with at several stages of the
analysis.
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2.4. Flow force. The flow force is defined to be the

n(z)
S (z) = / (P + o(u—c)?) dy. (2.19)
-1

One can check that this quantity is independent of x if evaluated at a solution of the Euler
equation. Rewritten in semi-Lagrangian variables, it takes the form

0 (1-h 1 1 1 [P
B tt o~ mp(h - H) = = | pHpdp 2.9
7 ) /_1 < 2h2 * 2H2 Farth—H) = 5 /O pHp dp | hy dp, (2.20)

where now we are viewing it as a functional acting on A with H. We will make use of the
flow force in many ways. For instance, in Section 5 of small-amplitude theory, it gives rise
to a conserved quantity on the center manifold that is essential to the construction. More
generally, the flow force is one of the three conserved quantities that determine the set of
conjugate flows for the system; see | ]

2.5. Function spaces and the operator equation. In this subsection, we introduce the
function spaces that we shall be working in. For a generic domain D C R?, non-negative
integer k, and « € [0, 1), we define

Rt (DY = {f € CF(D) : ||¢f || s < 00 for all ¢ € 030} :

Cite(D) = {f € C*D) : || fllgrsa < 00}7
Cot(D) := {f € CF (D) : lim sup 107 f(z)|= 0 for all 0 < j < k} .
T |x|=r

In particular, we emphasize that C*T< refers to locally Holder continuous functions.
The center manifold reduction carried out in Section 5 requires us to work with expo-
nentially weighted Holder space. For v € R, define

(D) = {f € CHD) | fllggrapy < 20} (2.21)
where the norm

Hch,’jJr&(D) = Z Hsech(uq)@ﬁcho(D) + Z Hsech(yq)\aﬂf‘a
|Bl=k

181<k

2.22
co(p)’ (222)

and |-|, is the usual local Holder seminorm.
Finally, let w = w(q, p) be

w(q,p) := h(q,p) — H(p),

which measures the deviation of the height function A in the near-field from its limiting
height H at ¢ = ftoo. Note that the decay of w at infinity implies that the asymptotic
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conditions are satisfied. One can see that the height equation (2.18) can be formulated in
terms of w as follows:

14 w? 1 w 1
q q :
( 2(Hp+wp)2+2ﬂg) +<Hp+wp>q Falet A
p
1+ wy 1 1
— _'_7
2(H, +w,)? 2HZ  F?

1+w; 1 1
_ 2 p]w = I
"2(£@+1%)2ﬂ Hzﬂgﬂ'+_F2HpH”) 0 onl

w=20 on B.

pw =20 onT, (2.23)

Define the following Banach Spaces,
X :={we Q" (R ) NCLL*(R™) N CY(R) N Cy(R*) NCH(R™) : w =0 on B},
Y1 = CPE*(RF) N O (RT) N CH(RT) N CR(R™), (2.24)
Yy = Cpi*(T) N Ci(RY) N CG(R),

and set Y := Y] x Y5. Throughout the paper, the subscript “e” is used to indicates that

the functions are even in q. We write (2.18) as an operator equation acting on functions
in the Banach spaces above as

F(w, F) =0,
for the mapping
fz(fl,fg,fg):UCXXR%Y

given by

1+ w? 1 w 1
F F)y=1- 4 — 7 ) - =
1w, F) ( 2(Hp+wp)2+2H1§> +<Hp+wp)q 2Pt
P

1+ wy 1 1

F):= - — 2.25
BW’)2WMWN ﬂﬁ+ﬁw’ (2.25)
1+w] 1 1
)= a — — .
We are looking for solutions that belong in the open subset
U = {(w,F) €EX xR: i%f(wp—&—Hp) >0,F > Fcr} C X xR. (2.26)

Here F,, is the critical Froude number which will be defined later in Section 3.1. Since F
is a rational function of w and its derivatives, then it is a real-analytic mapping from %
to Y.
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3. LINEARIZED OPERATORS

This section is devoted to investigating the linearized operator Fy,(w, F'). The results
presented in Section 3.1 concern a Sturm—Liouille-type problem related to the case w = 0;
this will be used to define the critical Froude number Fi,. Section 3.2 analyzes the linearized
operator at an arbitrary (w, F), which plays a crucial role in proving the local and global
existence theory in Sections 5 and 6.

3.1. Sturm—Liouville type problems. Let us first consider the spectrum of the transver-
sal linearized operator at the laminar flow (w, F') = (0, F'), by which we mean the restriction
of Fiy(0, F') to functions that are independent of q. Thus, we obtain the following Sturm-—
Liouville-type problem

W , w ; 5 5
P/ p p
_wig_}_‘upw:o Onpzoa
13 (3.1)
_H%HJFM[[PHWZO onp=p,
W =0 onp=—1,

where p:=1/F? and v is the eigenvalue.

Heuristically, we expect all spatially localized gravity waves to be supercritical in that
their wave speed is faster than that of any linear periodic wave. This idea underlies
our approach to constructing small-amplitude solitary waves in Section 5. By separating
variables, we see that the linearized problem at w = 0 admits periodic solutions provided
(3.1) has a positive eigenvalue. Thus we wish to identify a critical Froude number (which
recall is the non-dimensionalized wave speed) at which the transversal linearized problem
at the background laminar flow has a 0 as its principal eigenvalue.

With that in mind, take v = 0 in (3.1) above and look for the largest value of y such
that

¢ w . . A A
(H%) —pppy =0 in [=1,p) and [p,0),
p
7&4,”[)11): Onp:07
7 (3.2)
w
-]+ rpri=0 onp—s
p
w=0 onp=—1,
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has a nontrivial solution. To achieve this, we will consider the solution ®(p; i) to the initial
value problem

P
<£))> = ,U,ppq) in <_17ﬁ)7
Pro (3.3a)
®=0 onp=-—1,
®,=1 onp=—1.

Using the jump condition on {p = p} in (3.2), we continue this solution into the upper
layer corresponding to p € (p,0). We denote this extended function by Y, which is thus
determined by

T .
<H’§,) = ppp Y in (p,0),
P’ p
a, . DPy(p™ a . R
1, = m3N) 20 EGNe onp=p,
{ Hj(p~)

where p* := p|q, . Finally, to satisfy the Bernoulli condition on {p = 0}, we introduce the

function T0: 1)
A S ALY
The idea here is that if A(u) =0, then

U(p; ) = Y(p;p) forp <p <0
PR @i for —1<p<p

+ pp(0)Y(0; ). (3.4)

(3.5)

solves the IVP (3.3), and hence is an eigenfunction for (3.1) corresponding to the eigenvalue
v =0.
Lemma 3.1. There exists a unique e > 0 such that all of the following hold.

(a) For p = pcr, the problem (3.2) has a nontrivial solution w = ¥ (p; ficr).

(b) For 0 < p < piey, ¥(p; 1) > 0 for =1 < p <0 and y(p,pu) >0 for —1 <p <p
and p <p<0.

(c) For 0 < p < ey, A(p) < 0.

Proof. Note that (3.2) has a non-trivial solution provided B(u) = pp(0)H}(0) where we

define T, (0: 0
B(p) = 21 3.6
)= (3.6
Setting ;1 = 0 and integrating the first equation in (3.3a) and (3.3b), we obtain
H(p)
- f -1,p
73(-1) orp € [-1,p),
ACTEE SO 1)
3 ~
LS H (D) for p € (p,0].

Hy(pt)
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Anti-differentiating (3.7) once more then gives

1 P A
Hg’(—l)/al(S)ds for p € [-1,p),
U (p;0) = U (3.8)
T+ + T’;(ﬂ) / H3(s) ds for p € (,0).
Inserting this into (3.6) yields the formula
T, (pt)H3 (0
B0)= — p0H,0) — (3.9)
H3(pH) YY) + Lp(pT) [, Hi(p)dp
We claim that
B(0) > 0. (3.10)
Observe that substituting p = p~ into the first equation in (3.7) and (3.8) leads to
Hy(p~)
A, _ p
Q,(p;0) = H3(-1) > 0, (3.11a)
and R
@(A-O)—l/pH‘?()d >0 (3.11b)
p - Hg(—l) 1 P p P . .

Because ®(p) = Y(p), we have from the inequality in (3.11b) that T(p*;0) > 0. Using
equation (3.11a) in concert with the last equation in (3.3b) leads to Y,(p";0) > 0. The
desired inequality (3.10) now follows.

Next, we claim that

B, <0. (3.12)
Differentiating B with respect to p gives
T,T-7,T
B, = W (3'13)
p=0
Note, differentiating the last two equations of (3.3b) with respect to u yields
T,=9o,
i Pup(p7) . . on p = p. (3.14)
Yyp = H,‘?(f)% + [Pl Hy (51)® + u o] Hy(5F) 2,
Furthermore, by differentiating (3.3a) with respect to u, we obtain the following problem
(I)up> . ~
T73 :PP(I)"‘MPP(I)M m (_lvp)a
( Hy ) (3.15)
¢, =0=2%, onp=—1.
A computation using integration by parts gives us,
T,T-"1T,T T, T —-7,T 0
< i “> B ( T u) - / Py X% (pi 1) dp (3.16)
p p=0 p p=p p
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By rearranging terms we have that

T, T-_,T
Bu:< ©p = p u)

( TMPT — TPTH )

p=0
_ 50
~T%(0)

H}

0
- / pp X2 (p; 1) dp]-
p=p p

Therefore, to verify our claim in (3.13), it suffices to show
(TpupX =LY, _s <O

p=p
Differentiating the first equation in (3.3a) with respect to p and testing against ® yields

<‘I)up‘1) — ‘I)p(l)u>

Hp

p=p p )
= / pp®”(p; p) dp < 0.
p=—1 -1
Recall that ®,,(—1) = 0= ®,(—1). Hence, the above inequality simplifies into

Pup(p7) < .(p7)  Yu(h)

- - = s 3.17
2,) ~ e | 107 (347
which is equivalent to
®,,T—®,T, <0 on p=p. (3.18)
Multiplying the second equation in (3.14) by Y, reveals that
(I)Mp(ﬁ_)T

Y, Y = H3(p") ) + [l HE(pH)®Y + pu[p] H2(5T)®, Y onp=p. (3.19)
P

On the other hand, multiplying the third equation in (3.3b) by Y, and evaluating it at

p = P gives

O,(57)Y . )
13(37)_# +ulp] Hy(p)®Y,  onp=p. (3.20)
Hy(p™)

Subtracting (3.19) from (3.20) and using the fact in (3.18), we know that (Y,,T — Y, T,) <
0 on p = p. This proves the claim in (3.12) provided that Y(0) # 0.

Now, combining our earlier observations that B, < 0 and B(0) > 0, we can infer that
there exists a unique smallest pio such that B(u) = Mp(O)H;’(O). This proves part (a) of
the lemma. Observe, by the uniqueness of solution to initial value problem, the numerator
and denominator in (3.6) cannot vanish altogether. Thus collectively these facts show that
B(p), Tp(0, 1), Y(0, 1) are all strictly positive quantities for 0 < p < pe,. Part (c) of the
lemma is then a direct consequence of the fact that B(u) > up(O)Hg(O) forall 0 < p < pler.

It remains only to prove part (b). We first consider the sign of ¥ through a continuity
argument. Define the set

E:={p €0, pe] : ¥(p; ) > 0 for p € (~1,0}.

Observe that 0 € £ due to (3.7). We claim that & is closed. Seeking a contradiction,
suppose that £ has a limit point i and there exists p € [—1,0] so that ¥(p, i) = 0. By

TPTM = Hﬁ(ﬁ*)
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continuity, we can infer that WU(p, i) > 0 for all p € [—1,0], and hence ¥(-; i) attains its
minimum at p = p. In particular, this implies ¥, (p, fi) = 0, where notice this would be true
even in the case p = p. But then ¥, (p, i) = ¥(p, 1) = 0, and so ¥ vanishes identically by
uniqueness. Thus we have arrived at a contradiction meaning £ is closed. On the other
hand, £ is clearly open because V¥ is continuous in p and we have already shown that
U, >0at p=0,—1. It follows then that £ = [0, |-

Finally, we establish the sign of ¥, claimed in part (b). Fix p € [0, per] and consider the
function

Clearly, g(—1) > 0 and since ¥,(0; ) > 0, we have g(0) > 0. Moreover, the equation
satisfied by ¥ gives the identity g, = up,¥. From this it is easily seen that g(p*) > 0. This
shows that W,(p; u) > 0 for p < p < 0. Furthermore, from (3.3b), we have

Yp(p's 1)
HJ(p)

. (I)p (ﬁ7§ M)
— wlp] ®(p;p) = —m ==~
Notice that the left hand side of the above equation is strictly positive. We then conclude
that g(p~) > 0. Hence, we can conclude that W, (p; ) > 0 for all —1 < p < p. This gives
the desired inequality in part (b) of the lemma. O

Lemma 3.2 (Spectrum). Let 3 denote the set of eigenvalues for the problem in (3.1) at

MW= Her-
(a) ¥ = {y;}32, such that v; — o0 as j — oo and {VJ};iSO is a strictly increasing
sequence,
(b) vy =0, and

(c) each eigenvalue has algebraic and geometric multiplicity 1.

Proof. Fix p = piey. Similar in spirit to the proof of Lemma 3.1, we begin by introducing
the function N (p;v) which solves the following initial value problem

( Np> N . . R
— | = perppN = —v— in (—1,p) and (p,0),
(7). i,
N, R
[[I;,]] = piex [P] N on p = p, (3.21)
p

N=0 onp=—1,

L Ny, =1 onp=—1,

and the associated function

B(v) := )) (3.22)
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Observe that @ := N(p;v) solves (3.1) provided that B(rv) = pep(0)H3(0). By construc-
tion, B has singularity at each eigenvalue vp of the Dirichlet problem

( wp LW . A .
- HT} + HerPpW = VDFpa m (_Lp) and (p> O) )
P
w=0 onp =0,
' P (3.23)
w : A
HHE,H—MU[[p]]w—O on p = p,
\ w = O on p = —1
It is well-known that the set of Dirichlet eigenvalues takes the form ¥p = {V]()j ) 21

where each I/]()j) is simple, y]()j) < V]()jﬂ) for all j € ZT, and V]()j) — 00 as j — co. We claim,

moreover, that each Dirichlet eigenvalue is positive. For the sake of contradiction, suppose
that there exists a vp < 0 in Xp with eigenfunction w. For 0 < § < 1, define

.5 w
(Wer +6)
Using equations (3.3a) and (3.3b) for ¥ together with the Dirichlet problem (3.23), one
can show that
\I’cr + 5 . (\I}CT) . \Ilcr + 5 .
- ( 13 vﬁ) - ngvg + ( perpp6 — vp , ¥’ = 0. (3.24)
P

If vp < 0, we can choose small enough ¢ such that the coefficient of the zeroth order term
in (3.24) is positive. Similarly, for vp = 0, we let § — 0 so that the coefficient of the zeroth
order term in (3.24) vanishes. Thus, in both cases, taking 0 < 6 < 1, we can apply the
maximum principle to conclude ©° = 0 and thus «w = 0. Having arrived at a contradiction,
we therefore infer that all the elements of >p are strictly positive.

Now, differentiating (3.21) with respect to v yields

N, N vN, PN
p

N, (=1;v) =0= N,p(—1;v).
Testing the above equation against N and comparing it to (3.21) tested against N, yields

the Green’s identity
’ _/ONQ(p;V)d
p=p p Hy

—H3 0 N2(p: v

as long as N(0;v) # 0. We then conclude that B is strictly decreasing on the complement
of the set ¥p denoted by 3f, . Thus, we must have that B(v) — *oo as v — vF for

N,N, N,,N
Hy  H

Hence we have
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each j € Z*. In particular, on each connected component of X, there exists a unique
vE (Vg),ug+l)) such that B(v) = ucrp(O)Hg’(O). Likewise, on (—oo,ug)) there can be at
most one such value of v.

This analysis shows that the eigenvalues of (3.1) are intertwined with those of the Dirich-
let problem (3.23). We have already proved in Lemma 3.1(a) that 0 € ¥, and hence it is the
unique element of ¥ in the interval (—oo, 1/](31 )). This implies further implies that 1/](32 ) > 0,
so parts (a) and (b) now follow. Part (c) is easily verified from classical Sturm-Liouville
theory. O

Finally, let us conclude the subsection by recalling that p = 1/F2. Hence, the critical

Froude number is defined by

1
F2 .= —, (3.25)
Cr

with per given by Lemma 3.1.

3.2. Fredholm property. Now we focus our attention on the full linearized operator at
(w, F) € % . Consider first the problem F,,(0, F)w = (f1, fa, f3), which reads

e Wy 1 .
(35, ) -t

—FS -l-ﬁpw: fQ on T,
w 1 .
_|[H§H+F2[[p]]w:f3 on I,

w = on B.
Although we know that F,,(0, F') is a map from X to Y, here we shall view it as a map
between the larger spaces X}, to Y}, where
Xy, = {w e COR) N CH*(RT) N COY(R™) s w|p= o} ,
Yy = (cgﬂ(ﬁ) N cgﬂ“(?)) x CEYe(T) 5 O3 (]),

That is, the requirement that the solution decays at infinity has temporarily been lifted.

Observe that the zeroth-order term in the interior equation in (3.2) has the “bad” sign
in that it does not satisfy the the assumptions of the maximum principle Theorem A.1.
For supercritical waves, we can fix this by introducing a function W that is a variant of the
function ¥ found in Lemma 3.1. It is defined as the solution to the same ODE (3.3) but
with initial conditions ¥(—1) = € and ¥,(—1) = 1, for some 0 < ¢ < 1 that depends only
on F.

Lemma 3.3. Suppose F > F.., then for € > 0 sufficiently small, there exists U satisfying

v, 1 . N
73 - 7:0]7\1/ =0 mn (—1,])) U (pv 0)7
(i)
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with
U>0for —1<p<0, ¥,>0 for [~1,p) and (p,0], (3.26a)
T, 1 -
— =%+ =p¥ <0 on p=0, (3.26b)
H3 " F?
and
7, 1 -
— Il —=1p]¥T <0 on p=np. (3.26¢)
-

Proof. By definition, ¥ = ¥ when ¢ = 0. Adapting the proof of Lemma 3.1, it is easy
to see that equations (3.26b) and the second inequality in (3.26a) hold for 0 < e < 1.
Further, the first inequality in (3.26a) can be obtained by integrating the second one where
e > 0 is chosen to be sufficiently small. Lastly, to arrive at (3.26¢), we use the transmission
equation from the ODE (3.3b) together with the boundary condition ¥(—1,u) = e. O

Now, letting w =: Uv, we see that (3.2) is equivalent to the following more amenable

problem for v:
RO
—= | +|=) == in R,
(H}j » Hy), ¥
J:

on T,

3 N (3.27)
Upﬂ E
— == == on I,
|[H3 v
L v=20 on B.

Lemma 3.4 (Invertibility). For F' > F¢;, F(0, F) is an invertible map from Xy to 'Yy and
from X toY.

Proof. Because the maximum principle can be applied to (3.27), one can show following
[ , Lemma A.5] and | , Lemma A.1] that F, (0, F)) is an injective map be-
tween Xy and Yy,. Surjectivity between these spaces, moreover, follows from the same
argument as in [ , Lemma A.3]. Finally, using | , Corollary A.11], we obtain
the invertibility of Fy, (0, F') between the spaces X and Y. g

Lemma 3.5. For all (w,F) € %, Fu(w, F) is Fredholm index 0 as a map X —Y.

Proof. Fix (w, F) € % . Since w € X then the coefficients of the operator F,,(w, F') go to
the coefficients of F,(0, F') as |¢|— oo. By Lemma 3.4, we know that F,,(0, F') is invertible

as a map X to Y. The proof then follows from an application of | , Lemma A.12
and A.13]. O
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4. QUALITATIVE PROPERTIES

4.1. Bounds on the Froude number. In this section, we derive both upper and lower
bounds on the Froude number in our heterogenous regime. The analysis follows closely
the arguments from | , Section 4]. These bounds play a crucial role in the global
theory discussed in Section 6. In particular, they allow us to infer that blowup in norm
implies stagnation.

There has been a number of significant applied works devoted to estimating the Froude
number of irrotational solitary waves. In this regime, Starr | | gave a formal proof
of Froude number bounds written in terms of an integral of the free surface profile. Nu-
merically, Longuet-Higgins—Fenton | ] obtained the upper and lower bounds on the
Froude number, 1 < F' < 1.286. However, for rotational solitary waves, much less is known.
In addition to the results in [ ], we also mention the work of Wheeler [ ]
where a number of bounds on Froude number in the rotational (but constant density) case
are obtained.

Lower bound. We begin by showing that every wave with critical Froude number must be
trivial. In the global continuation argument, this allows us to conclude that all waves on
the solution curve are supercritical. The first step is to establish an integral identity.

Lemma 4.1. Let
(w, F) € G2 (RF) N C2(B) N CL(RF) n CY(F) N CY(F) x R (4.1)
solve equation (2.23). For M >0, define

0 H3w2 + (Hp + 2hp)w} 1 M
Wp
/ / h2H3 N\ dpdq—i—A(F >/_M?7dac,

where A is given in (3.4) and ¥ = W(p; 1/F?) is from (3.5). Then I — 0 as M — oc.

Proof. Multiplying the height equation (2.18) by ¥ then integrating by parts over the finite
rectangle |g|< M, we obtain

= t— s | Uyt g (hy — Hp)| dpd
/—M/—l ( 2h2 QHI%) ”+Hg( Z p)| dpdg
q
- - + s Y- [[ ﬂ(h H)
/_M |l 2h2 2H? H3 )

M 1+h2 1 v, 0 h
+/ - I+ —|v-_2(h-H) dq+/ Ay
M K 2h2 2Hg> H3( . _1 hy

Here we have used the equation satisfied by ¥ (3.3) to eliminate several terms. Notice that
we can re-write the first integrand above as follows
1+h? 1 +\pp(h H)_ng3+(Hp+2hp)w§
H3VP P 2h2H} P

dq

=M

dp.
q=—M

2h2  2HZ
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This yields

0 H3w? + (Hp + 2hp)w} M
p\I/ dpd /
/ / 2h2H3 peas |

p
1 M 0 p
A do = — 4y
" <F2>/ e /1hp

where A (1 /F 2) is the expression defined in (3.4) and 7 is the free surface. Observe that
from (2.18) and (3.3), the second integral on the left hand side of (4.2) vanishes. Now,
sending M — oo results in h,|*,,— 0, which forces the right hand side of (4.2) to vanish.
Hence, the proof is complete. ]

dq

dp,
q=—M

(4.2)

Theorem 4.2 (Critical waves are laminar). Let (w, F') be in the function space defined in
(4.1) and solve (2.23).

(a) Suppose w >0 on T, and F is chosen such that ¥, > 0 for [-1,p) and (p,0], then
A(1/F?) <0.
(b) If F = F, then w = 0.

Proof. The assumptions on the strict positivity of w and assuming strict positivity for ¥,
force the first integrand in the definition of I to be positive. Sending M — oo and applying
Lemma 4.1, we therefore prove part (a).

It remains to prove part (b). Thanks to Lemma 3.1(a), we know that A(1/F2) = 0. For
F = F,., I takes the following form

M0 H3w2 + (Hp 4 2hy)w
/ [ / py + Hy 2 2)0y g 3l g, (4.3)

v | ) 2h2H3

which still goes to zero as M — co. From Lemma 3.1(b), it is clear that (W), > 0 for —1 <
p < pand p < p < 0. Hence, the integral in (4.3) is non-negative and non-decreasing as a
function of M. Hence, the integrand must vanish for all M. This implies that w, and w,
should be equal to zero everywhere. In other words, w = 0. O

Upper bound. Now, we shall derive the upper bound of the Froude number. The argument
here is based on [ | which is strongly inspired by the work of Pritchard-Keady
[ ] and Starr [ ]. Both earlier results show that for homogeneous irrotational
fluid, F' < v/2. However, due to stratification and vorticity, our estimate here is presented
in terms of several quantities associated to the underlying current and a bound away from
stagnation along the cresline. The integral identity (4.4) can, in fact, be applied to the
homogeneous irrotational regime where it recovers the bound in | ] and | ].
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Lemma 4.3. Let (w, F) belong to the space defined in (4.1) and solve (2.23), then

P 0
% [/1!pp!w(0,p)2dp+/ |op|w (0, p)? dp + p(0)n(0)* — [p] w(p)”
02 ’ (4.4)

= d 0,p) dp.
1 thp( )

Proof. Recall from the discussion in Section 2.4 that the flow force . is independent of
g and in semi-Lagrangian variables can be viewed as the functional (2.20) acting on h.
Hence, by evaluating it at ¢ = 0 and ¢ = £o00, we obtain

y(h)—/o 1+1—1(h—H)—1/pHd’ hd
— ) \enz Tamz T P2’ F2 ), P ) e ep

_/0 1+1—1/pHd, H,dp=(H)
__1 QHP% QHI% F20Ppp padp = .

Gathering like terms, integrating by parts and simplifying terms lead to

0 w12) 0 1
0:/ dp—/ —5 PWW
_1 2H?hy, 2P

q=0
Moreover, integrating by parts, we obtain

dp. (4.5)
q=0

0 D 0
1 b 1
/1F2p wwp|,_g dp=/12F2|PpIW(0,p)2dp+/ o5z |oplw(0,p)* dp
- p

1
Y] [p] w(0,p)? + ﬁpwz

p=0

Combining the previous two integrals with the one in (4.5), we arrive at equation (4.4).
O

Theorem 4.4 (Upper bound of F). Let (w, F) belong to the space defined in (4.1) and
solve (2.23). Then the Froude number F is bounded above:

2 2
F? < — ol oo 1 Hpl oo [17ip(0, )l oo - (4.6)
Proof. From the Poincaré inequality, it is easy to see that

0 2 21 2
) ﬁpw wp|q:0 dp < T2 o[l oo [lwp(0, ) |72 -

0 2
/ 7
2

o Hihy|

Moreover,

v (min(r1; )2 ) (sin(y (0. ) 0.1
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Combining both estimates with the identity (4.5) and canceling some terms yields
2 1 . —1y2 < rp—1
;ﬁ HpHLOO 2 Hgn(Hp ) Inp}n(hp )(pr) ;
which is equivalent to (4.6). O

4.2. Symmetry. In this section, we will prove Theorem 1.3 on the symmetry of supercrit-
ical solitary waves of elevation. The main machinery used here is the method of moving
planes, first introduced by Alexandrov | | in his study of spheres. Variations of this
argument have been used by many authors, for instance, Serrin | | in dealing with a
symmetry problem in potential theory (see also | , ]). Due to the full nonlinear-
ity of the problem and the unboundedness of the domain, we adopt the version used in
[Li191]. The proof is patterned on that of | , Theorem 4.13], which in turn is based
partially on the work of Maia in | ].

The main result, stated now in semi-Lagrangian variables for convenience, is as follows.

Theorem 4.5 (Symmetry). Let
(w,F) € C3(RT)NCE(R-)NC°R) xR
be a solution of the height equation (2.23) that is a wave of elevation
w>0 mRUIUT, (4.7)
supercritical, and satisfies the upstream (or downstream) condition
w, Dw — 0 uniformly as q— —oo (or o). (4.8)

Then, possibly after translation in q, w is a symmetric and monotone solitary wave: there
exists . € R such that ¢ — w(q,-) is even about {q = ¢} and

+wy >0 for £(g«—q) >0, =1 <p<O0. (4.9)

Following the usual moving planes approach, we start by considering the reflected height
function h about the axis ¢ = A,

Wa,p) := h(2A = ¢,p)-
Letting v* := h* — h, we see that g = ¢, is the axis of symmetry if and only if v% = 0. For
A € R, we define the sets
RY = R¥n{g< )},
and likewise for the boundary components Iy, By, and T). Throughout the section, we

denote the restriction of v* and h* to Rj\—L by v and R respectively.

Suppose that h is a solution to the height equation (2.18). Then for each X, v* solves
the PDE

L =0 in Ry, P =0 onT) Tv =0 onl, v» =0 on By, (4.10)
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where ., %, and 7 are given as follows:

oL 2o (0 B+ ) = 2k,
AR CO (m)? q
haq (b + hp) = 20 hyq + (B(=p) = F%pph) [(h)* + Iphy + B3] ) 1
- (h%‘)?’ P ﬁppv
2 .:hé + hqa - (hyy + hp) (1 + (hg)Z)a N Lp
: 2(hp)2 q 2(h1)7\)2(hp)2 p 2

A A A\2
P aal] P (UASI1CCibPY IR
2(hy)? 2(hp)?(hy)? F?
(4.11)
For a detailed derivation of the first two operators above and the ellipticity of %, see
[ ]. The expression for the transmission operator .7 is new but follows from a
similar calculation.
The signs of the zeroth-order coefficients above will not allow us to apply the maximum
principle directly. However, for supercritical waves, we can tackle this problem as follows.
For 0 <e<1,let ¥ = \il(p; F,€) be the solution of the ODE

(%) — %(pp — &)W =0 on(-1,0); Up(-1) =1, ¥(-1)=e (4.12)

in the distributional sense. Note that this implies a transmission condition on p = p. A
straightforward adaptation of Lemma 3.3 gives the following result.

Lemma 4.6. Suppose F > F.., then for € > 0 sufficiently small the solution ¥ to (4.12)
satisfies

U>efor —1<p<0, ¥,>0 for[-1,p)and (p,0],

and
v, 1 - - 1 . )
—Fg+ﬁp\y<0 on p=0 [[\IIPHPH—E[[;)]]\IJ<O on p=p. (413)
Proof. The proof of this lemma is identical to the one of Lemma 3.3. O

With this in hand, we can begin the moving planes method. The first step is to show
that v is sign definite on Ry when ) is sufficiently large and negative.

Lemma 4.7. Under the hypothesis of Theorem 4.5, there exists K > 0 such that

v >0o0n Ry forall\<—K (4.14)

and

hg >0 in Ry for all A\ < —K. (4.15)
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Proof. Let U be defined as in equation (4.12). By Lemma 4.6, for 0 < ¢ < 1, we have that
U > e. This allows us to define ¥ := v*. One can check that u* solves the PDE

Zur=0 inRy, #u =0 onTy, Ju =0 only,, v =0 onB, (4.16)

where
Lu = 0( L + %ppuA) + (W\i’p) U;,‘ - <(2g§\2 ‘i’p> U;‘ + Zu,
B> = VB + (B, V),
Tu = VTu + (F0)u.
Here, the zeroth-order coefficient in 2 is given by
A2 5
2= Sy = o+ () = gan) (020 + iy + (7)1,
and the principal parts of the boundary operators are
2y = ity -
P p\*p
7 |lh2+hq]] - u<h2+hp><1+<hg>2>]] ),
2h2 2h%(h§‘)2

We will show that there exists K > 0 such that «* > 0 in Ry for all A < —K which in
turn proves (4.14). For the sake of contradiction, assume that for any K, there exists some
Ao < —K such that u* takes a negative value in R),. By assumption, we know that h
is a wave of elevation, the same is true for h* for any A. Clearly by definition, u* = 0 on
q = A, and

s hW—h_ H-h
u = = > =
v v
where we note that the right-hand side of the inequality vanishes in the limit ¢ — —oo0.
Therefore, if u?0 is negative in R),, then there must be a point (go,po) € Ry, U T, U Iy,
such that

u™ (go, po) = Inf u < 0.
Ao

The cases when (qo, po) € Ry, and (qo,po) € T), are worked out in | , Lemma 4.18].
The only new possibility for the two-layer setting is the that (go,po) € I,. Suppose that
this is the case. Applying the Hopf lemma to R;fo and R, we have the following:

up"* (g0, %) >0, up°~(go,p) <O. (4.17)

The minimum point assumption implies that ué‘o (qo,p) = 0, which is equivalent to saying

ho®(q0, ) = hg(go, D)- (4.18)
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From the uniform decay stated in (4.8), for any § > 0, we can choose a large enough K
such that we have

[h(q0,p) — H(D)[< 6,  [[hp(q0,p) — Hp(D)]| <6,
[re . 9) - #5,@] | <6 1% (w.5) - HE)I< b
Applying triangle inequalities to (4.19) yields
’ [{h?;“ (q0,P) — hy(q, p)ﬂ j < C6. (4.20)

Using inequalities in (4.19) and (4.20) allows us to write .7u’ in the following way

. (R + hp) (1 4 (h))?) - 1 - 1 -
Futo = ﬁ_ P 2}%(@))\)2 q U;\ON U+ (— HHS\IIPH + I3 [p] ¥ + O(d)) w0 = 0.
(4.21)
Observe that via (4.13), we know that the coefficient u* is positive. On the other hand
u(qo, p) < 0. Hence, the second term on the right hand side is negative. However, (4.17)
shows that the first term on the right hand side on (4.21) is negative. These, thereby, lead
to a contradiction. We conclude that there exists a large enough K > 0 such that (4.14)
holds.
To prove (4.15), we first observe that v*(\,p) = 0 by construction. In light of (4.14),
this means it attains its global minimum on R) there, hence v;‘()\,p) <0 forall A < —K.

(4.19)

But recalling the definition of v*, we then have

0< —vp(A,p) =2hg(\,p)  forall A < —K. O
Proof of Theorem 4.5. Define
A :=sup{Xo : v* > 01in Ry, for all A < Ag}. (4.22)

Note that \ is well-defined since the set above is non-empty.
Case 1. Let A < co. Under the continuity assumption on h, therefore v, we can

A

say that v* > 0 in R5. Since, v" is in the kernel of the elliptic operators (4.10) in Ry,

applying maximum principle would guarantee that either v* > 0 or v* =0 in R;. By way
of contradiction, suppose that the former holds. Since, )\ is taken to be the supremum of
all Ao defined in (4.22), then there exists sequences {N;} and {(q;,p;)} in which X \, A
together with (q;,p;) € R), such that
vM(q, pr) = inf o™ < 0.
Ry,

Since v = 0 on B,,, via the maximum principle, we know (g;,p;) € Ty, U I),. First,
assume that (g, p;) € Th, which implies v]);l(ql, 0) <0 and v;‘l(ql, 0) = 0. Next, we need to
show that ¢; is bounded below. For the sake of contradiction, assume that for all [ large
enough, we have ¢ < —K where K is the positive real number obtained in the previous
lemma. Let us look at the function u* := v™/¥. By construction, u* in T )\, satisfies
(4.16). Hence, we run into the same situation as case 2 in | , Lemma 4.18] where
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BuM (¢1,0) > 0. Hence, a contradiction. Therefore, ¢; is bounded below by —K and
certainly bounded above by A;. We can say that we have a convergence up to subsequence
such that

(¢1,0) — (4,0) ETij\ as | — oo,

for some ¢ € [—K, 5\] Now, since we assume that v* >0 in R* then

Jim v (g, 0) = (4, 0) = 0.

Suppose that § < 5\, then
v)(4,0) = v)(4,0) = 0. (4.23)
By Hopf, vz/;\((j, 0) < 0. Examining the operator % using these facts, we obtain that
%v*(§,0) > 0. But, since v is in the kernel of the operators in (4.10), then B = 0.
Hence, we have arrived at a contradiction. A
On the other hand, suppose that § = \ i.e. (4,0) is the corner point of R*. From (4.23),

it follows that hé‘(fx, 0) = 0. Moreover, the top boundary operator for v reads
(h))?(hg + hq)vy — (h) + hyp) (1 + (hy)*)vp + 2—ph2(iﬁ) = 0. (4.24)

Letting A = ), and taking the derivative of (4.24) with respect to the g-variable, and
computing the result at (A, 0), we arrive at the following equality

2h,(A, 0)u (A, 0) = (4.25)

where we have used the following facts

~

hy(A,0) = —hg(X,0),  h(A0) = hy(X,0),  ho(X,0) = —hgy(X,0).

Now, since h, > 0, then from (4.25) we conclude that vg‘q(j\ 0) = 0. Furthermore, since
’U)‘()\ -) = 0, then v, ()\ 0) = ()\ 0) =
Additionally, usmg the reformulatlon of the PDE in terms of v* and solving U;‘q in terms

of vq,v;‘, v;‘p, and qu, one can show that v ()\ 0) = 0. Hence, v* with all its derivatives
A

up to order two vanish at the corner point ()\, 0). By construction, we know v* is in the
kernel of the elliptic operator in R*. Thereby, it contradicts the Serrin edge point lemma

which guarantees the strict signs on the first and second derivatives of v*
It remains to look at the case when (q;,p;) € Iy,. Similar to (4.17), applying the Hopf
boundary lemma, we obtain the following inequalities:
v (g, p) >0, vpt (g, p) < 0.

In other words,
[{U;);Z(CII@)H >0 and U (QZa ) = 0.

Next, we need to show that ¢; is bounded below. For the sake of contradiction, assume
that for all [ large enough, we have ¢ < —K where K is the positive real number obtained
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in the previous lemma. Let us look at the following function u™ := vl)‘ /. Hence, we run

into the same situation as in (4.21) that yields TuM < 0. However, by construction, u™

lies in the kernel of .7 in I - Hence, we obtain a contradiction. Therefore, ¢; is bounded
below by —K and certainly bounded above by \;. Therefore, we have a convergence up to
subsequence, in particular

(@,0) = (@,9) € I, asl— oo,

for some ¢ € [—K, 5\] Now, since we assume that v* > 0in R* then
Jim v (g, p) = v*(q,p) = 0.

Suppose that § < ), then

)4, 9) = vy (4, p) = 0.
By Hopf, [{Ug‘]] (q,p) < 0. In view of the operator 7, we know that 91}5‘((],]5) < 0. But,

since v* solves, then Zv* = 0. Hence, we arrive at a contradiction.
Now, it remains to consider the case when (¢,p) = (A, p). The argument done here is

similar to the one for (4.24). Using the fact that v;‘(;\,ﬁ) =0, v, (/\ p) =0, v\, p) =0,
hf;*(j\,ﬁ) = h;(;\,ﬁ), and hfo‘_(;\,ﬁ) = h;(j\,ﬁ) along with operator .7, we arrive at the
following equation

(2002 208+ w0+ (30
A A A A (4.26)
- <2<hg+>2<h;>2(h; ) <h;>2>v;q> 0.

Doing some computation on (4.26) gives us
[[quhp ]] (A, p) = 0. (4.27)
Now, if we look at the region R+ and RT separately, we can apply the Serrin edge point

lemma. But, since we know that v (q p) = 0 and v, (q p) = 0, then we can rule out the
first conclusmn of the Serrin edge pomt lemma that states the strict sign on the derivative
of v* in outward direction. Hence, the second derivative of v* in outward direction has a
strict sign (see Theorem A.1(c)). Consider the following outward vectors associated to R;\r

and RST respectively:

1 1

(h;)3/2( ~1), and s:= (h7)3/2(1,1>. (4.28)

Evaluating 8211 and 8tv at ( , D), the Serrin edge point lemma gives the inequalities

- I 5
) >0 and vt
(hp)3 P 1G3p) (hy )3 P 10

< 0.
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This implies that v b3 5\, p) < 0, which contradicts (4.27). Therefore, it must be that
pq'"p

v =0in Rj, and hence h is symmetric with respect to the axis ¢ = A.

It is left to show the strict monotonicity of h. We know that for a fixed A < A vt >0
in Ry. Since v* vanishes on ¢ = A (right boundary of R)), then v attains its minimum
there. Applying the Hopf boundary lemma yields

fug‘()\,p) < 0.
But, vé‘()\,p) = —2h4(A,p). Hence, we have
hy(\,p) >0, forall A < \in [-1,0].

Next, we consider the case when p = p. By continuity of A4, for fixed A < A, we have
that hg(A,p) > 0. Suppose hy(A,p) = 0. This implies that ve(A, p) = 0. We also know the
following facts :

v, =0, =0, BT =nt, BT =hf  at (\p). (4.29)

We now look at the operator 2 in (4.11). Differentiating %v* with respect to g, evaluating
it at (A, p) and using the facts mentioned previously in (4.29), we obtain a similar equation
to the one in (4.27):

[opahn?]| ) = 0. (4.30)

Again, let t and s denote the outward normal vectors to R;\“ and R, , respectively, as given
by (4.28). Appealing to the Serrin edge point once more, we see immediately that (4.30)
cannot hold. Hence, hy(A,p) > 0. Thus, we proved the strict monotonicity of h at the
internal interface. X

On the top boundary T?, we have hq > 0 by continuity. We aim to show that h, has
a strict sign there. By way of contradiction, suppose that there exists A < A such that
hq(A,0) = 0 as well. Differentiating the equation in (4.24) with respect to ¢ and evaluating
it at (A, 0) utilizing the following identities:

hg=—hy=0, hy="hy, hgp=—hy, v =v)y=0 at(0),

we arrive at the equation
A A
2h5, (A, 0)vg, (A, 0) = 0.
Thus, the above equation and the no horizontal stagnation condition implies
A
vgp(A, 0) = 0.

As before, we also have that v;‘()\, 0) = v;‘p()\, 0) = Ué\q()“ 0) = 0. Therefore, via the SerriAn
edge point lemma, we arrive at a contradiction. We then conclude that h; > 0 on T
Hence, h is monotone on R; UT5 U I5.

Case 2. Let A = co. This just means that v > 0 in Ry for all \. Since v* is in the kernel
of operators .Z in (4.11), therefore we can apply the maximum principle which guarantees

that v* > 0 in R, for all \. Applying the same argument as above, we see that hg > 0 in
R\ UT\UI,. In other words, we now have that h, > 0 in R. Thus, this implies that h is a
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monotone front. But this violates the nonexistence of monotone fronts (see Theorem 6.12).
Hence, we can exclude case 2. Thus, the proof is complete. ]

4.3. Asymptotic monotonicity and nodal properties. The monotonicity property
(4.9) will eventually be crucial for the large-amplitude theory where it is used to prove pre-
compactness of F~1(0). The small-amplitude waves that will be constructed in Section 5
are waves of elevation, and hence monotone simply as a consequence of Theorem 4.5. We
will then need to show that this property holds along the global bifurcation curve.

However, the set of monotone functions is neither open nor closed in the topology we are
working with. This is a common issue in global bifurcation theoretic studies of elliptic PDE.
To remedy it, we introduce additional sign conditions on the derivative of the solutions
that are collectively called nodal properties. These conditions will in particular imply
monotonicity, but are also open and closed in a relevant topology. Once we confirm that
they are exhibited by the small-amplitude solutions, it immediately follows that they hold
along a connected set extending the local curve. The main tool here is the maximum
principle. As in the previous subsection, we will take advantage of the translation invariant
structure of the equation.

Let ¢ = 0 be the axis of even symmetry. We start by dividing the region to the right
of the crest into four sub-domains: the upper and lower rectangles are each split into a
finite sub-rectangle and semi-infinite rectangle. Proving the nodal properties on the finite
rectangle is done essentially as in the periodic case in | , Section 5] and so can be
omitted. We focus instead on the semi-infinite rectangles for which we adopt the adopt
the idea of | , Section 2.2].

To fix notation, we define the following regions:

RE=RE*n{¢g>0}, L{={0,p):p<p<0}, Ly:={0,p):—1<p<p}, (431)

with the boundary components 7%, I~, B~ given accordingly. We will use R~ to denote
RY URZ. In a similar way, Lo == L{ U L.

We begin by showing that small solutions w in the half-strip, for which w, has a sign
along the left boundary, must be monotone throughout the half-strip. This fact will allow
us to infer monotonicity on the semi-infinite tail regions once monotonicity on the finite
extent rectangles is known.

Proposition 4.8 (Asymptotic monotonicity). There exists 6 > 0 such that, if
(w, F) € CR(RL) N CY(R2) N CY(R>) N CG(RL) N CG(R2) x R

is a solution of the height equation (2.23) in R for F' > Fu, with |[wlc2p.y < 6 and
tTwy <0 on Lo, then

+wy < 0inRs \ (B> U L) . (4.32)
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Proof. Due to the translation invariance of the height equation (2.23), we know that v := h,
is in the kernel of the linearized operator:

( hqug (1+ hg)vp> (vq hqvp> 1 .
- + +|— - — —5ppv =0 in R,
< h2 h3 ) hyp h2 . F?

hevg  (L+h2v, 1

i w Ter=t e (4.33)
hq”qﬂ 2y || Yp 1
—(1+h) =l +=1p]lv=0 on I,
[[ h2 3 F?
v=20 on B-.

Set v := Wu for ¥ as in Lemma 4.6. Thus, we can rewrite each equation in (4.33) in terms
of u. In particular, the interior equation becomes

((qj —&-ijh‘%)u \ilhqu> —|—<\ilu \ilhqu> +(1+h3)‘iju hq\i/pu
73T 33 | U™ 75 U 7 Yq T T Up P q
hf; hg h]% ) H, hf, . hf, h}%

o\ -
<(1 +}Zq)‘1’p> N <h7§p> - %pp\i/ u=0.
P P P/ q
Taking ||w||c2(g.) = [|h — H||c2(g.) to be small enough ensures the equation above repre-
sents a uniformly elliptic operator acting on u on R~. From the equation (4.12) satisfied
by ¥, we see that the coefficient of u on the last line is strictly negative for 0 < § < 1, and
therefore the maximum principle can be applied to infer that u attains no non-negative

maximum in the interior.
We can do the same thing to the equation on the top boundary:

(1+hH)Vu,  hybu, U, 1 - hV, /1 1)
- —p gt () g u=o.
o e \Tm YT e \mm) )

From (4.13) and the smallness of w in C2, we can conclude that the coefficient of the zeroth-
order term above is negative. Suppose then that w attains its non-negative maximum on
T.. At that point, u, = 0, while by the Hopf lemma u, > 0, giving a contradiction.

Now, consider the equation on the internal interface I~.. By the same type of computa-
tion, we arrive at:

hq | = up || =+ o 1 ~
ﬂ}éﬂ Dug — (14 A7) thﬂ T+ (—(1 +h) |lh§ﬂ + 25 o] @) u=0. (4.34)
Suppose that v > 0 and attains its maximum on the I~.. Thus u, vanishes there and by
Hopf we know that ul‘f > 0 and u, < 0. This implies [uph; 3]] > (0. On the other hand,
in view of (4.13), the coefficient of the zeroth-order term in (4.34) is also negative for §
sufficiently small. Thus we have shown that in (4.34), the first term vanishes while the
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second and third are strictly negative. This clearly leads to a contradiction as sum must
be 0.

In total, this reasoning shows that u, and hence wy, is strictly negative in R-\(B=UL).
The proof of the proposition is therefore complete. O

Consider the following nodal properties:

wy <0in REURS UL UTS, (4.35a)
wyq < 0on Lo \ {(0,-1)}, (4.35b)
Wyp < 0on B, (4.35¢)
Wyqp < 0 at (0, —1). (4.35d)

Shortly, we will prove that these define open and closed sets in an appropriate topology.
First, however, we present the following result that show one can deduce the full set of
nodal properties from just (4.35a).

Lemma 4.9. Let (w, F) be a solution of the height equation (2.23) in R, where w €
Cg7e(Ri) N CS,B(R;) NCHRE) N CH(RZ) NCY(R-) satisfies (4.35a). Then w satisfies all
of the nodal properties (4.35).

Proof. Observe that the statement of the lemma does not require w to be “small” nor that
F is supercritical. We shall prove each of the sign conditions in (4.35) consecutively. To
begin, (4.35a) is true by hypothesis.

Consider next (4.35b). By (4.35a), w, is non-positive in R~ and by symmetry it vanishes
on Ly. Applying the Hopf lemma, we conclude that wy, < 0 on Lg. It remains to show that
wqq < 0 holds at the points (0,0) and (0,p). The argument for the first point is the same
as in | , Lemma 4.20], so we focus on the second one which is new. Via continuity
of wyq, we know that wgy < 0 at (0,p). Seeking a contradiction, suppose that wgy = 0. By
evenness,

wy = 0 and wy, = 0 on L. 4.36
q qp

Consider the internal equation:

h2
Nl;gqﬂ - ﬂgézﬂ +%[[p]] (h—H)=0 onl (4.37)

We differentiate (4.37) in the g-variable twice and evaluate it at (0,p). Further, using the
fact that hgg = 0 combined with (4.36), we then obtain

[[hqqphgg]] (0715) =0.

Now, if we look at the region RJ; and RS separately, we can apply the Serrin edge point
lemma. But, since we know that hqq(0,p) = 0 and hg,(0,p) = 0, then we rule out the first
possibility of the conclusion of the Serrin edge point lemma for each of the two regions.
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Hence, the later conclusion of the Serrin edge point lemma should hold. Consider the
following two outward vectors associated to each RT and R~ respectively:

1 1
t:=——(-1,-1) and s:=-—-(—1,1). (4.38)
(hp )3 (hp)?
Evaluating 92h, and 92h, at (0, ), the Serrin lemma gives the inequalities
1

1
+ _
(h;_)ghqqp >0 and thqp < 0,

whence
[hqaph, ] (0,5) > 0.
Thus we have produced a contradiction. Therefore, (4.35b) holds.

Next, (4.35c¢) follows from the Hopf boundary lemma since w, vanishes identically along
Bs. Tt remains only to prove the inequality in (4.35d). Recall, on L, Ly, and Bs we
know that w, = 0. Therefore,

Wq = Wep = Waq = Wapp = Weqqg =0 at (0, —1).

By the Serrin Edge point lemma, we conclude that wge, < 0 at (0, —1) which then proves
(4.35d). O

Lemma 4.10 (Open property). Let (w, F') and (0, F) be supercritical solutions of the
height equation (2.23) on R~ with

w, W € Cf (RE) N CF (R2) N CH(R=) N CH(RE) N C(R3).
If w satisfies the nodal properties (4.35), then there exists € = e(w) > 0 such that
|m—m%WWﬂF—ﬂ<e
implies W also satisfies the nodal properties (4.35).

Proof. Recall, to prove that w satisfies (4.35), it is enough to show that it exhibits the
monotonicity (4.35a). We start by dividing RS into two overlapping regions namely:

R{. :={(¢,p) € R : ¢ < 2K} Ry :={(¢,p) € RL : ¢ > K}.

Likewise, the lower region R is divided into R1_,> and Ri - The top, bottom, internal

and vertical boundaries of these rectangles are denoted Ti’>,Bi,>,Ii,>,L:0, and L; for
ie{1,2}.

Let us first look at RJL>, for j € {+,—}. These two finite rectangles behave in the
same way as in periodic case. Therefore, the proof could be done in the same way as in
[ , Lemma 5.1]. The basic idea is that, for any K > 0, there exists ex such that taking
0 < € < ek ensures wy < 0 in the interior. One then uses a Taylor expansion of w and the
nodal properties to conclude the same holds up to the boundary.

On the other hand, since w € C3(R), one can choose large enough K such that

s,y < 6/2.
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where ¢ is given as in Proposition 4.8. Hence, setting € := min{d/2, ex }, we have @y, < 0
in Ry~ \ (Bl,> U m) which then implies w, < 0 in L%,O' Again, applying Proposition 4.8,
we infer that @, < 0 in Ras \ (Bg7> Um). Together with the previous paragraph, this
shows w satisfies (4.35a). O

Lemma 4.11 (Closed property). Let {(wn, Fp)} C % be a sequence of solutions to the
height equation (2.23) on R~. Suppose that there exists (w, F') € % such that (wy, Fy,) —
(w, F) in C3(RL) N CE(R2) N CY(R>) N CHRE) N CAHRS) x R. If each wy, satisfies the
nodal properties (4.35), then w also satisfies the nodal properties (4.35) unless w = 0.

Proof. Let v := w,. Because each w,, satisfies the nodal properties, we may infer that
wy < 0in R~. Moreover, v solves of the uniformly elliptic PDE (4.33) in R~. Furthermore,
since v = 0 on Lo and B, we can apply the maximum principle and conclude the following
three possibilities; (i) v < 0 in R \ (B> U Lg); or (ii) there exists some point (gx,0) € Ts;
or (iii) there exists some point (g%, p) € I such that v(g*,0) = 0 or v(gx,p) = 0.

The proof of the lemma if either the first and second possibilities occur follows from
[ , Lemma 4.22]. Therefore, we only consider the third possibility here. Assume
that there exists (¢*,p) € Is such that v(g*,p) = 0. By the transmission boundary
condition in (4.33), we obtain [[vp/hg]] (g*,p) = 0. But via Hopf boundary lemma, we
know that v,(g*,p") < 0 and vy(gx,p~) > 0. Hence, we arrive at a contradiction unless
v =0 in R~ which is equivalent to saying w = 0. O

5. SMALL-AMPLITUDE EXISTENCE THEORY

In this section, we will construct a curve of small-amplitude solutions to the height

equation (2.23) that bifurcates from the trivial solution w = 0 at the critical Froude
number Fg, defined in (3.25). With that in mind, we introduce the non-negative parameter
€2 := per — p, which will be positive for supercritical waves. The corresponding Froude

number is thus F¢ := (1/F2 — 62)71/ ?. We will frequently abuse notation by writing (w,€)
rather than (w, F).

Theorem 5.1 (Small-amplitude waves). There exists e, > 0 and a continuous local curve
Cloc = {(W, F):0<e<e}% CCX xR (5.1)
of solutions to F(w, F) = 0 with the following properties
(a) (Continuity) The mapping € — w€ is continuous from (0,¢€,) to X, with [[w||x — 0
as € — 0.
(b) (Invertibility) The linearized operator F,,(w, F€) is invertible X — 'Y for all € €
(0, )
(c) (Uniqueness)If w € X satisfies w > 0 on T and |w| y is small enough, then for
any € € (0,€,), F(w, F€) = 0 implies w = w*.
(d) (Elevation) (w€, F€) is a wave of elevation: w® >0 on RUIUT.

In proving Theorem 5.1, we will use the center manifold reduction technique introduced
in | ], which is a variation of the classical theory due to Kirchgéssner | ] and
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Mielke | ) ]. This newer version is well-suited to the present work as it is con-
ducted entirely in spaces of Hoélder class functions and the computation of the reduced
equation on the center manifold is done through a power series expansion that is compara-
tively straightforward. Moreover, the resulting ODE directly governs the internal interface,
which allows us to prove that w® is a wave of elevation rather easily.

Recall that from Lemma 3.2, the spectrum of the transversal linearized operator at
the trivial solution (w,€) = (0,0) and the critical Froude number consists of a simple 0
eigenvalue with the remainder being strictly negative. For convenience, in this section, we
write the linearized operator around the trivial flow as £ = (L1, L2, L3) with

w w
Liw = (p> + <q> — HerPpW,
HS H, q

p
Low := < Wp +Mcrpw> , (5.2)
T

R
tooie (- [ 2]  wetie)

Here we have reintroduced the shorthand g, = 1/ FCZr

As always, the computation of the center manifold reduction requires (temporarily)
expanding our function spaces to allow small exponential growth in ¢. In particular, we
will view £ as mapping X,, — Y, for some 0 < v < 1, where X,, and Y,, correspond to X and
Y with the standard Holder norm replaced by the exponentially weighted version defined
in (2.21). Then it is easily confirmed that the kernel of this operator is two dimensional
and takes the form

1

ker £:X, =Y, ={(A+ Bq)®(p) € X, : (4, B) e R?}, (5.3)

where ®( generates the null space of the transversal linearized operator and is normalized
so that ®o(p) = 1. It will be convenient to introduce a projection Q : X,, — X, onto this
kernel given by

Quw = (w(0,p) + wq(0,p)q) Po(p).

Finally, note that the height equation (2.23) can be written as a quasilinear transmission
problem for the elliptic PDE operator

V- A(p7w7 VUJ) + B(pa w, 6))

where A and B are C® in their arguments due to the regularity assumptions in (1.7). Of
course, A and B are actually analytic with respect to w and Vw, but they have finite
smoothness in p because the coefficients involve p and H).

Together these facts ensure that the hypotheses of the center manifold reduction result
[ , Theorem 1.1] are satisfied (specifically, we use the extension of that theorem
to transmission problems given in | , Section 2.7]). As a direct consequence, we
obtain the following.
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Lemma 5.2 (Center Manifold). There exists 0 < v < 1, neighborhoods U C X x R and
V C R3, and a C° coordinate map A = A(A, B, ¢) : R — X, satisfying
A(0,0,€) = A4(0,0,¢) = Ap(0,0,¢) =0 for all €,
such that the following hold
(a) Suppose that (w,€) € U solves (2.23). Then v(q) := w(q,p) solves the second-order

ODE
v = f(v,0)€), (5.4)
where f: R3 — R which is defined as follows
d? .
f(A,B,€) = W A(AaBaE)(Qap) (55)

(b) Conwversely, if v : R — R solves the ODE (5.4) and (v(q),v'(q),€) € V for all q,
then v := w(-,p) for solution (w,€) € U of the PDE (2.23). Moreover, we write it
as

w(g +7,p) = v(q)Po(p) +v'(q)7Po(p) + A (v(q). v'(q),€) (7, D),
for all T € R.
Remark 5.3. By inspection, it is easy to verify that the height equation (2.23) is invariant

under the reversal transformation w — w(—-,-). One can show that this gives rise to a
symmetry for the coordinate map:

A(A7 B7 €)<Q7p) - A(A7 _B7 6)(_qap>7
and hence f is even in B.

The next step is to derive the reduced ODE (5.4) on the center manifold. In [ ,
Theorem 1.3], it is proved that the coordinate map A admits the Taylor expansion

A(A, Bye) i= Y AipA'BIe" + O ((|A[+ B (|A[+|B+[e])*) , (5.6)
J
where
T ={(i,5,k) eN®>: 20 43+ k<4d,i+j+k>2i+j>1}
Each of the coefficient functions A;j; € X, lies in the kernel of Q and satisfies

04 0%0% F((A+ Bq)®o(p) + A(A, B, \),\) =0 for all 2i + 35 + k < 4,
(A,B,A)=(0,0,0)
with the above derivatives being of the formal Gateaux type. By | , Lemma 2.3],
this determines the A;j; uniquely. Note that our need to expand to fourth order, and
hence for A to be C%, is precisely the reason behind the regularity of the background flow
assumed in (1.9).
Explicitly, the index set J only contains the following 3-tuples:

J =1{(2,0,0),(0,1,1),(1,0,1),(1,0,2)}.
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Following the procedure outlined in [ , Section 2.6], computing the coefficients in
the expansion (5.6) requires us to solve a hierarchy of equations taking the general form

{ﬁAz’jk = Rijk,
QA =0,

where each R;;, € Y, depends on previously computed terms. This calculation is largely
elementary but quite onerous. For that reason, we use a computer algebra package to verify
the results.

Computing the above Gateaux derivatives, we see that LA19; = 0, and hence Ajg;1 =0
by uniqueness. The same type of calculation will also show that Ag;; = 0. The remaining
coefficients, however, are nontrivial. Indeed, we find that

—ppPo Ra
£A102 = p(O)q)o(O) = RQ s QAlOQ =0. (57)
[l ®0(p) R

Since, LA192 is independent of ¢, we infer that £(0yA102) = 0. Therefore J;A102 is in the
kernel of £, and so by (5.3) it must take the form

Auoa(a,p) = (Arg + 5 Bra®)o(p) + FKa(p), (53)

for some constants A, By, and function K7 to be determined. Applying the operator L to
this ansatz and recalling (5.7), we obtain

1
LK, = Ry : (5.9)

Here, £’ is the transversal linearized operator found by restricting £ to g-independent
functions. Note that @ generates the kernel of £’ by definition.

Now, multiplying the first component of the equation in (5.9) by ®( and integrating by
parts, we find that

B /0 o2 [[(cbo)pK1 — @o(Kl)pﬂ N (@O(Kl)p — (c1>0)pK1>

0
—dp+
1 H) H3 H}

0
—/ R1®Pq dp.
p=0 -1

Using the fact that £'®y = 0, the above identity simplifies to
0 (I)2
0

By —
-1 Hp

0

dp + 7—\’/3(1)0(]3) — RQCI)()(O) = / qu)o dp.
-1

Hence, B; takes form

0
/ R1Pgdp — Rg@o(ﬁ) + RQCI)O(O)
_J

0 #2
P
0 dp
L H,

By > 0.
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Notice that A1q®g is in the kernel of Q, and hence will not enter into the reduced equation.
Thus we have computed the relevant part of Ajgs.
Following the same strategy for Asgg yields

1
Aogp = (qu + 532(]2)@0(])) + Kg(p). (5.10)
where the coefficient
/0 (®0); J
3., H}
By = —— 10 12) <0
2 & i
-1 Hy

At this stage, we have all the information needed to find the reduced equation (5.5).
First, we consider the truncated ODE where only the leading order terms of A are retained:

v(q)q = B1e?0? — By(v°)?, (5.11)
where v°(q) := w(q,p). Note that the functions K; and K3 play no role as they are
independent of g. One can verify directly that

_ 3B €

v(q) = 5B, sech?( q), (5.12)

is an explicit solution to the truncated reduced equation that is homoclinic to 0. It is left
to show that this orbit persists for the full reduced equation.

eV By
2

Proof of Theorem 5.1. Let us introduce the scaled variables

g=€1Q, wvlq) =EV(Q). (5.13)
We can then rewrite the reduced ODE (5.11) as the following planar system:
=W,
Yo =W, ) (5.14)
Wq = B1V — BoV* + R(V, We).

The error term R(A, B, ¢) = O(e%|A|+e||B|)) by (5.6) and is even in B (see Remark 5.3).
Taking € = 0, we get back a rescaled version of the truncated reduced ODE in (5.11).
Moreover, the explicit solution v° (5.12) in the rescaled variables becomes

5 3832 B B
VOQ) = QBQS%hz(\TQ)’ wWoQ) = — 2}51;2 tanh(\/;Q)sech%\TQ),

which is an explicit solution to (5.14) when e = 0. Moreover, this orbit is homoclinic to the
origin and intersects the V-axis transversally. The symmetry property exhibited by A (5.3)
implies that the ODE (5.14) is reversible in the sense that it is invariant with respect to
(V(Q),W(Q)) — (V(-Q),—W(—Q)). A standard planar systems argument then implies
that the homoclinic orbit (V°, WY) persists for sufficiently small ¢, giving a continuous one-
parameter family of homoclinic solutions. Undoing the scaling, we obtain the local curve
©loc, proving (5.1). Part (a) is a consequence of the continuity of the reduction function.

3By
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Next, we will show that %o, consists of waves of elevation as claimed in (d). It is easy to
see from the equation (5.14) satisfied by V¢ := w®(-/¢,p)/€® that V¢ > 0 and exponentially
localized for 0 < € < 1. Moreover from the phase portrait as () — oo we can infer that

- W(Q) _
) =+/B1+0(e).

Taking € small enough and undoing the scaling, this yields

[V (@)|< Celu(q), (5.15)

which holds for some C' > 0 and all 0 < e < 1.
On the other hand, combining the solution ansatz given by Lemma 5.2(b) with the
expansion of the coordinate map A in (5.6), we have

w(q,p) = v(q)Po(p) + Aaoo(0, p)v(q)? + A102(0,p)v(q)e* + 7 (v(9),v'(q),€) (0,p), (5.16)

where the remainder term satisfies
r(A, B,€)(0,-) = O ((|Al+|B|)(|A|+|B|+|e])*) in C*([—1,p]) N C*([5,0]).

In concert with (5.16) and (5.15), this shows that for e sufficiently small we have w, > 0
in R~ URT. Since w =0 on p = —1, this gives that w > 0 in R, proving part (d).

Lastly, we will show that the linearized operator F,(w,F) on the @, is invertible.
Recall also that from Lemma 3.5, we know that F,(w, F') is Fredholm of index 0. As a
consequence, for all (w, F') € Gloc, Fuw(w, F) is invertible if and only if it has a trivial kernel.
As we have seen many times, the translation invariance in ¢ means that F, (w¢, Fwg = 0.

To identify other potential solutions of the linearized problem, we make use of [ ,
Theorem 1.6 |. This result states that w satisfies Fy, (w€, F€)w = 0 if and only if 0 := w(-, p)
solves the linearized reduced ODE

d2
quv = f(A7B) (ve’ ’U;, 6) ’ (U7 Q.]q)v

where v¢ = w*(-, p). Performing the same rescaling as before, we see that the corresponding
(linear) planar system is given by

where f4 and fp are evaluated at (EQVé(Q),eVE(Q),e). Sending |Q|— oo, we therefore

obtain
b (0 1) 0 1
Qoo \ v fw)  \Bi+0(?) 0)°

Clearly, the eigenvalues of the above matrix are both real, with one strictly positive and
the other strictly negative. By standard dynamical system theory, there cannot exist two
linearly independent bounded solutions to the reduced ODE. Hence, the only nontrivial
solution of F,(we, F)w = 0 is w = wg. But we have already established that w* is even,
hence wy is not in X. Thus the kernel of Fo(we, F€) : X — Y is trivial, completing the
proof. O
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6. LARGE-AMPLITUDE EXISTENCE THEORY

In this final section, we complete the argument for the existence of the curve € of large-
amplitude solutions and show that it exhibits the properties asserted in Theorem 1.1. The
global curve is constructed through continuation of the local curve %j,. obtained in Sec-
tion 5. Our strategy is in the spirit of Wheeler’s [ ) ] work on homogeneous
rotational waves and that of Chen, Walsh, and Wheeler’s | | study of continuously
stratified fluids. In particular, the latter of these papers develops a general analytic global
bifurcation theory that is adapted to monotone solutions on unbounded domains; see Ap-
pendix A. Using that machinery allows us to prove the existence €. To verify the extreme
wave limit requires the bounds on the velocity field given by Theorem 1.4, which we prove
in the next subsection, and uniform regularity estimates that are tackled in Section 6.2.

6.1. Velocity bound. Here, we derive some uniform L° bounds on the velocity for soli-
tary stratified waves. Throughout the analysis, the far-field state (as described by H and
p or equivalently @ and p*) is fixed. To simplify the presentation, we do not track how
the constants depend on these quantities. Recall that the relative velocity in terms of the
stream function is given by V1. Having uniform L> control on the velocity will ensures
the uniformly ellipticity of the height equation (2.18) along €.

In earlier studies of rotational waves in constant density water | ] and continuously
stratified fluids | ], velocity bounds were obtained by first establishing a lower
bound of the pressure via the maximum principle. Bernoulli’s equation then allows one
to uniformly control the magnitude of the relative velocity. However, in the present work,
it is not obvious that we can apply the same strategy due to the transmission boundary
condition. Adopting instead the approach of | ], we start by deriving a “local” L?
bound of Vi which is recorded in the lemma below.

Lemma 6.1 (Local velocity bound). There exists C = C(Fy, K) > 0 such that, for any
solution (1,n) to (2.12)~(2.13) with ¢y, < —1/K, F > Fy > 0, and any m € R,

m+1  rn(z)
L/ / \Vo|? dydx < C. (6.1)
-1

m—1

Proof. Working in semi-Lagrangian variables, this is equivalent to

m+41 01 + hQ
/ / 9 dpdg < C.
m—1 —1 hp

Let £ = £(q) be a bump function supported in [m —2,m + 2], with 0 < ¢ <1land £ =1
on [m — 1,m + 1]. If we multiply the interior height equation (2.18) by £?w, and integrate
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over the domain, we obtain
1+h; 1 hy 2
- — —| = dp d
//R<< 2h2 2H3>w” (hp> g | & dpdg
1 1+ h? 1
= [ ety + W%M¥@@+L<2m 2m>m%q (6.2
p

1+h; 1 2
- — dg.
+/I|, 212 +2Hgm wedg

Observe that the factor of £2 in the integrand on the left hand side of the above equation
can be rewritten as follows:

1+h2 1 hy 2H, +w, [ wi
——|w— = Jw,=——5— | —= —w; |.
2n2  2HZ2 )P \h,) 2h? H2
Therefore, via (6.2), the above equality along with Young’s inequality, and integration by
parts we have

2ty (2 ey - [ 2
// 2h2 <H2+w )f dpdq = = wé&y dp dg

1
+2//R ﬁpwpwf2 dp dq

(6.3)
hg 242 1 2
sa ff gweapans - [ g
R h €1 JRr
1
+ €3 // prw w2§2 dpdq dq,
where the constants €1 and ey are defined to be
inf H), 1
€1 ‘= ——5 €9 1= 2 .
2K? 2|lpllZoe K2 [ Hpll o
Upon grouping and simplifying (6.3), we obtain
L hg 2
—& dpdg+ || & dpdg < C(Fp, K).
R hp R hp
This then proves the estimate in (6.1). O
Next, we show that along the internal interface, the velocity is uniformly controlled in
L*>. Our approach is based on that of Amick and Turner | ] and [ |. In both
those papers, however, the stream function is harmonic in each layer, which permits them
to use the classical monotonicity formula of Alt—Caffarelli-Friedman | , Lemma 5.1].

Because we allow for general stratification, we must instead use the slightly weaker “almost
monotonicity formula” due to Caffarelli-Jerison—Kenig | ]. The precise application
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is presented in the next lemma. However, prior to using the formula, an intermediate step
is done to make sure that the upper and internal layers are uniformly separated. This is
the content of the next corollary which follows from the local estimate (6.1) and the fact
that the relative pseudo-volumetric mass flux is fixed.

Corollary 6.2 (Interface separation bound). Under the hypothesis of Lemma 6.1, we have
inf (n(z) - ¢(2)) > Clpf*, (6.4)
where the constant C' = C(Fy, K) > 0.

Proof. Via the definition of the relative pseudo-volumetric mass flux in the upper layer, we
have for all z and m € R
n(z)

5l = ¢@—u@_tfﬁ/ Vol — w) dyds

(z)

¢
1 [ [t m+1 () 1/2
< = / / 1dydx / / o(c —u)* dy dx
2 m—1 J¢(x)

< Cvn(z) = ((),
where we have used the fact that o(c — u)? < |V#|? and the local velocity bound (6.1).
This then leads to the inequality in (6.4). O

Lemma 6.3 (Interfacial velocity bounds). Any solution (1,1, () to the water wave problem
(2.12)«(2.13) with supvyy, < —1/K and F > Fy > 0 satisfies the bound

IV |*+|Vy_|’<C  on .7, (6.5)
where the constant C' = C(Fy, K) > 0.

Proof. Again, we will use C to denote a generic positive constant depending only on the
quantities listed in the statement.

Fix (xg,y0) € -, where recall .# denotes the internal interface in the original coordinate
system. Let a := dist((xg,yp),0Q \ #). Observe that, in view of Corollary 6.2, a is
uniformly positive.

We will work with the rescaled coordinates (Z,9) = ((x — x9)/a, (y — yo)/a). Likewise,
we introduce the modified and rescaled stream functions ¢)_ and @Z)Jr defined by

Y_(&,§) := max {O, 1/J(x/,\gl)_+p} , Yo (%,§) := max {0, —w(mﬁl—i—p}
for (Z,y) € Bi, the unit ball centered at (0,0) in the (Z, y)-plane. Here,

1 1
M= 20w {18 g ol o M = 20 mae {13 .

Falbli

Notice that ¢ is non-negative and 0+ (B1) but the product Y_1), vanishes identically.
Moreover, from the definitions of M4 and Yih’s equation (2.12), we find that

A@,g)i& > —1 on By,
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with the inequality holding in the sense of distributions.
Consider the function

o(r) = <7‘12 //B \Vi/;+|2dxdy> <7‘12 //B |V1/~1_\2dxdy) for 0 <r <1,

where B, denotes the ball of radius r centered at the origin in the (Z,§) variables. Applying
[ , Theorem 1.3], we can infer that for any 0 < r < 1,

B B 2
<z><r><co<1+ J[ wisrasay+ | rw_|2dmdy), (6.6)

B
for a universal constant Cy > 0. Because of the Holder regularity of zﬁi, from | ,

Theorem 1.6], we know that ¢(r) has a limiting value as » — 0, which must then coincide

with
2

6(0) := 7 [V (0,0) | V- (0, 0) .

Combining this with (6.6) and undoing the scaling, we can say that on internal interface

Vb (20, yo) [P Vo (w0, o) [P < C. (6.7)
Finally, from equation (6.7) and the Bernoulli condition (2.15), we arrive at the desired
bound (6.5). O

Having derived the velocity bounds on the interface, we are now prepared to prove
Theorem 1.4. We state this result in the Dubreil-Jacotin variables as this is most convenient
for applying it to the global bifurcation theory.

Theorem 6.4 (Global velocity bounds). Let (h,F) € X x R be a solution to the height
equation (2.18) with ||hy|p~< K and F > Fy > 0. Then

’1 hy

il Zq <C,
where the constant C' = C(Fy, K) > 0.

o ll oo (R) 'hp

L>(R)

Proof. Throughout the proof, we use C to denote a generic positive constant depend-
ing on the quantities in the statement of the theorem. Observe that, when converted to
Eulerian variables, these correspond to the same quantities appearing in the statements of
Lemma 6.1, Corollary 6.2, and Lemma 6.5. In particular, the previous lemma shows that
|Vi|< C on the internal interface.

It remains, to control |V| away from .#. For this, we use a maximum principle argument
based on | , Proposition 4.1]. Define

[=P+ My,

for M > 0 to be determined. Using the boundedness of |V| and Bernoulli’s law, one can
then show that |P|< C on .#. From Yih’s equation (2.12) and an elementary calculation,
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we see that f satisfies the elliptic PDE
2F2p(2M + Ayp)yh, — 2F~4p?
V]2
where by and by are given as follows:
e (2M + Ay) ¥y (2M + Ay) — 2F~%p
Vo2 V|2

The point here is that there are no zeroth-order terms on the left-hand side of (6.8). By
proving the right-hand side is non-negative, we will be able to apply the maximum principle

to f.

With that in mind, observe that from Bernoulli’s law we have
n_ )= _ w0

F? 2 2gd

Via Yih’s equation, we know that

Af —bife —bafy, =

— (2M + AY)M + %ppwy, (6.8)

bl ::2 b2 ::2

1 u*(0)?
A =—p+ F2YPp > — 1B+l g — “2gd lopll 0 -

Hence, choosing

u*(o)Q
M > My = (|8l + =5 7 120l o

yields Ay + M > 0. In conjunction with (6.8), this leads to the inequality

1
Af =bife —bafy, < — [MQ - ngp%} :

In view of the last inequality, we define

1 1/2 1/2
My = = 9yl 12 a2
0

Provided M > My, M5, we then have
Af —=bifz —bafy, <0.

Furthermore, as * — 400, the pressure approaches hydrostatic, which implies that f is
non-negative in the upstream and downstream limits.

First, we shall show that inf f > 0 in Q. On the upper surface this holds by definition.
Furthermore, we have already established that |P|< C on .#. Thus, there exists some M3
depending on the same constants, so that f = P + M3|p|> 0 on .#.

Finally, setting M := max{Mj, Ma, M3}, we have that f > 0 in Q. via the maximum
principle.

Similarly, we can show that f > 0in Q_. On the bed,

1
fy =Py + Mty = —5p+ M, <0,
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By the Hopf lemma, this implies that f cannot attain a minimum there. The claim follows
easily via the maximum principle.

Thus, f > 0 throughout the domain. Recalling its definition, this gives a lower bound
on the pressure. Using Bernoulli’s law, we can then control the velocity:

1
—f\vw =Py +E=P > =My > —M.
After rearrangement and using the fact that y > —1, F > Fo, this becomes

2
|Vep|2< 2M — T3Py +2E <2M + F2 +2E. (6.9)
0

Suppose that My > My, M3, that is M = Ms. Taking the supremum of the left hand side
of (6.9) and dropping the 1, term followed by applying Young’s inequality yields

2/3
byl 70 < 4/3 [opll 7o +F+4HEHLOO'

Using the definition of M5 and the L°° bound of 9, above, we can infer

1/4
1/2 2/3
Mo < 7 oyl 2 ( 7 el 2 +F+4|E\|Loo> -

Plugging My back into (6.9) gives

1/4
1/2 2/3 4 2
IV 7 < ||Pp\| ( 173 lewll TR Jr4||EHLoo> & + 2Bl peo -

Now, let us look into the case when M; > Ms, M3, that is M = M;. Plugging M; into
(6.9), this directly gives us
2
V63 <201+ 4+ 2| Bl < C.
Lastly, if M3 > My, Ms, then setting M = Ms leads to

2
IVl < 2Ms + 2 1Bl < C.

Rewriting the above inequality in terms of semi-Lagrangian variables, we arrive at the
desired inequality stated in Theorem 6.4. O

Remark 6.5. As a result of the previous theorem, we can infer that ||hyl|, « is controlled
by ||hpll . Moreover, because

4
w(g,p) = /1 wy(q,p") dp’,

we have
P T (6.10)
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Corollary 6.6 (Bounds on w and Vw). There exist constants C' = C(K) and 6 = 6(K)
such that every supercritical solitary wave with ||hy||co< K satisfies
i%f(wp + Hp) > 6,
and
||chl(R) <C.

Proof. As before, we will use C to denote a generic positive depending on K. Taking
Fy = F; and applying Theorem 6.4 gives the bound

L "y _ (6.11)
— — < C. .
hg b
Dropping the second term on left hand side of (6.11) gives
1
inf h, > — :=. 6.12
1% hp > c 1) ( )

Similarly, dropping the first term on the left hand side of (6.11) gives
s%p |hg| < \/as%p hy < C (1+ ||’lUp||CO(R)) .

Combining this with (6.10), we obtain the desired C! bound for w. O

6.2. Uniform regularity. The purpose of this subsection is to establish that the full X
norm of w can be controlled in terms of ||wp| . This will be used later to prove that,
following the global bifurcation curve %, blow-up in norm corresponds to the onset of
horizontal stagnation. Specifically, the main result is as follows.

Theorem 6.7 (Uniform Regularity). For all 6 > 0, there exists C := C(6) > 0 such that,
if (w, F) € X xR is a solution of the height equation (2.23) satisfying

: 1
inf(Hp +wp) 26, Jwplloo + 1 Hpllco < (6.13)

57
then it obeys the bound:
[wllgsrar) < C.

For steady waves in constant density or continuously stratified density water, this type
of result is very well-known (see e.g., | , , , ]). It is a direct conse-
quence of the ellipticity of the height equation and obliqueness of the Bernoulli condition
on the upper boundary — which are consequences of (6.13) — along with the translation
invariance of the system. However, the two-fluid problem considered in the present paper
requires a significantly different approach. To derive estimates near the internal interface,
one can adopt the idea of | | and work with a weak formulation of the height equation
(2.23). The proof of Theorem 6.7 is then straightforward to obtain following the general
argument in | , Section 5.6]. For that reason, we will only sketch the details.
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Specifically, the height equation (2.23) is recast as the distributional equation

1 1
V.<G(Vw,Hp)—FQ<O>>+Fprp =0 in RUI,

pw
(6.14)
G2 (Vw, Hy) — il =0 onT,
w =0 on B,
where G = (G1,G2) = (9¢, f, O, f), for f: R3 — R defined by,
¢ + &
= 1
f(§1)€27a) 2(a +€2)a2 (6 5)

Notice that the transmission condition on the internal interface is enforced by the fact that
the first equation above holds on RU I.

The main tool for proving regularity near the internal interface is the following theorem
of Meyers, stated here in a simplified form appropriate to our setting.

Theorem 6.8 (Meyers, | ). Let 2 C R? be a smooth domain. Consider
V- (AVu) =V -G+g in 9, (6.16)
and
u=0 on 09,

where A = A(x) is a matriz with measurable coefficients and enjoys c1I < A < cl_ll for
some ¢1 > 0, where I is the 2 X 2 identity matriz. Then there exists r = r(c1) > 2 such
that for all G € L"(2) and g € L*(2), (6.16) admits a unique solution u € Wol’r(.@), and
satisfies the following inequality

190l () < C (G0 + lgllzesn ) -

To use this result, we differentiate the equation (6.14) in the g-variable k times, say,
regroup terms as in (6.16) treating u := 8§w as the unknown. Iterating this process
furnishes W17 estimates for successively higher-order ¢ derivative of w. Eventually, by
Morrey’s inequality, this will lead to a sufficient Holder regularity of the trace of w on
the boundary. Applying a simple Schauder estimates for the Dirichlet problem yields the
desired regularity.

6.3. Proof of the main result. Now we are at last prepared to give the proof of The-
orem 1.1. Recall from Section 2 that the height equation is expressed in terms of the
nonlinear operator F : % C X xR — Y, where the open set % was defined in (2.26).
Theorem 5.1 states that there exists a continuous local curve of solutions to the height
equation (2.23) denoted by

Cloc := {(W, F) : 0 < € < e},

which contains nontrivial waves of elevation that are symmetric, monotone and slightly
supercritical. First, we show in the next theorem that %j,. can be extended to a global
curve of solutions.
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Theorem 6.9 (Global continuation). The continuous local curve of solutions Gl of the
nonlinear operator F(w, F) = 0 is contained in a global C° curve € parameterized as

C = {(w(s),F(s):0<s<oo} CU,
and exhibiting the following properties

(a) One of the following alternatives must hold:
(i) (Blowup) as s — oo,

1
- +F(s) + =——— — 0.
infr (wp(s) + Hp) (s) F(s) — Fe
(ii) (Loss of compactness) There ezists a sequence of s, — 00 as n — oo such that
sup,, N(s,) < oo but {w(sy)} does not have subsequences converging in X .
(b) Fiz parameter s* € (0,00), around the neighborhood (w(s*), F(s*)) € €, we can
reparametrize € so that s — (w(s), F(s)) is real-analytic.

(c) Forall s > 1, (w(s), F(s)) & Gloc-

N(s) = [lw(s)llx +

Proof. Clearly, F is a real analytic as a mapping % C X x R — Y. Moreover, from
Lemma 3.5 the linearized operator F,,(w, F') is Fredholm of index zero for all (w, F) € % .
In Theorem 5.1, we proved that Fy,(w€, F'°) has a trivial kernel for all (w¢, F¢) € %loc.
Together these facts import invertibility of F,, along the local curve %j,.. The statements
of the theorem now follows directly from an application of the abstract global bifurcation
result Theorem A.2. 0

The above theorem establishes the existence of a global curve, but we have yet to show
that the solutions along it limit to stagnation as claimed in Theorem 1.1(a). For that,
we prove a series of lemmas bounding the various quantities occurring in the definition of

N(s).
Lemma 6.10. The nodal properties (4.35) hold along the global curve € .

Proof. We start by showing that the nodal properties hold along the local curve .. Let
(w, F') € Gloc. By Theorem 5.1(d), (w, F) is a wave of elevation which means that w > 0 in
R\ B. Then, Theorem 4.5 tells us that w, < 0 in Rs \ (B> U LT)) Hence, by Lemma 4.9,
we know that the nodal properties hold along the local solutions curve %jo.. It remains to
show that these properties get passed on to solutions along the global curve.

Let S C % contains the solutions (w, F') € € that satisfy the nodal properties (4.35).
From Theorem 6.9, the curve % is continuous, therefore connected as a subset of X x R.
Further, via Lemmas 4.10 and 4.11, we know that § is a relatively open and closed subset of
€. Also, the argument in the previous paragraph guarantees that €j,. C S, hence § # .
Thus, we conclude that & = % which completes the proof of the lemma. O

Lemma 6.11. For every K > 0, there exists a constant C = C(K) > 0 such that every
(w,F) € % N F~(0) with |wller gy < K obeys the bound
1

T F<C.
infp (w, + Hp)
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Proof. The bounds are a direct consequence of Theorem 4.4 and Corollary 6.6. ([l

Next, we will rule out the loss of compactness alternative in Theorem 6.9(a). A key com-
ponent of the argument is the nonexistence of (nontrivial) monotone front-type solutions
of the height equation. This fact is proved in | | (see the remark between Corollary
4.11 and 4.12) and recalled below.

Theorem 6.12 (Nonexistence of monotone fronts). Suppose that h € CZ(RT)NC2(R~)N
CY(R) is a front solution to the height equation (2.18) in the sense that

h(g,p) = H(p) as q— +oo.
Ifinfr h), > 0 and
H.>H_=H on[-1,00 or Hy <H_=H on[-1,0],
then H. = H_ = H.

Lemma 6.13 (Local compactness). Suppose that {(wy, Fy)} C % is a sequence of mono-
tone solutions to the height equation (2.23) that is uniformly bounded in X x R. Then we
can extract a subsequence converging in X x R to some (w, F') € X X [Fgp,00).

Proof. Let a sequence {(wy, Fy,)} be given as above. By Lemma 6.11 and boundedness,
it follows that these solutions lie in a subset of X x R on which the height equation
(2.23) is uniformly elliptic with a uniformly oblique boundary condition on the top and
a co-normal transmission condition on the interior. By a straightforward adaptation of
[ , Lemma 6.3] to transmission problems, we may then conclude that either
(i) {(wn, F)} is pre-compact in X x R; or
(ii) we can extract a subsequence and find ¢, — oo so that the translated sequence
{iy,} defined by @y, := wy,(- + g, ) converges in CY  to some @ € X}, which solves
(2.23) and has @ # 0 and J,w < 0.

However, the second of these alternatives is impossible in light of Theorem 6.12. To see
this, observe that were it to occur, then h := w + H would be a front-type solution of the
height equation (2.18) in the sense that

l~1—>]:I,asq—>—oo fL—)Hasq—>oo,

for some g-independent solution H_ to (2.18). Since wg < 0, it must be that H > H.
Theorem 6.12 then ensures that H_. = H, meaning h = H or equivalently w = 0, a
contradiction. The proof is therefore complete. O

The next lemma applies the above result to conclude that the extreme of % does not
limit to a critical flow.

Lemma 6.14 (Asymptotic supercriticality). If ||w(s)|y is bounded uniformly along the
bifurcation curve €, then

liminf F(s) > Fg,.

S§—00
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Proof. We follow closely the argument in | , Lemma 6.9]. By way of contradiction,
suppose that there exists a sequence s,, — oo such that
limsup ||w(sn)||x < 00 and lim F(s,) = Fg-.
n—o0 n—00

We have already proved that each w(s,) is a monotone and even solution to the quasilinear
elliptic PDE (2.23). Lemma 6.13 therefore tells us that the sequence is pre-compact and
so passing to a subsequence, we may assume that {(w(sy), F(s,)} converges in X x R to
some (w*, F*) with F(w*, F*) = 0 where F* = F,. However, by Theorem 4.2(b), this
implies that w* = 0 which is equivalent to saying [|w(sy)||y — 0 as n — co. Lemma 6.10
ensures that that each w(s,) is a wave of elevation, therefore by the uniqueness of small-
amplitude solutions, (w(sy), F(spn)) € Gloc for n > 1. But, this contradicts the statement
in Theorem 6.9(c) that the curve does not reconnect to the trivial solution. The proof of
the lemma is therefore complete. ([l

Finally, we are ready to complete the proof of Theorem 1.1. It only remains to assemble
all the information obtained earlier.

Proof of Theorem 1.1. Let € be the global curve given by Theorem 6.9. The statement
in part (b) follows by construction of the local curve %y, specifically Theorem 5.1(a). To
prove part (c), recall from Theorem 6.9 that 4 C % which is defined in (2.26). This shows
that all the solutions contained in % are symmetric and supercritical. Moreover, they are
monotonic as a consequence of the nodal properties established in Lemma 6.10.

Finally, we consider the stagnation limit claimed in part (a). It was already shown in
Lemma 6.13 that the loss of compactness alternative in Theorem 6.9(a)(ii) does not occur.
Thus, the blowup alternative (i) must happen:

1
infr (wy(s) + Hp) F(s) — Fer
From the bounds in Lemmas 6.11 and 6.14, this can be further refined to

N(s) := [lw(s)llx +

+ F(s)+ — 00, as s — 00.

lw(s)|| x — oo, as s — 00.

By definition of X in (2.24) and Theorem 6.7, the above limit simplifies to ||wy(s)|| 0 — oo.
We now translate this back to the physical variables. In Eulerian dimensionless form, it

reads )
inf (¢ —a(s)) = —0 ass— oo 6.17
A N IO (047
Recall, that the dimensional and dimensionless Eulerian horizontal velocities are related
by

m

(@ —¢) = F+/gd(u— ¢). (6.18)
Vplnd
Combining (6.17) with the bounds on the Froude number given in Theorem 4.4, we obtain
C
infe,) (6 — a(s))

U—Cc=

F(s)® <
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Taking the infimum of both sides of the equation (6.18) and combining with the inequality
above results in the following

inf (e —u(s)) = F(s)y/gd inf (¢ — ii(s)) < C [inf (¢ —a(s)) = 0,

Q(s) Q(s)
as s — 00. Thus a point of horizontal stagnation develops in the limit. O
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APPENDIX A. QUOTED RESULTS

To keep the presentation reasonably self-contained, this appendix collects two important
results from the literature that are used in the present work. We begin with a theorem
that contains the maximum principle, Hopf boundary lemma and Serrin edge point lemma.
Notably, this includes versions that allow for the “bad sign” of the zeroth order term in
the operator provided the sign of the solution is known (see, for instance, | I, [ ]

and | ).

Theorem A.1. Let Q C R? be a connected, open set (possibly unbounded), consider the
second-order operator

n n
L:= Z a;j(x)0;0; + Z bi(x)0; + c(x)
ij=1 i
where 0; denotes the spatial derivative in x; coordinate and the coefficients a;j,b;,c are of
class C°(Q)). We also assume that L is uniformly elliptic; that is there exists A > 0 with

D a(@)g; > NP forall{ R, 2,
ij

and a;j being symmetric. Let u € C%(Q) N CY(Q) be a classical solution of Lu = 0 in (2.

(a) (Strong maximum principle) Suppose u attains its mazimum value on Q at a point
in the interior of Q. If ¢ <0 in Q, or if supqu = 0, then u is a constant function.

(b) (Hopf boundary lemma) Suppose that u attains a mazimum on § at a point x* € 9
for which there exists an open ball B C € such that BNOQ = {z*}. Assume eithere
C <0inQ orelsesupgu=0. Then u is a constant function or

v-Vu(z*) >0,

where v is the outward unit normal to Q at x*.

(c) (Serrin edge point lemma) Let z* € 992 be an “Edge point” in the sense that near x*
consists of two trasnversally intersecting C* ‘hypersurfaces {~y(x) = 0} and {o = 0}.
Suppose that v,0 < 0 in Q. If u € C?(Q), u > 0, u(z*) = 0. Assume further that
aj; € C? around the neighborhood of =*,

B(z*) =0, and  0:B(z*) =0
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for every differential 0. tangential to {~y = 0} N{o =0} at z*. Then for any unit
vector s outward from Q at x*, either

dsu(z*) < 0 or ?u(z*) < 0.

Secondly, we record here the abstract analytic global bifurcation result from | ,
Theorem 6.1].

Theorem A.2 (Chen, Walsh, Wheeler | ). Let X and Y be Banach spaces, with
U C X xR an open set. Suppose that F = F(x,\) : U — Y is real analytic.
Assume that there exists a continuous local curve lo. of solutions to F(x,\) = 0

parametrized as
Cloc = {(Z(A),\) : 0 < XA < AP,
where Ay > 0 and the map Z : (0, \s) = U is continuous. If
T(A) = 0€ U as X\ — 01 and Fp(Z(N\),\) : X — Y is invertible for all \,

then the local curve Gioc of the nonlinear operator F(x,\) = 0 is contained in a global O
curve € parameterized as

€ = {(x(s),s): 0 < s < o0} C FH0),
for some continuous (0,00) 3 s — (x(s),s) € U x T and exhibiting the following properties

(a) One of the following alternatives must hold:
(i) (Blowup) as s — oo,

1 \ 1
dist(z(s), 0U) TAs)+ dist(z(s),07)
(ii) (Loss of compactness) There ezists a sequence of s, — oo such that sup,, N(sy,) <
oo but {x(s,)} does not have subsequences converging in X.
(b) Fiz parameter s* € (0,00), around the neighborhood (x(s*),\(s*)) € €, we can
reparametrize € so that s — (z(s), \(s)) is real-analytic.

(c) Forall s> 1, (z(s),\(s)) ¢ Gloc-

N(s) = [lz(s)llx + — 0.
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