2101.07909v1 [math.AP] 20 Jan 2021

arxiv

BROADENING GLOBAL FAMILIES OF ANTI-PLANE SHEAR EQUILIBRIA

THOMAS HOGANCAMP

ABSTRACT. We develop a global bifurcation theory for two classes of nonlinear elastic materials. It is
supposed that they are subjected to anti-plane shear deformation and occupy an infinite cylinder in the
reference configuration. Curves of solutions to the corresponding elastostatic problem are constructed using
analytic global bifurcation theory. The curve associated with first class is shown to exhibit broadening
behavior, while for the second we find that the governing equation undergoes a loss ellipticity in the limit.
A sequence of solutions undergoes broadening when their effective supports grow without bound. This
phenomena has received considerable attention in the context of solitary water waves; it has been predicted
numerically, yet it remains to be proven rigorously. The breakdown of ellipticity is related to cracks and
instability making it an important aspect of the theory of failure mechanics.

1. INTRODUCTION

Our primary goal is to rigorously prove the existence of interesting families of equilibria far from the
reference configuration in the context of nonlinear elastostatics. Global bifurcation theorems for nonlinear
elasticity have been established in, for example, [10], [9] and [8]. Due to the generality of the systems
these authors consider, one must often accept that several alternatives may hold along the resulting global
continuum. Efforts to develop global theories with complete characterizations have been limited. As one
might expect, this requires some restrictions on the material, domain, and deformation. To this end, we
focus on materials whose reference configuration is an unbounded cylinder that are in a state of anti-plane
shear displacement and subjected to a parameter dependent body force. A material is said to be in a state
of anti-plane shear provided the deformation is of the form

id + u(x, y)es. (1.1)

The relative simplicity of (L1 makes the study of such deformations an important pilot problem. For
example, it is in this context that Saint-Venant’s principle for nonlinear elasticity was first probed (see [12]
Section 6]). Our investigation into broadening and ellipticity breakdown are in the same spirit.

As with many global theories, the natural first step is to construct a perturbative family. We begin by
further developing the local bifurcation theory established in [3, Section 3]. With this in hand, we employ the
analytic global bifurcation theory of [2] to obtain a branch of solutions to the corresponding static equilibria
problem that abides by a series of alternatives, which are in the same spirit as the ones mentioned above,
that hold for a large class of materials. Sharp results are obtained by imposing reasonable assumptions
on the material and body force; one set of conditions ensures broadening, while another leads to a loss of
ellipticity. We make extensive use of monotonicity properties of solutions, elliptic type estimates, and a
conserved quantity of the system in order to develop this global theory.

Broadening is characterized by the existence of a sequence of solutions to the relevant static equilibria
problem, for which each element is uniformly bounded in an appropriate Hélder norm and decays to zero
in the unbounded direction of the cylinder, yet does not admit a uniformly convergent subsequence. Such
a sequence would fail to be uniformly spatially localized. It is in this sense that the displacements become
broad. We also mention that after appropriately translating each element of such a sequence that one
obtains a front type solution in the limit; see Figure [l Broadening has been a topic of interest in the study
of interfacial solitary water waves since at least the 1980s. Amick and Turner developed a global bifurcation
theory which includes broadening as a possible alternative in [1], while Turner and Vanden-Broeck predicted
the phenomena numerically in [22]. Whether broadening does indeed occur for such waves is still an open
question. To the best of our knowledge, we are the first to rigorously construct a family of solutions that
exhibit broadening in the PDE context.
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FIGURE 1. Left: Broadening along the center line y = 0. Right: Shifted functions converg-
ing to a front along the center line y = 0.

A loss of ellipticity occurs when the governing equations change type. This is possible for some materials
subjected to subjected to deformations with sufficiently large gradients. Knowles explores the relationship
between ellipticity and crack formation for nonlinear elastics in [15] and again with Sternberg in [13]. We
construct families of solutions whose maximum deformation gradient must limit to the critical state where
ellipticity breaks down. As far as we know, no previous global construction has been shown to exhibits such
behavior.

1.1. The problem. Consider a homogeneous, isotropic, incompressible, hyperelastic material occupying the
region D := Q x R, where Q@ = R x (=%, %). Let u be the unknown displacement as in (LI). Assume that
u = 0 on 0f2, which may be interpreted physically as a clamped boundary condition. The structure of the
static equilibrium equations is largely determined by the strain energy density function W. It is well known
that for these materials W = W (I3, I, I3), where I; 5 3 are the principal invariants of the Cauchy—Green
tensor, and that I; = I = 3 + |Vu|? for anti-plane shear deformations (see [12, Section 4]). Also, note
that incompressibility implies Is = 1. Let us consider generalized neo-Hookean materials, in which case W

depends on I; alone. We write
W(Il,Ig, Ig) = W(Il)
to simplify the notation. Finally, let

Wi(q) :==W(3+q),
where $W(q) is the so called modulus of shear at amount of shear ¢ [11].
We also suppose, following for example [10], [8], and [3], that a parameter dependent live load acts on the
material. Let b = b(z, \) denote the associated force density. Both W and b are required to be analytic in
their arguments. Near the reference configuration, it is assumed that they have the expansions

W(q) = ¢+ c1¢* + c2g® + O(|q|*) (1.2a)
b(z,A) = (A — 1)z +b12° + O(|2°) (1.2b)

where z is displacement and A the parameter of the live load. We consider the case in which b; <0, ¢; <0,
and b is odd in z. The more general assumption that b is odd in z and b; + 2¢; < 0 is shown to be a
requirement for the existence of spatially localized solutions near the reference configuration in [3].

In general, the equations that describe anti-plane shear are an over-determined system consisting of three
equations and two unknowns. Knowles gives necessary conditions for non-trivial states of anti-plane shear
in the absence of body forces in [14]. As he points out, generalized neo-Hookean materials always satisfy
these conditions, and hence the governing equations are reduced to a single scalar PDE:

V- W (|Vul*)Vu) — blu,\) =0 in Q 13)
u=20 on 0f2. '
Naturally, the structure of both W and b will have a great effect on the qualitative features of the equilibria.

The first elastic model we consider, which we refer to as Model 1, is equation (L3]) with a corresponding

W satisfying

W(q) +2gV"(q) > & >0, ¢=0 (1.4a)
q+c1q’ + g’ <W(q), ¢>0. (1.4Db)

Note that (L.4a) and ([.2a) force the relation ¢ < 3c. Condition (I4a) ensures that (L3) is uniformly
elliptic regardless of the magnitude of the deformation gradient. The combined properties (L4) are used to
establish important a priori estimates. There is no universal choice for the growth conditions of W, but we
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mention that polynomial models are common in the applied literature. In particular, the reduced polynomial
model for incompressible materials has strain energy density given explicitly by:

Wig) =>_ Cid" (1.5)

After normalization so that C; = 1, we find that for a large class of coefficients (L5) will satisfy the
assumptions of Model I. When n = 3, (L3) becomes the widely used Yeoh model [25]. The parameters of
the Yeoh model may be chosen so that Cy < 0, which is one of our assumptions, in order to capture some
of the experimental properties of rubber [25]. Our final assumption for Model I is that the the live load b
satisfies the following conditions:

(A =1)z+b12° <b(2,)), for 2>0 (1.6a)

—b,(0,A) <1, for A>0. (1.6Db)

The condition ([L6al) is used to help obtain a priori estimates, and (L.6D) is a requirement of the local theory
for homoclinic solutions in [3].

We also consider a second model, Model II, which is again governed by equation (L3]), but where W
satisfies

W(q) +2¢W"(q) > 0 for all g € [0,q1) (1.7a)
W(q) +2qV"(q) = 0 as ¢ — q; (1.7b)
gW'(q) —W(q) <0, for ¢ > 0. (1.7¢)

Here, (L7a) and (I.7b) mean simply that (L3) is elliptic so long as |Vu|? < ¢1, and that (L3) loses ellipticity
as |Vu|? — ¢ . Furthermore, in this case, we suppose that b is concave in z and satisfies (L.6). Condition
(LZc) along with the concavity of b will be used to help rule out broadening for Model II.

Let us now consider a basic instantiation of Model II. The functions

W(q) = q+ca1d®, b\ z2)=(\—1)z, (1.8)

with ¢; < 0, correspond to a “softening” elastic material undergoing simple harmonic forcing. The criteria
for a softening material in the present notation is simply W (q) < 0, for all ¢ > 0. See [L1] for more details
on hardening or softening materials subject to anti-plane shear.

1.2. Main results. The primary contribution of this paper is the construction of global families of solutions
to ([L3) that either broaden or lose ellipticity.

Theorem 1.1 (Model I). There is a curve C! of solutions to (L3), under the assumptions of Model I,
admitting the C° parameterization

Ch = {(u(s),\(s)) : 0 < s < 00} C CZT(Q) x (0,00)
and (u(s), A(s)) = (0,0) as s — 0F. Moreover, we have that C satisfies the following:
(a) (Symmetry and monotonicity) Each (u(s), A(s)) € CT is monotone in the sense that
Ozu(s) >0 forxz >0
Oyu(s) <0 fory >0,

and u(s) is even in both x and y.
(b) (Analyticity) The curve C! is locally real analytic.
(c) (Bounds on \) There exists some 0 < \{ < A] < oo for which s > 1 implies

AL < A(s) < AT
(d) (Bounds on displacement) There exists C' = C(c1,c2,b1) > 0 for which

sup [u(s)[3+a < C.
s>0
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(e) (Broadening) There is a sequence {(un, \n)} C CL, and a sequence {x,}, with x,, — oo, such that

3 re) J—
Un (- + @, ) 22O 5 e o3 +o(@),

where U is a solution to (L3), @ £ 0, and d,u < 0.

We call 4 in the broadening alternative a front since it has distinct limiting states as © — oo and £ — —oo.
In fact, we will see that @ must decay to 0 as z — oo but limit to a non-trivial z-independent solutions
of ([L3) as # — —oo. Fronts are of great interest in, for example, the study of reaction-diffusion systems,
hydrodynamics, and mathematical biology. In [4], the authors consider a problem similar to the one posed
here. However, they assume that b; +2¢; > 0 and are able to construct a global family of front-type solutions
whose displacement grow arbitrarily large. Note that our assumption b1, c; < 0 is not quite complementary
to the one above; however, when taken together these conditions exhaust the global theory for a wide range
the parameters.

Our second main result concerns Model II. As in Theorem [L.I] we establish monotonicity, local analyticity,
and an upper bound on A along the global curve. However, in this case the strictly positive lower bound
on A and the upper bound on the displacement are lost. Furthermore, the loss of ellipticity, which is the
distinctive feature of Theorem [1.2] is an impossibility under the assumptions of Model I.

Theorem 1.2 (Model II). There is a curve C'1 of solutions to (L3), under the assumptions of Model II,
with C° parameterization

M = {(u(s),\(s)) : 0 < s < 00} C C2T*(Q) x (0, 0)
and (u(s), A(s)) = (0,0) as s — 0T. Moreover, we have that C!! satisfies the following:
(a) (Symmetry and monotonicity) Each (u(s), A(s)) € C! is such that u(s) is monotone in the sense that

Ozu(s) >0 forz >0
Oyu(s) <0 fory >0,

and u(s) is even in both x and y.
(b) (Analyticity) The curve CL is locally real analytic.
(c) (Bounds on \) There exists some 0 < A\ < co for which s > 1 implies

0 < A(s) < AF
(d) (Loss of ellipticity) Following C' to its extreme, the system loses ellipticity in that
lim inf (W'(q) + 29" (q))] =0 (1.9)

5—00 Q) q=|Vu(s)]?

We note that working under only the assumptions of (L2)), (L.6D), and by,c¢; < 0, our methods would
show the existence of a global curve of solutions that satisfy @ and @ as above. Moreover, the condition
0 < A(s) is retained. The conditions (L.4D) and (L.6al) are only used once (in Section H)). They help ensure
global bounds on |u(s)|p and |A(s)|, which will be shown to control |u(s)|3+e. Without (1.4Dh) and (I.6al),
we would be left with the alternatives (i) supgsq|u(s)]o — 00 or supgso A(s) — oo; (ii) broadening occurs;
or (iii) there is a loss of ellipticity in the limit, which may or may not coincide with either A(s) — 0 or
A(s) = oo. It seems that some restrictions on the growth of W and b are required for a satisfactory global

theory. Perhaps by another set of assumptions on W and b not utilized here one could force a blow-up in
either |u(s)|o or A(s).

1.3. History. Let us briefly recall some of the relevant history. Healey and Simpson obtained global branches
of static equilibria for a non-linear elastic mixed boundary value problems in [10]. This general theory includes
alternatives such as a loss of ellipticity, failure of compatibility conditions, or a return to the trivial branch of
solutions. Healey and Rosakis [9] construct unbounded solution branches, which are sometimes referred to as
“solutions in the large.” This theory leaves open the possibility that the loading parameter or the norm of the
deformation grows arbitrarily large as one follows the global curve. Each of these works are concerned with
compressible elastics. Recently, Healey developed global bifurcation results for nonlinear incompressible
elastics with conclusions similar to [9]. The displacements and domains in the theories mentioned above
are more general than the ones used in this paper. However, note that each of these works are concerned
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with bounded domains. Because our problem is posed on an infinite cylinder, there are serious additional
complications due to the lack of compactness properties for the underlying PDE. This difficulty is overcome
with the analytic global bifurcation theory presented in [2]. These authors also recently developed a center
manifold reduction to construct small solutions to the anti-plane shear problem in [3], which we use for
our local bifurcation theory. We also mention the work of [6,[19], which treat quasilinear elliptic PDE on
the whole space using degree theoretic global bifurcation theory. In contrast to 2], these authors impose
assumptions that ensure local properness. Because broadening represents a loss of local properness we find
the approach of |2] to be more natural in this context.

A word is in order about our choice of domain. Firstly, we are interested in developing a global theory for
homoclinic type solutions. Demonstrating broadening behavior is also of great interests to us, which requires
the existence of a sequence of spatially localized functions whose effective supports grow without bound.
A natural setting for either such analysis is an infinite cylinder. Moreover, there has been a considerable
amount of work regarding exponential decay estimates for anti-plane shear on semi-infinite strips of the form
(0,00) x (0, h); see [12, Section 6] and the reference therein for a good overview. Thus, interest in anti-plane
shear deformations in unbounded domains is well established.

1.4. Preliminaries. Let us fix some notation that will be used in the remainder of the paper. First, for
ke Nand a € (0,1), let

CEF (@) = {u € C*@) : [ulira < oo},

where C*(Q) denotes the space of functions which are k times continuously differentiable on € up to the
boundary, and | - g+ is the usual Holder norm. Much of our analysis will be concerned with solutions whose
derivatives decay uniformly to 0, which leads us to consider:

Ch Q) := {u € CFr(Q) : lim sup |Gpu(z)] =0, 0< |4 < k}

700 || =
Next, we define the Banach spaces X and Y by
X :i={ueCyi*(@)NC3(Q) : u=0o0n0Q} (1.10)
and
Y =Gt (@) nCp(Q) (1.11)

where the subscript e denotes evenness in the x and y variables. Equation (L3]) can be written in operator
form as

Flu,\) =0,

where F : X x R — Y is real analytic. We will show that C!"/! € X x R (here, and in the sequel, C/*/1 will
be used to indicate that a statement holds for both C! and C!!). A detailed investigation of the linearized
operator F, along a local curve of solutions to (L3)) is required in order to establish the existence of CZ+/Z.
The following spaces are useful for this task:

Xp = {ue 2t (Q) :u=00n09Q} and Yj, := CLT*(Q). (1.12)

Similarly, let Xo := {u € C37*(Q) : u = 0 on 9N} and Y, := C;7*(Q). Finally, we define an exponentially
weighted space that plays a role in the local bifurcation theory. The norm for this space is

|f|c"j+ﬂ(9) = Z |wuaﬁf|()0 + Z |wu|aﬁf|a|()0

B<k |B1=Fk
where k € x, a € (0,1), u € R, and w,(x) := sech(uz). We may then define
Cﬁ"l‘a(ﬁ) = {f (S Ck-‘ra(ﬁ) . |f|cﬁ+a(Q) < OO}
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1.5. Plan of the article. In Section[2, we recall the existence of a local curve of solutions to (L.3) established
in [3 Section 3] and then prove some monotonicity and symmetry properties that will be important for the
later analysis. This section ends by showing the linearized operator along the local curve is invertible; a
fact which is essential to the global theory. In Section Bl we apply the global bifurcation theory of [2] to the
local solutions. We also show that the monotonicity properties of the local curve are preserved. Bounds on
|u(8)|3+a and A are derived in Section [4 through elliptic estimates, monotonicity, and a conserved quantity.
Finally, in Section 5] we stitch together the previous work and systematically eliminate alternatives of the
global bifurcation theorem to prove both Theorem [I.1] and Theorem [L.2]

2. LOCAL BIFURCATION

Our ultimate aim to construct non-peturbative solutions, but first this will require us to refine our under-
standing of the local theory. After establishing the existence of a local curve, we show some monotonicity
and symmetry properties, which will be extended to the global curve in Section 3.2l The proof of existence
for CT+1 will rely upon invertibility properties of the linearized operator F, along the local curve; these are
investigated at the end of the section.

2.1. Existence and uniqueness. In [3, Section 3|, the authors establish the existence of a local curve of
homoclinic solutions to (L3]) bifurcating from (u, A) = (0,0) under the assumptions

b(u, \) =(\ — )u + byu?

W (q) =1+ 2c1q 21)

with b1 + 2¢; < 0. When this inequality is reversed, front-type solutions are instead obtained. The authors
extend this argument to deal with more generalized b, including the form (L2h), in [3, Appendix B.1]. Those
arguments can also be used to show the existence of local solutions under the more general assumptions of
Model T and Model II. This is the content of the next theorem.

Theorem 2.1. There exists an €9 > 0 and a local C° curve

Ch = {(u,€?) : 0<e<e}CXoxR

loc

of solutions to ([L3), corresponding to Model I or Model II, with the asymptotics
uf(x,y) = ayesech(ex) cos(y) + O(€?) in CP(Q) (2.2)
2

\/3|b2 —|—2Cl| '

Proof. We reparametrize with A = €2 for convenience. As mentioned above, an existence result was obtained
in [3, Section 3] under the conditions ([2.I). We will follow closely that proof and focus on the places where
deviations are necessary to accommodate the more general form of W we consider.

Let L := F,(0,0) and L’ be defined as the restriction of L to z-independent functions (L’ is called the
transversal linearized operator). The center manifold reduction result in [3] requires that 0 is a simple
eigenvalue of L’. The operator L corresponding to (2.1)), Model I, or Model II is simply A + 1 as seen by
the structure of (L.2) and (2.1). Clearly L’ satisfies the requirements mentioned above. Now, the center
manifold reduction given by [3, Theorem 1.1] shows that solutions of (L3]), that lie in a sufficiently small
neighborhood of the origin in CZT*(Q) x R can be expressed as

u(x 4 7,y) = v()po(y) + v ()70 (y) + ¥(v(x),v'(2), €)(7,Y), (2.3)

where a1 =

where v(z) := u(z,0), po(y) generates the kernel of L', and ¥ : R* — C37*(Q) is a C* coordinate map.
Here ;1 > 0 is a positive constant depending on the largest non-zero eigenvalue of L’. Moreover, if (u,€?) €
Cg*o‘(ﬁ) x R is any sufficiently small solution to (LL3]), then, by [2, Theorem 1.1], v solves the second-order
ODE

v = f(v,v, €2, where  f(A, B,é?) := dLlQ U(A, B,e¢)(z,0). (2.4)
T |z=0
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Thus, we are left to show that the change in ¥ resulting from the conditions of Model I or Model II does not
affect the existence or general form of u€ in (2.2]). Let us point out that ¥ inherits the following symmetry
properties from the original PDE (L3)):

U(—A,—B,e) = —U(A, Bye) and U(A,—B,e)(—x,y) = V(A, B,e)(z,y). (2.5)
From (2.4) it follows that
f(-A,~B)=—f(A,B) and  f(A,~B)= f(A,B). (2.6)
To derive an expression for f, we exploit [3, Theorem 1.2] to conclude that ¥ admits a Taylor expansion
of the form
U(A,B,e) =Y W ABIF + R, (2.7)
J
where the index set

J={0G,j,k) eN : i4+2j+k<3,i+j+k>2,i+7>1},
the coefficients W;;, € C3+*(Q), and the error term R is of order O((|A| + |B|*/? + €)*) in C3+*(Q).
Combining [2.3) and ([2.7)) yields

u(z,y) = (A+ Br)po(y) + > _ Vi A'BIe" + R, (2.8)
J
where A = v(0) and B = ¢'(0). For a fixed i, j, k the general theory now allows us to solve for ¥, ; via a
hierarchy of equations of the form
L(¥ijk) = Fijk 2.9)
where () is the projection onto kerL’. The Fjj; terms are obtained by iteratively feeding truncations of
2.8) into F" — L where F" is F precomposed with a certain cutoff function. The key point here is that
the @ is unchanged by our modification of W, and the Fj;;, terms are independent of terms of the order
O(|A| + |B|'/? + €)%) in C3te(Q). Our generalized W introduces, for example, the extra nonlinear term
c2V - (|Vu|*Vu) into (L3) near (u, A) = (0,0). We see that applying this to (2.8) yields only terms of order
O((JA| 4 |B|*/? 4 €)*). Hence, from this point on the argument for existence of solutions to (L3) carries
through without change. In particular, one can solve for ¥, in the exact manner presented in 3 Section 3.1]
and [3, Appendix B.1].
Although the rest of the argument now follows verbatim from [3], we continue the sketch because it will
help to explain some later reasoning. Having calculated ¥;;, we find that f takes the form

f(A,B,¢e) = A+ 73(1)1 1— 2c1)

where r € C® is an error term of the order O(|A|(|A| + |B|*/? 4 €)® + |B|(|A| + |B|*/? + €)?). Using the
re-scaled variables

A% +1(A, B,e) (2.10)

x =: X/e, v(x) =: eV (x), ve(2) = EW(z)
we may now write (2.4)) as the planar system
{Efx :MX; —a*V3+R(V,Vye) 211)

where the rescaled error R(V, W, ¢) = O(le|(|]V| + |W|). When € = 0 the system has the explicit homoclinic
orbit

V = aysech(X) W = —a;sech(X)tanh(X). (2.12)
This solutions crosses the V-axis transversely. Since (2.11)) has the reversal symmetries

(V(X),W(X) > (V(=X),—W(=X))  and  (V(X),W(X)) = (V(X), ~W(X)),

which it inherits from (2.6) and (2.10), this intersection will persist for small €, so we obtain a family of
homoclinic solutions. Undoing the scaling and appealing to [3, Theorem 1.1] shows that the family (2.2)
are indeed solutions to (3. O
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We now establish some qualitative properties of small solutions to (L3]).

Theorem 2.2. Suppose that (u,€*) € Xo x R is a solution to (L3) under the assumptions of Model I or
Model II. There exists 8o such that if |u|sia + €2 < 8o, then (u,e?) € CLH

reflection in x. Moreover, if (u,e?) € Cllogl, then w is even in x and y and monotone in that u, < 0 for
z > 0.

oe  after a possible translation or

Proof. First, we show there exists g small enough to ensure u > 0. The Malgrange preparation theorem
allows us to write b(\, z) = zw(A, z) for a smooth w defined in some neighborhood of (0, 0), see for example [5,
Theorem 7.1]. Then, (L3) becomes

A1 Uz + A2Uyy + 4W”(|Vu|2)uxuxyuy —uww\u)=0 in Q
(2.13)
u=20 on 0f).

where
a; = W(|Vul) + 2W" (|Vu|*) (uz)? and ag = W (|Vul) + 2W"(|Vul*)(uy)?.

Thus a; and as are uniformly positive for small enough &y (note that this is only a concern for Model 11,
since (L.4a) ensures a such a lower bound holds for Model I). We write (2.13) this way in order to view it as
a linear elliptic PDE and apply a comparison principle argument.

Consider the function

% = ®%(y) := log (2 + Vdy) cos(v1 — \y). (2.14)

An elementary calculation reveals that

_(—ecos(VI=dy)  2y/e(1 = N)sin(v1 = My)
a®% — w(h, u)®® = ( Ry oy )(1 +0(e?)) 0.15)

+ O(? cos(V1 = My)) in C°(Q0),

where we have used the asymptotics of b and W in (L.2), which hold for small enough €y. The right hand
side of (2.13)) is strictly negative whenever 0 <y < 7 and ¢ is small enough. Moreover, ®% > 0in Q. So,
if we establish non-negative boundary values for u on the region (—o0o,00) x (0, 5 ), then we may invoke the
maximum principle for uniformly elliptic operators with a positive super-solution (see Theorem [AT](iv)) to
conclude that v >0 on R x (0, J).

We already know v = 0 on R x {3}, and a phase plane analysis will show u > 0 on R x {0}. Indeed,
v := u(z,0) solves the ODE (2.4) by [3, Theorem 1.1]. If we write this as a planar system, which has
the same structure as ([2.11), then the symmetries (V,W) — (=V,—=W) and (V,W) — (V(-X),-W(-X))
imply that a homoclinic orbit that intersects the positive V' axis meets the W axis only at (0,0). Hence,
after a possible reflection u(x,0) > 0, so u > 0 for 0 < y < § by the remarks at the end of the previous
paragraph. Redoing the above analysis with ®°(—y) shows u > 0 in Q.

Now that the positivity of u is established, we find from a moving planes argument in [16] Theorem 3.2]
that w is even in z about some line x = x; with u, < 0 for x > z;. The translation z — = — z1 sends u
to a positive solution of (L3]) with the desired monotonicity and evenness properties in z. The phase plane
analysis for (ZII) in Theorem 2] shows that u¢(0,y) = 0, where u¢ € C:!', whence it follows that u¢ is
even about x = 0.

Observe that the previous paragraphs established the uniqueness of small solutions to (L3) up to trans-
lations and reflections in x. In particular, the elements of CI g T are the unique positive and even solutions
to ([L3) in a sufficiently small neighborhood of (0,0) in Xy x R. Finally, the elements of CIIO’CH must be even
in y since the reflection y — —y will take an element of Cllog T to another positive solution that is even and
monotone in x. g

2.2. Linearized problem. In this section, we show the linearized operator F,(0,\) : X — Y is invertible
for 0 < A < 1. This fact plays an important role in the analysis to follow. In particular, it implies the
Fredholmness of F : X — Y, which will extend to the global curve. A simple calculation yields

Fu(0,0) =A+1 (2.16)
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for Model I or Model II. The notion of a limiting operator is needed for the next two lemmas. If
L = aij(2,Y)0r,0z; + bi(x,y)0s, + c(z,y),
and as ¢ — +o0o we have
aij(xu y) — dl](y)a bz(%y) — El(y)7 C(x7y) — E(y)v

where each of aj;, b;, and ¢ belongs to Cf*[—7, 5], then the limiting operator L is defined as

L = 40y, 0p, + by, 0, + .
Lemma 2.3 (Invertibility of linearized operator at 0). For all 0 < A <1, F,(0,)) : X =Y is invertible.
Proof. Fix 0 < A <1 and let ¢(y) = cos(v/1 — Ay). Since ¢ > 0 on [-F, Z], we may write u =: vy, so that
Fu(0,\)u = 0 implies

2
Av + ﬂvy =0 in Q
@ (2.17)

v=20 on 0f.

Let L be the linear operator associated with (2.17) which acts on v. Note that L : Xy — Y} has trivial
kernel by the strong maximum principle (Theorem [A](i)). For v € R, let L, = L — v and denote by B the
corresponding bilinear operator:

9 2
Blw,w] = / (|Vw|2 — ﬁwwy —I—”yw2> dxdy = / (|Vw|2 + (—&> w? —|—~yw2> dz dy,
Q ¢ 0 Y ¢

for w € H}. When v is large enough, B is coercive and hence Lax-Milgram implies L, : H} — L% is
invertible.

We will next show that L, : X}, — Y} is invertible. The argument is similar to the one found in [23|
Appendix A.2]. Let p(z) := sech(ex). Conjugating by p. the problem L, = f may be transformed into the
equivalent one

Pe p?

where u, := upe and fe := fp. If f € Y}, then f. € L?, and the equation L. (uc) = fe is solvable by the work
above. Note that

L;ué = Lyuc —
€

200pe <8§p€ 3 2(8xpf)> =

1L — Lo lx oy = H

— 0, as e€—0,

€ Xb—>Yb

2 2
e (G2

so for small enough €, the pertubation L of L, remains invertible whenever 0 < e < €.

From [7, Theorem 8.8] and [7, Theorem 9.19], we know u, € C37%(Q) N C(Q). Moreover, By Schauder
estimates and injectivity, we have the bound

|ue|2+a S O|fe|a;

wehre C' > 0 is independent of e. Therefore, we are able to extract a subsequence €, — 0 for which u., — u
in C2_(Q) with u € C2T*(Q). Letting n — oo in the above equation we find the L,u = f.

Now that the invertibility of L, : X}, — Y}, has been established, we will make use of the continuity of
the Fredholm index to conclude that L : Xy, — Y}, is invertible. Let L,; := L — ty. It is clear that L.; is
its own limiting operator for ¢ € [0, 1], since its coefficients are z-independent. The limiting problem has
no non-trivial solutions because L, satisfies the strong maximum principle (Theorem m. Lemma A.8
of [24] now shows L;, must be semi-Fredholm with index < oco. Thus, the Fredholm index must then be
preserved along the family {L¢, }¢cjo,1]. We can now conclude that L : X}, — Y}, has Fredholm index 0, just as
the operator L,. Hence, L : X}, — Y}, is in fact invertible since it also has a trivial kernel. From [24, Lemma
A12], L : Xy — Yy must also have Fredholm index 0, and again the kernel is trivial so that L : Xy — Yo
is invertible. Finally, it is not hard to see from the structure of L that data f € Y C Yy must have a
corresponding solution u € X. For example, if f is even in y, and v is the unique solution to Lv = f, then
a quick check shows that Lv(xz, —y) = f as well. Hence, L : X — Y is invertible. O
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Now consider the linearized operator F, (u, A) with (u, \) € C2''. We know F, (u, \)@u = 0 by translation
invariance and elliptic regularity. Thus, F,(u, A) has nontrivial kernel acting on Xy,. However, if we instead
restrict to X, which by definition imposes even symmetry, then we will have injectivity.

Lemma 2.4 (Trivial kernel). For all (u,\) € CLMF, Fu(u, \) : X = Y is injective, whenever (u, \) € CL1.

loc ~ loc

Proof. From [3, Theorem 1.6] and [3, Appendix B.1.], if & € C;7*(Q) is a solution of F,(u, \)@ = 0, then
0 := (-, 0) solves the linearized reduced ODE
by +2
PN TECS -
where v := u(-,0). As noted above, 9, is in the kernel of F,,(u, A), so v, is an odd and bounded solution to
(2.18). Suppose that we had another bounded solution w € CZ(R) to (2.18) that is linearly independent of
v. From Abel’s identity

W(x) = W(0) exp ( /O " (P(s)) ds)

where W (z) is the Wronskian of v and w evaluated at x, and P is the matrix defined by

0 1
P = .
()\—i— 79@11_201)011}2 +ra(v,v €) TB)

Since uy, Ug,, w, and w, are all bounded, and ug, u,, each decay at infinity, we see that
|detW ()| < (w?(z) + w?(x)) - (u2(2,0) + Upe(x,0)) = 0 as |z| — oco.

But then must have
0

/ rp(uy(t,0), uz(t,0))dt = —oo and / rp(ug(t,0), uz(t,0))dt = 00 as z — oo. (2.19)
0

Recalling the symmetry properties of f in (2.6) and the explicit form given in (2.10)), it follows that
TB(Av B) = _TB(Aa _B) = TB(_Aa _B)

This would imply
0 T
lim rp(uy(t,0),u.,(,0)) dt = lim —/ rp(ug(—t,0), uze(—t,0)) dt
0

z—oo [ T—00

(2.20)

x

= lim B (U;E (t, 0)7 umm(tu 0)) dt?

r—00 0

where we used the properties of rp, oddness of u, and evenness of u,,. Equations (2.19) and ([2.20) together
force a contradiction. Hence, there cannot be two linearly independent bounded solutions to (2.18).

At this point we may conclude that v, generates the solution set of (2.18). Thus, F, : X — Y has
trivial kernel, since any non-zero element would necessarily be odd. To see this, suppose, by a slight abuse
of notation, that some w(z,y) € C3(Q) satisfies F,(u,\)w = 0. Recall that [3, Theorem 1.1] gives the
expansion

w(z,y) = po(r)w(z,0) + ¥(w(z,0), we(z,0), A)(0,y),
where w(x,0) is odd in x by the work above. The symmetries in (2.5 imply the additional symmetry
(=4, B,2)(0,y) = —¥(4,B,A)(0,y),
from which we may conclude that w is odd in . g

Finally, we show that F,, is invertible along the local curve.

Lemma 2.5 (Invertibility). For any (u, \) € C!, the linearized operator F,(u, ) : X — Y is invertible.

loc 7

Proof. We found that Fy,(u, A) : X — Y has trivial kernel whenever (u, \) € CIIO’CH in Lemma 2.4l It therefore
suffices to show that this operator is Fredholm index 0. The limiting operator of F,(u, \) is simply F,, (0, \)
because u decays as © — £o0. Recall that F,,(0, ) was shown to be invertible in Lemma[2.3] By [24, Lemma
A .13] it follows that the Fredholm indices of F,(u, A) and F,, (0, A) match. Hence, Fy,(u, A) is in fact Fredholm

index 0, and the result follows. g
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3. GLOBAL BIFURCATION

3.1. Background theory. We begin this section by recalling some of the global bifurcation theory devel-
oped in [2, Section 6]. The results stated here are tailored to the problem at hand. Let Z = (0,1) and

0= U Os where

6>0 (31)

_ 30\ . 15t / "
Os =XNn{ueC?*Q) : gxg)lgé (W'(@) + 20V (D) (= Gu@z > -

Theorem 3.1. There is a curve of solutions C1:1 C F~1(0), where F corresponds to either Model I or
Model II, parameterized as CT11 = {(u(s),A(s)) : 0 < s < 0o} C O x T with the following properties.

(a) One of the following alternatives holds.
(i) (Blowup) As s — oo

1 1

dista(s).00) T\ F Toeen 7 (32)

N(s) = |u(8)[s+a +
(ii) (Loss of compactness) There exists a sequence s, — 0o such that sup,, N(sp) < oo but {u(s,)}
has no subsequences converging in X.
(b) Near each point (x(s0), A(s0)) € C, we can reparametrize C so that s — (x(s), A(s)) is real analytic.

(c) (x(s),A(8)) ¢ Cioc for s sufficiently large.

Proof. We have shown that the linearized operator is invertible along the local curve and the result follows
directly from [2, Theorem 6.1]. O

Alternative (i) encapsulates several interesting possibilities. We note that a blow-up in ([B.2) can be
achieved by a loss of ellipticity, A returning to 0, or the more obvious unboundedness of A or |u(s)|34q.
Throughout the rest of the paper we investigate alternatives (i) and (ii) for Models T and II. This will
ultimately lead us to discover that broadening occurs invariably in Model I and that a loss of ellipticity is
ensured for Model II. At times we focus on segments of the curve C*/! of the form

=l n ;. (3.3)

Note that C'' = C[! by (L4a).
At this point, it is convenient to recall another result from [2] which helps characterize alternative (ii)
of Theorem B.1]

Theorem 3.2 (Chen, Walsh, Wheeler [2]). If {(un, An)} is a sequence of solutions to (L3) that is uniformly
bounded in Cg"’o‘(ﬁ) X R, with the additional monotonicity property

un(z,y) is even in x and uy <0 for © >0 (3.4)
for each n as well as the asymptotic condition

Hm wu,(x,y) =U(y) uniformly in y (3.5)

|z]|— o0
for some fized function U € CPT*([~Z, Z]), then either
(i) we can extract a subsequence {u,} so that u, — u in CET*(Q); or
(ii) we can extract a subsequence and find x, — o0 so that the translated sequence {u,} defined by
iy, = Up (- + T, ") converges in CF () to some @ € CPT*(Q) that solves (L3) and has @ # U with
Uy < 0.

Note that this theorem requires some symmetry and monotonicity properties in u,. The following sub-
section demonstrates these properties, and more, for elements of C7+//.
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3.2. Monotonicity and nodal properties. We show that elements of CIIOCI T exhibit certain qualitative
features by using the asymptotics (2.2) and maximum principle arguments. In fact, we have already estab-
lished that B.4) and (3.3) (with U(y) = 0) hold along C' in Theorem 2.2l Our goal is to prove that these
persist along C/*/1. The following sets will be useful for our analysis:

Q= {(z,y) €Q : >0}

Qp ={(z,y) : 2| <R,0<y< g}
L:={0,y) : —7/2<y<m7/2} (3.6)
T:={(z,7/2) : 0 <z < o0}
B:={(z,—7/2) : 0 <z < o0}
M :={(z,0) : 0 <z < o0}.
The nodal properties we are concerned with are as follows:
uy <0 on QF
uy <0 on Qy
Uge <0 on L
Ugy >0 on T (3.7)

Upay > 0 at (o,g) and Ugey >0 at (0,-%)
Uyy <0 on M

The reason for such a long list is owed to the style of argument. Roughly speaking, we will split the right
half (or upper half) of Q into a finite rectangle and infinite tail region (or into a finite rectangle and two tail
regions). The conditions in (8.7) will help gain control on the sign of either u, or u, near the boundary. The
following result gives a condition which ensures a sign on the x derivative of small solutions to (L.3).

Lemma 3.3 (Asymptotic monotonicity). There exists g > 0 such that, if u € C3(Q) and (u,\) € Os5 N
F=X0), for some 6§ >0, A >0, uy <0 on Ly, :={(z,y) €Q : =20}, and

lul2 < €o,
then u, <0 in QN {(z,y) : ©>x0}.
Proof. Fix A with 0 < A < 1. Differentiating (L3]) with respect to x gives
{v - W' (IVul?) Vo + 2W" (|Vu)?) (Vu @ Vu) Vo) — by(u, v =0 in Q 58)
v=0 on 02

where v = u,. We see that (3.8) is uniformly elliptic by (.4a) in the case of Model I, and the fact that
u € Os in the case of Model II. Let v := ¢z, where

o (y) = cos(Vky) (3.9)

and 1 — A < k < 1. After plugging (8.9)) into (B.8)), we find that z satisfies a uniformly elliptic equation with
zeroth order term

1
;(5y(W/(|VU|2)SD +2W'(IVul) (uf + usty)p). (3.10)
If €p is chosen small enough, then from (L.2al) and (L2h) it follows that (3.10) admits the C°(Q) expansion
1
;((1 —A—k)p+0(ed)) < 0. (3.11)

Thus, (B.1I) implies that z satisfies the strong maximum principle (Theorem m. Note z = 0 on 01,
and z < 0 on Ly, so it follows from the maximum principle that z < 0 in QN {(z,y) : = > zo}. Since
©(y) > 0, we must have u, < 01in QN {(z,y) : x> 20} as well.

If A > 1, then v = u, still solves (3.8). For ¢, sufficiently small, —b,(u, \) < 0, by (L.2h). As before, the
strong maximum principle and boundary conditions now yield the desired conclusion. O
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Remark 3.4. The above lemma is stated for the half strip (zo,00) x (=%, §), for some ¢ > 0, but a similar

result holds for sets of the form (zo,00) x (0, 5) or (=00, —x0) x (0, §).

Next, we consider the nodal properties of a monotone solution.

Lemma 3.5 (Nodal properties). Let (u,\) € Os N F~1(0), for some & > 0. Suppose that u, < 0 in QF,
uy <0 inQy, and v € X. Then u satisfies (3.1).

Proof. Note u, = 0 on Q" from the boundary conditions and evenness in the z variable. In particular,
Uy = Ugy = 0 on T'. The Hopf lemma (Theorem [A.1)(ii)) shows that uz, < 0 on L, uzy < 0 on B, and that
Ugy > 0 on T. Moreover, tgy = Ugyy = 0 on L, since uy, = 0 on L. If (s1,s2) is a unit outward pointing

vector at (0, F) with s; < 0 and sy > 0, then Serrin’s lemma (Theorem [AT](iii)) requires 02u, < 0 at (0, %)
since Uz, = Ugy = 0 at (0, ). A simple calculation shows 02Uy = 83 Ugzy + 28182Ugay + S5Uzyy < 0 at (0, 3)-
From this we see uzqy > 0 at (0,%). A similar argument shows uzqy < 0 at (0,—F). We are left only to
show that uy, < 0 on M. The evenness of u in the y variable implies that u, = 0 along M, and the result

follows from the Hopf lemma. O

We now show that the collection of (u, \) satisfying (8.7) is both open and closed in an appropriate relative
topology.

Lemma 3.6 (Open property). Let (u,\), (i, \) € O5 N F~1(0), for some & > 0. Suppose that 0 < A
and u, U € ngc(ﬁ) NC2(Q). If u satisfies (3.7), then there is some €y > 0 for which |u — |3 + |X — A| < €
implies U also satisfies (3.10).

Proof. We will establish the sign of either @, or 4, in several finite regions, and then invoke Lemma [3.3]
to determine the signs in a leftover tail region. See Figure [B.2] for a sketch of the domains used. Now,
because u € C2(Q), there is an R > 0 large enough so that |u|s < €/2 for z > R, where € is chosen to satisfy
LemmalB.3l If [u—aly < €1 = €/2, then |a(z, y)|2 < € for 2 > R. Let Q2 be the rectangle (0,2R) x (-3, %)
and QZ the inscribed rectangle with distance 1/k from Q2% Let us define several regions useful for our
analysis:

Ty == {(x, g)  1/k <z <2R—1/k}

By = {(x.~3)

Ly = {(0,) : —g Fl/k<y< g —1/k}.

c1/k <z <2R-1/k}

For a given k > 0, there is an € such that |u — @|3 < e implies @, < 0 in Qy, @yy > 0 on Ly, gy > 0 on
T}y, and wgy < 0 on By.
Suppose €y < 1, and consider the Taylor expansion of @, at a point (zo, ) on Tj:
™

i (0,9) = Wy (@0, 5)(y = 5) +O(y = 5)°) in C°@), (3.12)

where § — 1/k < y < 5. When k is large enough, the remainder term in (B.12) is dominated by the
first term and @.(zo,y) < 0. Analogous arguments show that for large enough k, u, < 0 in the rectangle
(0,1/k) x (=5 +1/k, 5 —1/k), and that u, <0 in (1/k,2R —1/k) x (0,1/k).

We still need to deal with the corners. For a given k, consider the quarter circle of radius ‘/Ti in Q2R
centered at (0, §). Because ug, Uge, Uzy, Uzzz = 0 at (0, F),

a(2,y) = ey (0, 5) @)y — 5) +O(y = 5)°) in CO@).

For a given k there exists an €}, so small that |u — @3 < €, implies that @,4,(0, %) > 0. Arguing like before,
we see that 4, (z,y) < 0 in the quarter circle, whenever k is sufficiently large. A similar argument shows
that u, < 0 in quarter circle of radius & centered at (0, —3). From the work above, we find that if & is taken
sufficiently large, and e taken sufficiently small, then i, < 0 in Q2% In particular, @, < 0 on the line
segment with = R and —§ <y < 7. Lemma B.3] now implies that @, < 0 in QF. If we can show that
Uy < 0in Q4, then we will be able invoke Lemma [3.5] to get the desired result.

The argument to establish a sign on 4, is similar to the one just given for ., so we provide only a
sketch. Let Q4 op = Q4 N{(z,y) : |z| < 2R} and Qi) = Q4 N{(z,y) : |z| < 2R,y > £} and
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0,%) T, (0, 3)
Lk QF Qp
(0,-%) (R,0) (2R,0) (—=2R,0) (0:0) M?? (2R,0)

FIGURE 2. Left: Regions use to control the sign of 4,. Right: Regions used to control the
sign of 1.

MR = M N {(x,y) : |z|] < 2R}. We see that (3.8) holds for v = w, in €, except the homogeneous
Dirichlet condition is lost. Thus, u, satisfies a uniformly elliptic PDE with a non positive zeroth order
coefficient in the tail region Q. N{(x,y) : |z| > R}, where R is the same constant from the above argument.
For small enough €y and k we find that @, < 0 on Q4 x and iy, < 0 on M2E. If k is sufficiently large,
then from a Taylor expansion along M?F we find that @, < 0 in Q4 2. Thus, a sign condition for 4, is
established in the finite region {24 or. To deal the corresponding infinite tails, we just need to establish good
boundary values, since we know 4, satisfies the maximum principle whenever |z| > R (see Remark [3.4]).
From the above argument, we have seen that if ¢ is small enough, then @, > 0 on 7T'. This, along with the
decay of @ at x = oo, is enough to establish that @, < 0 on all of T. A symmetric argument will show that

uy < 0 on the line segment {(z,5) : —oo < z < 0}. Also, 4, = 0 on M by evenness in the y variable.
Finally, since i, < 0 on the line segment with z = R and 0 <y < 7 (and on the segment with z = —R and
0 <y < 7, by evenness in the z variable), we conclude that %, < 0 on . |

Lemma 3.7 (Closed property). Let {(un, A\n)} C Os N F~1(0), for some § > 0. Suppose that (un, \n) —
(u, \) in C2(Q) x R. If each u,, satisfies [B.1), then so does u, unless u = 0.

Proof. By continuity we have that u, < 0 in QF, u; = 0 on 91, and uy < 0in Q4. So u, and u, each
satisfy the strong maximum principle (Theorem [AI[(T)) in the relevant domain because JF, (u, A)u, = 0 and
Fu(u, \)u,. Hence, if u, is not trivial, then u, < 0in Q1 and u, < 0 in Q4. Lemma [B.5 now implies that u
satisfies (B.7). O

Next, we show that [3.7) holds along .| which in turn shows that they hold on all of CZ/1.

loc ’

Lemma 3.8 (Nodal properties of the local curve). If (uf,e?) € LMt

loc
nodal properties (B.7).

Proof. In Theorem[2.2] we established that u¢ < 0in Q. Since u, = 0on T, the Hopf lemma (Theorem [4
implies that ug, >0 on 7. From (2.2), we know that ug (0, 5) < 0 for small enough e. Combining this with
the decay of uj, at infinity allows us to conclude that uy < O along all of T

We now proceed as in the proof of Theorem 2.2 We have seen that u° satisfies equation (8.8). If
we consider the corresponding uniformly elliptic operator acting on z-independent functions of the form
v = f(y)cos(v/1 — \y), then we obtain an expression with the following asymptotics in C°(Q)

(14 O(2)(f" cos(vV1 = Ay) — 21 — Af'sin(v/1 — \y))
O(?)(f' cos(vV1 = Ay) — V1 = Afsin(v/1 = Ay)) + O(e> f cos(v1 — My)).

Inspecting (8.13) shows that if we choose f = ®, as in the proof of Theorem [2.2] then for sufficiently small
e we can ensure (3.13)) is negative for 0 < y < 7. The boundary condition on 7', evenness in y (which
implies uy, = 0 on M ), maximum principle for uniformly elliptic operators with a positive super-solution
(Theorem , and decay in z are now enough to conclude that uj, < 0in Q. Now, Lemma [3.5]implies
the result. g

and 0 < € < 1, then u® exhibits the

(3.13)

Theorem 3.9 (Global nodal properties). Every (u, \) € C:I! ezhibits the nodal properties (3.7).
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Proof. Let (u,\) € CLM. From Lemma 3.8 u satisfies (3.7). Since the nodal properties are both open and

loc

closed in the relative topology of /! by Lemma[3.6land Lemma[3.7] we conclude that they hold everywhere
on CHIT, O

4. UNIFORM REGULARITY AND BOUNDS ON LOADING PARAMETER

The main result of this section, which is stated in Proposition [4.8] is that |u(s)|3+« is uniformly bounded
along Cé’H. This is achieved by first using Schauder theory to estimate |u(s)|s+q in terms of |Vu(s)|o and
then estimating |Vu(s)|o in terms of |u(s)|o and |A(s)| by a maximum principle argument. Upper bounds
on |u(s)|o and |A(s)| are then established for C'g’H. Finally, for s > 1 it is shown that there is a positive
uniform lower bound on A(s) along Cé’”.

4.1. A conserved quantity and LP estimates. We derive a conserved quantity of the system that will
play a key role establishing uniform bounds on |u(s)|o and [A(s)| along C3*''. These results, in tandem with
Lemma .5, give our desired a priori estimates. The following calculation is valid for any C? solution of

(L3). Let
L0 61, 0) = SW(E +7) + Bz, ) (1)

where ;
B(z,\) ::/ b(t, \) dt.
0

The anti-plane elastostatic problem (L3]) is formally the Euler-Lagrange equation given formally by
4] / L(u, |Vul?,\) dz dy = 0.
Q

Naturally, the translation invariance in x of our system leads us to expect a corresponding conserved quantity.
Consider the functional

Hu i) : = / (L, [Vl ) — Le(u, [Val?, M) dy

-

If (u, A) solves (L.3)), then H(u, A;-) is constant in x:

(4.2)

[SE] Wy

(GWIVU?) = W(TuP ) + Blu, V) dy.

O H = /2 (Loug + Ltz + Lylgy — (8155)1% - ﬁﬁuzz) dy

[SIE) o)

- / U (L — Dy Ly — 0yLe) dy =0

3

2

where we used integration by parts and that
(L2 — 0yLy — 0:Le) (Y, Uy Uz, Uy, A) = F(u, X) =0.

It is clear that H(u(z,y),A;x) — 0 as © — oo, so H is identically 0. We record this as a lemma. Note that
the arguments of H will often be suppressed in the sequel.

Lemma 4.1 (Conserved quantity). Let u € C%(Q) be a solution to (L3)) for a fized \. Then H is constant
in x. In particular, if u € X, then H = 0.

The conserved quantity and growth conditions of both W and b are enough obtain a uniform bound on
|u(s)|o (and on |A(s)|, as shown in Subsection [4.3]).

Lemma 4.2 (L? bounds). There exists a constant C(c1,ca,b1) such that if u € X is a solution to (L3),
corresponding to Model I, with 0 < X, then

Hu(ov ')HQv ”uy(ov ')Hﬁv |u(07 ')|1/2 < Cv (4'3)
where || - ||, denotes the LP norm on [~F, 5]. Moreover, for any xo € R we have

lu(zo,-)ll2, |u(zo,0)[o < C
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Proof. From (4.2)), Lemma [£.1] (L4D) and (L6a) we see that when z = 0

%
0=2H= 2/ Ly >||uy(0,)]15 + ex |y (0, )3 + 2]y (0, )5
-3
b
O = D0, )15 + 5 (0, )[4

For the remainder of the proof, we will suppress arguments of (0, -) and u,(0,-) appearing in LP[-F, T]
norms. Wirtinger’s inequality implies that [Ju,||3 — ||ul|3 > 0, and |Jull4 < 7|luy||4 by Friedrichs’s inequality,

so that
blﬂ'
c1lluyllz + calluy 1§ + TIIUyHZl < =Aull3 + (lull3 = [luyll3) < 0. (4.4)
Holder’s inequality yields
1
Huy”j =73 ||uyH46l

Altogether these give
b17T 1
(e1 -+ ) fuy 14 + 2y 1§ < 0 (15)

so that

b1 1

g |12 < ler + Grlrs

C2

Thus, [Juyll¢ is uniformly bounded. An application of Hélder’s inequality shows that ||uyl|2 is uniformly
bounded too. As mentioned above, [[ull2 < |[uy|l2. Hence, we obtain a uniform bound on |u(0,-)|;/2 by
Sobolev embedding. Because of the monotonicity of u established in [B.7), we see that ||u(zo,-)||2 and
|u(zo,)|o are maximized at xop = 0. Thus, the L? and L* norms of u are uniformly bounded on any
transversal line in €. O

Remark 4.3. Note that this says nothing about solutions of Model II. If u € C({I, with 6 > 0, then |u| < C,
where C depends on ¢;. This is a direct consequence of (L7a)), (L7h), and the homogeneous Dirichlet
conditions (|Vu|? < g2 along CH1).

Remark 4.4. More generally, if H = M, then the above argument shows that ||u, (0, -)||¢ is bounded uniformly
by a constant C' that depends on ¢y, ca,b; and M, so long as one assumes sufficient growth of W relative to
b.

At this stage, we are left to establish control on |A(s)| to complete our desired estimates of |u(s)|54q

4.2. Uniform regularity. We begin by using the so called “P-function” technique (see [21]) along with
standard elliptic estimates to gain some control on |u(s)|34q-

Lemma 4.5. Let (u,\) € Os N F~1(0), for some § > 0. If X and K are positive, and |ulo + X < K, then
there is a constant C(K,0) > 0 for which |u|z+o < C(K,6). If (u,N) is a solution which corresponds to
Model I, then the above estimate holds for some C' = C(K).

Proof. We prove this result by using a maximum principle of Payne and Philippin. First, we obtain bounds
on |Vu(s)|?. Recall, as mentioned in Remark [£.3] that this is trivial for Model I, so let us assume for now
the conditions of Model I. By Theorem 1 of [17] the function

u(2,y)

|Vu(z,y)|?
Pla.y) = /0 (W' (€) + 26V (€))dé — 2 /0 b(n, Ny dn,

obtains its maximum either on 9 or at a critical point of u. We should note that in [17] the results are
stated for bounded C?*t® domains. So, our application includes the additional possibility that the maximum
of P occurs in the limit as * — +o00. However, the decay of u precludes this scenario for nontrivial solutions.
The homogeneous Dirichlet boundary conditions of (L3]) and monotonicity properties of (8.7) now imply
that P is maximized at (0,0), which is the only critical point of u. Thus,

(@) u(0,0)
2aW'(0) = WD) o gy — 2/0 b(n, \)n dn < —2/0 b(n, \)n di.
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So,
u(0,0)
20V (@) - W(@) < =2 [ b N dn < 2(a(0.0))° max [blu(e.y). ) (4.6
w(z,y) (z,y)€Q
Since b is analytic in both z and A, it follows that the right hand side of (4.6) is bounded by C'(K). Moreover,
the left hand side of (4.6]) satisfies

q
29W'(q) — W(q) = / (W' +200"(q)) dg > g8,
0
whenever g > 0, by (L4a). Hence,

2
wu2 < 20007 bz ), ). (A7)
51 (z,y)€Q
Standard elliptic theory can now be invoked to upgrade a uniform bound in |Vu| into a uniform bound
in C3+%(Q). As we have seen in (3.8), 0,u solves a divergence form elliptic equation. In particular, from
(4.6) it follows that we may view O,u as the solution to a linear PDE with uniformly bounded coefficients.
An application of |7, Theorem 8.29] yields that for some o € (0, ¢

|Uw|0a Q) = C

where Qpr = QN {(z,y) : M <a < M + 1}, and both o and C depend on K and § (or only K in the
case of Model I). An analogous bound for |uy|car(q,,) is obtained by differentiating in y instead. Now, by
viewing (L3]) as a linear equation with coefficients that depend on u, and w,, which we have just shown
are uniformly bounded in c (Qar), we may apply (linear) Schauder theory to obtain a uniform bound on
[u] p2tar (2ar)- This gives control over |u| c1+e (), SO that by repeating the previous argument we gain control
of |u|c2ta(q,,). Now, Schauder estimates applied to the linearized equations for either wu, or u, provide a
uniform bound on |u|gstaq,,)- O

4.3. Bounds on loading parameter. Now, we show that as we follow either C! or C({I, for some § > 0,
that A(s) cannot return to 0 without the corresponding solutions returning to the reference configuration or
the equation undergoing a loss of ellipticity. Moreover, an upper bound on A(s) is derived for either case.
These estimates will be used to establish bounds on |u(s)|344 and (3.2).

Lemma 4.6. If {(un, \n)} C CL, or {(un, \n)} C CLT, for some § > 0, is sequence of solutions to (L3)), that
are uniformly bounded in Cg"’o‘ () and for which A, — 0, then u, — 0 in X.

Proof. Assume that {u,} does not converge to 0 in C™*(Q). By the hypothesis and (3.7), we may then
invoke Theorem 3.2l From this, one may conclude that either there is a subsequence converging in CS+O‘(§)
to a solution (u,0) € X x R of (L3)), or there is a subsequence of translates

where x,, — 00, and (%, 0) € C;1*(Q) x R solves (L.3). Moreover, iy, @, — 0 uniformly in z,y as z — oo,
and @, < 0. From (3.7) we also know that @, > 0 for y € [-7,0) and @, < 0 for y € (0, ]. An application
of the strong maximum principle for signed solutions (see Theoremm shows that the inequalities for
U, and %, must in fact be strict in the interior of Q2. Throughout the rest of the proof, the properties of u
and @ that concern us are the same, namely that they are monotone bounded solutions to (L3]) that decay as
x — oo. For simplicity, let us only write u in the sequel, with the understanding that the argument applies
equally well to .
Let 0 < Ry < Ry and ¢(y) = cos(y). Multiplying (L3]) by ¢ and then integrating we find

e

0= / / W (IVul?)Vu) — b(u, \))p dzdy

[V E] wl:t

Rz
= [ W(VuP)usp| dy+/ﬂ/ W (IVul*)uypy — b(u, N)@) dady

—X
2
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Note that u,p, > 0 by the comments above. For R; sufficiently large,

Y
_57 5)
because of the decay in u, and u,. Recall that b has the form (L2Dh) when |Vu|? is sufficiently small. So for
large enough Ry we also have —b(u, A\) — (1 — A)u > 0 whenever x > Ry and —5 <y < 5. Letting Ry — oo
we see that

1
3 < W (|Vul?) <1 in (Ry,00) x (

0= /f /F:O(—W/(WuP) + Duypy + (—b(u, A) — (1 — Nu)p dzdy

jus
2

— [ W(Vul*)uzp(R1,y) dy > 0.

.
2

This is of course a contradiction. O

Lemma 4.7 (Bounds on \). Let (u,\) € C'\ CL.. Then there exists some positive constants \f =

AE(c1,c2,b1) for which 0 < A~ < XA < A\t < oco. If instead we take (u,\) € CIL\ Cioc, for some § > 0,

then the result still holds with positive constants )\Qi, except that A~ now depends on § as well.

Proof. First, let us suppose that there is some sequence {(un, )} C Cé’H \ ¢LM for which A, — 0. By

_ \¥loc
Lemma [£.5 and Lemma [£.2] we see that {u,} is uniformly bounded in C**(Q) (in the case of Model II there
is dependence on ). Then, from Lemma .6 it follows that u, — 0 in C}T*(Q). However, Theorem 2.2]
then implies that u, € C.*' for large enough n, and this contradicts part of Theorem [3.1]

loc

To establish an upper bound on A, see that (L6a)) and Lemma [4.1] imply

bl z b
0= [T OV(TuP) +2B)],_ydy = [T WITUP,_ydy+ = DI, )3 + 2 a0, ),

2

where we are using || - [|, to denote the LP norm on [-%,Z]. Since W(q) > 0 for ¢ > 0, it follows that
(A= 1)[lw(0,)[13 + %]ju(0,)||3 < 0. Appealing to Lemma [£.2] We find that
b
v (1 Blsup P ) 10,918 < Cler.eab) 0
>0

We are now ready to state the main a priori estimate.

Proposition 4.8. If (u,\) € C!, then then there exists some C(c1,ca,b1) > 0 for which |ulz1a < C. If
instead (u,\) € CLL, then there exists C(c1,c2,b1,0) > 0 for which |ulz4q < C.

Proof. For (u,\) € CI, the result follows from Lemma [4.2] and Lemma [4.7] combined with Lemma [.5|
For (u,\) € CH, the estimate can be obtained from Remark [4.3] and Lemma [4.7 in conjunction with
Lemma [4.5] O

5. PROOF OF THE MAIN RESULTS

We are now prepared to prove the main results. The existence of a global solution branch, for either
model, is shown in Section Bl The key difference between the global behavior of C! and C!! is related to
alternative of Theorem B.1} for C’ it is shown to be impossible, thus forcing alternative , whereas for
C! it is shown to hold (note that is not necessarily excluded in this case).

Proof of Theorem [LI. By Theorem [3.I} there exists a curve of solutions C! extending CL _, which is locally
real analytic with C° parameterization

! ={(u(s),\(s)) : 0<s<oo}C X xR.

The symmetry and monotonicity properties of Theorem [[1li(a)| are proved throughout in Theorem .91 The
bounds on A(s) and supsg |u(s)|3+« from Theorem [L.Tlj(c) and Theorem [L.1lj(d) are established in Lemmal4.7]
and Proposition L8] respectively. This establishes all parts of Theorem [T except for the broadening in (e).
From the alternatives in Theorem [3.1], we see that @ must hold if

N(s) = [u(s)|3+a +

j + A(s)

1
dist(u(s), 00 + dist(A(s), 0Z)
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is bounded uniformly in s. The bound on the first term follows directly from Lemma [4.5] and those on the
third and fourth terms follow from the estimates on A established in Lemma[4.7] Recall that O is defined by
B.1), so ([L4a)) implies that the second term remains bounded as well. Hence, we have the desired control
over N(s), and the result must hold. O

We need to prove one more lemma in preparation for Theorem [L.2}

Lemma 5.1 (Nonexistence of monotone fronts). Let F correspond to Model I. Then, F~1(0) N Os, for

6 > 0, is locally pre-compact in X. In particular, alternative of Theorem 8.2l cannot hold for a sequence
{(un, \n)} CCH, § > 0.

Proof. From Theorem 3.2 we find that if Z~1(0) N Os fails to be locally pre-compact, then Theorem [3.2(ii)]
must hold. Suppose that {u,} is a sequence satisfying Theorem B.2lf(ii)] Then lim, oo tn (- + Tn,y) =:
i(r,y) € CZT*(Q) must solve (L3). Moreover, U(y) = lim,_, o i(z, y) satisfies

((W/((Uy)Q)Uy)y —b(U,A) =0, (5'1)
which can be seen by [4, Lemma 2.3]. Multiplying (5.1) by U(y) and integrating by parts yields

%
0= / W' (UHU + b(U, \)U) dy.
-3
From Lemma [4.1] we know that H(un,A;2) = 0, and hence that H(U, \;z) = 0. Written explicitly this
becomes

o:/i (%W(Uj)—i—B(U,)\)) dy.

After combining these equations, we find

0= / W(UUT = W(UZ) + bU,\U — 2B(U, X)) dy. (5.2)

A simple calculation will show
b(z,\)z —2B(z,\) <0 for z>0,

where the concavity of b(z, A) and the fact that b(0,A) = 0 are used. Recall that ¢W’(q) — W < 0 by (L.7c).
But then the right hand side of (5.2)) is negative, which is a contradiction, hence the result holds. |

Proof of Theorem [L2l From Theorem [B.I] we see there is a curve of solutions C*!, extending C{Z, which is
locally real analytic with C° parameterization

CI = {(u(s),\(s)) : 0<s<oo}CXxR.
As in the proof of Theorem [LL1] we wish to understand the alternatives in Theorem [B.1ll(a)l The quantity

inf (W(q) +2aW" (@) |, wu (o)
is not bounded below a priori along C!! as it was for CI. This leads us to consider N(s) (see (8.2) or the
proof of Theorem [L1]) on a segment C{! of C!!, with § > 0. An estimate of the form |u(s)|3+o < C(4) is
obtained whenever (u(s), A(s)) € C, by Proposition 4.8l

Now, if we assume C!f = CLI, for some §* > 0, then the first term of N(s) is uniformly bounded along C!/
by the paragraph above. Of course, this assumption also implies that the second term is uniformly bounded
along C!! by definition. Furthermore, Lemma [4.7]implies that the third and fourth terms are also controlled.
Thus, there is some C’(J) for which s > 1 implies |N(s)| < C’(6). Hence, alternative of Theorem [B.1]
must hold. However, this contradicts the impossibility of fronts established in Lemma [5.1l So we must have

S inf (V' (0) + 200" (@) | jgugo = O

In particular, we must have |Vu(s)|?> — ¢1. Note that our estimates on |u(s)|3+o and A(s) breakdown as
§ — 0. This leaves open the possibility that A(s) approaches either 0 or oo, or that a blow-up in C3+%(Q)
(note that |u(s)|o and |uy(s)|o are indeed bounded, but the elliptic estimates depend on §) occurs concurrently
with the loss of ellipticity. This establishes Theorem [1.2l|(d)|
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The monotonicity and symmetry properties of Theorem [[.2]|(a)| are prove in Theorem [B.9l Finally, the
bound on A(s) of Theorem [L.2l|(c)|is proved in Lemma [4.7 O
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APPENDIX A. MAXIMUM PRINCIPLES

We recall some variants of the maximum principle which are used repeatedly throughout the paper. In
particular, we state the strong maximum principle, including the version which a sign condition on the zeroth
order term is replaced with a sign condition on the solution ( |20, Lemma 1]), the Hopf boundary lemma,
Serrin edge point lemma (see |20]), and finally a variant which holds when a positive supersolution is known
to exist (see [18, Section 5 Theorem 10]).

Theorem A.1. Let Q be a connected, open set (possibly unbounded), and consider the second order operator
L given by

L:= Za” )0:0; +Zb )i + c(x) (A1)

1,j=1

where the coefficients are of class C§(Q). Suppose that L is uniformly elliptic in the sense that there exists
A > 0 such that

Z aij(2)&& > NEP?,  forall E€ER™, 2€Q, (A.2)

and that (a;;) is symmetric. Let u € C2(2) N C°(Q) be a solution of Lu = 0 in Q.

(i) (Strong maximum principle) Suppose that u attains a mazimum value on Q at a point in the interior
of Q. If ¢ <0 in Q, or if supgu < 0, then u is a constant function.

(ii) (Hopf boundary lemma) Suppose that u attains it mazimum value on Q at a point xo € 08 for which
there exists an open ball B C Q with BN 0Q = {z0}. Assume that either ¢ < 0 or else supg u = 0.
Then w is a constant function or

v - Vu(zg) >0,

where v is the outward unit normal to Q at xg.

(iii) (Serrin edge point lemma) Let xg € 9 be an edge point in the sense that near zo the boundary
0O consists of two transversally intersection C? hypersurfaces {o(z) =0} and {y(x) = 0}. Suppose
that o,y < 0 in Q, u € C%(Q), u > 0 in Q and u(xo) = 0. Assume further that a;; € C? in a
neighborhood of xy,

B(zg) =0, and 0-B(xp) =0,

for every differential operator O, tangential to {o = 0} N {~y =0} at xg. Then for any unit vector s
outward from Q at xq, either

Osu(wo) <0, and 0?u(xg) < 0.

(iv) (When a positive supersolution exists) Suppose that there exists v € C*(Q) such that v > 0 and

Lv <0 in Q. Then either — is constant, or — cannot achieve a nonnegative mazimum in 1.
v v

Remark A.2. If, in the context of above we suppose that that u > on €, then the existence of a positive
superolution implies that u > 0 in €.
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