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Highlights: 13 
 14 
Deep learning (DL) models have transformed many areas of research and industry, with their unparalleled ability to 15 
autonomously learn versatile representations of complex data. 16 
 17 
Due to this empirical success, neuroimaging researchers have started applying DL models to mental state decoding analyses, 18 
hoping that they can provide novel insights into the association between mental states (e.g., accepting/rejecting a gamble) and 19 
brain activity, beyond the capabilities of conventional machine learning approaches. 20 
 21 
Yet, several challenges at the intersection of functional neuroimaging and DL research hinder the broad application of DL 22 
models in mental state decoding. 23 
 24 
Here, we review recent advances in both fields to provide a set of solutions to these challenges and enable researchers to fully 25 
leverage the potential of DL models in mental state decoding. 26 

 27 
 28 

In mental state decoding, researchers aim to identify the set of mental states (e.g., experiencing 29 

happiness or fear) that can be reliably identified from the activity patterns of a brain region (or 30 

network). Deep learning (DL) models are highly promising for mental state decoding, with their 31 

unmatched ability to learn versatile representations of complex data. Yet, their widespread 32 

application in mental state decoding is hindered by their lack of interpretability, difficulties in 33 

applying them to small datasets, and in ensuring their reproducibility and robustness. We 34 

recommend to approach these challenges by leveraging recent advances in explainable artificial 35 

intelligence and transfer learning, while also providing recommendations on how to improve the 36 

reproducibility and robustness of DL models in mental state decoding. 37 

  38 
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 39 
Glossary: 40 
 41 
Mental state: An unobservable construct of psychological theory that refers to a particular mental operation or content and is 42 
often associated with specific observable behaviors.  43 
 44 
Computer vision: An area of artificial intelligence research, which aims to enable computers to derive meaningful information 45 
from the visual world and to take actions based on that information. 46 
 47 
DL: Deep learning (DL) describes a class of representation learning methods, which transform the input data in multiple 48 
sequential steps (or layers), each applying stacks of simple, but nonlinear, functions. 49 
 50 
fMRI: Functional magnetic resonance imaging (fMRI) measures brain activity by detecting changes in activity associated with 51 
changes in local blood flow. 52 
 53 
Natural language processing: An area of artificial intelligence research, which aims to enable computers to derive meaningful 54 
information from human language and to take actions based on that information. 55 
 56 
Representation: As used in computer science, a transform of some data in terms of a different set of features. Note that this 57 
definition stands in contrast to the understanding of representations in cognitive neuroscience, where they indicate the set of 58 
mental states that is encoded in (or represented by) the patterns of neural activity of a brain region (or network). 59 
 60 
XAI: Explainable artificial intelligence (XAI) represents a class of methods, which aim to make the behavior of DL models 61 
understandable to human observers, for example, by relating the features of the input data to the respective outputs of the 62 
model. 63 

 64 

The promise of deep learning 65 

Over the last decade, deep learning (DL; see Glossary and [1]) models have revolutionized 66 

many areas of research and industry with their ability to learn highly versatile representations of 67 

complex data. A defining feature of DL models is that they sequentially apply stacks of many 68 

simple, but nonlinear, transforms to their input data, allowing them to gain an increasingly 69 

abstracted view of the data. At each level of the transform, new representations of the data are built 70 

by the use of representations from preceding layers. The resulting high-level view of the data 71 

enables DL models to capture complex nonlinearities, associate a target signal with highly variable 72 

patterns in the data (e.g., when transcribing audio recordings), and effectively filter out aspects of 73 

the data that are irrelevant to the learning task at hand. A key driver for the empirical success of 74 

DL models is their ability to autonomously learn these different levels of abstraction from 75 

sufficiently large datasets, without the need for extensive data preprocessing or a prior 76 

understanding of the mapping between input data and target signal. 77 

This empirical success has recently sparked interest in the application of DL models to the 78 

field of neuroimaging, focused on mental state decoding [2]. Here, researchers aim to understand 79 
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the mapping between a set of mental states (e.g., the experience of anger or sadness) and the 80 

underlying brain activity by training models to identify these states from measured brain activity 81 

[3]. At first sight, DL models seem ideally suited for these types of analyses, as the mapping 82 

between mental states and brain activity is often a priori unknown, can be highly variable within 83 

[4] and between individuals [5], and is subject to spatial and temporal non-linearities [6].  84 

Yet, the application of DL models to mental state decoding analyses also poses several 85 

challenges for researchers who are interested in combining methods from both fields, namely, their 86 

general lack of interpretability, overall demand for large training datasets, and difficulties in 87 

ensuring the reproducibility and robustness of DL modeling results. Here, we outline these 88 

challenges and propose a set of solutions based on related empirical work and methodological 89 

advances in functional neuroimaging and DL research. 90 

Opening up the black box 91 

A key challenge for the application of DL models to functional neuroimaging data is the 92 

black box characteristic of DL models, whose highly non-linear nature deeply obscures the 93 

relationships between input data and a model’s decoding decisions. Thus, even if a DL model 94 

accurately decodes a set of mental states from functional neuroimaging data, it is not clear which 95 

particular features of the data (or combinations thereof) support this decoding. To approach this 96 

challenge, functional neuroimaging researchers have begun turning towards research on 97 

explainable artificial intelligence (XAI; [7,8]), where techniques are being developed that aim to 98 

make the behavior of DL models understandable for human observers. 99 

One line of research within this field seeks to explain the predictions of DL models by 100 

relating them to the features of the input data, thereby making the model interpretable for human 101 

observers [9]. While a plethora of such explanation approaches exist, we focus here on those that 102 

explain model predictions by attributing a relevance to each input feature for a model’s prediction 103 

[10–17], due to the widespread application of these approaches in mental state decoding. We 104 

provide an overview of representative approaches to this type of XAI in Box 1. Of these 105 

approaches, sensitivity analyses, backward decompositions, and reference-based attributions are 106 

currently most prominent in the neuroimaging literature [18–31]. Sensitivity analyses attribute a 107 

relevance to each input feature according to how sensitive the model’s prediction responds to the 108 
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feature’s value. Backward decompositions, in contrast, attribute relevance by sequentially 109 

decomposing the model’s prediction in a backward pass through the model into the contributions 110 

of lower-layer model units to the predictions, until the input space is reached and a contribution 111 

(i.e., relevance) can be defined for each input feature. Lastly, reference-based attribution methods 112 

attribute relevance by contrasting the model’s response to an input of interest to its response to 113 

some reference input (e.g., a neutral input [13]). 114 

 115 

Box 1. Representative XAI attribution approaches. 116 
We assume that the analyzed model represents some function 𝑓(⋅), mapping an input 𝑥 ∈  ℝ𝑁 to some output 𝑓(𝑥): 𝑓(⋅): ℝ𝑁 →117 
ℝ. The presented explanation approaches 𝜂(⋅) seek to provide insights into this mapping by attributing a relevance 𝑟𝑛 to each 118 

input feature 𝑛 ∈ 1, . . . , 𝑁 for output 𝑓(𝑥): 𝜂(⋅): ℝ →  ℝ𝑁 (Fig. I). 119 
 120 
Occlusion analysis [16,138]: Occlusion analyses represent a form of perturbation analysis and quantify 𝑟𝑛 by occluding 𝑥𝑛 in 121 
the input data and measuring the resulting effect on 𝑓(𝑥): 𝑟𝑛 = 𝑓(𝑥)  −  𝑓(𝑥 × 𝑜𝑛). Here, 𝑜𝑛 indicates an occlusion vector 122 
(e.g., 𝑜𝑛 ⋲  [0,1]𝑁) and × the element-wise product. 123 
 124 
Interpretable local surrogate model [15]: A local surrogate model is an interpretable model that is used to explain black-box 125 
model predictions by training it to approximate these predictions. In the LIME algorithm [15], 𝑟𝑛 is quantified by approximating 126 
𝑓(𝑥) for a specific 𝑥 with an interpretable model 𝑔(⋅), e.g., a linear model, where 𝑔(𝑥)  =  ∑ 𝑤𝑛𝑥𝑛𝑛 , and which is trained by 127 
the use of a set of perturbed versions 𝑍 of 𝑥 (e.g., through occlusion): min

𝑔
∑ 𝜋𝑥(𝑧) (𝑓(𝑧) − 𝑔(𝑧))2

𝑧∈𝑍  . Here, 𝜋𝑥(⋅) represents 128 

some similarity function weighting each 𝑧 ∈ 𝑍 by its similarity to 𝑥 and 𝑟𝑛 is given by linear model weight 𝑤𝑛: 𝑟𝑛 =  𝑤𝑛. 129 
 130 

Sensitivity analysis [10,12,139]: Sensitivity analysis defines 𝑟𝑛 as the locally evaluated partial derivative of 𝑓(𝑥): 𝑟𝑛 =
𝜕𝑓(𝑥)

𝜕𝑥𝑛
 131 

(or as its square (
𝜕𝑓(𝑥)

𝜕𝑥𝑛
)2). Accordingly, relevance is assigned to those input features to which 𝑓(𝑥) responds most sensitively. 132 

 133 
Backward decomposition [11,14,16]: Backward decompositions make specific use of the graph structure of DL models by 134 
sequentially decomposing 𝑓(𝑥) in a backward pass through the model until the input space is reached. A prominent example 135 
is the layer-wise relevance propagation (LRP; [11]) technique: Let 𝑖 and 𝑗 be the indices of two model units in two successive 136 

layers 𝑙 and 𝑙 + 1 and 𝑟𝑗
(𝑙+1)

 the relevance of unit 𝑗 for 𝑓(𝑥). To redistribute relevance between successive layers, several rules 137 

have been proposed [140], which generally follow from: 𝑟𝑖
(𝑙)

= ∑
𝑎𝑖𝑤𝑖𝑗

∑ 𝑎𝑖𝑤𝑖𝑗𝑖
𝑗 𝑟𝑗

(𝑙+1)
, where 𝑎 and 𝑤 represent the input and weights 138 

of unit 𝑖 in layer 𝑙. Importantly, LRP assumes that relevance is conserved between layers, such that ∑ 𝑟𝑛𝑛 = ∑ 𝑟𝑖
(𝑙)

𝑖 =139 

∑ 𝑟𝑗
(𝑙+1)

𝑗 = 𝑓(𝑥). 140 

 141 
Reference-based attribution [13,14,17]: Reference-based attributions define 𝑟𝑛, given some 𝑥, by contrasting the model’s 142 
response to 𝑥 to its response to a reference input 𝑥0. For example, integrated gradients (IG; [13]) defines 𝑟𝑛 by integrating the 143 

gradient 
𝜕𝑓(𝑥)

𝜕𝑥𝑛
 along a linear trajectory in the input space connecting a neutral reference input 𝑥𝑛

0 to the current input 𝑥𝑛: 𝑟𝑛 =144 

(𝑥𝑛 − 𝑥𝑛
0) ∫

𝛿𝑓(𝑥0+𝛼(𝑥−𝑥0))

𝛿𝑥𝑛

1

𝛼=0
𝑑𝛼 . Conceptually, IG identifies those input features that most impact the model’s output when 145 

scaled from the reference value to their current value. Note that IG’s attributions sum to the difference in model output for the 146 
current input 𝑥 and the reference 𝑥0:  ∑ 𝑟𝑛𝑛 = 𝑓(𝑥) − 𝑓(𝑥0). Another prominent reference-based attribution method is SHAP 147 
(SHapley Additive exPlanations; [17]), an extension of Shapley values [141] to XAI, which uses other possible coalitions of 148 
input features as a reference. 149 
 150 
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 151 
Figure I. Representative XAI attribution approaches. 152 

 153 
 154 

At first sight, the explanations of different attribution methods are difficult for human 155 

observers to discern, making it challenging to compare the quality of their explanations. To 156 

approach this challenge, researchers have started developing methods to quantify the quality of 157 

such explanations. One prominent approach is to test the faithfulness of an explanation [32–34]. 158 

An explanation can generally be viewed as being faithful if it accurately captures the model’s 159 

decision process [35] and thereby identifies those features of the input that are most relevant for 160 

the model’s prediction. Accordingly, removing these features from the input (e.g., in an occlusion 161 

analysis; [16]) should lead to a meaningful decline in the model’s predictive performance.  162 

By the use of this test, researchers in computer vision have compared the faithfulness of 163 

explanations resulting from sensitivity analysis and backward decompositions [32]. This work has 164 

shown that backward decompositions generally perform better at identifying those features of the 165 

input that are most relevant for model predictions. Intuitively, this makes sense, as backward 166 

decompositions seek to directly quantify the contribution of each input feature to a specific model 167 

prediction. Sensitivity analysis, in contrast, does not evaluate the prediction itself but its local 168 

slope, thus identifying features that make the model more or less certain of its prediction, 169 

regardless of their actual contribution to the prediction. 170 



6 

Recent work in functional neuroimaging has performed a similar comparison of sensitivity 171 

analyses, backward decompositions, and reference-based attributions in a mental state decoding 172 

analysis with fMRI data [36]. Similar to findings in computer vision, this work shows that 173 

explanations from backward decompositions and reference-based attributions are generally more 174 

faithful than those of sensitivity analyses. Yet, it also demonstrates that the explanations of 175 

sensitivity analyses generally align better with the results of standard general linear model analyses 176 

of the fMRI data, when compared to those of backward decompositions or reference-based 177 

attributions. To make sense of this finding, it is important to remember that these types of XAI 178 

techniques seek to explain the mapping between brain activity and mental states learned by a 179 

model. Due to the generally strong spatial correlations of functional neuroimaging data, DL models 180 

can, in many cases, accurately decode a mental state by focusing solely on a subset of those voxels 181 

whose activity is associated with (and thereby predictive of) this state. In these cases, XAI methods 182 

with perfect faithfulness will produce explanations that do not identify all voxels of the input 183 

whose activity is in fact associated with the mental state, but solely those whose activity the model 184 

used as evidence for its decoding decision. Sensitivity analyses, in contrast, take a step back from 185 

the specific contribution of each input voxel to the decoding decision and instead ask how 186 

sensitively the model's decoding decision responds to a voxel's value, thereby identifying a broader 187 

set of voxels whose activity the model takes into account when forming its decoding decision. 188 

Functional neuroimaging researchers have also used occlusion analyses to analyze mental 189 

state decoding models (in “virtual lesion analyses”; [23,37]). Yet, these applications have mostly 190 

been limited to linear models and to testing whether specific voxels (or brain regions), which 191 

received large weights in a linear model, are actually necessary for an accurate decoding. For 192 

functional neuroimaging data, occlusion analyses generally require a clear prior hypothesis on 193 

which features (or brain regions) of the input will be tested (e.g., based on other research), as 194 

randomly dropping out individual feature values will otherwise not account for the strong spatial 195 

correlation structure inherent to these data. To circumvent these issues, neuroimaging researchers 196 

can perform occlusion analyses on the level of functionally independent brain networks, as defined 197 

by a brain parcellation [38,39], instead of on the level of individual voxel values [40,41].  198 

Taken together, we therefore make a two-fold recommendation for XAI techniques in 199 

mental state decoding (see Box 2): if researchers are interested in identifying those voxels of the 200 

input whose activity is most relevant for the model’s decoding decision, we recommend the 201 
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application of backward decompositions or reference-based attributions, while we recommend 202 

sensitivity analyses when researchers are more interested in understanding the association between 203 

the underlying brain activity and studied mental states. Occlusion analyses also represent a viable 204 

alternative to these approaches, if researchers are interested in relating the activity of functionally 205 

independent brain networks to the decoded mental states rather than the activity of individual 206 

voxels. 207 

Importantly, while XAI techniques represent a cornerstone to the application of DL models 208 

in mental state decoding, we advocate for caution in the interpretation of their explanations, as the 209 

mappings between brain activity and mental states learned by DL models can be highly complex 210 

and counterintuitive [22,42,43]. We therefore urge neuroimaging researchers to always interpret 211 

the results of an XAI analysis in the context of the results of standard analyses of the same data 212 

(e.g., with linear models; [44,45]) and related empirical findings (e.g., from NeuroSynth; [46]). 213 

 214 
Box 2. Recommended XAI approaches for mental state decoding.  215 

Our recommendations for XAI approaches in mental state decoding are two-fold: If researchers are interested in understanding 216 

the contribution of individual feature values to model decisions, we generally recommend backward decomposition or 217 

reference-based attribution methods (see Box 1 and [11,13,14,16,17]), while we recommend sensitivity analyses (see Box 1 218 

and [10,12,139,142]) when researchers are more interested in understanding the association between the underlying brain 219 

activity and mental states. Below, we provide specific recommendations for respective XAI techniques: 220 

 221 

Layer-wise relevance propagation (LRP) [11]: LRP represents a backward decomposition method (see Box 1). While several 222 

rules have been proposed to redistribute relevance 𝑟 between units 𝑖 and 𝑗 of two successive layers 𝑙 and 𝑙 + 1 [11, 140], the 223 

authors generally recommend a composite of these rules for computer vision models [140]. Specifically, combining the LRP-224 

0 rule (r𝑖
(𝑙)

= ∑
𝑎𝑖𝑤𝑖𝑗

∑ 𝑎𝑖𝑤𝑖𝑗0,𝑖
𝑗 r𝑗

(𝑙+1)
, where 𝑎 and 𝑤 represent the input and weights of unit 𝑖 and Σ0,𝑖 runs over all inputs 𝑎𝑖 plus 225 

the bias) for layers closer to the output, with the LRP-𝜖 rule (r𝑖
(𝑙)

= ∑
𝑎𝑖𝑤𝑖𝑗

𝜖+∑ 𝑎𝑖𝑤𝑖𝑗0,𝑖
𝑗 r𝑗

(𝑙+1)
, with 1𝑒−4  ≤ 𝜖 < 1) for middle layers, 226 

and the LRP-𝛾 rule (r𝑖
(𝑙)

= ∑
𝑎𝑖(𝑤𝑖𝑗+𝛾𝑤𝑖𝑗

+)

∑ 𝑎𝑖(𝑤𝑖𝑗+𝛾𝑤𝑖𝑗
+)0,𝑖

𝑗 r𝑗
(𝑙+1)

, where 𝛾 controls positive contributions and is generally 0 < 𝛾) for layers 227 

closer to the input. A TensorFlow implementation of LRP is provided by iNNvestigate [143], while Zennit [144] provides a 228 

PyTorch implementation. 229 

 230 

Integrated gradients (IG) [13]: IG represents a reference-based attribution method that is applicable to any differentiable 231 

model (see Box 1). An important hyperparameter choice for IG is the choice of a reference input 𝑥0, which should be chosen 232 

to be neutral. The authors generally recommend an all-zero reference, the addition of noise to the input or a reference involving 233 

instances from other decoding classes (e.g., their average), while an average over the attributions of multiple references is also 234 
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possible [145]. A tutorial on how to use IG in TensorFlow can be found at 235 

tensorflow.org/tutorials/interpretability/integrated_gradients, while Captum [146] provides a PyTorch implementation. A 236 

comparable alternative to IG is the DeepLift algorithm [14], which generally runs faster than IG and is therefore often preferred 237 

for larger datasets. 238 

 239 

Sensitivity analysis [16]: Similar to IG, sensitivity analyses are applicable to any differentiable model (see Box 1). Note that 240 

various adaptations of the standard sensitivity analysis have been developed, for example, by omitting negative gradients in 241 

rectified linear unit activation functions [142], multiplying gradients and input [147] or by adding noise to the inputs [12]. A 242 

TensorFlow implementation of sensitivity analysis (as well as many of its adaptations) is provided by iNNvestigate [143], 243 

while Captum [146] provides respective PyTorch implementations. 244 

 245 

Leveraging public data 246 

A second major challenge for DL models in functional neuroimaging research is the high 247 

dimensionality and low sample size of conventional functional neuroimaging datasets. A typical 248 

functional Magnetic Resonance Imaging (fMRI) dataset contains a few hundred volumes for each 249 

of tens to hundreds of individuals, while each volume contains several hundred thousand voxels 250 

(i.e., dimensions). Current state-of-the-art DL models, in contrast, can easily contain many 251 

hundred million parameters [47,48], while recent language models have pushed this boundary even 252 

further with many billion parameters [49]. In most cases, DL models thus contain many more 253 

trainable parameters than there are samples in their training data. While this vast 254 

overparameterization represents a key element to the empirical success of DL models, by enabling 255 

them to find near-perfect solutions for most standard learning tasks [50] and to generalize well 256 

between datasets [49,51], it also represents one of the biggest challenges for their application in 257 

fields where data are scarce, as the performance of DL models is strongly dependent on the amount 258 

of available training data [51,52]. 259 

To approach this challenge, various methods have been developed that aim to improve the 260 

performance of DL models in smaller datasets [53–55]. One prominent method, with strong 261 

empirical success, is transfer learning [55]. The goal of transfer learning is to leverage the 262 

knowledge about a mapping between input data and a target variable that can be learned from one 263 

dataset (i.e., the source domain) to subsequently improve the learning of a similar mapping in 264 

another dataset of a related domain (i.e., the target domain). Knowledge is typically transferred in 265 
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the form of the parameters that a model has learned in the source domain and that are then used to 266 

initialize the model (or parts of the model) when beginning learning in the target domain. Transfer 267 

learning has been especially successful in computer vision and natural language processing, where 268 

large publicly available datasets exist (e.g., [56,57] and commoncrawl.org). Here, DL models are 269 

first pre-trained on these large datasets (e.g., to classify objects in images or to predict the next 270 

word in a sentence) and subsequently fine-tuned on smaller datasets of a related target domain 271 

(e.g., to classify brain tumors in medical imaging [58] or to analyze sentiment in text [48]). 272 

Computationally, pre-training can aid subsequent optimizations by placing the model’s parameters 273 

near a local minimum of the loss function [59] and by acting as a regularizer [60]. Pre-trained 274 

models generally exhibit faster learning and higher predictive accuracy, while also requiring less 275 

training data when compared to models that are trained from scratch [49,51,61]. However, the 276 

benefits of pre-training can diminish with increasing size of the target dataset [51] and as the 277 

overall differences between source and target learning task and/or domain increase [62].  278 

Over recent years, functional neuroimaging research has experienced a similar increase in 279 

the availability of public datasets, which are provided by large neuroimaging initiatives as well as 280 

individual researchers [63]. In addition, several efforts have been made to standardize the 281 

organization [64,65] and preprocessing [66] of functional neuroimaging data. These developments 282 

have paved the way for the field of functional neuroimaging to enter a big data era, allowing for 283 

transfer learning. 284 

Recent empirical evidence indicates that transfer learning between individuals [24,67–73], 285 

experiment tasks [74–77], and datasets [78–81] is possible and that pre-training generally improves 286 

the decoding performance of DL models in conventional fMRI datasets [68,69,74,77,78,80]. Most 287 

of this work has utilized traditional supervised learning techniques during pre-training by assigning 288 

a mental state to each sample in the data and training a decoding model to identify these states 289 

from the data. While this is a fruitful approach to decoding analyses within individual datasets, it 290 

is often difficult to extend to analyses across many datasets. In spite of several attempts [82,83], 291 

functional neuroimaging research has yet to widely adopt standardized definitions of mental states. 292 

Without this type of standardization, it is often unclear whether two experiments from two separate 293 

laboratories elicit the same or different sets of mental states. Imagine the following experiments: 294 

In the first, participants read aloud a sequence of sentences and are then asked to repeat the last 295 

word of each sentence. In the second, participants first hear a sequence of letters and digits and are 296 
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then asked to report back the letters and digits in alphabetical and numerical order respectively 297 

(the letter–number sequencing task; [84]). While both experiments label the associated mental 298 

state as “working memory”, one could argue that the experiments in fact elicit two distinct mental 299 

states, as one solely requires temporarily storing information while the other also requires actively 300 

manipulating this information. 301 

To enable successful learning across datasets with these types of imprecise mental state 302 

labels, we recommend three learning approaches (see Box 3): 303 

First, one can consider each dataset as a separate learning task and train a single model to 304 

jointly solve all tasks [85]. Recent empirical work has already demonstrated the versatility of this 305 

kind of multi-task learning approach for mental state decoding by training a single model to learn 306 

a common data representation from many datasets and using dataset-specific decoding models to 307 

identify mental states from the learned common representation [80]. 308 

A second approach comes from weakly-supervised learning, where techniques have been 309 

developed that enable model training with noisy or incomplete data labels [86]. Data programming, 310 

a weakly-supervised learning technique, is particularly promising for training DL models across 311 

neuroimaging datasets with imprecise labels for mental states (see Box 3 and [87]). Here, simple 312 

functions are used to generate new labels for the training data. These functions automatically label 313 

subsets of the data by implementing simple domain heuristics of subject matter experts (e.g., label 314 

a YouTube text comment as Spam if it contains a URL or the words “check this out”). The 315 

generated labels are then used to train models in a supervised manner. Recent empirical work has 316 

demonstrated that this type of weak supervision can be successfully used for the classification of 317 

unlabeled medical imaging data (e.g., radiography or computer tomography data; [88]) by 318 

designing labeling functions that extract labels from the accompanying medical text reports. A 319 

similar approach could be fruitful to generate standardized labels of mental states (e.g., according 320 

to the Cognitive Atlas; [83]) by applying automatic labeling functions to the accompanying 321 

publication texts (e.g., label an fMRI scan as “visual perception” if the publication text contains 322 

the words “viewed” or “viewing” in the Methods section). 323 

Yet, even standardized labels for mental states can be imprecise with respect to the 324 

underlying distribution of brain activity. Imagine a simple experiment in which individuals view 325 

images of faces and houses. A decoding model might perform well in identifying that a face or 326 
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house is seen, while missing out on other important characteristics of the brain activity associated 327 

with the more fine-grained characteristics of the stimuli, such as an individual’s age and gender. 328 

Here, self-supervised (or unsupervised) learning techniques provide a means to learning 329 

that does not consider any labeling of the data and instead enables models to autonomously learn 330 

meaningful representations of the data (see Box 3 and [89]). Two prominent examples of self-331 

supervised learning, with strong recent empirical success [48,49], are contrastive and generative 332 

learning [90]. Both learn a representation of the data by training an encoder model to project the 333 

data into a higher-level representation. In contrastive learning [91], the encoder model is trained 334 

by the use of an additional discriminator model, which aims to determine the similarity of a pair 335 

of data samples based on their projection through the encoder model. Generative learning [92], in 336 

contrast, trains the encoder model by the use of an additional decoder model, which seeks to 337 

reconstruct the input (or parts of the input) from the higher-level representation of the encoder 338 

model (a prominent example of generative learning models are autoencoders; [93]).  Researchers 339 

have already demonstrated that self-supervised learning techniques can be successfully used to 340 

pre-train DL models across many and diverse fMRI datasets, leading to models that generalize 341 

well to other fMRI datasets in mental state decoding analyses [94]. 342 

 343 

Box 3. Approaches to pre-training across many neuroimaging datasets.  344 

Transfer learning aims to improve the performance of model 𝑓(⋅) in a target learning task 𝑇𝑇  in a target domain 𝐷𝑇  by 345 

leveraging knowledge that can be learned by pre-training 𝑓(⋅) in a related source learning task 𝑇𝑆 and source domain 𝐷𝑆 [55]. 346 

A domain 𝐷 is defined by feature space 𝑋 with samples 𝑥 ∈ ℝ𝑁 whose 𝑁 feature values are characterized by some probability 347 

distribution 𝑃(𝑋).  Knowledge is generally transferred in the form of the weights 𝑊 that 𝑓(⋅) has learned during pre-training. 348 

A key challenge for pre-training in mental state decoding is that the labels assigned to individual mental states can be imprecise, 349 

such that two datasets might assign the same label to a mental state while the underlying mental states are in fact different from 350 

one another. We recommend three learning approaches (Fig. I) to enable 𝑓(⋅) to learn in a source domain that is characterized 351 

by a set 𝐴 of datasets 𝑎𝑗  , where 𝐴 = {𝑎1, . . . , 𝑎𝑗} and 𝑎𝑗 = {(𝑥1
𝑗
, 𝑦1

𝑗
), . . . , (𝑥𝑖

𝑗
, 𝑦𝑖

𝑗
)}, with imprecise mental state labels 𝑦𝑖

𝑗
∈ 𝑎𝑗. 352 

 353 

Multi-task learning ([85]; Fig. I A): In multi-task learning, each dataset 𝑎𝑗 is considered as a separate supervised learning 354 

task and one model 𝑓(⋅) is trained to jointly solve all tasks. A prominent approach to multi-task learning [80] is to train 𝑓(⋅) 355 

in conjunction with dataset-specific decoding models 𝑑𝑗(⋅), such that 𝑓(⋅) learns a common representation of the data 𝑓(⋅356 

): ℝ𝑁 → ℝ𝐿 , which is then used by the individual decoding models to identify their set of mental states: 𝑑𝑗(𝑓(𝑥𝑖
𝑗
))  =  𝑦𝑖

𝑗
 357 

 358 
Weakly-supervised learning ([86]; Fig. I B): A prominent example of weak supervision is data programming [87], where 359 

noisy target values 𝑦̂𝑖
𝑗
 are generated for the samples 𝑥𝑖

𝑗
∈ 𝐴 by the use of user-specified labeling functions 𝑙(⋅). These labeling 360 
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functions implement domain heuristics of subject matter experts (e.g., label a chest radiograph as “abnormal” if the 361 

corresponding medical text report contains a word with the prefix ‘‘pneumo’’; [88]). The generated target values are then used 362 

to train 𝑓(⋅) in a supervised way, such that 𝑓(𝑥𝑖
𝑗
) = 𝑦̂𝑖

𝑗
, while the labeling process itself is treated as a generative model to 363 

account for noise and conflicts in the generated labels. 364 
 365 
Self-supervised learning ([89,90]; Fig. I C): Self-supervised learning does not consider any labeling of the data. Instead, a 366 

new learning task is devised, which requires 𝑓(⋅) to independently learn a useful representation of the data in the source 367 

domain. Two prominent self-supervised learning strategies are contrastive and generative learning. Both treat 𝑓(⋅) as an 368 

encoder model, which is trained to project the samples 𝑥𝑖
𝑗

∈ 𝐴 into a higher-level representation: 𝑓(⋅): ℝ𝑁 → ℝ𝐿. In contrastive 369 

learning [91], 𝑓(⋅) is trained by the use of an additional discriminator model 𝑑(⋅): ℝ𝐿 → ℝ, which learns to determine the 370 

similarity of a pair of data samples based on the encoder’s projection. During training, augmentation functions 𝛤(⋅): ℝ𝑁 →371 

ℝ𝑁 are used to create augmented versions {𝑥̂𝑖
1, . . . , 𝑥̂𝑖

𝑧} of data samples 𝑥𝑖
𝑗
 (e.g., by adding noise) and the discriminator’s task 372 

is to identify pairs {𝑥̂𝑖
𝑘, 𝑥̂𝑖

𝑙} that result from the same sample 𝑥𝑖
𝑗
. In generative learning [92], 𝑓(⋅) is trained by the use of an 373 

additional decoder model 𝑑(⋅): ℝ𝐿 → ℝ𝑁 , which aims to reconstruct the original data sample from the encoder’s projection: 374 

𝑑(𝑓(𝑥𝑖
𝑗
))  = 𝑥𝑖

𝑗
. 375 

 376 

Figure I. Recommended approaches to pre-training DL models across multiple neuroimaging datasets. 377 

 378 
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Ensuring reproducibility  379 

Recent work in functional neuroimaging has exposed the high flexibility of its standard 380 

analysis workflows, leading to substantial variability in results and scientific conclusions [95]. In 381 

light of these issues, several efforts have been made to improve the standardization and 382 

reproducibility of functional neuroimaging analyses [64,66]. DL research is currently facing 383 

similar concerns, with model performances that are often hard to reproduce [96–98]. Functional 384 

neuroimaging researchers who are interested in applying DL models to mental state decoding 385 

analyses are thus faced with additional challenges for the reproducibility of their work, which arise 386 

at the intersection of both fields. 387 

A key driver for methodological progress in DL research is the hunt for state-of-the-art 388 

performances in benchmarks (see paperswithcode.com/sota), that is, by whether a new 389 

methodology outperforms existing ones in pre-defined test datasets. While this approach has 390 

helped the field of DL to evolve fast and quickly develop accurate models, it has also established 391 

a research culture that often sacrifices scientific rigor for maximal performance metrics [99,100], 392 

not unlike the “p-hacking” phenomenon in null hypothesis testing [101]. 393 

A central argument for predefined test datasets is that all models should be compared on 394 

the same grounds (i.e., the same sets of training and testing samples). Yet, these types of point 395 

estimates are often insufficient to determine whether a model actually outperforms others in new 396 

data. Recent empirical work has demonstrated, for example, that the convergence of DL models 397 

and thereby their final performance in a test dataset is dependent on many non-deterministic factors 398 

of the training, such as random weight initializations and random shufflings or augmentations of 399 

the data during training [98,102,103], as well as the specific choices for hyper-parameters, such as 400 

the specification of model layers and optimization algorithm [104]. In some cases, researchers can 401 

thus achieve state-of-the-art performance simply by investing large computational budgets into 402 

tuning these types of factors for a specific test dataset [102]. Consequently, many reported DL 403 

benchmarks are built on top of massive computational budgets and are often difficult to reproduce 404 

by other researchers [98,103,105]. Recent empirical findings further suggest that the comparisons 405 

performed on several of these benchmarks lack the statistical power required to accurately 406 

determine the reported improvements in model performance [106], a problem similarly evident in 407 

neuroimaging research [107]. 408 
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For these reasons, researchers have started advocating for more comprehensive and 409 

standardized reporting of the training history of DL models [108], more extensive evaluation 410 

procedures [109,110] as well as an increased scientific rigor in DL research [99]. To avoid similar 411 

pitfalls in mental state decoding, we have derived a set of recommendations from recent DL 412 

research, which aim to improve the reproducibility of DL model performances (see Box 4). 413 

Most DL training pipelines are too complex to allow for a comprehensive evaluation of all 414 

possible coalitions of the training’s non-deterministic factors. However, evaluating only a specific 415 

instance of these choices (e.g., by fixing the random seed) does not give a reliable estimate of a 416 

model’s expected performance in new data. Instead, the variance in model performance associated 417 

with these factors can be better captured by randomizing as many of them as possible, for instance, 418 

by choosing different random seeds for each of multiple training runs [103,108,111]. 419 

In addition, multiple random splits of the data into training, validation, and test datasets are 420 

needed when evaluating model performances, to account for the variance in model performance 421 

associated with different data splits (e.g., by the use of cross-validation; [97,111,112]). A single, 422 

predefined test dataset contains limited information about the whole underlying data distribution 423 

and is thus limited in its ability to provide an accurate estimate of the model’s expected 424 

performance. Yet, recent work has also shown that cross-validation analyses on small functional 425 

neuroimaging datasets often underestimate the error in estimates of a model’s expected 426 

performance [112]. When using small datasets, cross-validation analyses should therefore be 427 

treated with caution. 428 

Further, to ensure that the chosen combination of statistical comparison method and test 429 

dataset size provide sufficient statistical power to accurately determine the studied difference in 430 

model performance, simple simulation studies can be used by first identifying and estimating the 431 

required quantities of the statistical testing procedure (e.g., McNemar’s test for paired data requires 432 

the models’ probabilities of making a correct prediction as well as their agreement rate) and 433 

subsequently using these estimates to simulate model comparisons at different test dataset sizes 434 

[106]. In addition to ensuring that the chosen performance evaluation procedure does not lack 435 

statistical power, recent work in neuroimaging also suggests controlling for multiple sequential 436 

model comparisons, as multiple sequential hypothesis tests (e.g., performance comparisons) on the 437 

same dataset can inflate false positive rates [113]. 438 
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Improving robustness 439 

In addition to the presented reproducibility challenges, a wealth of recent empirical work 440 

has shown that highly-tuned DL models often lack basic robustness towards slight distributional 441 

shifts [109,114] or corruptions [115] of the data, such that minor changes to their input, often not 442 

recognizable for human observers, can have drastic effects on model performances [116,117]. DL 443 

models trained on functional neuroimaging data seem especially susceptible to these kinds of 444 

robustness issues, due to the many systematic sources of noise inherent to these data, which can 445 

be specific to the imaging acquisition site and studied individual [118] as well as the general 446 

variability of the associations of brain activity and mental states between experimental studies and 447 

individuals [119–121]. For this reason, training models on large, homogenous datasets (e.g., 448 

comprising data acquired at the same imaging site from a homogenous group of individuals 449 

performing the same experiment task) can result in models that do not generalize well to data from 450 

other imaging sites or subject populations [122–124].  451 

To strengthen robustness towards slight distributional shifts or corruptions of the data, DL 452 

researchers generally suggest applying random augmentations to the data during training, such as 453 

randomly cropping, rotating or flipping images [125] or occluding parts of the input [126]. Recent 454 

empirical work in functional neuroimaging has shown, however, that many of these standard 455 

augmentation techniques do not generalize well to functional neuroimaging data [127]. Instead, 456 

neuroimaging researchers advocate for the use of more powerful data synthesis strategies, for 457 

example, by the use of generative models trained to capture the characteristics of a training dataset 458 

well and which can then be used to synthesize artificial training data [128–130].  459 

DL model performances often also vary highly across the different, often unrecognized, 460 

subpopulations of a dataset (a phenomenon known as “hidden stratification”; [131,132]). A DL 461 

model trained to decode natural images from functional brain activity might perform well on 462 

average, while consistently misclassifying specific image sub-categories. To identify hidden 463 

stratification, we generally recommend both manual and automated evaluation approaches, for 464 

example, by inspecting falsely classified data instances [132] or applying automated clustering 465 

algorithms to the hidden representations of trained DL models to identify possible subpopulations 466 

in the data [131]. Similarly, DL models trained on large datasets often learn biases in favor of over-467 

represented sub-populations (e.g., based on individuals’ gender; [133]). To identify these types of 468 
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biases in mental state decoding, we recommend evaluating the performance of trained models on 469 

the various sub-populations of the data. Once hidden stratification or bias is detected, dedicated 470 

learning techniques can be used to improve model performances on specific subpopulations, such 471 

as importance weighting [122] or regularization [134]. 472 

Lastly, DL models can be susceptible to learning spurious shortcuts that allow them to 473 

perform well in a given training dataset but which do not generalize well to other scenarios [135]. 474 

For instance, researchers found that a pneumonia detection model trained with medical imaging 475 

data can learn to perform well on average solely by learning to identify hospital-specific artifacts 476 

in the medical images in addition to learning the hospitals’ pneumonia prevalence rates [136]. 477 

Similarly, biomarker models trained on functional neuroimaging data can learn to identify patients 478 

by their generally increased head motion (as suggested by [137]). To detect these types of 479 

confounds, we recommend that neuroimaging researchers evaluate the performance of mental state 480 

decoding models on out-of-distribution data (e.g., public neuroimaging data from other 481 

laboratories and individuals as provided by OpenNeuro [65]), and that researchers inspect 482 

instances of the data whenever out-of-distribution error rates are high relative to in-distribution 483 

errors (e.g., with the application of XAI techniques; see Box 1). If confounds are identified in a 484 

model’s decoding decisions, adaptations of the classical cross-validation procedure, tailored to 485 

functional neuroimaging data, can be utilized to obtain an unbiased estimate of decoding 486 

performance [137]. 487 

 488 

Box 4. Recommendations to improve the reproducibility and robustness of DL models in mental state decoding. 489 

The performances of DL models in benchmarks are often difficult to reproduce by other researchers or in new data, as the 490 

convergence of DL models (and thereby their final performance) is strongly dependent on many non-deterministic aspects of 491 

the training [98,102,108,111]. Further, the resulting highly tuned benchmark performances are often not robust towards the 492 

diversity of real-world data [109,110,114]. To avoid these kinds of pitfalls, we provide a set of recommendations to improve 493 

the reproducibility and robustness of DL model performances in mental state decoding analyses: 494 

❖ Use multiple training runs to estimate a model’s expected performance, while randomizing as many non-deterministic 495 

aspects of your training pipeline as possible (including random seeds, random weight initializations, and random 496 

shufflings of the training data) and using multiple random splits of the data into training, validation, and test datasets 497 

(e.g., by the use of bootstrapping or cross-validation) (for methodological details, see [111]). 498 

❖ If model comparisons are performed, ensure that the chosen combination of statistical comparison procedure and test 499 

dataset size has enough statistical power to accurately determine the studied differences in model performance (e.g., by 500 

the use of simple simulation studies; [106]). 501 
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❖ Evaluate model performances on out-of-distribution data (e.g., by using neuroimaging data from different laboratories 502 

and individuals; [148]) and, whenever possible, test for hidden stratification, bias, and confounds [122,132,137] (e.g., by 503 

inspecting model performances for the different sub-populations of the data and by inspecting falsely-classified data 504 

instances with XAI techniques). 505 

❖ Finally, publicly share the resulting models, used data, analysis code, and computing environment (e.g., by the use of 506 

containerization with Docker or Singularity) in a dedicated repository (e.g., GitHub or Open Science Framework; [149]). 507 

 508 

Concluding remarks 509 

DL models have experienced great success in research and industry and have had major 510 

impacts on society [1]. This success has triggered interest in their application to the field of mental 511 

state decoding, where researchers aim to characterize the set of mental states that are associated 512 

with the activity patterns of different brain regions and can thereby be accurately decoded (i.e., 513 

identified) from the activity of these regions. DL models hold a great promise to revolutionize 514 

mental state decoding with their unmatched ability to learn versatile representations of complex 515 

data. Yet, fully leveraging the potential of DL models in mental state decoding is currently 516 

hindered by three main challenges, which result from a general lack of interpretability of DL 517 

models as well as difficulties in applying them to small datasets and ensuring their reproducibility 518 

and robustness.  519 

Here, we have provided a detailed discussion of these three challenges and proposed a set 520 

of solutions that are informed by recent advances in functional neuroimaging and DL research. In 521 

sum, we recommend that researchers utilize XAI techniques to identify the mapping between 522 

mental states and brain activity that a DL model has learned (Box 1-2), improve the performance 523 

of DL models in conventional neuroimaging datasets by pre-training these models on public 524 

neuroimaging data (Box 3), and follow specific recommendations to improve the reproducibility 525 

and robustness of DL model performances in mental state decoding (Box 4). We hope that 526 

researchers will take inspiration from our discussion and explore the many open research questions 527 

that remain on the path to determining whether DL models can live up to their promise for mental 528 

state decoding (see Outstanding Questions). 529 

 530 

 531 
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 532 

Outstanding Questions 533 

❖ The mappings learned by a DL model between input data and target signals can be highly complex and counterintuitive. 534 

Given this complexity, what are the limits of current XAI techniques, which often simplify the model’s decision process 535 

to allow for interpretability, in providing insights into a model’s learned mapping between brain activity and mental 536 

states? 537 

❖ Can data programming be used to effectively generate standardized labels of mental states for public neuroimaging 538 

datasets (e.g., according to the Cognitive Atlas) and if so, how do models trained with these generated labels compare 539 

to models trained with self-supervision? 540 

❖ Which kinds of simple data augmentation techniques (akin to adding noise or occluding parts of an input) can help 541 

improve the robustness of DL models trained with functional neuroimaging data? 542 

❖ How can functional neuroimaging researchers provide easy access to (and use of) their pre-trained DL models (e.g., to 543 

enable others to easily adapt these models to their collected datasets)? 544 

❖ Can benchmarks be a useful tool for functional neuroimaging research to accelerate the development of accurate and 545 

versatile DL models, when taking the appropriate measures to ensure reproducibility and robustness? 546 

 547 
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