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Highlights:

Deep learning (DL) models have transformed many areas of research and industry, with their unparalleled ability to
autonomously learn versatile representations of complex data.

Due to this empirical success, neuroimaging researchers have started applying DL models to mental state decoding analyses,
hoping that they can provide novel insights into the association between mental states (e.g., accepting/rejecting a gamble) and
brain activity, beyond the capabilities of conventional machine learning approaches.

Yet, several challenges at the intersection of functional neuroimaging and DL research hinder the broad application of DL
models in mental state decoding.

Here, we review recent advances in both fields to provide a set of solutions to these challenges and enable researchers to fully
leverage the potential of DL models in mental state decoding.

In mental state decoding, researchers aim to identify the set of mental states (e.g., experiencing
happiness or fear) that can be reliably identified from the activity patterns of a brain region (or
network). Deep learning (DL) models are highly promising for mental state decoding, with their
unmatched ability to learn versatile representations of complex data. Yet, their widespread
application in mental state decoding is hindered by their lack of interpretability, difficulties in
applying them to small datasets, and in ensuring their reproducibility and robustness. We
recommend to approach these challenges by leveraging recent advances in explainable artificial
intelligence and transfer learning, while also providing recommendations on how to improve the

reproducibility and robustness of DL models in mental state decoding.
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Glossary:

Mental state: An unobservable construct of psychological theory that refers to a particular mental operation or content and is
often associated with specific observable behaviors.

Computer vision: An area of artificial intelligence research, which aims to enable computers to derive meaningful information
from the visual world and to take actions based on that information.

DL: Deep learning (DL) describes a class of representation learning methods, which transform the input data in multiple
sequential steps (or layers), each applying stacks of simple, but nonlinear, functions.

fMRI: Functional magnetic resonance imaging (fMRI) measures brain activity by detecting changes in activity associated with
changes in local blood flow.

Natural language processing: An area of artificial intelligence research, which aims to enable computers to derive meaningful
information from human language and to take actions based on that information.

Representation: As used in computer science, a transform of some data in terms of a different set of features. Note that this
definition stands in contrast to the understanding of representations in cognitive neuroscience, where they indicate the set of
mental states that is encoded in (or represented by) the patterns of neural activity of a brain region (or network).

XAI: Explainable artificial intelligence (XAI) represents a class of methods, which aim to make the behavior of DL models
understandable to human observers, for example, by relating the features of the input data to the respective outputs of the
model.

The promise of deep learning

Over the last decade, deep learning (DL; see Glossary and [1]) models have revolutionized
many areas of research and industry with their ability to learn highly versatile representations of
complex data. A defining feature of DL models is that they sequentially apply stacks of many
simple, but nonlinear, transforms to their input data, allowing them to gain an increasingly
abstracted view of the data. At each level of the transform, new representations of the data are built
by the use of representations from preceding layers. The resulting high-level view of the data
enables DL models to capture complex nonlinearities, associate a target signal with highly variable
patterns in the data (e.g., when transcribing audio recordings), and effectively filter out aspects of
the data that are irrelevant to the learning task at hand. A key driver for the empirical success of
DL models is their ability to autonomously learn these different levels of abstraction from
sufficiently large datasets, without the need for extensive data preprocessing or a prior
understanding of the mapping between input data and target signal.

This empirical success has recently sparked interest in the application of DL models to the

field of neuroimaging, focused on mental state decoding [2]. Here, researchers aim to understand
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the mapping between a set of mental states (e.g., the experience of anger or sadness) and the
underlying brain activity by training models to identify these states from measured brain activity
[3]. At first sight, DL models seem ideally suited for these types of analyses, as the mapping
between mental states and brain activity is often a priori unknown, can be highly variable within
[4] and between individuals [5], and is subject to spatial and temporal non-linearities [6].

Yet, the application of DL models to mental state decoding analyses also poses several
challenges for researchers who are interested in combining methods from both fields, namely, their
general lack of interpretability, overall demand for large training datasets, and difficulties in
ensuring the reproducibility and robustness of DL modeling results. Here, we outline these
challenges and propose a set of solutions based on related empirical work and methodological

advances in functional neuroimaging and DL research.

Opening up the black box

A key challenge for the application of DL models to functional neuroimaging data is the
black box characteristic of DL models, whose highly non-linear nature deeply obscures the
relationships between input data and a model’s decoding decisions. Thus, even if a DL model
accurately decodes a set of mental states from functional neuroimaging data, it is not clear which
particular features of the data (or combinations thereof) support this decoding. To approach this
challenge, functional neuroimaging researchers have begun turning towards research on
explainable artificial intelligence (XAI; [7,8]), where techniques are being developed that aim to
make the behavior of DL models understandable for human observers.

One line of research within this field seeks to explain the predictions of DL models by
relating them to the features of the input data, thereby making the model interpretable for human
observers [9]. While a plethora of such explanation approaches exist, we focus here on those that
explain model predictions by attributing a relevance to each input feature for a model’s prediction
[10-17], due to the widespread application of these approaches in mental state decoding. We
provide an overview of representative approaches to this type of XAI in Box 1. Of these
approaches, sensitivity analyses, backward decompositions, and reference-based attributions are
currently most prominent in the neuroimaging literature [18—31]. Sensitivity analyses attribute a

relevance to each input feature according to how sensitive the model’s prediction responds to the
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feature’s value. Backward decompositions, in contrast, attribute relevance by sequentially
decomposing the model’s prediction in a backward pass through the model into the contributions
of lower-layer model units to the predictions, until the input space is reached and a contribution
(i.e., relevance) can be defined for each input feature. Lastly, reference-based attribution methods
attribute relevance by contrasting the model’s response to an input of interest to its response to

some reference input (e.g., a neutral input [13]).

Box 1. Representative XAl attribution approaches.
We assume that the analyzed model represents some function f(+), mapping an inputx € RY to some output f(x): f(-): RN —

R. The presented explanation approaches 7](-) seek to provide insights into this mapping by attributing a relevance 7, to each
input feature n € 1,..., N for output f(x): 7(-): R - R" (Fig. D).

Occlusion analysis [16,138]: Occlusion analyses represent a form of perturbation analysis and quantify r, by occluding x;, in
the input data and measuring the resulting effect on f(x): r,, = f(x) — f(x X 0,). Here, o0, indicates an occlusion vector
(e.g., 0, € [0,1]") and x the element-wise product.

Interpretable local surrogate model [15]: A local surrogate model is an interpretable model that is used to explain black-box
model predictions by training it to approximate these predictions. In the LIME algorithm [15], 7, is quantified by approximating
f(x) for a specific x with an interpretable model g(-), e.g., a linear model, where g(x) = Y., W, x,, and which is trained by
the use of a set of perturbed versions Z of x (e.g., through occlusion): n}}n Y,er . (2) (f(2) — g(2))? . Here, T, (+) represents

some similarity function weighting each z € Z by its similarity to x and 7, is given by linear model weight w,,: 1;, = w,.

9f (%)

Sensitivity analysis [10,12,139]: Sensitivity analysis defines 7;, as the locally evaluated partial derivative of f(x): n;, = ox.

f()

(or as its square ( ) ). Accordingly, relevance is assigned to those input features to which f(x) responds most sensitively.

Backward decomposition [11,14,16]: Backward decompositions make specific use of the graph structure of DL models by
sequentially decomposing f(x) in a backward pass through the model until the input space is reached. A prominent example

is the layer-wise relevance propagation (LRP; [11]) technique: Let i and j be the indices of two model units in two successive

layers land [ 4+ 1 and 1}.(”1)

the relevance of unit j for f (x) To redistribute relevance between successive layers, several rules
Z _iwij (l+1)
j

have been proposed [140], which generally follow from: r S T
i ij

, where a and w represent the input and weights

of unit i in layer [. Importantly, LRP assumes that relevance is conserved between layers, such that Y., 1, = Ziri(l)

2 r = f ().

Reference-based attribution [13,14,17]: Reference-based attributions define r;,, given some x, by contrasting the model’s
response to x to its response to a reference input x°. For example, integrated gradients (IG; [13]) defines 7;, by integrating the
of ( )

gradlent

Xn n)fa 0

scaled from the reference value to their current value. Note that IG’s attributions sum to the difference in model output for the
current input x and the reference x°: Y, %, = f(x) — f(x°). Another prominent reference-based attribution method is SHAP
(SHapley Additive exPlanations; [17]), an extension of Shapley values [141] to XAI, which uses other possible coalitions of
input features as a reference.

along a linear trajectory in the input space connecting a neutral reference input x3 to the current input x,,: 1, =

S 0
M da . Conceptually, IG identifies those input features that most impact the model’s output when
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Figure 1. Representative XAl attribution approaches.

At first sight, the explanations of different attribution methods are difficult for human
observers to discern, making it challenging to compare the quality of their explanations. To
approach this challenge, researchers have started developing methods to quantify the quality of
such explanations. One prominent approach is to test the faithfulness of an explanation [32-34].
An explanation can generally be viewed as being faithful if it accurately captures the model’s
decision process [35] and thereby identifies those features of the input that are most relevant for
the model’s prediction. Accordingly, removing these features from the input (e.g., in an occlusion
analysis; [16]) should lead to a meaningful decline in the model’s predictive performance.

By the use of this test, researchers in computer vision have compared the faithfulness of
explanations resulting from sensitivity analysis and backward decompositions [32]. This work has
shown that backward decompositions generally perform better at identifying those features of the
input that are most relevant for model predictions. Intuitively, this makes sense, as backward
decompositions seek to directly quantify the contribution of each input feature to a specific model
prediction. Sensitivity analysis, in contrast, does not evaluate the prediction itself but its local
slope, thus identifying features that make the model more or less certain of its prediction,

regardless of their actual contribution to the prediction.
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Recent work in functional neuroimaging has performed a similar comparison of sensitivity
analyses, backward decompositions, and reference-based attributions in a mental state decoding
analysis with fMRI data [36]. Similar to findings in computer vision, this work shows that
explanations from backward decompositions and reference-based attributions are generally more
faithful than those of sensitivity analyses. Yet, it also demonstrates that the explanations of
sensitivity analyses generally align better with the results of standard general linear model analyses
of the fMRI data, when compared to those of backward decompositions or reference-based
attributions. To make sense of this finding, it is important to remember that these types of XAI
techniques seek to explain the mapping between brain activity and mental states learned by a
model. Due to the generally strong spatial correlations of functional neuroimaging data, DL models
can, in many cases, accurately decode a mental state by focusing solely on a subset of those voxels
whose activity is associated with (and thereby predictive of) this state. In these cases, XAl methods
with perfect faithfulness will produce explanations that do not identify all voxels of the input
whose activity is in fact associated with the mental state, but solely those whose activity the model
used as evidence for its decoding decision. Sensitivity analyses, in contrast, take a step back from
the specific contribution of each input voxel to the decoding decision and instead ask how
sensitively the model's decoding decision responds to a voxel's value, thereby identifying a broader
set of voxels whose activity the model takes into account when forming its decoding decision.

Functional neuroimaging researchers have also used occlusion analyses to analyze mental
state decoding models (in “virtual lesion analyses”; [23,37]). Yet, these applications have mostly
been limited to linear models and to testing whether specific voxels (or brain regions), which
received large weights in a linear model, are actually necessary for an accurate decoding. For
functional neuroimaging data, occlusion analyses generally require a clear prior hypothesis on
which features (or brain regions) of the input will be tested (e.g., based on other research), as
randomly dropping out individual feature values will otherwise not account for the strong spatial
correlation structure inherent to these data. To circumvent these issues, neuroimaging researchers
can perform occlusion analyses on the level of functionally independent brain networks, as defined
by a brain parcellation [38,39], instead of on the level of individual voxel values [40,41].

Taken together, we therefore make a two-fold recommendation for XAI techniques in
mental state decoding (see Box 2): if researchers are interested in identifying those voxels of the

input whose activity is most relevant for the model’s decoding decision, we recommend the
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application of backward decompositions or reference-based attributions, while we recommend
sensitivity analyses when researchers are more interested in understanding the association between
the underlying brain activity and studied mental states. Occlusion analyses also represent a viable
alternative to these approaches, if researchers are interested in relating the activity of functionally
independent brain networks to the decoded mental states rather than the activity of individual
voxels.

Importantly, while XAl techniques represent a cornerstone to the application of DL models
in mental state decoding, we advocate for caution in the interpretation of their explanations, as the
mappings between brain activity and mental states learned by DL models can be highly complex
and counterintuitive [22,42,43]. We therefore urge neuroimaging researchers to always interpret
the results of an XAl analysis in the context of the results of standard analyses of the same data

(e.g., with linear models; [44,45]) and related empirical findings (e.g., from NeuroSynth; [46]).

Box 2. Recommended XAI approaches for mental state decoding.

Our recommendations for XAl approaches in mental state decoding are two-fold: If researchers are interested in understanding
the contribution of individual feature values to model decisions, we generally recommend backward decomposition or
reference-based attribution methods (see Box 1 and [11,13,14,16,17]), while we recommend sensitivity analyses (see Box 1
and [10,12,139,142]) when researchers are more interested in understanding the association between the underlying brain

activity and mental states. Below, we provide specific recommendations for respective XAl techniques:

Layer-wise relevance propagation (LRP) [11]: LRP represents a backward decomposition method (see Box 1). While several
rules have been proposed to redistribute relevance r between units i and j of two successive layers [ and [ + 1 [11, 140], the

authors generally recommend a composite of these rules for computer vision models [140]. Specifically, combining the LRP-

0 rule (ria) =% Zai%rjaﬂ), where a and w represent the input and weights of unit i and X, ; runs over all inputs a; plus
0,i 4iWij
the bias) for layers closer to the output, with the LRP-€ rule (rl.(l) =2 iy r.(l+1), with 1e™* < € < 1) for middle layers,

e+Xoiaiwij J

wywE

and the LRP-Y rule (r.(l) =2 a’(W”—yW”)Jr -(Hl), where y controls positive contributions and is generally 0 < y) for layers
t Yo iai(wij+yw;y) J

closer to the input. A TensorFlow implementation of LRP is provided by iNNvestigate [143], while Zennit [144] provides a

PyTorch implementation.

Integrated gradients (IG) [13]: IG represents a reference-based attribution method that is applicable to any differentiable
model (see Box 1). An important hyperparameter choice for IG is the choice of a reference input x°, which should be chosen
to be neutral. The authors generally recommend an all-zero reference, the addition of noise to the input or a reference involving

instances from other decoding classes (e.g., their average), while an average over the attributions of multiple references is also
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possible [145]. A tutorial on how to use IG in  TensorFlow can be found at
tensorflow.org/tutorials/interpretability/integrated gradients, while Captum [146] provides a PyTorch implementation. A
comparable alternative to IG is the DeepLift algorithm [ 14], which generally runs faster than IG and is therefore often preferred

for larger datasets.

Sensitivity analysis [16]: Similar to IG, sensitivity analyses are applicable to any differentiable model (see Box 1). Note that
various adaptations of the standard sensitivity analysis have been developed, for example, by omitting negative gradients in
rectified linear unit activation functions [142], multiplying gradients and input [147] or by adding noise to the inputs [12]. A
TensorFlow implementation of sensitivity analysis (as well as many of its adaptations) is provided by iNNvestigate [143],

while Captum [146] provides respective PyTorch implementations.

Leveraging public data

A second major challenge for DL models in functional neuroimaging research is the high
dimensionality and low sample size of conventional functional neuroimaging datasets. A typical
functional Magnetic Resonance Imaging (fMRI) dataset contains a few hundred volumes for each
of tens to hundreds of individuals, while each volume contains several hundred thousand voxels
(i.e., dimensions). Current state-of-the-art DL models, in contrast, can easily contain many
hundred million parameters [47,48], while recent language models have pushed this boundary even
further with many billion parameters [49]. In most cases, DL models thus contain many more
trainable parameters than there are samples in their training data. While this vast
overparameterization represents a key element to the empirical success of DL models, by enabling
them to find near-perfect solutions for most standard learning tasks [50] and to generalize well
between datasets [49,51], it also represents one of the biggest challenges for their application in
fields where data are scarce, as the performance of DL models is strongly dependent on the amount
of available training data [51,52].

To approach this challenge, various methods have been developed that aim to improve the
performance of DL models in smaller datasets [53—55]. One prominent method, with strong
empirical success, is transfer learning [55]. The goal of transfer learning is to leverage the
knowledge about a mapping between input data and a target variable that can be learned from one
dataset (i.e., the source domain) to subsequently improve the learning of a similar mapping in

another dataset of a related domain (i.e., the target domain). Knowledge is typically transferred in
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the form of the parameters that a model has learned in the source domain and that are then used to
initialize the model (or parts of the model) when beginning learning in the target domain. Transfer
learning has been especially successful in computer vision and natural language processing, where
large publicly available datasets exist (e.g., [56,57] and commoncrawl.org). Here, DL models are
first pre-trained on these large datasets (e.g., to classify objects in images or to predict the next
word in a sentence) and subsequently fine-tuned on smaller datasets of a related target domain
(e.g., to classify brain tumors in medical imaging [58] or to analyze sentiment in text [48]).
Computationally, pre-training can aid subsequent optimizations by placing the model’s parameters
near a local minimum of the loss function [59] and by acting as a regularizer [60]. Pre-trained
models generally exhibit faster learning and higher predictive accuracy, while also requiring less
training data when compared to models that are trained from scratch [49,51,61]. However, the
benefits of pre-training can diminish with increasing size of the target dataset [S1] and as the
overall differences between source and target learning task and/or domain increase [62].

Over recent years, functional neuroimaging research has experienced a similar increase in
the availability of public datasets, which are provided by large neuroimaging initiatives as well as
individual researchers [63]. In addition, several efforts have been made to standardize the
organization [64,65] and preprocessing [66] of functional neuroimaging data. These developments
have paved the way for the field of functional neuroimaging to enter a big data era, allowing for
transfer learning.

Recent empirical evidence indicates that transfer learning between individuals [24,67-73],
experiment tasks [74—77], and datasets [78—81] is possible and that pre-training generally improves
the decoding performance of DL models in conventional fMRI datasets [68,69,74,77,78,80]. Most
of this work has utilized traditional supervised learning techniques during pre-training by assigning
a mental state to each sample in the data and training a decoding model to identify these states
from the data. While this is a fruitful approach to decoding analyses within individual datasets, it
is often difficult to extend to analyses across many datasets. In spite of several attempts [82,83],
functional neuroimaging research has yet to widely adopt standardized definitions of mental states.
Without this type of standardization, it is often unclear whether two experiments from two separate
laboratories elicit the same or different sets of mental states. Imagine the following experiments:
In the first, participants read aloud a sequence of sentences and are then asked to repeat the last

word of each sentence. In the second, participants first hear a sequence of letters and digits and are



297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326

10

then asked to report back the letters and digits in alphabetical and numerical order respectively
(the letter—number sequencing task; [84]). While both experiments label the associated mental
state as “working memory”, one could argue that the experiments in fact elicit two distinct mental
states, as one solely requires temporarily storing information while the other also requires actively
manipulating this information.

To enable successful learning across datasets with these types of imprecise mental state
labels, we recommend three learning approaches (see Box 3):

First, one can consider each dataset as a separate learning task and train a single model to
jointly solve all tasks [85]. Recent empirical work has already demonstrated the versatility of this
kind of multi-task learning approach for mental state decoding by training a single model to learn
a common data representation from many datasets and using dataset-specific decoding models to
identify mental states from the learned common representation [80].

A second approach comes from weakly-supervised learning, where techniques have been
developed that enable model training with noisy or incomplete data labels [86]. Data programming,
a weakly-supervised learning technique, is particularly promising for training DL models across
neuroimaging datasets with imprecise labels for mental states (see Box 3 and [87]). Here, simple
functions are used to generate new labels for the training data. These functions automatically label
subsets of the data by implementing simple domain heuristics of subject matter experts (e.g., label
a YouTube text comment as Spam if it contains a URL or the words “check this out”). The
generated labels are then used to train models in a supervised manner. Recent empirical work has
demonstrated that this type of weak supervision can be successfully used for the classification of
unlabeled medical imaging data (e.g., radiography or computer tomography data; [88]) by
designing labeling functions that extract labels from the accompanying medical text reports. A
similar approach could be fruitful to generate standardized labels of mental states (e.g., according
to the Cognitive Atlas; [83]) by applying automatic labeling functions to the accompanying
publication texts (e.g., label an fMRI scan as “visual perception” if the publication text contains
the words “viewed” or “viewing” in the Methods section).

Yet, even standardized labels for mental states can be imprecise with respect to the
underlying distribution of brain activity. Imagine a simple experiment in which individuals view

images of faces and houses. A decoding model might perform well in identifying that a face or
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house is seen, while missing out on other important characteristics of the brain activity associated
with the more fine-grained characteristics of the stimuli, such as an individual’s age and gender.
Here, self-supervised (or unsupervised) learning techniques provide a means to learning
that does not consider any labeling of the data and instead enables models to autonomously learn
meaningful representations of the data (see Box 3 and [89]). Two prominent examples of self-
supervised learning, with strong recent empirical success [48,49], are contrastive and generative
learning [90]. Both learn a representation of the data by training an encoder model to project the
data into a higher-level representation. In contrastive learning [91], the encoder model is trained
by the use of an additional discriminator model, which aims to determine the similarity of a pair
of data samples based on their projection through the encoder model. Generative learning [92], in
contrast, trains the encoder model by the use of an additional decoder model, which seeks to
reconstruct the input (or parts of the input) from the higher-level representation of the encoder
model (a prominent example of generative learning models are autoencoders; [93]). Researchers
have already demonstrated that self-supervised learning techniques can be successfully used to
pre-train DL models across many and diverse fMRI datasets, leading to models that generalize

well to other fMRI datasets in mental state decoding analyses [94].

Box 3. Approaches to pre-training across many neuroimaging datasets.

Transfer learning aims to improve the performance of model f(-) in a target learning task Ty in a target domain Dy by
leveraging knowledge that can be learned by pre-training f(-) in a related source learning task T and source domain Dg [55].
A domain D is defined by feature space X with samples x € RN whose N feature values are characterized by some probability
distribution P(X). Knowledge is generally transferred in the form of the weights W that f(-) has learned during pre-training.
A key challenge for pre-training in mental state decoding is that the labels assigned to individual mental states can be imprecise,
such that two datasets might assign the same label to a mental state while the underlying mental states are in fact different from

one another. We recommend three learning approaches (Fig. I) to enable f(-) to learn in a source domain that is characterized

by aset A of datasets a’ , where A = {a',...,a/}and @/ = {(x],¥]),..., (x/,y/)}, with imprecise mental state labels y/ € a/.

Multi-task learning ([85]; Fig. I A): In multi-task learning, each dataset a’ is considered as a separate supervised learning
task and one model f(-) is trained to jointly solve all tasks. A prominent approach to multi-task learning [80] is to train f(+)

in conjunction with dataset-specific decoding models d/(+), such that f(-) learns a common representation of the data f (-

): RV — RE, which is then used by the individual decoding models to identify their set of mental states: d’(f (xij ) = yij

Weakly-supervised learning ([86]; Fig. I B): A prominent example of weak supervision is data programming [87], where

noisy target values }7L-j are generated for the samples xij € A by the use of user-specified labeling functions [(-). These labeling
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functions implement domain heuristics of subject matter experts (e.g., label a chest radiograph as “abnormal” if the

corresponding medical text report contains a word with the prefix ‘‘pneumo’’; [88]). The generated target values are then used
to train f(+) in a supervised way, such that f (xij )= )7ij , while the labeling process itself is treated as a generative model to

account for noise and conflicts in the generated labels.

Self-supervised learning ([89,90]; Fig. I C): Self-supervised learning does not consider any labeling of the data. Instead, a
new learning task is devised, which requires f(-) to independently learn a useful representation of the data in the source

domain. Two prominent self-supervised learning strategies are contrastive and generative learning. Both treat f(-) as an
encoder model, which is trained to project the samples xij € A into a higher-level representation: f(-): RV — RL. In contrastive
learning [91], f(-) is trained by the use of an additional discriminator model d(-): Rt - R, which learns to determine the
similarity of a pair of data samples based on the encoder’s projection. During training, augmentation functions I"(-): RY —
R" are used to create augmented versions (&1,..., X7} of data samples xij (e.g., by adding noise) and the discriminator’s task

is to identify pairs {£F, £} that result from the same sample x’ In generative learning [92], f(+) is trained by the use of an

additional decoder model d(-): RX - RY , which aims to reconstruct the original data sample from the encoder’s projection:

d(f(x))) =x/.
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Figure I. Recommended approaches to pre-training DL models across multiple neuroimaging datasets.
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Ensuring reproducibility

Recent work in functional neuroimaging has exposed the high flexibility of its standard
analysis workflows, leading to substantial variability in results and scientific conclusions [95]. In
light of these issues, several efforts have been made to improve the standardization and
reproducibility of functional neuroimaging analyses [64,66]. DL research is currently facing
similar concerns, with model performances that are often hard to reproduce [96-98]. Functional
neuroimaging researchers who are interested in applying DL models to mental state decoding
analyses are thus faced with additional challenges for the reproducibility of their work, which arise
at the intersection of both fields.

A key driver for methodological progress in DL research is the hunt for state-of-the-art
performances in benchmarks (see paperswithcode.com/sota), that is, by whether a new
methodology outperforms existing ones in pre-defined test datasets. While this approach has
helped the field of DL to evolve fast and quickly develop accurate models, it has also established
a research culture that often sacrifices scientific rigor for maximal performance metrics [99,100],
not unlike the “p-hacking” phenomenon in null hypothesis testing [101].

A central argument for predefined test datasets is that all models should be compared on
the same grounds (i.e., the same sets of training and testing samples). Yet, these types of point
estimates are often insufficient to determine whether a model actually outperforms others in new
data. Recent empirical work has demonstrated, for example, that the convergence of DL models
and thereby their final performance in a test dataset is dependent on many non-deterministic factors
of the training, such as random weight initializations and random shufflings or augmentations of
the data during training [98,102,103], as well as the specific choices for hyper-parameters, such as
the specification of model layers and optimization algorithm [104]. In some cases, researchers can
thus achieve state-of-the-art performance simply by investing large computational budgets into
tuning these types of factors for a specific test dataset [102]. Consequently, many reported DL
benchmarks are built on top of massive computational budgets and are often difficult to reproduce
by other researchers [98,103,105]. Recent empirical findings further suggest that the comparisons
performed on several of these benchmarks lack the statistical power required to accurately
determine the reported improvements in model performance [106], a problem similarly evident in

neuroimaging research [107].
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For these reasons, researchers have started advocating for more comprehensive and
standardized reporting of the training history of DL models [108], more extensive evaluation
procedures [109,110] as well as an increased scientific rigor in DL research [99]. To avoid similar
pitfalls in mental state decoding, we have derived a set of recommendations from recent DL
research, which aim to improve the reproducibility of DL model performances (see Box 4).

Most DL training pipelines are too complex to allow for a comprehensive evaluation of all
possible coalitions of the training’s non-deterministic factors. However, evaluating only a specific
instance of these choices (e.g., by fixing the random seed) does not give a reliable estimate of a
model’s expected performance in new data. Instead, the variance in model performance associated
with these factors can be better captured by randomizing as many of them as possible, for instance,
by choosing different random seeds for each of multiple training runs [103,108,111].

In addition, multiple random splits of the data into training, validation, and test datasets are
needed when evaluating model performances, to account for the variance in model performance
associated with different data splits (e.g., by the use of cross-validation; [97,111,112]). A single,
predefined test dataset contains limited information about the whole underlying data distribution
and is thus limited in its ability to provide an accurate estimate of the model’s expected
performance. Yet, recent work has also shown that cross-validation analyses on small functional
neuroimaging datasets often underestimate the error in estimates of a model’s expected
performance [112]. When using small datasets, cross-validation analyses should therefore be
treated with caution.

Further, to ensure that the chosen combination of statistical comparison method and test
dataset size provide sufficient statistical power to accurately determine the studied difference in
model performance, simple simulation studies can be used by first identifying and estimating the
required quantities of the statistical testing procedure (e.g., McNemar’s test for paired data requires
the models’ probabilities of making a correct prediction as well as their agreement rate) and
subsequently using these estimates to simulate model comparisons at different test dataset sizes
[106]. In addition to ensuring that the chosen performance evaluation procedure does not lack
statistical power, recent work in neuroimaging also suggests controlling for multiple sequential
model comparisons, as multiple sequential hypothesis tests (e.g., performance comparisons) on the

same dataset can inflate false positive rates [113].
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Improving robustness

In addition to the presented reproducibility challenges, a wealth of recent empirical work
has shown that highly-tuned DL models often lack basic robustness towards slight distributional
shifts [109,114] or corruptions [115] of the data, such that minor changes to their input, often not
recognizable for human observers, can have drastic effects on model performances [116,117]. DL
models trained on functional neuroimaging data seem especially susceptible to these kinds of
robustness issues, due to the many systematic sources of noise inherent to these data, which can
be specific to the imaging acquisition site and studied individual [118] as well as the general
variability of the associations of brain activity and mental states between experimental studies and
individuals [119—121]. For this reason, training models on large, homogenous datasets (e.g.,
comprising data acquired at the same imaging site from a homogenous group of individuals
performing the same experiment task) can result in models that do not generalize well to data from
other imaging sites or subject populations [122—124].

To strengthen robustness towards slight distributional shifts or corruptions of the data, DL
researchers generally suggest applying random augmentations to the data during training, such as
randomly cropping, rotating or flipping images [125] or occluding parts of the input [126]. Recent
empirical work in functional neuroimaging has shown, however, that many of these standard
augmentation techniques do not generalize well to functional neuroimaging data [127]. Instead,
neuroimaging researchers advocate for the use of more powerful data synthesis strategies, for
example, by the use of generative models trained to capture the characteristics of a training dataset
well and which can then be used to synthesize artificial training data [128—130].

DL model performances often also vary highly across the different, often unrecognized,
subpopulations of a dataset (a phenomenon known as “hidden stratification”; [131,132]). A DL
model trained to decode natural images from functional brain activity might perform well on
average, while consistently misclassifying specific image sub-categories. To identify hidden
stratification, we generally recommend both manual and automated evaluation approaches, for
example, by inspecting falsely classified data instances [132] or applying automated clustering
algorithms to the hidden representations of trained DL models to identify possible subpopulations
in the data [131]. Similarly, DL models trained on large datasets often learn biases in favor of over-

represented sub-populations (e.g., based on individuals’ gender; [133]). To identify these types of
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biases in mental state decoding, we recommend evaluating the performance of trained models on
the various sub-populations of the data. Once hidden stratification or bias is detected, dedicated
learning techniques can be used to improve model performances on specific subpopulations, such
as importance weighting [122] or regularization [134].

Lastly, DL models can be susceptible to learning spurious shortcuts that allow them to
perform well in a given training dataset but which do not generalize well to other scenarios [135].
For instance, researchers found that a pneumonia detection model trained with medical imaging
data can learn to perform well on average solely by learning to identify hospital-specific artifacts
in the medical images in addition to learning the hospitals’ pneumonia prevalence rates [136].
Similarly, biomarker models trained on functional neuroimaging data can learn to identify patients
by their generally increased head motion (as suggested by [137]). To detect these types of
confounds, we recommend that neuroimaging researchers evaluate the performance of mental state
decoding models on out-of-distribution data (e.g., public neuroimaging data from other
laboratories and individuals as provided by OpenNeuro [65]), and that researchers inspect
instances of the data whenever out-of-distribution error rates are high relative to in-distribution
errors (e.g., with the application of XAI techniques; see Box 1). If confounds are identified in a
model’s decoding decisions, adaptations of the classical cross-validation procedure, tailored to
functional neuroimaging data, can be utilized to obtain an unbiased estimate of decoding

performance [137].

Box 4. Recommendations to improve the reproducibility and robustness of DL. models in mental state decoding.

The performances of DL models in benchmarks are often difficult to reproduce by other researchers or in new data, as the
convergence of DL models (and thereby their final performance) is strongly dependent on many non-deterministic aspects of
the training [98,102,108,111]. Further, the resulting highly tuned benchmark performances are often not robust towards the
diversity of real-world data [109,110,114]. To avoid these kinds of pitfalls, we provide a set of recommendations to improve

the reproducibility and robustness of DL model performances in mental state decoding analyses:

« Use multiple training runs to estimate a model’s expected performance, while randomizing as many non-deterministic
aspects of your training pipeline as possible (including random seeds, random weight initializations, and random
shufflings of the training data) and using multiple random splits of the data into training, validation, and test datasets
(e.g., by the use of bootstrapping or cross-validation) (for methodological details, see [111]).

+ If model comparisons are performed, ensure that the chosen combination of statistical comparison procedure and test

dataset size has enough statistical power to accurately determine the studied differences in model performance (e.g., by

the use of simple simulation studies; [106]).
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+ Evaluate model performances on out-of-distribution data (e.g., by using neuroimaging data from different laboratories
and individuals; [148]) and, whenever possible, test for hidden stratification, bias, and confounds [122,132,137] (e.g., by
inspecting model performances for the different sub-populations of the data and by inspecting falsely-classified data

instances with XAl techniques).

« Finally, publicly share the resulting models, used data, analysis code, and computing environment (e.g., by the use of

containerization with Docker or Singularity) in a dedicated repository (e.g., GitHub or Open Science Framework; [149]).

Concluding remarks

DL models have experienced great success in research and industry and have had major
impacts on society [1]. This success has triggered interest in their application to the field of mental
state decoding, where researchers aim to characterize the set of mental states that are associated
with the activity patterns of different brain regions and can thereby be accurately decoded (i.e.,
identified) from the activity of these regions. DL models hold a great promise to revolutionize
mental state decoding with their unmatched ability to learn versatile representations of complex
data. Yet, fully leveraging the potential of DL models in mental state decoding is currently
hindered by three main challenges, which result from a general lack of interpretability of DL
models as well as difficulties in applying them to small datasets and ensuring their reproducibility
and robustness.

Here, we have provided a detailed discussion of these three challenges and proposed a set
of solutions that are informed by recent advances in functional neuroimaging and DL research. In
sum, we recommend that researchers utilize XAI techniques to identify the mapping between
mental states and brain activity that a DL model has learned (Box 1-2), improve the performance
of DL models in conventional neuroimaging datasets by pre-training these models on public
neuroimaging data (Box 3), and follow specific recommendations to improve the reproducibility
and robustness of DL model performances in mental state decoding (Box 4). We hope that
researchers will take inspiration from our discussion and explore the many open research questions
that remain on the path to determining whether DL models can live up to their promise for mental

state decoding (see Outstanding Questions).
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Outstanding Questions

The mappings learned by a DL model between input data and target signals can be highly complex and counterintuitive.
Given this complexity, what are the limits of current XAI techniques, which often simplify the model’s decision process
to allow for interpretability, in providing insights into a model’s learned mapping between brain activity and mental
states?

Can data programming be used to effectively generate standardized labels of mental states for public neuroimaging
datasets (e.g., according to the Cognitive Atlas) and if so, how do models trained with these generated labels compare
to models trained with self-supervision?

Which kinds of simple data augmentation techniques (akin to adding noise or occluding parts of an input) can help
improve the robustness of DL models trained with functional neuroimaging data?

How can functional neuroimaging researchers provide easy access to (and use of) their pre-trained DL models (e.g., to

enable others to easily adapt these models to their collected datasets)?

versatile DL models, when taking the appropriate measures to ensure reproducibility and robustness?
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