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ABSTRACT: To close the overturning circulation, dense bottom water must upwell via turbulent
mixing. Recent studies have identified thin bottom boundary layers (BLs) as locations of intense
upwelling, yet it remains unclear how they interact with and shape the large-scale circulation of
the abyssal ocean. The current understanding of this BL—interior coupling is shaped by 1D theory,
suggesting that variations in locally produced BL transport generate exchange with the interior and
thus a global circulation. Until now, however, this picture has been based on a 1D theory that fails
to capture the local evolution in even highly idealized 2D geometries. The present work applies BL
theory to revised 1D dynamics, which more naturally generalizes to two and three dimensions. The
BL is assumed to be in quasi-equilibrium between the upwelling of dense water and the convergence
of downward buoyancy fluxes. The BL transport, for which explicit formulae are presented, exerts
an influence on the interior by modifying the bottom boundary condition. In 1D, this BL transport is
independent of the interior evolution, but in 2D the BL and interior are fully coupled. Once interior
variables and the bottom slope are allowed to vary in the horizontal, the resulting convergences
and divergences in the BL transport exchange mass with the interior. This framework allows for
the analysis of previously inaccessible problems such as the BL—interior coupling in the presence
of an exponential interior stratification, laying the foundation for developing a full theory for the

abyssal circulation.
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1. Introduction

Thin boundary layers (BLs) at the ocean’s bottom have recently come into focus as the primary
locations in which small-scale turbulence lightens bottom waters, thus playing a crucial role in
closing the overturning circulation of the abyss (Ferrari et al. 2016; lde Lavergne et al.[2016). The
connection between these BLs and the large-scale abyssal circulation, however, remains to be fully
explained. The cornerstone of our present understanding of the mixing-generated abyssal circulation
is a 1D model of a stratified, rotating fluid overlying a sloping, insulated seafloor (e.g., |Phillips
19°70; Wunsch|[1970; Thorpe | 1987; |Garrett et al.||[1993). This 1D theory helped bring bottom BLs
into center stage, predicting that the local response to bottom-intensified mixing is characterized
by diabatic upslope flow in the thin BL. compensated in part by diabatic downslope flow spread
across the interior (Garrett [1990; Ferrari et al. [2016; de Lavergne et al. 2016; McDougall and
Ferrar1|2017;|Callies|2018)). Our description of large-scale abyssal dynamics is shaped by this local
theory: the natural conclusion is that variations in these locally produced flows generate exchange
with the interior and producing a global circulation (e.g., Phillips et al.|[1986; McDougall |1989;
Garrett 1991} |Dell and Pratt 2015; [Holmes et al.[2018]). This picture fails to consider the potential
feedback of the circulation produced in the interior back onto the BL, however, suggesting that this
framework is incomplete.

In addition to this lack of two-way coupling, progress has also been hampered by the canonical
1D theory failing to reproduce the local evolution in simple 2D geometries. The canonical 1D model
predicts slow diffusion of the interior along-slope flow (MacCready and Rhines||1991)), whereas
simulations of bottom-intensified mixing over an idealized 2D mid-ocean ridge display rapid spin
up of the interior (Ruan and Callies|[2020). In Peterson and Callies| (2022, hereafter PC22)), we
remedied this shortcoming by including the physics of a secondary circulation and barotropic
pressure gradient. The key is to constrain the vertically integrated cross-slope transport to force
upwelling flow in the BL to return in the interior. This downwelling flow is then turned in the
along-slope direction by the Coriolis acceleration and balanced by a barotropic pressure gradient,
leading to rapid adjustment in the interior as seen in 2D. With this more faithful 1D model, we
have a reliable foundation to describe the role of abyssal BLs in the large-scale circulation.

Callies and Ferrari| (2018) and Drake et al. (2020) connected BL dynamics to the horizontal

circulation in a 3D planetary-geostrophic (PG) model with idealized bathymetry and Rayleigh
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friction. |Callies and Ferrari (2018]) found that, for vertically constant interior stratification and on
moderate slopes, local 1D theory accurately emulates the 3D model’s dynamics. On the sloping
sidewalls of the idealized bathymetry, upslope transport in thin bottom BLs is compensated by
downwelling aloft. At the base of the slopes, however, 1D theory breaks down in favor of a
basin-scale circulation that feeds the BLs on slopes. An integral of the local upslope 1D BL
transport along the perimeter of the basin provides an accurate estimate of the overturning. These
ideas fail, however, once the interior stratification is far from constant, because 1D theory can
only consider perturbations to a constant background stratification (Drake et al.|[2020). This is a
severe limitation, given the real ocean’s near-exponential stratification (e.g., Munkl/|1966). For a
more realistic stratification, downwelling in the interior is weakened and BL upwelling dominates,
though the vertical extent and structure of the net transport remains to be explained. In this work,
we provide a framework for concretely understanding this interplay between the BL and interior.

Below, we derive self-contained equations for interior 1D and 2D PG dynamics on an f-plane
with effective boundary conditions that capture the effects of BLs. We accomplish this using BL
theory, splitting variables into their interior and BL contributions (e.g., Bender and Orszag|/1999;
Chang|[2007, Fig. [T)). This explicitly separates the interior and BL dynamics and allows for deep
physical insight into their coupling. Famously, Stommel’s (1948) gyre theory can be solved with
BL methods (Veronis |1966), although the coupling there is one-way: the interior solution can be
calculated in isolation, and the western BL is a passive element of the theory. We find that this
is different for bottom BLs on slopes. Their structure is shaped by the interior solution, but the
buoyancy and mass fluxes carried in the BL feed back on the interior solution in the form of
boundary conditions.

A central result of this paper is an explicit expression for the cross-slope BL transport (per unit
along-slope distance) in terms of interior variables and flow parameters. In 1D, the BL transport
takes the form x cot6 uo/(1 + puo), where u = v/« is the turbulent Prandtl number with v being
the turbulent viscosity and « the turbulent diffusivity, and o = N?tan? 6/ f? is the slope Burger
number with N being the background interior buoyancy frequency, f the inertial frequency, and 6
the bottom slope angle. All variables are evaluated at the bottom (or, more generally, just above the
BL). In the canonical 1D framework, a steady-state balance between cross-slope upwelling of dense

water and turbulent mixing requires that the fotal transport tends towards ko, cot 6, where k is the
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Fi1G. 1. Illustration of the BL correction to interior solution. Shown is a typical streamfunction y, defined such
that 9, y = u* where u”* is the cross-slope flow, after three years of mixing-generated abyssal spin up at a slope
Burger number o = 1073 (see section . The solution is depicted over (a) the entire 2 km domain as well as (b) a
zoom-in to the bottom 100 m, shown in (a) in gray shading. The interior solution yp varies slowly compared with

the scale of the BL, and the BL correction yp ensures that boundary conditions are satisfied.

far-field turbulent diffusivity (Thorpe||1987; Garrett et al.|[1993). Our revised result instead applies
to the bottom BL transport and is valid throughout transient evolution, provided that the BL has
adjusted to a quasi-steady state. Unlike the canonical result, this expression smoothly approaches
zero as # — 0, more harmoniously connecting the model over a slope with conventional flat-
bottom Ekman theory (e.g., Pedlosky||1979). The expression has the same form in 2D, but there the
slope Burger number is a function of interior cross-isobath buoyancy gradients as well as the local
topographic slope. Thus, in 2D, variations in interior buoyancy gradients and the topographic slope
cause convergence in the BL transport, generating exchange with the interior. A similar process
occurs in 3D with the added physics of along-isobath variations and a modified interior balance,
but we leave the details of 3D dynamics to future work.

In section[2] we begin by reviewing the transport-constrained 1D model fromPC22,, followed by
a derivation of the 1D BL theory. We derive the 2D BL theory in section[3] applying the framework
to simulations of mixing-generated spin up under a vertically varying background stratification. In
section 4, we re-derive the 1D and 2D BL equations in a more rigorous fashion, quantifying the
accuracy of our claims in the previous sections and uncovering some subtleties in the dynamics.

Finally, we provide discussion and conclusions in sections [5|and [6] respectively.
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2. One-dimensional boundary layer theory

In this section, we apply BL theory to the revised 1D model from |[PC22 and present results from
numerical integrations of both the full and BL equations. Here and throughout the paper, we employ
PG scaling, thus focusing our attention on the slow and large-scale response to mixing. The PG
flow should be interpreted as the residual flow after a thickness-weighted average over transients
due to turbulence, waves, and baroclinic eddies, with the effect of these transients included as

parameterized Eliassen—Palm and diapycnal fluxes (Young 2012).

a. Transport-constrained one-dimensional dynamics

We first consider 1D PG dynamics along a uniform slope at an angle 8 above the horizontal.
The 1D model is typically derived by writing the Boussinesq equations in a rotated coordinate
system aligned with the slope (e.g., Garrett et al.[1993). We slightly deviate from this approach by
keeping the vertical coordinate aligned with gravity, which is a more natural choice if the horizontal
components of the turbulent momentum and buoyancy fluxes are neglected, but it yields equivalent

dynamics (PC22)[T Specifically, we write the 1D model in (¢, 7, {) coordinates defined by

E=x, n=y, (=z-xtané, (1)

where (x,y, z) defines the usual Cartesian coordinate system with z aligned with gravity. These
coordinates are analogous to terrain-following coordinates (used below) in 1D with = 0 at
the bottom. Neglecting all variations in ¢ and 5, except for the barotropic pressure gradient 0, P

(equivalently, d¢P, since P is independent of z), and constraining the vertically integrated cross-

In the limit 6 < 1, the gravity-aligned coordinate system employed here and the previously used fully rotated coordinate system yield the same
equations.
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slope transport to U¢ (typically to zero), the PG equations become

oP d ( ouf
_fuﬂ :—aﬁ-b tan0+&(v6—§), (2)
o [ ou
§ -~ [y
=5 V5 ) ©
ob’ 0 ob’
77 L EN2 - = 2,27
i +u*N tane—ag [K(N + 0{)], 4)
/muf d¢ = UC. (5)
0

Here, u¢ is the cross-slope Velocit and u" is the along-slope velocity. We have split the total
buoyancy b into a constant background stratification and a perturbation so that b = N°z + b’.
The fluid satisfies no-slip and insulating boundary conditions at the bottom: u¢ = 0, u7 = 0,
and 9;b = N> + 9;b’ = 0 at £ = 0. In the far field, we impose decay conditions on the shear and
anomalous buoyancy flux: 6§uf — 0, 0;u" — 0, and 9;b" — 0 as { — oo. The extra degree of
freedom supplied by 9, P allows the transport constraint (5)) to be satisfied at all times. Physically,
this constraint forces cross-slope upwelling in the BL to return in the interior, where it is then
turned into the along-slope direction by the Coriolis force. In the PG framework, this process is
instantaneous, and the far-field along-slope flow satisfies the balance: — fu"" = —d,P. This leads to
rapid spin up of the along-slope flow throughout the water column, as seen in simulations of 2D
spin up (Ruan and Callies|2020, PC22).

We employ a simple down-gradient closure for the turbulent momentum and buoyancy fluxes
generated by, e.g., breaking internal waves but allow for variations in the mixing coefficients v
and x. We assume these variations to occur on a scale larger than the BL thickness. In our examples
below, v and k are bottom-enhanced in abyssal mixing layers a few hundred meters thick, inspired
by typical observations over rough mid-ocean ridges. Our main results, however, generalize to the
case in which v and « vary rapidly within the BL, for example going to zero in a log-layer.

As in[PC22| we cast equations (2)) to (3) into an inversion equation for the flow, written in terms

of a streamfunction y () defined such that uf = O x, and an evolution equation for the buoyancy

2Due to our non-orthogonal coordinate system, u¢ is technically the x-projection of the cross-slope velocity as it would be defined in a fully
rotated coordinate system (PC22| appendix A). For simplicity, we refer to it as the “cross-slope velocity” throughout.
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The boundary conditions are that y =0 and d;y =0at{ =0and y — U¢ as { — oo. If desired,

one may infer the along-slope flow from y by integrating

our _f o e
8{_1/()( U®) (8)

from the bottom up, using u”7 = 0 at { = 0. Equations (6) and (7)) fully describe the 1D PG system
and can readily be solved numerically. But insight into the BL—interior coupling is more easily

gained using BL theory.

b. Boundary layer theory

Under steady conditions, equations (6 and can be combined to form a single fourth-order
ordinary differential equation for y. The fourth- and zeroth-order terms in that equation balance

if  varies on a scale ¢~! defined by

(69)* =1+ po, 9)
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where ¢ = W is the familiar flat-bottom Ekman layer thickness, and the mixing coefficients
are evaluated at ¢ = 0. This defines the BL scale of a rotating fluid adjacent to a sloping bottom
(e.g.,/Garrett et al.[1993). For typical abyssal parameters, g~' ~ 10 m (Callies|2018). This thinness
of the BL compared to the scale of variations in the interior ocean is what allows us to apply BL
theory.

We begin by splitting solutions into interior contributions y1 and b}, which vary slowly in £, and
BL corrections yp and b},, which ensure boundary conditions are satisfied and have appreciable
magnitude in the thin BL only. A similar approach was taken in|Callies (2018) with the canonical
1D model, but the analysis presented here is time-dependent and extensible to higher dimensions
(section . If the mixing coefficients v and « vary on a scale much larger than ¢!, the fourth-order

term in (6) can be neglected in the interior:

2 0by
L= -G tan. (10)

assuming U¢ = 0 (see appendix A for the U¢ # 0 case). Substituted back into the buoyancy

equation ([7)), this reduces the interior dynamics to a modified diffusion equation:

ob, 8
— = —|K
ar ol

N2+(1+pg)i—?]). (11)

This is a result familiar from |Gilll (1981)), (Garrett and Loder| (1981)), and |Garrett| (1982): advection
of the background stratification by the secondary circulation becomes a horizontal diffusion term,
with diffusivity vN?/ f2. The form here is the result of the sloping boundary: the vertical coordinate
depends on the slope-parallel distance multiplied by tan #, which explains the factor tan” 6 in the
additional diffusion term.

This interior evolution must be complemented by a representation of the bottom BL that
supplies an effective boundary condition for the interior equation. The key assumption here is that
the BL scale ¢! is thin compared to interior variations. This thinness of the BL also implies that
it is quasi-steady on the time scales of the interior evolution. The BL correction thus satisfies the

steady buoyancy equation

oxs 2 g 9 (98
Y N-tan@ = Y (K Y ) (12)
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Since all BL variables decay into the interior, i.e., as { — oo, this balance can be integrated to

’

9
yeN%tan6 = Ka—;. (13)

This relation is all that is needed to derive a boundary condition on the interior solution. At { = 0,

x1+ xB = 0, such that the full y = 0 boundary condition is satisfied. So, using (10),

ob; N2 tan @ ob’
B - xlzuga—g at £ =0. (14)

ac

The insulating boundary condition then becomes

0—N2+—I+%—N2+(1+ )0—[’i t =0 (15)

The BL correction thus contributes an additional term ppd,b] to the boundary condition for the
interior buoyancy evolution (TT]). The added term represents physics akin to an Ekman buoyancy
flux (e.g., Marshall and Nurser|1992; Thomas and Lee|[2005): the BL transport yp acts on the cross-
slope buoyancy gradient N?tan 6 and produces a buoyancy sink for the interior. This boundary
condition on the interior problem implies a stratification at the top of the BL that is reduced from

the background by a factor po/(1 + npe) and a BL transport, from combining (15]) and (10},

Mo
1+ po

X1 = kcotf at (=0, (16)

as claimed in the introduction (Fig. [2). We note that the transport-constrained system, unlike the
canonical one, has no steady state in a semi-infinite domain, yet previous work on the BL—interior
interaction has often begun with the canonical result that the steady transport is U* = ke cotf
(e.g., Woods|[1991} [Callies and Ferrari|2018; Drake et al|2020). The revised expression in (I6)
instead applies to the transport confined to the BL and more sensibly leaves the net transport (and
steady-state dynamics) to be controlled by the large-scale context.

If desired, the BL correction can easily be determined from

34)(13
art

+4q*yg =0, (17)

10
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with g = —x1 and 9, xg = 0 at { = 0 (neglecting the much smaller interior contribution to d, y at
the bottom) and ygp — 0 as { — oo. This has a similar form as the steady canonical 1D problem
with constant mixing coefficients (e.g.,|Garrett et al.|1993), but the boundary conditions and right-
hand side are different because the transport constraint is imposed and the interior solution has

been subtracted out. The general solution takes the form of the familiar Ekman spiral:

X8 = —xie % (cos gl +sing?), (18)

where yj is evaluated at £ = 0 as in (16).
This analytical expression for the BL correction also allows us to directly diagnose how the
far-field along-slope flow is influenced by the BL. From (8)) and (10), the interior along-slope shear

follows thermal wind balance,

8u}7 _ 1 619} tan 6 (19)
9¢ fog ’

which implies, upon integration in the vertical,
1 ’ ’
ul ($) = ul (0) - 7 [61(2) - b1(0)] tan . (20)

The integration constant u?(O), the flow at the upper edge of the BL, can be determined from the
BL solution and (8): u] (0) = —up(0) = —f x1(0)/gv(0). This BL contribution to the interior
along-slope flow has the same form as the steady-state canonical result with constant mixing
coeflicients (Thorpe 1987} Garrett et al.|[1993), but here it is rapidly spun up and accompanied by
an additional interior thermal-wind component. We will see in section [4] that this BL contribution
is typically of higher asymptotic order than the thermal-wind contribution.

It should be noted that the key results and (T6) also apply if there are variations in the
mixing coefficients within the thin BL, as may be expected as the turbulence becomes suppressed
very close to the bottom. The physics that lead to (I5]) and (16) are that the diffusive buoyancy flux
into the BL is balanced by cross-slope advection within the BL and that the interior obeys (10).
While the BL corrections are more complicated if v and « are not approximately constant across
the BL, for example including a log-layer if the mixing coefficients go to zero near the bottom, the

effective boundary condition for the interior is the same.

11
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In summary, BL theory has enabled us to elucidate the connection between the BL and interior
in 1D. The BL transport quickly adjusts to (16), regardless of the interior dynamics. This transport
allows the BL to communicate with the interior by moving dense water up the slope, providing
a buoyancy sink and modifying the interior bottom boundary condition (I5) (Fig[2p). In 1D, the
BL is thus independent of the evolution of the interior, yet the cross-slope advection by the BL
transport affects the interior dynamics. As we will see in the next section, the BL—interior coupling
in 2D are even richer, with the interior being able to feed back onto the BL. But first, we present

some illustrative 1D examples.

c. Examples

The following experiments depict 1D PG spin up with and without BL theory. The simulations
start in a state of rest: isopycnals are flat (b” = 0), and the flow is zero (y = 0). The turbulent
mixing then generates a buoyancy perturbation, bending isopycnals into the slope and spinning up
a circulation. The transport constraint ensures that BL transport is exactly returned in the interior,
and without a source of dense bottom water, the initial stratification is mixed away with time.

To numerically solve the 1D PG equations, we use second-order finite differences as in PC22|
The model can either solve for the full flow and density profiles using equations (6) and or
evolve the interior variables of the BL theory with equation (IT)). Model parameters are adapted
from Callies| (2018) and roughly match those of the Brazil Basin (Table[I)). Mixing is represented

by a bottom-intensified profile of turbulent diffusivity,

K=K()+Kle_{/h, (21
Inertial frequency f -55x1075s7!
Far-field buoyancy frequency N 1073 57!
Far-field diffusivity kg 6x10° m?s!
Bottom-enhancement of diffusivity «; 2% 1073 m?s~!
Decay scale of diffusivity h 200 m
Prandtl number u 1

TABLE 1. Parameters used in simulations of spin up, adapted from |Callies and Ferrari| (2018)) and roughly

corresponding to the mid-Atlantic ridge flank in the Brazil Basin.

12
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F1G. 3. Comparison of the 1D BL solution with full 1D PG spin up over two different slope angles. Shown are
the (a), (d) streamfunction y, (b), (e) along-slope flow u” = u", and (c), (f) stratification N 24 0, b’ as functions
of 7 = ¢ for separate simulations in which the slope Burger number is (a—c) ¢ = 1073, corresponding to a bottom
slope of 8 ~ 1.7 X 1073 rad, and (d—f) o = 0.5 so that § ~ 3.9 x 1072 rad. The insets of (a) and (d) show the
streamfunction y in the bottom 100 m, showcasing the accuracy of the BL correction. The 1D BL theory matches

the 1D dynamics perfectly.

with parameters obtained from a fit to Brazil Basin observations (Callies 2018, Table |I[) When
solving the full 1D PG equations, grid spacing follows Chebyshev nodes with resolution on the
order of 0.1 m at £ = 0 to comfortably resolve the boundary layers. The BL simulations need not
resolve the thin bottom BL, and we therefore use a uniform grid spacing of 8 m for these. The
domain height of 2 km is large enough that upper-boundary effects do not affect the solution. The
model is integrated forward in time using an implicit timestepping scheme with a timestep of one

day.

13
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The 1D BL model yields an excellent approximation of the full 1D PG solution (Fig. [3). The
interior dynamics match the interior of the full solution, and although the BL. model only explicitly
computes the interior evolution, the BL correction computed offline from (I8) is very accurate.
The match is trivial when g = 1 and o = 1073, because the shallow slope leads to a relatively
weak BL transport, and thus the advective modification to the buoyancy flux in (I1]) and (15)) is
negligible. The interior system is then nearly identical to the full one, with diffusion dominating
the dynamics. The case where o = 0.5, in contrast, is a more trying test of the 1D BL theory.
The BL transport in this case is an order of magnitude larger than before, leading to enhanced
stratification in the BL. This is properly captured in the BL. model, with the interior stratification
reaching about 0.4 x 107 s~2 at the bottom and the BL correction bringing it smoothly to zero.

The assumption of 1D dynamics breaks down as soon as lateral variations in the slope are
allowed, but we can anticipate the upcoming 2D results using intuition derived from the above
1D theory. Equation (16) gives an explicit expression for the BL transport in 1D depending on
the local slope angle 6 and buoyancy gradient across the slope N2 tan 6. In 2D, these inputs are
spatially dependent, with horizontal buoyancy gradients also varying in time as part of the interior
dynamics. Local 1D theory would thus predict convergences and divergences in BL transport,

generating BL—interior mass exchange (Fig. [2b). This leads to a more complex picture in 2D, with

interior dynamics feeding back onto the BL, as we will see in the following section.

3. Two-dimensional boundary layer theory

In this section, we extend the 1D BL theory to the 2D PG equations in terrain-following coordinates.

We first derive the 2D BL equations and then apply them to idealized numerical simulations.

a. Boundary layer theory

In 2D, the interaction between the BL and interior is more interesting because, in addition to the
BL advection imposing a buoyancy flux on the interior, variations in the BL transport produce
mass exchange with the interior (e.g., |[Phillips et al.|[1986; McDougall||1989; Kunze et al.[2012;
Dell and Pratt| 2015 [Ledwell [2018}; [Holmes et al.|2018). The BL theory generalizes from 1D to

2D and brings these physics into clearer focus.

14
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Applying the BL theory to the 2D PG equations is most easily done in terrain-following

coordinates:
z

"R (22)

é—‘:x, n=y, o =

where H(x) is the fluid depth (Fig.[4). Under this transformation, derivatives in (x, z) space become

0 _9 _oaHd 9 _13

g _9 — == 23
ox 0¢  H oo ¢ 8 Hoo 23)
= and the contravariant velocity components are
1 0H
ut =u*, u"=u, and u’ =—|uf-o—u*|, (24)
H 0x

15
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assuming no variations in 77 (see appendix B of (Callies and Ferrari (2018) for more details). The

2D PG equations in terrain-following coordinates are then

fun = ‘Z_I;”%_i]’”ia% (V‘Z—f) (25)

292 ), @7

a% (Huf) + %(Hu“) =0, (28)
%Hﬁ%mo% -2 (K%) (29)

where p is the pressure divided by a reference density. The boundary conditions are again an
insulating and no-slip bottom, d,b = 0 and u¢ = u”7 = 0 at o = —1; a constant-flux and free-slip
top H'9,b = N? and d,u* = d,u" = 0 at o = 0; and no normal flow across both boundaries,
u? =0ato = —1and o = 0. We neglect horizontal turbulent fluxes, consistent with the assumption
of a small aspect ratio if the turbulence is close to isotropic. This is in contrast with some other
PG models, which employed horizontal diffusion terms to satisfy the no-normal-flow condition at
vertical side-walls (e.g., Verdieere 1986} |Samelson and Vallis | 1997).

As before, we express the momentum equations (23) to (28)) as one streamfunction inversion.

We define y (£, o) such that the continuity equation (28)) is automatically satisfied:

0 0
Huf = 25 and  Hu” = -2X, (30)
oo 3
Integrating (26) from some level to o= = 0, we obtain
1o’ f
—— =L (y-U%), 31
Hoo ~ -0 (31)

as in equation (8)). Here, U¢ = f_ 01 Hu¢ do is the vertically integrated transport, a constant in £ by
continuity. Combining H~'d,, of (23) and 8 of and substituting H~'0,u" from (31) yields

16
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the streamfunction inversion equation similar to 1D:

1 9% [ 8%y 2 db o 0H db
— =L |+ =y -U) = —= - =——. 32
H* 002 (VGO'Z) v (x ) (32)
The boundary conditions are similar to the 1D case but for a finite domain: y = 0 and 0,y = 0
atoc=-1land y =U¢ and 92y =0 at o = 0.
Splitting b and y into BL and interior contributions and neglecting the fourth-order term in

(32) in the interior as before, the interior inversion reads

[ _0bi_ o dHob _ob (33)
y XL= 9¢ H ox o Ox’

setting U¢ = 0 as implied by a configuration that is symmetric in x (see appendix A for the U¢ # 0
case). The circulation in the x—z plane is simply proportional to the buoyancy gradient in x. The

interior buoyancy evolution is given by

(9b1 1 8)(1 (9[71 8/\(1 (9[71 1 0 3[?1
— . 34
ot " H\ oo 0f  0é 80‘) ( ) 54)

“H2o0 "o

The BL physics appear in the boundary condition on the interior buoyancy field. The BL buoyancy

budget, assuming a quasi-steady state and a slowly varying interior buoyancy field, is

Lowon 10 (o 55
H do 0¢ H?d0 \ do |’

with 0¢by evaluated at o = —1. The neglected advection terms are smaller by a factor (¢H <1
than the terms retained in (35). This is because the boundary conditions enforce that yg ~ y1 and
Osbg ~ O,by, such that 9, xg ~ (gH)dsx1 and bg ~ (¢gH) by (see section @ for more detail).
Vertically integrating (33)) across the BL and applying the boundary conditions yj + g = 0 and

O0yb1 + 0,bp = 0 at 0 = —1, as well as decay conditions for yg and 9, bg, yields

0b1 _ K (9b1

122 = -1.
X1 9%~ Hoo o (36)
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Substituting this bottom boundary condition for the interior into the interior inversion (33)), we

again arrive at an explicit formula for this BL transport:

M OH 9by v bt
_ Kk _froxos 2o _
Xl_a_Hl_ﬁa_H%_l_ﬁa_H% at o =-1. 37)

This is the generalization of the 1D result (16): —0,H is analogous to the local slope tan 6 and 0 by
now takes the place of the previously constant cross-slope buoyancy gradient N2 tan 6. Note that
this expression is again well-behaved in the limit of small slopes (0,H — 0) and thus gives a
globally valid expression for the BL transport and of the mass exchange Hu{ = —dgxy at o = —1
between the BL and the interior.

As in 1D, we can now explicitly describe contributions to the interior along-slope flow from
thermal wind in the interior and a contribution from shear in the BL. Combining (31)) and (33)

yields the thermal-wind balance

10ul  10b
= - (38)
H 0o f 9x’
which, upon integration in the vertical, becomes
-1 7 0b
u!(o) = —f)“_( ) | / —2(5) do. (39)
v(-1)gq

The first term again represents the BL contribution u? = —ug at o = —1, which may be computed
directly from the BL solution
xB = —xie 1 D cos gH (o + 1) +singH (o + 1)], (40)

similar to (I8)). Here ¢ can still be written in the same form as in (9) but with a generalized slope
Burger number o = —0,H0:b1(-1)/ f 2, which varies in the horizontal. Equation (39) has the same
form as (20), except that cross-slope buoyancy gradients can now contribute to the thermal-wind
term.

In 2D, we again find that the interior solution experiences a buoyancy flux due to the cross-
slope advection by the BL transport. In contrast to the 1D case, however, both the BL transport

given by and the cross-slope buoyancy gradient dzb; may vary in time and space (Fig. ).
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Convergence in the BL transport then drives mass injection into the interior, further altering g by
and continuing the feedback process.

It is worth noting that BL theory can also be applied to a passive tracer, not just buoyancy. The
interior tracer concentration would have a similar effective boundary condition capturing transport
by BL flow. The interior tracer equation should also include a representation of along-isopycnal

stirring (Redi||1982).

b. Examples

We now illustrate these theoretical results using numerical simulations over idealized topographies.
We solve the full 2D PG system (29) and (32)) and the 2D BL PG system (33) and (34) using
numerical methods and model parameters similar to the 1D case described above. The mixing
profile is now written as

K = ko + ke G/ (41)

following the bottom topography. First, we study spin up over an idealized azimuthally symmetric
seamount with constant initial stratification. We then analyze spin up over an idealized mid-
Atlantic ridge with both constant and exponentially varying initial stratification. As in the 1D spin
up experiments, the simulations all start with flat isopycnals and no flow. The circulation that

emerges is powered by the potential-energy source «d,b integrated over the domain.

1) IDEALIZED SEAMOUNT

The topography of the abyssal ocean has a range of slopes. Seamounts, for instance, can reach
slope Burger numbers of order 10 or more and have received some attention regarding their role in
the abyssal overturning circulation (e.g., McDougall [1989; McDougall and Ferrari2017; |Ledwell
2018; Holmes et al.|2018)). The 1D BL theory [equation (11))] is sensitive to the slope Burger
number, with a steeper slope leading to a larger modification of the diffusive buoyancy flux by
advection. At the same time, the 2D BL theory shows that horizontal variations in this slope lead
to gradients in BL transport that are not taken into account by the 1D theory. In this section, we
therefore compare both 1D and 2D BL solutions to the full 2D PG flow over a seamount.

Similar to the analysis in |[Ledwell (2018)), we consider an azimuthally symmetric Gaussian

seamount in axisymmetric coordinates (Fig.[5). On an f-plane, the flow is invariant under rotation
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F1G. 5. Flow fields in a simulation of mixing-generated PG spin up over an idealized 2D seamount. Shown
are (a) the streamfunction y (shading and black contours) with positive values indicating counter-clockwise and
negative values indicating clockwise flow and (b) the along-slope flow ¥ = u’’. The solution is shown after
20 years of spin up. The gray curves show isopycnals, and the red vertical lines show where 1D profiles are

examined in Fig. [f]

about the center of the seamount, allowing us to fully describe the flow using 2D theory (see
appendix B). The depth of the seafloor as a function of distance r from the symmetry axis is given
by

2
H(r) = Hy— Aexp (_#) , 42)

where the maximum depth is Hy = 5.5 km, the height of the seamount is A = 3 km, the width
of the seamount is £ = 50 km, and the width of the domain is L = 200 km. We assume no flow
atr = 0 and allow the flow to evolve freely at r = L, consistent with our assumption that horizontal
diffusion may be neglected. In the horizontal, the grid has an even spacing of about 0.8 km. As
in the 1D models, we use Chebyshev nodes in the vertical when solving the full 2D PG equations
(with a near-bottom resolution of about 1073 in o-space) and uniform grid spacing for the 2D
BL equations (with a resolution of about 1073 in o-space). We initialize the model at rest with a
constant stratification » = N2z and use a mixed implicit—explicit time integration scheme with a

timestep of one day.
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F1G. 6. Comparison of the 1D and 2D BL solutions with full 2D PG mixing-generated spin up over a seamount.
Profiles are taken at the steepest slope on the seamount (red lines in Fig.|§]). Shown are the (a), (d) streamfunction y,
(b), (e) along-slope flow u” = u”, and (c), (f) stratification d,b. The insets of (a) and (d) show the streamfunction y
in the bottom 50 m, showcasing the BL correction. The 1D BL solution is a decent approximation to the flow,
but the cross-slope variations considered in the 2D BL theory allow it to better match the full 2D solution in this

high slope Burger number regime.

At the steepest point on the seamount (r = 50 km, red lines in Fig.[5), the slope Burger number o
is order unity. The 1D BL solution applied at this position over-predicts the stratification in the
bottom 500 m and under-predicts it above (Fig. [6). This leads to errors in the predicted interior
along-slope flow, which can be understood from (20) and (39)): even subtle changes in the buoyancy
field can lead to substantial impacts on u? after being integrated throughout the column. The 1D
BL solution’s buoyancy field differs from that of the 2D solution because its secondary circulation,
enforced simply by a transport constraint, is stronger. This is due to the lack of a two-way feedback

in 1D; the BL cannot exchange mass with the interior and the induced changes in the interior do
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FiG. 7. Simulations of mixing-generated PG spin up over an idealized 2D mid-ocean ridge with varying initial
stratifications. Shown are the streamfunctions y (shading and black contours) with positive values indicating
counter-clockwise and negative values indicating clockwise flow for simulations with (a) constant initial strati-

w0 fication and (b) exponential initial stratification (isopycnals in gray). For each simulation, we show (c) the BL
transport UB§ computed from equation and (d) the resulting exchange velocity Hu” = —0¢ Ug . The solutions
are shown after three years of spin up. The gradient in stratification across the ridge facilitates larger exchange

velocities at the peak and flanks.

not reduce the BL transport. The 2D BL theory, in contrast, captures these physics and agrees well
with the full 2D model. This confirms that the 2D BL equations are capable of fully capturing 2D

»s PG spin up, even in regimes with relatively large variations in local slope.
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2) EXPONENTIAL BACKGROUND STRATIFICATION

The simulations presented so far were initialized with a constant background stratification. In
the real ocean, the stratification varies significantly in the vertical, often decreasing close to
exponentially with depth (e.g., Munk |1966). A number of studies have attempted to discern how
this may shape the abyssal circulation, often qualitatively arguing that variations in stratification
across slopes must lead to gradients in BL transports, inducing BL—interior exchange (e.g., Phillips
et al.|1986; |Salmun et al.[1991)). Quantitative explanations of this process, however, have remained
complicated and opaque at best. A major benefit of the BL theory framework built up here is
that it provides concise expressions for the BL transport in terms of interior variables, allowing
us to reason about how varying background stratification might impact the abyss with minimal
mathematical gymnastics.

Let us consider an idealized mid-Atlantic ridge, following previous studies of mixing-generated
spin up in the abyss (e.g., Ruan and Callies |2020; Drake et al. 2020, |PC22)). The depth of the 2D
ridge is given by

H(x) = Hy+ Acos (2%) , (43)

where the mean depth is Hy = 2 km, the amplitude is A = 800 m, and the width is L = 2000 km
(Fig. . At the steepest point on the ridge, the slope Burger number o is approximately 2 x 1073,
typical of the mid-Atlantic ridge. We apply periodic boundary conditions at x = 0 and x = L and
use a constant horizontal grid spacing of about 8 km. The vertical grid spacing is as before. We run
one simulation with constant initial stratification as before and one initialized with an exponential
stratification: 8.b oc /4. We set the decay scale to d = 1000 m and choose the proportionality
constant such that the bottom stratification at the center of the ridge flank matches that of the
simulation with constant N> = 107% s™2. We again use a mixed implicit-explicit timestepping
scheme, this time with a timestep of 10 days, enabled by the much weaker advective terms.

The circulation in the case with exponential initial stratification is stronger and more confined
to the peak of the ridge compared to the case with constant initial stratification (Fig.[7a,b). This is
better understood by the explicit formula for 2D BL transport derived in the previous subsection.
Evaluating equation (37) for these simulations, we see that the BL transport is enhanced at the

peak of the ridge with exponential background stratification (Fig. 7). For the small slopes in this
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simulation, equation (37)) reduces to

v 8191

zﬁ% at o =-1. (44)

X1

In the case with constant stratification, the initial cross-slope buoyancy gradient is proportional
to —0,H and does not change appreciably with time, explaining the sinusoidal BL transport. For
exponential stratification, in contrast, we have 9:b; o —e H/d 0, H, which is enhanced at shallower

depths. As a result, the exchange velocity

v 0%by

—Fa—fz at o=-1 (45)

Hu? = —65)(1 ~

is also enhanced for the case with exponential stratification (Fig. [7d). In both cases, d;b1 does not
evolve much in the first three years, so the exchange does not either. The BL theory enables us to

easily and quantitatively understand this behavior.

4. Asymptotic theory

In the previous sections, we derived the BL equations somewhat heuristically, glossing over some
detail of the underlying asymptotics. In this section, we present a more rigorous derivation of the
BL theory that justifies the claims in the previous sections and sheds light on the asymptotic orders
of the various components of the flow. The casual reader should note that the contents of this
section are not required to understand the main results of the paper.

We show below that, in both 1D and 2D, the cross-slope flow is of lower order than the along-
slope flow in the interior, aligning with our intuition from the examples above. The interior flow
evolves on a slow timescale driven by diffusion and second-order advection of the leading-order
buoyancy in the interior. The BL flow is of first order, in between the orders of the interior along-
and cross-slope flows. If the transport is constrained to zero, this implies that the leading-order
interior flow vanishes at the bottom. These results do not generally hold in 3D, but we leave this

generalization to future work.
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a. One-dimensional asymptotics

To begin the formal derivation of the 1D BL equations, we first nondimensionalize the 1D equa-
tions (2)—() in order to isolate the key parameters in the problem. We define characteristic scales

for the vertical coordinate, velocities, and mixing coefficients such that
{~Hy, ub,u"~U, v~vy, and «~ ko, (46)

where vy and «q are characteristic values of v and x. We assume that the pressure and buoyancy
terms in (2)) scale with the Coriolis term and that the buoyancy perturbation scales with the

background buoyancy scale:

opP U
9 _fu and v ~1Y — N, S
Ox tan 0
Assuming an advective timescale, so that
Hy f
t ~ = , 48
Utanf NZtan?6 %)
then yields the nondimensional 1D equations
oP d ( out
= -2 e 2 2 (2, (49)
ox ¢\ o¢
o ( ou"
ut = e?— vi , (50)
9l \ 9
ob’ 0 ob’
) _ 2
+ =& — 1+ , 51
“Q(ar ”) 864[“( 64)] el
[ de=ve. (52)
0

where all variables are redefined to their scaled versions. The nondimensional parameters for the
1D problem are thus the Ekman number £ = vo/fH?, the Prandtl number u = vo/ko, and the
slope Burger number o = N2 tan® 8/ f2, although u and o only appear as a product, so zo can be
considered a single parameter. The reason for defining the Ekman number as £ will become clear

in the BL analysis below.
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To develop the asymptotic theory, we assume the scaling € < 1 and uo ~ 1. While the Burger
number is typically small in the abyss, the turbulent Prandtl number may be large if momentum
fluxes by baroclinic eddies are taken into account. If instead uo < 1, buoyancy advection is
negligible in the BL, and the theory developed with uo ~ 1 remains accurate (Fig. [3p).
£ 3 2,&

= u> +&us, +...,etc. This

. . . . . . 2'
We begin with the interior and expand all variables in &7 u} = uj, ht-

expansion into even powers of ¢ is sufficient because & only appears as &7 in the interior equations.

The O(1) interior flow then satisfies

0Py

—tyy = =~ +bio, (53)
5, =0, (54)
oby
10
— =0. 55
o (55)

At this order, the interior along-slope flow is in balance with the barotropic pressure gradient and
the projection of the buoyancy perturbation, and the interior cross-slope flow is zero. The O(1)
buoyancy equation is trivial, implying that the interior buoyancy evolution is slow compared to the
advective timescale assumed in the scaling.

To obtain the evolution of the O (1) interior buoyancy, we need to go to O (&) and also expand
the time coordinate, d; = 0, + £20;, + . .. Higher-order buoyancy terms inherit the slow evolution

from the low orders, so 8;,b7, = 0. The buoyancy equation (51) at O (&?) is then

6b;0 e\ p] ab;O
He (a—zz ) =9 [K (1 * a—g)] | (0

This implies that advection and turbulent diffusion operate on a slow time #,. Since the O(1)
and O (&) interior cross-slope flows are zero, the dominant buoyancy advection is by the second-

order flow in the interior, given by (50) at O (&?):

o ou!
5, = 3¢ (Va_gm) . (57)

Equations (53)), (56)), and comprise the leading-order interior dynamics. They can be expressed

in terms of the streamfunction yi, whose leading non-zero component is yp, recovering (10)
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and (TT)) above (assuming U¢ = 0). The interior along-slope flow can be obtained by integrating

the thermal-wind balance d;uj, = —d;by,, which follows from a {-derivative of (53):

10°
j(0) - [blo = bio(0)] - (58)

The integration constant u?O(O) must be determined from the BL correction. If the transport
constraint is U¢ = 0, one finds that u;’O(O) =0

In the thin bottom BL, {-derivatives are enhanced, elevating the diffusion terms in (@9)—(51)
to O(1). Given that the BL thickness scales with &, we assume the BL variables to depend on the

re-scaled vertical coordinate { = £ /&, with which 0 = 8_162. The nondimensional BL equations

are then
o+ 9
= b, ag( ) (59)
e 0 Oug
MB—%(—(,M) (60)
by o\ 9 [ dbj
vo Gt est) = 3 (457 ) o

Crucially, the insulating bottom boundary condition picks up a factor of £~! after this re-scaling:

819’ 10by

6{ —;E at ¢ =0. (62)
This factor of £~! means that we need an O (&) BL buoyancy to absorb the O(1) interior buoyancy
flux into the BL. We thus expand the BL variables in terms of & rather than £2. We immediately
find that the O (1) BL buoyancy flux must vanish at the bottom: d;b}, ) = 0. In the case with zero
net transport (U¢ = 0), this condition, along with the boundary conditions on the flow u‘go = 0and
ug, = —ug, at £ = 0, forces the O(1) BL flow to vanish and the O(1) interior along-slope flow
to go to zero at the bottom, consistent with the examples shown in Fig. [3] (see appendix A for the

U¢ # 0 case). The BL flow instead comes in at O(g), in between the orders of the interior along-
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and cross-slope flows. This O (&) BL flow satisfies

ol
I VR Wl 1R (63)
oz \" oz
o n
oy = |y (64)
az " oz
o ( 0b;
& Bl
vy = 32 (<52 ) ©)

with the bottom boundary conditions ;b = —(1 + d;by)), ugl =0, and ugl = 0. The tendency
term J;, by, is dropped because the interior does not evolve on this timescale, so the BL will not
either. These BL equations are equivalent to and (17).

505 This more rigorous derivation of the 1D BL equations clarifies the asymptotic orders of the
various components of the flow. The leading-order contributions are O (&?) for the interior cross-
slope flow, O(1) for the interior along-slope flow, and O (&) for both components of the BL flow.

Buoyancy does not have an O (1) BL correction—only its derivative does.

b. Two-dimensional asymptotics

so The 2D asymptotics follow in much the same way as in 1D. We again nondimensionalize the
equations of motion (25)—(29), setting characteristic scales equivalent to (46)—(@48):
E~L, u U ~U, u” ~—, H~Hy v~vy K-~ Ko
fUL

L
~UfL, b~*—=N?Hy,, t~—. (66
p f Hy 0 i (66)
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We then arrive at the nondimensional 2D PG equations

—u'l = —g—? + O-(Z_fclb + 2_226% (V(Z—Lj) , (67)

ué = %22% (v%), (68)

;_f () + %(Hu") _o, (70)
1o (g—f+uf%+u0%) = 2—22% (K%), (71)

where o = N ZHS /f*L? is now the conventional Burger number. Again assuming the scaling & < 1
and po ~ 1, expanding interior variables in &2, and matching orders as before, we arrive at the

s complete set of interior equations

—ujy = ra + O'Eblo, (72)

= o (V‘ZLE)) , 73)

55 () + 5 (1) = (75)
(G g 257 ) = s ()

We again find that the interior along-slope flow is of lower order than the interior cross-slope flow,
and the interior buoyancy evolution is again slow. In 2D, the interior slope-normal flow u{, comes
in, contributing a second-order advective flux in the vertical, along with the cross-slope advection.
Formulated using the streamfunction yi,, this recovers the interior equations (33)) and (34) derived

=0 above. The O(1) interior along-slope flow can again be obtained by integrating thermal wind in
the vertical, with the bottom correction u;’o(—l) dropping out for U¢ = 0.

The BL contribution can again be assessed after a re-scaling of the vertical coordinate such

that & = o /. We again find that the O (1) BL flow, along with the interior along-slope flow ”?0 at
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the bottom, vanishes when U = 0. The BL flow is instead of O (&), satisfying

OH 1 o [ oub
n B1
0 =27 —— |y=LBL], 77
“BI Ox Bl+H26& v a&) 77)
1 o [ oul
3 Bl
_ 7
"B o5 (V o ) 78)
ob 1 0 ob
£ 10 _ B1
Help o0&  H?O0 (K liloa ) (79)

with hydrostatic balance and continuity implying that pg; = 0 and ug, = 0, respectively. The BL
is again characterized by a balance between cross-slope advection and down-gradient diffusion
of buoyancy, with the BL buoyancy flux due to bg; balancing the interior buoyancy flux due to
bo at the bottom as before: 1 + d,byp = —d5bp; at ¢ = —1. The tendency term in (79) is again
dropped because the interior evolution is slow, so the BL evolution must be slow as well. Expressing
H u% | = 0 xB2, vertically integrating (79), and enforcing y1p+xg2 = O at o = —1 yields an effective
boundary condition on the interior. The BL-interior exchange velocity u{, = —ug, at o = —1 may

B2
be obtained by vertically integrating

0 ¢ 0
5 (Huf ) + 5= (Hug,) = 0. (80)
The leading-order equations obtained using this more rigorous approach again match the expres-

sions derived heuristically above. The asymptotic orders revealed by this approach are the same as

in the 1D case.

5. Discussion

Callies and Ferrari (2018) studied the mixing-generated abyssal circulation in an idealized global
basin using PG dynamics, but their model employed Rayleigh drag rather than a Fickian friction.
The models and theory presented here make use of a down-gradient turbulence closure of the
momentum fluxes, allowing them to produce more realistic BLs and avoid unphysical interior
momentum sinks. Still, the results presented here provide some insight into the conclusions from
this previous study. With Rayleigh drag, |Callies and Ferrari (2018) found that the canonical 1D

model was a reasonably accurate emulator for the full dynamics over slopes with a constant initial
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stratification. This may have been somewhat of a coincidence, as in their case the steady state
canonical transport k., cot 6 was zero everywhere, adding a transport constraint to the canonical
1D model. With Fickian friction, setting k., = 0 does not immediately make the canonical 1D
model equivalent to the transport-constrained 1D model because it still evolves diffusively and
with nonzero transport, taking thousands of years to equilibrate (PC22). Rayleigh drag, in contrast,
damps flow in the interior, allowing for fast adjustment (in a matter of years, not shown) to
the U¢ = 0 steady state. The combination of k., = 0 and Rayleigh drag thus conspired to let Callies
and Ferrari (2018) get the right answer from the canonical model, but modifying either of these
choices would have made the argument fall apart.

Furthermore, |Callies and Ferrari’s (2018]) application of BL theory was somewhat ad hoc. For
slopes steep enough for the canonical BL theory to apply, the steady-state transport was exactly
zero, meaning that all upslope transport was exactly balanced by downslope transport above. The
BL theory broke down at the base of the slopes, allowing the BLs to be fed by dense water from
the south and the less dense downwelled water to return south, forming a basin-wide circulation
that constituted an overturning. The overturning transport could thus be estimated with an isobath
integral of the upslope transport in BLs on the slopes. As Drake et al.|(2020) pointed out, however,
this approach is not successful if the interior stratification is far from constant and canonical BL
theory does not apply. The theory presented here supplies a globally valid expression for the BL
transport that allows for variations in the interior stratification. At this point, this expression is
only a diagnostic tool, itself depending on the interior dynamics, but it unambiguously describes
how the interior can exert control on the BL, and vice versa, ultimately generating a basin-wide
circulation that involves both BL and interior pathways—and mass exchange between them. This
sharpens our view of the abyssal overturning, with no confusion about the roles of the BL and
interior.

The framework presented here can also help understand the results from |Drake et al.| (2020)
regarding how water mass transformations are affected by changes in the interior stratification.
Using the same 3D PG model with Rayleigh friction as in |Callies and Ferrari| (2018), they found
that the degree of compensation between BL upwelling and interior downwelling is strongly
dependent on vertical variations in the initial stratification. With only the canonical 1D theory

as a starting point, they were unable to explain the vertical extent and structure of water mass
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transformations. The BL theory presented here would enable us to understand these physics more
clearly, because it explicitly separates the BL and interior components of the flow. This allows us
to describe the abyssal circulation in terms of flows into and out of the BL, rather than simply bulk
diapycnal motion throughout the water column. In section [3| we demonstrated the power of this
framework in describing abyssal spin up in 2D with exponential initial stratification. Applied to
3D simulations such as those in Drake et al. (2020), this approach would undoubtedly shed light
on what shapes the vertical structure of water mass transformations in the abyss.

Here, we have only presented results in 1D and 2D. We leave the 3D case to a future paper, but
preliminary work indicates that much of the theory developed here carries over, although there are
some key differences. In 3D, the interior dynamics satisfies geostrophic balance in both the £ and n
directions. Because of this, the asymptotics in 3D are qualitatively different from those presented
in section [ of this paper: instead of evolving on a slower timescale, the leading-order 3D interior
buoyancy field is advected by the geostrophic velocities, with diffusion only playing a role at higher
order. We anticipate that this qualitative difference between 2D and 3D may be crucial in explaining
the full 3D abyssal circulation. In 3D, it is also no longer possible to write the PG inversion in terms
of a scalar streamfunction. This makes the mathematics more complicated, but it is still possible
to write down an expression for the 3D BL transport in terms of interior variables evaluated at the
bottom. As in 2D, the 3D BL mass and buoyancy transports feed back on the interior, now with
gradients in the n direction shaping the flow field. A future extension to 3D will allow us to explain
the dynamics of abyssal circulations in more complicated and realistic geometries, including cases
with variations in f [

Our BL theory results are not only theoretically useful but could also lighten the computational
demand of simulating the abyssal circulation. The interior solution can be computed without the
need to resolve the thin BL, allowing numerical models to have coarser grids and larger timesteps.
This is crucial when studying the 3D system over long abyssal timescales of thousands or tens
of thousands of years (e.g., Wunsch and Heimbach! 2008} Liu et al. 2009} Jansen et al.|2018).
This framework could even be used to analyze tracer transport without explicitly resolving the BL,

allowing us to better understand carbon and heat storage (e.g., Sarmiento and Toggweiler |1984)

3Variations in f will allow for vortex stretching in the absence of friction: BuY = f 8.u*, where 8 = 9y, f . In the f -plane solutions considered
here, a non-zero interior vertical velocity only appears at second order (see section E])
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and Lagrangian pathways (e.g., Rousselet et al.2021) in the abyss. If needed, the BL correction
can be computed after the fact on a finer grid as was done for Figs. [3|and [6]

Although the results presented here are derived in the context of PG dynamics, they might also
point the way towards a parameterization of the effects of BLs over a sloping seafloor in primitive-
equation models. Applying effective boundary conditions on the interior evolution, following the
BL framework, should most easily be accomplished in models with terrain-following coordinates
But a translation to z-coordinates also appears feasible, which would alleviate not only the need to
resolve thin boundary layers in the vertical but also the need to capture BL flow across the artificial
steps in the topography in such models. An extension of the BL theory to 3D is needed, however,
to produce expressions directly useful for such a parameterization effort.

The circulation in the examples presented in this paper depend on the particular, simple closure
of turbulent momentum and buoyancy fluxes employed in all of them. Although Fickian friction
is much more physical than Rayleigh drag, our use of it with a simple profile for v still glosses
over the true complexity of turbulence in the abyss. Without a more faithful representation of the
internal-wave field and baroclinic eddies in abyssal mixing layers, we cannot claim to be accurately
simulating the dynamics of the real ocean. The BL framework, however, is robust to the choice of
turbulence parameterization—as long as the vertical scale of the turbulent mixing in the interior is
larger than the thickness of the BL, our approach should require minimal modification. The results
presented here are in terms of a particular choice of parameterization, but the general themes
describing how the BL and interior communicate will carry over to more complex closures. This
flexibility makes BL theory an attractive tool for understanding the mixing-generated abyss over a

hierarchy of complexities.

6. Conclusions

Motivated by observations of bottom-enhanced mixing, recent work on the abyssal circulation has
focused on the role of thin bottom BLs (Ferrari et al.|2016} de Lavergne et al.[|2016; McDougall
and Ferrari|[2017; Holmes et al.|2018}; [Callies and Ferrari 2018}; |Drake et al. [2020). Until now,
the coupling between these BLs and the interior circulation remained opaque, with most of our
understanding coming from somewhat heuristic arguments using 1D theory. The framework pre-

sented in this work uses BL theory to paint a clear picture of the interior—BL interaction of the
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mixing-generated abyssal circulation. By explicitly defining BL and interior contributions to the
flow, we obtain expressions for the BL transport in 1D and 2D that are bounded for all bottom
slopes, solving the old 1D conundrum of the steady total transport k. cot 6 being set by the far-
field mixing and diverging for small slopes. In the revised theory, the BL transport is set by local
flow parameters and interior variables evaluated at the bottom, with the total transport allowed to
evolve according to the global context. The interior dynamics are themselves modified by this BL
transport, which advects dense water up-slope and thus modifies the interior bottom boundary con-
dition. This two-way coupling provides a complex yet transparent story of how BLs influence the
abyssal circulation, and this framework makes previously unwieldy problems, such as determining
the response to vertically varying initial stratification, comparatively simple. With these promising
results, we anticipate that BL theory will play a crucial role in the development of a more complete

understanding of the abyssal circulation in the real ocean.

Data availability statement. The numerical models for all the simulations presented here are

hosted at https://github.com/hgpeterson/nuPGCM.
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APPENDIX A

BL Theory when U¢ # 0

For completeness, we here show how the BL theory derivations in sections [2] and [3] are slightly
altered when the transport U ¢ is non-zero. In both 1D and 2D, the interior inversion is modified to
include the added transport term. The BL accounts for 1/(1 + o) of the total transport, leading to
a modified interior bottom boundary condition compared to before. The 2D case is special in that
the total transport is itself a function of the flow and geometry of the domain (see appendix B of

PC22), allowing us to derive an explicit equation for U¢ in that case.

a. One-dimensional theory

The 1D interior inversion for general U? is

’

i U¢ ablt 9 Al
7()(1— )——%an. (A1)

This does not affect d; y1, leaving the interior evolution equation (L 1) unchanged. This new interior

balance results in a modified bottom boundary condition compared with equation (13):

4

2 aby 2
Kk |N +(l+ug)% =U*N?tanf at (=0. (A2)
The added flux on the right-hand side represents the integrated buoyancy supplied to the column
by the net transport U¢. The BL transport (cf. now takes the form
Ué
+ HE

kcotf
1+puo 1+ puo

X1 = at =0, (A3)

supplying a fraction of the total transport. For yuo < 1, the BL absorbs the majority of the added
transport. Note that the bottom boundary condition may be written as k(N> + 0;b)) = xiN 2tan @
regardless of whether U¢ is nonzero. The BL correction yp remains the same as in (T8)), with x;
at £ = 0 now coming from (A3).

The asymptotic order of U¢ must match that of yj, so it must be restricted to be O(&?). It is

then simple to incorporate U¢ # 0 into the theory presented in section @
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b. Two-dimensional theory

In 2D, the general interior inversion is
SO - U = - - e (A4)

and again the BL absorbs a fraction of the added transport so that becomes

B U¢ N K o
Cl+po OHI1+pup

X1 at o =-1, (A5)

where o = -0, HO0:b1/ f 2 at o = —1. For symmetric topography, U? = 0, but this is not the case

in general. We can infer U¢ for asymmetric geometries with knowledge of the interior buoyancy

distribution. Evaluating (39)) at oo = 0 and taking the mean in &, denoted by (-), we have
(ul(0)=0=- i + H O%(a) do (A6)

! AU ARV RN ’
where, crucially, the BL transport from equation (A3]) now depends on U¢ . We have assumed that the
domain is tall enough such that gradients in buoyancy at o = 0 are small and therefore (u}7 (0)) =0.

Solving for U? yields

0 ap 1 9¢b
<H/—1 2 (o) d0'> + <51fﬂé>
(Fmm)
qv l+pe

where all variables are evaluated at oo = —1 unless otherwise noted. Simulations of an asymmetric

Ut = (A7)

ridge, similar to that in appendix B of PC22, confirm the accuracy of this formula (not shown).
Again, we restrict ourselves to cases where the non-dimensional U¢ is 0(82), the same order
as yr1. This is true when the second term on the right in equation (A6) of lower order than the first.

This is always the case after a fast initial adjustment.
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APPENDIX B

Axisymmetric Coordinates

For simulations of an idealized seamount, we transform to axisymmetric coordinates, assuming
s rotational symmetry. The depth H is then a function of the radial distance r and invariant under

rotation about the origin by some angle ¢, leading to effectively 2D flow. Defining p = r and o =

z/H, we have
op oH 1 0 ouf
- ¢ = £ —b+——|v— Bl
plu 8p+gf')r +H2(90'(v(90')’ B
2 ¢
p_p” 0 [ 0u” B2
pfu H? 0o Y oo |’ (B2)
0
2 _ph, (B3)
oo
0 0 -
— (pHu”) + — (pHu”) =0, (B4)
ap oo
ob ob ob 1 0 ob
Y I e P I B5
ar T ap T bo Hzaa(Kaa) (B5)
The streamfunction inversion takes the same form as in Cartesian coordinates,
1 0% ( 92 2 Ab dH db
S P A e LKLY (B6)
H*do? \ 60?2 dp H or oo

with a slight difference in the streamfunction definition due to the new form of the divergence

s0  OPEr ator:

10 10
uf = E% and u’ = —p—H% (B7)
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