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ABSTRACT: To close the overturning circulation, dense bottom water must upwell via turbulent

mixing. Recent studies have identified thin bottom boundary layers (BLs) as locations of intense

upwelling, yet it remains unclear how they interact with and shape the large-scale circulation of

the abyssal ocean. The current understanding of this BL–interior coupling is shaped by 1D theory,

suggesting that variations in locally produced BL transport generate exchange with the interior and

thus a global circulation. Until now, however, this picture has been based on a 1D theory that fails

to capture the local evolution in even highly idealized 2D geometries. The present work applies BL

theory to revised 1D dynamics, which more naturally generalizes to two and three dimensions. The

BL is assumed to be in quasi-equilibrium between the upwelling of densewater and the convergence

of downward buoyancy fluxes. The BL transport, for which explicit formulae are presented, exerts

an influence on the interior bymodifying the bottom boundary condition. In 1D, this BL transport is

independent of the interior evolution, but in 2D the BL and interior are fully coupled. Once interior

variables and the bottom slope are allowed to vary in the horizontal, the resulting convergences

and divergences in the BL transport exchange mass with the interior. This framework allows for

the analysis of previously inaccessible problems such as the BL–interior coupling in the presence

of an exponential interior stratification, laying the foundation for developing a full theory for the

abyssal circulation.
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1. Introduction

Thin boundary layers (BLs) at the ocean’s bottom have recently come into focus as the primary

locations in which small-scale turbulence lightens bottom waters, thus playing a crucial role in25

closing the overturning circulation of the abyss (Ferrari et al. 2016; de Lavergne et al. 2016). The

connection between these BLs and the large-scale abyssal circulation, however, remains to be fully

explained. The cornerstone of our present understanding of themixing-generated abyssal circulation

is a 1D model of a stratified, rotating fluid overlying a sloping, insulated seafloor (e.g., Phillips

1970; Wunsch 1970; Thorpe 1987; Garrett et al. 1993). This 1D theory helped bring bottom BLs30

into center stage, predicting that the local response to bottom-intensified mixing is characterized

by diabatic upslope flow in the thin BL compensated in part by diabatic downslope flow spread

across the interior (Garrett 1990; Ferrari et al. 2016; de Lavergne et al. 2016; McDougall and

Ferrari 2017; Callies 2018). Our description of large-scale abyssal dynamics is shaped by this local

theory: the natural conclusion is that variations in these locally produced flows generate exchange35

with the interior and producing a global circulation (e.g., Phillips et al. 1986; McDougall 1989;

Garrett 1991; Dell and Pratt 2015; Holmes et al. 2018). This picture fails to consider the potential

feedback of the circulation produced in the interior back onto the BL, however, suggesting that this

framework is incomplete.

In addition to this lack of two-way coupling, progress has also been hampered by the canonical40

1D theory failing to reproduce the local evolution in simple 2D geometries. The canonical 1Dmodel

predicts slow diffusion of the interior along-slope flow (MacCready and Rhines 1991), whereas

simulations of bottom-intensified mixing over an idealized 2D mid-ocean ridge display rapid spin

up of the interior (Ruan and Callies 2020). In Peterson and Callies (2022, hereafter PC22), we

remedied this shortcoming by including the physics of a secondary circulation and barotropic45

pressure gradient. The key is to constrain the vertically integrated cross-slope transport to force

upwelling flow in the BL to return in the interior. This downwelling flow is then turned in the

along-slope direction by the Coriolis acceleration and balanced by a barotropic pressure gradient,

leading to rapid adjustment in the interior as seen in 2D. With this more faithful 1D model, we

have a reliable foundation to describe the role of abyssal BLs in the large-scale circulation.50

Callies and Ferrari (2018) and Drake et al. (2020) connected BL dynamics to the horizontal

circulation in a 3D planetary-geostrophic (PG) model with idealized bathymetry and Rayleigh
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friction. Callies and Ferrari (2018) found that, for vertically constant interior stratification and on

moderate slopes, local 1D theory accurately emulates the 3D model’s dynamics. On the sloping

sidewalls of the idealized bathymetry, upslope transport in thin bottom BLs is compensated by55

downwelling aloft. At the base of the slopes, however, 1D theory breaks down in favor of a

basin-scale circulation that feeds the BLs on slopes. An integral of the local upslope 1D BL

transport along the perimeter of the basin provides an accurate estimate of the overturning. These

ideas fail, however, once the interior stratification is far from constant, because 1D theory can

only consider perturbations to a constant background stratification (Drake et al. 2020). This is a60

severe limitation, given the real ocean’s near-exponential stratification (e.g., Munk 1966). For a

more realistic stratification, downwelling in the interior is weakened and BL upwelling dominates,

though the vertical extent and structure of the net transport remains to be explained. In this work,

we provide a framework for concretely understanding this interplay between the BL and interior.

Below, we derive self-contained equations for interior 1D and 2D PG dynamics on an 𝑓 -plane65

with effective boundary conditions that capture the effects of BLs. We accomplish this using BL

theory, splitting variables into their interior and BL contributions (e.g., Bender and Orszag 1999;

Chang 2007, Fig. 1). This explicitly separates the interior and BL dynamics and allows for deep

physical insight into their coupling. Famously, Stommel’s (1948) gyre theory can be solved with

BL methods (Veronis 1966), although the coupling there is one-way: the interior solution can be70

calculated in isolation, and the western BL is a passive element of the theory. We find that this

is different for bottom BLs on slopes. Their structure is shaped by the interior solution, but the

buoyancy and mass fluxes carried in the BL feed back on the interior solution in the form of

boundary conditions.

A central result of this paper is an explicit expression for the cross-slope BL transport (per unit80

along-slope distance) in terms of interior variables and flow parameters. In 1D, the BL transport

takes the form 𝜅 cot 𝜃 𝜇𝜚/(1 + 𝜇𝜚), where 𝜇 = 𝜈/𝜅 is the turbulent Prandtl number with 𝜈 being
the turbulent viscosity and 𝜅 the turbulent diffusivity, and 𝜚 = 𝑁2 tan2 𝜃/ 𝑓 2 is the slope Burger

number with 𝑁 being the background interior buoyancy frequency, 𝑓 the inertial frequency, and 𝜃

the bottom slope angle. All variables are evaluated at the bottom (or, more generally, just above the85

BL). In the canonical 1D framework, a steady-state balance between cross-slope upwelling of dense

water and turbulent mixing requires that the total transport tends towards 𝜅∞ cot 𝜃, where 𝜅∞ is the
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Fig. 1. Illustration of the BL correction to interior solution. Shown is a typical streamfunction 𝜒, defined such

that 𝜕𝑧 𝜒 = 𝑢𝑥 where 𝑢𝑥 is the cross-slope flow, after three years of mixing-generated abyssal spin up at a slope

Burger number 𝜚 = 10−3 (see section 2). The solution is depicted over (a) the entire 2 km domain as well as (b) a

zoom-in to the bottom 100 m, shown in (a) in gray shading. The interior solution 𝜒I varies slowly compared with

the scale of the BL, and the BL correction 𝜒B ensures that boundary conditions are satisfied.

75

far-field turbulent diffusivity (Thorpe 1987; Garrett et al. 1993). Our revised result instead applies

to the bottom BL transport and is valid throughout transient evolution, provided that the BL has

adjusted to a quasi-steady state. Unlike the canonical result, this expression smoothly approaches90

zero as 𝜃 → 0, more harmoniously connecting the model over a slope with conventional flat-

bottom Ekman theory (e.g., Pedlosky 1979). The expression has the same form in 2D, but there the

slope Burger number is a function of interior cross-isobath buoyancy gradients as well as the local

topographic slope. Thus, in 2D, variations in interior buoyancy gradients and the topographic slope

cause convergence in the BL transport, generating exchange with the interior. A similar process95

occurs in 3D with the added physics of along-isobath variations and a modified interior balance,

but we leave the details of 3D dynamics to future work.

In section 2, we begin by reviewing the transport-constrained 1Dmodel fromPC22, followed by

a derivation of the 1D BL theory. We derive the 2D BL theory in section 3, applying the framework

to simulations of mixing-generated spin up under a vertically varying background stratification. In100

section 4, we re-derive the 1D and 2D BL equations in a more rigorous fashion, quantifying the

accuracy of our claims in the previous sections and uncovering some subtleties in the dynamics.

Finally, we provide discussion and conclusions in sections 5 and 6, respectively.
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2. One-dimensional boundary layer theory

In this section, we apply BL theory to the revised 1D model from PC22 and present results from105

numerical integrations of both the full and BL equations. Here and throughout the paper, we employ

PG scaling, thus focusing our attention on the slow and large-scale response to mixing. The PG

flow should be interpreted as the residual flow after a thickness-weighted average over transients

due to turbulence, waves, and baroclinic eddies, with the effect of these transients included as

parameterized Eliassen–Palm and diapycnal fluxes (Young 2012).110

a. Transport-constrained one-dimensional dynamics

We first consider 1D PG dynamics along a uniform slope at an angle 𝜃 above the horizontal.

The 1D model is typically derived by writing the Boussinesq equations in a rotated coordinate

system aligned with the slope (e.g., Garrett et al. 1993). We slightly deviate from this approach by

keeping the vertical coordinate aligned with gravity, which is a more natural choice if the horizontal115

components of the turbulent momentum and buoyancy fluxes are neglected, but it yields equivalent

dynamics (PC22).1 Specifically, we write the 1D model in (𝜉, 𝜂, 𝜁) coordinates defined by

𝜉 = 𝑥, 𝜂 = 𝑦, 𝜁 = 𝑧 − 𝑥 tan 𝜃, (1)

where (𝑥, 𝑦, 𝑧) defines the usual Cartesian coordinate system with 𝑧 aligned with gravity. These
coordinates are analogous to terrain-following coordinates (used below) in 1D with 𝜁 = 0 at

the bottom. Neglecting all variations in 𝜉 and 𝜂, except for the barotropic pressure gradient 𝜕𝑥𝑃120

(equivalently, 𝜕𝜉𝑃, since 𝑃 is independent of 𝑧), and constraining the vertically integrated cross-

1In the limit 𝜃 ≪ 1, the gravity-aligned coordinate system employed here and the previously used fully rotated coordinate system yield the same
equations.
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slope transport to𝑈𝜉 (typically to zero), the PG equations become

− 𝑓 𝑢𝜂 = −𝜕𝑃

𝜕𝑥
+ 𝑏′ tan 𝜃 + 𝜕

𝜕𝜁

(︃
𝜈
𝜕𝑢𝜉

𝜕𝜁

)︃
, (2)

𝑓 𝑢𝜉 =
𝜕

𝜕𝜁

(︃
𝜈
𝜕𝑢𝜂

𝜕𝜁

)︃
, (3)

𝜕𝑏′

𝜕𝑡
+ 𝑢𝜉𝑁2 tan 𝜃 =

𝜕

𝜕𝜁

[︃
𝜅

(︃
𝑁2 + 𝜕𝑏′

𝜕𝜁

)︃]︃
, (4)∫ ∞

0
𝑢𝜉 𝑑𝜁 = 𝑈𝜉 . (5)

Here, 𝑢𝜉 is the cross-slope velocity2 and 𝑢𝜂 is the along-slope velocity. We have split the total

buoyancy 𝑏 into a constant background stratification and a perturbation so that 𝑏 = 𝑁2𝑧 + 𝑏′.

The fluid satisfies no-slip and insulating boundary conditions at the bottom: 𝑢𝜉 = 0, 𝑢𝜂 = 0,125

and 𝜕𝜁𝑏 = 𝑁2 + 𝜕𝜁𝑏
′ = 0 at 𝜁 = 0. In the far field, we impose decay conditions on the shear and

anomalous buoyancy flux: 𝜕𝜁𝑢𝜉 → 0, 𝜕𝜁𝑢𝜂 → 0, and 𝜕𝜁𝑏′ → 0 as 𝜁 → ∞. The extra degree of
freedom supplied by 𝜕𝑥𝑃 allows the transport constraint (5) to be satisfied at all times. Physically,

this constraint forces cross-slope upwelling in the BL to return in the interior, where it is then

turned into the along-slope direction by the Coriolis force. In the PG framework, this process is130

instantaneous, and the far-field along-slope flow satisfies the balance: − 𝑓 𝑢𝜂 = −𝜕𝑥𝑃. This leads to
rapid spin up of the along-slope flow throughout the water column, as seen in simulations of 2D

spin up (Ruan and Callies 2020, PC22).

We employ a simple down-gradient closure for the turbulent momentum and buoyancy fluxes

generated by, e.g., breaking internal waves but allow for variations in the mixing coefficients 𝜈135

and 𝜅. We assume these variations to occur on a scale larger than the BL thickness. In our examples

below, 𝜈 and 𝜅 are bottom-enhanced in abyssal mixing layers a few hundred meters thick, inspired

by typical observations over rough mid-ocean ridges. Our main results, however, generalize to the

case in which 𝜈 and 𝜅 vary rapidly within the BL, for example going to zero in a log-layer.

As in PC22, we cast equations (2) to (5) into an inversion equation for the flow, written in terms140

of a streamfunction 𝜒(𝜁) defined such that 𝑢𝜉 = 𝜕𝜁 𝜒, and an evolution equation for the buoyancy

2Due to our non-orthogonal coordinate system, 𝑢𝜉 is technically the 𝑥-projection of the cross-slope velocity as it would be defined in a fully
rotated coordinate system (PC22, appendix A). For simplicity, we refer to it as the “cross-slope velocity” throughout.
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perturbation:

𝜕2

𝜕𝜁2

(︃
𝜈
𝜕2𝜒

𝜕𝜁2

)︃
+ 𝑓 2

𝜈
(𝜒 −𝑈𝜉) = −𝜕𝑏′

𝜕𝜁
tan 𝜃, (6)

𝜕𝑏′

𝜕𝑡
+ 𝜕𝜒

𝜕𝜁
𝑁2 tan 𝜃 =

𝜕

𝜕𝜁

[︃
𝜅

(︃
𝑁2 + 𝜕𝑏′

𝜕𝜁

)︃]︃
. (7)

The boundary conditions are that 𝜒 = 0 and 𝜕𝜁 𝜒 = 0 at 𝜁 = 0 and 𝜒 → 𝑈𝜉 as 𝜁 → ∞. If desired,
one may infer the along-slope flow from 𝜒 by integrating

𝜕𝑢𝜂

𝜕𝜁
=

𝑓

𝜈
(𝜒 −𝑈𝜉) (8)

from the bottom up, using 𝑢𝜂 = 0 at 𝜁 = 0. Equations (6) and (7) fully describe the 1D PG system145

and can readily be solved numerically. But insight into the BL–interior coupling is more easily

gained using BL theory.

b. Boundary layer theory

Under steady conditions, equations (6) and (7) can be combined to form a single fourth-order

ordinary differential equation for 𝜒. The fourth- and zeroth-order terms in that equation balance

if 𝜒 varies on a scale 𝑞−1 defined by

(𝛿𝑞)4 = 1 + 𝜇𝜚, (9)
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where 𝛿 =
√︁

2𝜈/ 𝑓 is the familiar flat-bottom Ekman layer thickness, and the mixing coefficients
are evaluated at 𝜁 = 0. This defines the BL scale of a rotating fluid adjacent to a sloping bottom155

(e.g., Garrett et al. 1993). For typical abyssal parameters, 𝑞−1 ∼ 10 m (Callies 2018). This thinness

of the BL compared to the scale of variations in the interior ocean is what allows us to apply BL

theory.

We begin by splitting solutions into interior contributions 𝜒I and 𝑏′I, which vary slowly in 𝜁 , and

BL corrections 𝜒B and 𝑏′B, which ensure boundary conditions are satisfied and have appreciable160

magnitude in the thin BL only. A similar approach was taken in Callies (2018) with the canonical

1D model, but the analysis presented here is time-dependent and extensible to higher dimensions

(section 3). If the mixing coefficients 𝜈 and 𝜅 vary on a scale much larger than 𝑞−1, the fourth-order

term in (6) can be neglected in the interior:

𝑓 2

𝜈
𝜒I = −

𝜕𝑏′I
𝜕𝜁

tan 𝜃, (10)

assuming 𝑈𝜉 = 0 (see appendix A for the 𝑈𝜉 ≠ 0 case). Substituted back into the buoyancy165

equation (7), this reduces the interior dynamics to a modified diffusion equation:

𝜕𝑏′I
𝜕𝑡

=
𝜕

𝜕𝜁

(︃
𝜅

[︃
𝑁2 + (1 + 𝜇𝜚)

𝜕𝑏′I
𝜕𝜁

]︃ )︃
. (11)

This is a result familiar from Gill (1981), Garrett and Loder (1981), and Garrett (1982): advection

of the background stratification by the secondary circulation becomes a horizontal diffusion term,

with diffusivity 𝜈𝑁2/ 𝑓 2. The form here is the result of the sloping boundary: the vertical coordinate

depends on the slope-parallel distance multiplied by tan 𝜃, which explains the factor tan2 𝜃 in the170

additional diffusion term.

This interior evolution must be complemented by a representation of the bottom BL that

supplies an effective boundary condition for the interior equation. The key assumption here is that

the BL scale 𝑞−1 is thin compared to interior variations. This thinness of the BL also implies that

it is quasi-steady on the time scales of the interior evolution. The BL correction thus satisfies the175

steady buoyancy equation
𝜕𝜒B
𝜕𝜁

𝑁2 tan 𝜃 =
𝜕

𝜕𝜁

(︃
𝜅
𝜕𝑏′B
𝜕𝜁

)︃
. (12)
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Since all BL variables decay into the interior, i.e., as 𝜁 → ∞, this balance can be integrated to

𝜒B𝑁
2 tan 𝜃 = 𝜅

𝜕𝑏′B
𝜕𝜁

. (13)

This relation is all that is needed to derive a boundary condition on the interior solution. At 𝜁 = 0,

𝜒I + 𝜒B = 0, such that the full 𝜒 = 0 boundary condition is satisfied. So, using (10),

𝜕𝑏′B
𝜕𝜁

= −𝑁2 tan 𝜃
𝜅

𝜒I = 𝜇𝜚
𝜕𝑏′I
𝜕𝜁

at 𝜁 = 0. (14)

The insulating boundary condition then becomes180

0 = 𝑁2 +
𝜕𝑏′I
𝜕𝜁

+
𝜕𝑏′B
𝜕𝜁

= 𝑁2 + (1 + 𝜇𝜚)
𝜕𝑏′I
𝜕𝜁

at 𝜁 = 0. (15)

The BL correction thus contributes an additional term 𝜇𝜚𝜕𝜁𝑏
′
I to the boundary condition for the

interior buoyancy evolution (11). The added term represents physics akin to an Ekman buoyancy

flux (e.g., Marshall and Nurser 1992; Thomas and Lee 2005): the BL transport 𝜒I acts on the cross-

slope buoyancy gradient 𝑁2 tan 𝜃 and produces a buoyancy sink for the interior. This boundary

condition on the interior problem implies a stratification at the top of the BL that is reduced from185

the background by a factor 𝜇𝜚/(1 + 𝜇𝜚) and a BL transport, from combining (15) and (10),

𝜒I = 𝜅 cot 𝜃
𝜇𝜚

1 + 𝜇𝜚
at 𝜁 = 0, (16)

as claimed in the introduction (Fig. 2a). We note that the transport-constrained system, unlike the

canonical one, has no steady state in a semi-infinite domain, yet previous work on the BL–interior

interaction has often begun with the canonical result that the steady transport is 𝑈𝜉 = 𝜅∞ cot 𝜃

(e.g., Woods 1991; Callies and Ferrari 2018; Drake et al. 2020). The revised expression in (16)190

instead applies to the transport confined to the BL and more sensibly leaves the net transport (and

steady-state dynamics) to be controlled by the large-scale context.

If desired, the BL correction can easily be determined from

𝜕4𝜒B

𝜕𝜁4 + 4𝑞4𝜒B = 0, (17)
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with 𝜒B = −𝜒I and 𝜕𝜁 𝜒B = 0 at 𝜁 = 0 (neglecting the much smaller interior contribution to 𝜕𝜁 𝜒 at

the bottom) and 𝜒B → 0 as 𝜁 → ∞. This has a similar form as the steady canonical 1D problem195

with constant mixing coefficients (e.g., Garrett et al. 1993), but the boundary conditions and right-

hand side are different because the transport constraint is imposed and the interior solution has

been subtracted out. The general solution takes the form of the familiar Ekman spiral:

𝜒B = −𝜒I𝑒
−𝑞𝜁 (cos 𝑞𝜁 + sin 𝑞𝜁), (18)

where 𝜒I is evaluated at 𝜁 = 0 as in (16).

This analytical expression for the BL correction also allows us to directly diagnose how the200

far-field along-slope flow is influenced by the BL. From (8) and (10), the interior along-slope shear

follows thermal wind balance,
𝜕𝑢

𝜂

I
𝜕𝜁

= − 1
𝑓

𝜕𝑏′I
𝜕𝜁

tan 𝜃, (19)

which implies, upon integration in the vertical,

𝑢
𝜂

I (𝜁) = 𝑢
𝜂

I (0) −
1
𝑓

[︁
𝑏′I(𝜁) − 𝑏′I(0)

]︁
tan 𝜃. (20)

The integration constant 𝑢𝜂I (0), the flow at the upper edge of the BL, can be determined from the
BL solution (18) and (8): 𝑢𝜂I (0) = −𝑢𝜂B(0) = − 𝑓 𝜒I(0)/𝑞𝜈(0). This BL contribution to the interior205

along-slope flow has the same form as the steady-state canonical result with constant mixing

coefficients (Thorpe 1987; Garrett et al. 1993), but here it is rapidly spun up and accompanied by

an additional interior thermal-wind component. We will see in section 4 that this BL contribution

is typically of higher asymptotic order than the thermal-wind contribution.

It should be noted that the key results (15) and (16) also apply if there are variations in the210

mixing coefficients within the thin BL, as may be expected as the turbulence becomes suppressed

very close to the bottom. The physics that lead to (15) and (16) are that the diffusive buoyancy flux

into the BL is balanced by cross-slope advection within the BL and that the interior obeys (10).

While the BL corrections are more complicated if 𝜈 and 𝜅 are not approximately constant across

the BL, for example including a log-layer if the mixing coefficients go to zero near the bottom, the215

effective boundary condition for the interior is the same.
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In summary, BL theory has enabled us to elucidate the connection between the BL and interior

in 1D. The BL transport quickly adjusts to (16), regardless of the interior dynamics. This transport

allows the BL to communicate with the interior by moving dense water up the slope, providing

a buoyancy sink and modifying the interior bottom boundary condition (15) (Fig 2a). In 1D, the220

BL is thus independent of the evolution of the interior, yet the cross-slope advection by the BL

transport affects the interior dynamics. As we will see in the next section, the BL–interior coupling

in 2D are even richer, with the interior being able to feed back onto the BL. But first, we present

some illustrative 1D examples.

c. Examples225

The following experiments depict 1D PG spin up with and without BL theory. The simulations

start in a state of rest: isopycnals are flat (𝑏′ = 0), and the flow is zero (𝜒 = 0). The turbulent235

mixing then generates a buoyancy perturbation, bending isopycnals into the slope and spinning up

a circulation. The transport constraint ensures that BL transport is exactly returned in the interior,

and without a source of dense bottom water, the initial stratification is mixed away with time.

To numerically solve the 1D PG equations, we use second-order finite differences as in PC22.

The model can either solve for the full flow and density profiles using equations (6) and (7) or240

evolve the interior variables of the BL theory with equation (11). Model parameters are adapted

from Callies (2018) and roughly match those of the Brazil Basin (Table 1). Mixing is represented

by a bottom-intensified profile of turbulent diffusivity,

𝜅 = 𝜅0 + 𝜅1𝑒
−𝜁/ℎ, (21)

Inertial frequency 𝑓 −5.5 × 10−5 s−1

Far-field buoyancy frequency 𝑁 10−3 s−1

Far-field diffusivity 𝜅0 6 × 10−5 m2 s−1

Bottom-enhancement of diffusivity 𝜅1 2 × 10−3 m2 s−1

Decay scale of diffusivity ℎ 200 m
Prandtl number 𝜇 1

Table 1. Parameters used in simulations of spin up, adapted from Callies and Ferrari (2018) and roughly

corresponding to the mid-Atlantic ridge flank in the Brazil Basin.
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Fig. 3. Comparison of the 1D BL solution with full 1D PG spin up over two different slope angles. Shown are

the (a), (d) streamfunction 𝜒, (b), (e) along-slope flow 𝑢𝑦 = 𝑢𝜂 , and (c), (f) stratification 𝑁2 + 𝜕𝑧𝑏
′ as functions

of 𝑧 = 𝜁 for separate simulations in which the slope Burger number is (a–c) 𝜚 = 10−3, corresponding to a bottom

slope of 𝜃 ≈ 1.7 × 10−3 rad, and (d–f) 𝜚 = 0.5 so that 𝜃 ≈ 3.9 × 10−2 rad. The insets of (a) and (d) show the

streamfunction 𝜒 in the bottom 100 m, showcasing the accuracy of the BL correction. The 1D BL theory matches

the 1D dynamics perfectly.

230

with parameters obtained from a fit to Brazil Basin observations (Callies 2018, Table 1). When

solving the full 1D PG equations, grid spacing follows Chebyshev nodes with resolution on the245

order of 0.1 m at 𝜁 = 0 to comfortably resolve the boundary layers. The BL simulations need not

resolve the thin bottom BL, and we therefore use a uniform grid spacing of 8 m for these. The

domain height of 2 km is large enough that upper-boundary effects do not affect the solution. The

model is integrated forward in time using an implicit timestepping scheme with a timestep of one

day.250
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The 1D BL model yields an excellent approximation of the full 1D PG solution (Fig. 3). The

interior dynamics match the interior of the full solution, and although the BL model only explicitly

computes the interior evolution, the BL correction computed offline from (18) is very accurate.

The match is trivial when 𝜇 = 1 and 𝜚 = 10−3, because the shallow slope leads to a relatively

weak BL transport, and thus the advective modification to the buoyancy flux in (11) and (15) is255

negligible. The interior system is then nearly identical to the full one, with diffusion dominating

the dynamics. The case where 𝜚 = 0.5, in contrast, is a more trying test of the 1D BL theory.

The BL transport in this case is an order of magnitude larger than before, leading to enhanced

stratification in the BL. This is properly captured in the BL model, with the interior stratification

reaching about 0.4 × 10−6 s−2 at the bottom and the BL correction bringing it smoothly to zero.260

The assumption of 1D dynamics breaks down as soon as lateral variations in the slope are

allowed, but we can anticipate the upcoming 2D results using intuition derived from the above

1D theory. Equation (16) gives an explicit expression for the BL transport in 1D depending on

the local slope angle 𝜃 and buoyancy gradient across the slope 𝑁2 tan 𝜃. In 2D, these inputs are

spatially dependent, with horizontal buoyancy gradients also varying in time as part of the interior265

dynamics. Local 1D theory would thus predict convergences and divergences in BL transport,

generating BL–interior mass exchange (Fig. 2b). This leads to a more complex picture in 2D, with

interior dynamics feeding back onto the BL, as we will see in the following section.

3. Two-dimensional boundary layer theory

In this section, we extend the 1DBL theory to the 2D PG equations in terrain-following coordinates.270

We first derive the 2D BL equations and then apply them to idealized numerical simulations.

a. Boundary layer theory

In 2D, the interaction between the BL and interior is more interesting because, in addition to the

BL advection imposing a buoyancy flux on the interior, variations in the BL transport produce

mass exchange with the interior (e.g., Phillips et al. 1986; McDougall 1989; Kunze et al. 2012;

Dell and Pratt 2015; Ledwell 2018; Holmes et al. 2018). The BL theory generalizes from 1D to

2D and brings these physics into clearer focus.280
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that u = 𝑢 𝑗e 𝑗 (summation implied).275

Applying the BL theory to the 2D PG equations is most easily done in terrain-following

coordinates:

𝜉 = 𝑥, 𝜂 = 𝑦, 𝜎 =
𝑧

𝐻
, (22)

where 𝐻 (𝑥) is the fluid depth (Fig. 4). Under this transformation, derivatives in (𝑥, 𝑧) space become

𝜕

𝜕𝑥
=

𝜕

𝜕𝜉
− 𝜎𝜕𝑥𝐻

𝐻

𝜕

𝜕𝜎
and

𝜕

𝜕𝑧
=

1
𝐻

𝜕

𝜕𝜎
, (23)

and the contravariant velocity components are285

𝑢𝜉 = 𝑢𝑥 , 𝑢𝜂 = 𝑢𝑦, and 𝑢𝜎 =
1
𝐻

(︃
𝑢𝑧 − 𝜎

𝜕𝐻

𝜕𝑥
𝑢𝑥

)︃
, (24)
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assuming no variations in 𝜂 (see appendix B of Callies and Ferrari (2018) for more details). The

2D PG equations in terrain-following coordinates are then

− 𝑓 𝑢𝜂 = −𝜕𝑝

𝜕𝜉
+ 𝜎

𝜕𝐻

𝜕𝑥
𝑏 + 1

𝐻2
𝜕

𝜕𝜎

(︃
𝜈
𝜕𝑢𝜉

𝜕𝜎

)︃
, (25)

𝑓 𝑢𝜉 =
1
𝐻2

𝜕

𝜕𝜎

(︃
𝜈
𝜕𝑢𝜂

𝜕𝜎

)︃
, (26)

1
𝐻

𝜕𝑝

𝜕𝜎
= 𝑏, (27)

𝜕

𝜕𝜉

(︂
𝐻𝑢𝜉

)︂
+ 𝜕

𝜕𝜎

(︂
𝐻𝑢𝜎

)︂
= 0, (28)

𝜕𝑏

𝜕𝑡
+ 𝑢𝜉

𝜕𝑏

𝜕𝜉
+ 𝑢𝜎

𝜕𝑏

𝜕𝜎
=

1
𝐻2

𝜕

𝜕𝜎

(︃
𝜅
𝜕𝑏

𝜕𝜎

)︃
, (29)

where 𝑝 is the pressure divided by a reference density. The boundary conditions are again an

insulating and no-slip bottom, 𝜕𝜎𝑏 = 0 and 𝑢𝜉 = 𝑢𝜂 = 0 at 𝜎 = −1; a constant-flux and free-slip

top 𝐻−1𝜕𝜎𝑏 = 𝑁2 and 𝜕𝜎𝑢𝜉 = 𝜕𝜎𝑢
𝜂 = 0 at 𝜎 = 0; and no normal flow across both boundaries,290

𝑢𝜎 = 0 at𝜎 = −1 and𝜎 = 0.We neglect horizontal turbulent fluxes, consistent with the assumption

of a small aspect ratio if the turbulence is close to isotropic. This is in contrast with some other

PG models, which employed horizontal diffusion terms to satisfy the no-normal-flow condition at

vertical side-walls (e.g., Verdieere 1986; Samelson and Vallis 1997).

As before, we express the momentum equations (25) to (28) as one streamfunction inversion.295

We define 𝜒(𝜉, 𝜎) such that the continuity equation (28) is automatically satisfied:

𝐻𝑢𝜉 =
𝜕𝜒

𝜕𝜎
and 𝐻𝑢𝜎 = −𝜕𝜒

𝜕𝜉
. (30)

Integrating (26) from some level to 𝜎 = 0, we obtain

1
𝐻

𝜕𝑢𝜂

𝜕𝜎
=

𝑓

𝜈
(𝜒 −𝑈𝜉), (31)

as in equation (8). Here, 𝑈𝜉 =
∫ 0
−1 𝐻𝑢𝜉 𝑑𝜎 is the vertically integrated transport, a constant in 𝜉 by

continuity. Combining 𝐻−1𝜕𝜎 of (25) and 𝜕𝜉 of (27) and substituting 𝐻−1𝜕𝜎𝑢
𝜂 from (31) yields
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the streamfunction inversion equation similar to 1D:300

1
𝐻4

𝜕2

𝜕𝜎2

(︃
𝜈
𝜕2𝜒

𝜕𝜎2

)︃
+ 𝑓 2

𝜈
(𝜒 −𝑈𝜉) = 𝜕𝑏

𝜕𝜉
− 𝜎

𝐻

𝜕𝐻

𝜕𝑥

𝜕𝑏

𝜕𝜎
. (32)

The boundary conditions are similar to the 1D case but for a finite domain: 𝜒 = 0 and 𝜕𝜎𝜒 = 0

at 𝜎 = −1 and 𝜒 = 𝑈𝜉 and 𝜕2
𝜎𝜒 = 0 at 𝜎 = 0.

Splitting 𝑏 and 𝜒 into BL and interior contributions and neglecting the fourth-order term in

(32) in the interior as before, the interior inversion reads

𝑓 2

𝜈
𝜒I =

𝜕𝑏I
𝜕𝜉

− 𝜎

𝐻

𝜕𝐻

𝜕𝑥

𝜕𝑏I
𝜕𝜎

=
𝜕𝑏I
𝜕𝑥

, (33)

setting𝑈𝜉 = 0 as implied by a configuration that is symmetric in 𝑥 (see appendix A for the𝑈𝜉 ≠ 0305

case). The circulation in the 𝑥–𝑧 plane is simply proportional to the buoyancy gradient in 𝑥. The

interior buoyancy evolution is given by

𝜕𝑏I
𝜕𝑡

+ 1
𝐻

(︃
𝜕𝜒I
𝜕𝜎

𝜕𝑏I
𝜕𝜉

− 𝜕𝜒I
𝜕𝜉

𝜕𝑏I
𝜕𝜎

)︃
=

1
𝐻2

𝜕

𝜕𝜎

(︃
𝜅
𝜕𝑏I
𝜕𝜎

)︃
. (34)

The BL physics appear in the boundary condition on the interior buoyancy field. The BL buoyancy

budget, assuming a quasi-steady state and a slowly varying interior buoyancy field, is

1
𝐻

𝜕𝜒B
𝜕𝜎

𝜕𝑏I
𝜕𝜉

=
1
𝐻2

𝜕

𝜕𝜎

(︃
𝜅
𝜕𝑏B
𝜕𝜎

)︃
, (35)

with 𝜕𝜉𝑏I evaluated at 𝜎 = −1. The neglected advection terms are smaller by a factor (𝑞𝐻)−1 ≪ 1310

than the terms retained in (35). This is because the boundary conditions enforce that 𝜒B ∼ 𝜒I and

𝜕𝜎𝑏B ∼ 𝜕𝜎𝑏I, such that 𝜕𝜎𝜒B ∼ (𝑞𝐻)𝜕𝜎𝜒I and 𝑏B ∼ (𝑞𝐻)−1𝑏I (see section 4 for more detail).

Vertically integrating (35) across the BL and applying the boundary conditions 𝜒I + 𝜒B = 0 and

𝜕𝜎𝑏I + 𝜕𝜎𝑏B = 0 at 𝜎 = −1, as well as decay conditions for 𝜒B and 𝜕𝜎𝑏B, yields

𝜒I
𝜕𝑏I
𝜕𝜉

=
𝜅

𝐻

𝜕𝑏I
𝜕𝜎

at 𝜎 = −1. (36)

17



Substituting this bottom boundary condition for the interior into the interior inversion (33), we315

again arrive at an explicit formula for this BL transport:

𝜒I =
𝜅

𝜕𝐻
𝜕𝑥

𝜇

𝑓 2
𝜕𝐻
𝜕𝑥

𝜕𝑏I
𝜕𝜉

1 − 𝜇

𝑓 2
𝜕𝐻
𝜕𝑥

𝜕𝑏I
𝜕𝜉

=

𝜈

𝑓 2
𝜕𝑏I
𝜕𝜉

1 − 𝜇

𝑓 2
𝜕𝐻
𝜕𝑥

𝜕𝑏I
𝜕𝜉

at 𝜎 = −1. (37)

This is the generalization of the 1D result (16): −𝜕𝑥𝐻 is analogous to the local slope tan 𝜃 and 𝜕𝜉𝑏I

now takes the place of the previously constant cross-slope buoyancy gradient 𝑁2 tan 𝜃. Note that

this expression is again well-behaved in the limit of small slopes (𝜕𝑥𝐻 → 0) and thus gives a

globally valid expression for the BL transport and of the mass exchange 𝐻𝑢𝜎I = −𝜕𝜉 𝜒I at 𝜎 = −1320

between the BL and the interior.

As in 1D, we can now explicitly describe contributions to the interior along-slope flow from

thermal wind in the interior and a contribution from shear in the BL. Combining (31) and (33)

yields the thermal-wind balance
1
𝐻

𝜕𝑢
𝜂

I
𝜕𝜎

=
1
𝑓

𝜕𝑏I
𝜕𝑥

, (38)

which, upon integration in the vertical, becomes325

𝑢
𝜂

I (𝜎) = − 𝑓 𝜒I(−1)
𝜈(−1)𝑞 + 𝐻

𝑓

∫ 𝜎

−1

𝜕𝑏I
𝜕𝑥

(𝜎̃) 𝑑𝜎̃. (39)

The first term again represents the BL contribution 𝑢𝜂I = −𝑢𝜂B at 𝜎 = −1, which may be computed

directly from the BL solution

𝜒B = −𝜒I𝑒
−𝑞𝐻 (𝜎+1) [cos 𝑞𝐻 (𝜎 + 1) + sin 𝑞𝐻 (𝜎 + 1)], (40)

similar to (18). Here 𝑞 can still be written in the same form as in (9) but with a generalized slope

Burger number 𝜚 = −𝜕𝑥𝐻𝜕𝜉𝑏I(−1)/ 𝑓 2, which varies in the horizontal. Equation (39) has the same

form as (20), except that cross-slope buoyancy gradients can now contribute to the thermal-wind330

term.

In 2D, we again find that the interior solution experiences a buoyancy flux due to the cross-

slope advection by the BL transport. In contrast to the 1D case, however, both the BL transport

given by (37) and the cross-slope buoyancy gradient 𝜕𝜉𝑏I may vary in time and space (Fig. 2b).
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Convergence in the BL transport then drives mass injection into the interior, further altering 𝜕𝜉𝑏I335

and continuing the feedback process.

It is worth noting that BL theory can also be applied to a passive tracer, not just buoyancy. The

interior tracer concentration would have a similar effective boundary condition capturing transport

by BL flow. The interior tracer equation should also include a representation of along-isopycnal

stirring (Redi 1982).340

b. Examples

We now illustrate these theoretical results using numerical simulations over idealized topographies.

We solve the full 2D PG system (29) and (32) and the 2D BL PG system (33) and (34) using

numerical methods and model parameters similar to the 1D case described above. The mixing

profile is now written as345

𝜅 = 𝜅0 + 𝜅1𝑒
−(𝑧+𝐻)/ℎ, (41)

following the bottom topography. First, we study spin up over an idealized azimuthally symmetric

seamount with constant initial stratification. We then analyze spin up over an idealized mid-

Atlantic ridge with both constant and exponentially varying initial stratification. As in the 1D spin

up experiments, the simulations all start with flat isopycnals and no flow. The circulation that

emerges is powered by the potential-energy source 𝜅𝜕𝑧𝑏 integrated over the domain.350

1) Idealized seamount

The topography of the abyssal ocean has a range of slopes. Seamounts, for instance, can reach

slope Burger numbers of order 10 or more and have received some attention regarding their role in

the abyssal overturning circulation (e.g., McDougall 1989; McDougall and Ferrari 2017; Ledwell365

2018; Holmes et al. 2018). The 1D BL theory [equation (11)] is sensitive to the slope Burger

number, with a steeper slope leading to a larger modification of the diffusive buoyancy flux by

advection. At the same time, the 2D BL theory shows that horizontal variations in this slope lead

to gradients in BL transport that are not taken into account by the 1D theory. In this section, we

therefore compare both 1D and 2D BL solutions to the full 2D PG flow over a seamount.370

Similar to the analysis in Ledwell (2018), we consider an azimuthally symmetric Gaussian

seamount in axisymmetric coordinates (Fig. 5). On an 𝑓 -plane, the flow is invariant under rotation
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Fig. 5. Flow fields in a simulation of mixing-generated PG spin up over an idealized 2D seamount. Shown

are (a) the streamfunction 𝜒 (shading and black contours) with positive values indicating counter-clockwise and

negative values indicating clockwise flow and (b) the along-slope flow 𝑢𝑦 = 𝑢𝜂 . The solution is shown after

20 years of spin up. The gray curves show isopycnals, and the red vertical lines show where 1D profiles are

examined in Fig. 6.

355

about the center of the seamount, allowing us to fully describe the flow using 2D theory (see

appendix B). The depth of the seafloor as a function of distance 𝑟 from the symmetry axis is given

by375

𝐻 (𝑟) = 𝐻0 − 𝐴 exp
(︃
− 𝑟2

2ℓ2

)︃
, (42)

where the maximum depth is 𝐻0 = 5.5 km, the height of the seamount is 𝐴 = 3 km, the width

of the seamount is ℓ = 50 km, and the width of the domain is 𝐿 = 200 km. We assume no flow

at 𝑟 = 0 and allow the flow to evolve freely at 𝑟 = 𝐿, consistent with our assumption that horizontal

diffusion may be neglected. In the horizontal, the grid has an even spacing of about 0.8 km. As

in the 1D models, we use Chebyshev nodes in the vertical when solving the full 2D PG equations380

(with a near-bottom resolution of about 10−5 in 𝜎-space) and uniform grid spacing for the 2D

BL equations (with a resolution of about 10−3 in 𝜎-space). We initialize the model at rest with a

constant stratification 𝑏 = 𝑁2𝑧 and use a mixed implicit–explicit time integration scheme with a

timestep of one day.
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Fig. 6. Comparison of the 1D and 2D BL solutions with full 2D PGmixing-generated spin up over a seamount.

Profiles are taken at the steepest slope on the seamount (red lines in Fig. 5). Shown are the (a), (d) streamfunction 𝜒,

(b), (e) along-slope flow 𝑢𝑦 = 𝑢𝜂 , and (c), (f) stratification 𝜕𝑧𝑏. The insets of (a) and (d) show the streamfunction 𝜒

in the bottom 50 m, showcasing the BL correction. The 1D BL solution is a decent approximation to the flow,

but the cross-slope variations considered in the 2D BL theory allow it to better match the full 2D solution in this

high slope Burger number regime.

360

At the steepest point on the seamount (𝑟 = 50 km, red lines in Fig. 5), the slope Burger number 𝜚385

is order unity. The 1D BL solution applied at this position over-predicts the stratification in the

bottom 500 m and under-predicts it above (Fig. 6). This leads to errors in the predicted interior

along-slope flow, which can be understood from (20) and (39): even subtle changes in the buoyancy

field can lead to substantial impacts on 𝑢𝜂I after being integrated throughout the column. The 1D

BL solution’s buoyancy field differs from that of the 2D solution because its secondary circulation,390

enforced simply by a transport constraint, is stronger. This is due to the lack of a two-way feedback

in 1D; the BL cannot exchange mass with the interior and the induced changes in the interior do
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Fig. 7. Simulations of mixing-generated PG spin up over an idealized 2D mid-ocean ridge with varying initial

stratifications. Shown are the streamfunctions 𝜒 (shading and black contours) with positive values indicating

counter-clockwise and negative values indicating clockwise flow for simulations with (a) constant initial strati-

fication and (b) exponential initial stratification (isopycnals in gray). For each simulation, we show (c) the BL

transport𝑈 𝜉

B computed from equation (37) and (d) the resulting exchange velocity 𝐻𝑢𝜎 = −𝜕𝜉𝑈 𝜉

B . The solutions

are shown after three years of spin up. The gradient in stratification across the ridge facilitates larger exchange

velocities at the peak and flanks.

400

not reduce the BL transport. The 2D BL theory, in contrast, captures these physics and agrees well

with the full 2D model. This confirms that the 2D BL equations are capable of fully capturing 2D

PG spin up, even in regimes with relatively large variations in local slope.395
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2) Exponential background stratification

The simulations presented so far were initialized with a constant background stratification. In

the real ocean, the stratification varies significantly in the vertical, often decreasing close to405

exponentially with depth (e.g., Munk 1966). A number of studies have attempted to discern how

this may shape the abyssal circulation, often qualitatively arguing that variations in stratification

across slopes must lead to gradients in BL transports, inducing BL–interior exchange (e.g., Phillips

et al. 1986; Salmun et al. 1991). Quantitative explanations of this process, however, have remained

complicated and opaque at best. A major benefit of the BL theory framework built up here is410

that it provides concise expressions for the BL transport in terms of interior variables, allowing

us to reason about how varying background stratification might impact the abyss with minimal

mathematical gymnastics.

Let us consider an idealizedmid-Atlantic ridge, following previous studies of mixing-generated

spin up in the abyss (e.g., Ruan and Callies 2020; Drake et al. 2020, PC22). The depth of the 2D415

ridge is given by

𝐻 (𝑥) = 𝐻0 + 𝐴 cos
(︃
2𝜋𝑥
𝐿

)︃
, (43)

where the mean depth is 𝐻0 = 2 km, the amplitude is 𝐴 = 800 m, and the width is 𝐿 = 2000 km

(Fig. 7). At the steepest point on the ridge, the slope Burger number 𝜚 is approximately 2 × 10−3 ,

typical of the mid-Atlantic ridge. We apply periodic boundary conditions at 𝑥 = 0 and 𝑥 = 𝐿 and

use a constant horizontal grid spacing of about 8 km. The vertical grid spacing is as before. We run420

one simulation with constant initial stratification as before and one initialized with an exponential

stratification: 𝜕𝑧𝑏 ∝ 𝑒𝑧/𝑑 . We set the decay scale to 𝑑 = 1000 m and choose the proportionality

constant such that the bottom stratification at the center of the ridge flank matches that of the

simulation with constant 𝑁2 = 10−6 s−2. We again use a mixed implicit–explicit timestepping

scheme, this time with a timestep of 10 days, enabled by the much weaker advective terms.425

The circulation in the case with exponential initial stratification is stronger and more confined

to the peak of the ridge compared to the case with constant initial stratification (Fig. 7a,b). This is

better understood by the explicit formula for 2D BL transport derived in the previous subsection.

Evaluating equation (37) for these simulations, we see that the BL transport is enhanced at the

peak of the ridge with exponential background stratification (Fig. 7c). For the small slopes in this430
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simulation, equation (37) reduces to

𝜒I ≈
𝜈

𝑓 2
𝜕𝑏I
𝜕𝜉

at 𝜎 = −1. (44)

In the case with constant stratification, the initial cross-slope buoyancy gradient is proportional

to −𝜕𝑥𝐻 and does not change appreciably with time, explaining the sinusoidal BL transport. For
exponential stratification, in contrast, we have 𝜕𝜉𝑏I ∝ −𝑒−𝐻/𝑑𝜕𝑥𝐻, which is enhanced at shallower

depths. As a result, the exchange velocity435

𝐻𝑢𝜎 = −𝜕𝜉 𝜒I ≈ − 𝜈

𝑓 2
𝜕2𝑏I

𝜕𝜉2 at 𝜎 = −1 (45)

is also enhanced for the case with exponential stratification (Fig. 7d). In both cases, 𝜕𝜉𝑏I does not

evolve much in the first three years, so the exchange does not either. The BL theory enables us to

easily and quantitatively understand this behavior.

4. Asymptotic theory

In the previous sections, we derived the BL equations somewhat heuristically, glossing over some440

detail of the underlying asymptotics. In this section, we present a more rigorous derivation of the

BL theory that justifies the claims in the previous sections and sheds light on the asymptotic orders

of the various components of the flow. The casual reader should note that the contents of this

section are not required to understand the main results of the paper.

We show below that, in both 1D and 2D, the cross-slope flow is of lower order than the along-445

slope flow in the interior, aligning with our intuition from the examples above. The interior flow

evolves on a slow timescale driven by diffusion and second-order advection of the leading-order

buoyancy in the interior. The BL flow is of first order, in between the orders of the interior along-

and cross-slope flows. If the transport is constrained to zero, this implies that the leading-order

interior flow vanishes at the bottom. These results do not generally hold in 3D, but we leave this450

generalization to future work.
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a. One-dimensional asymptotics

To begin the formal derivation of the 1D BL equations, we first nondimensionalize the 1D equa-

tions (2)–(5) in order to isolate the key parameters in the problem. We define characteristic scales

for the vertical coordinate, velocities, and mixing coefficients such that455

𝜁 ∼ 𝐻0, 𝑢𝜉 , 𝑢𝜂 ∼ 𝑈, 𝜈 ∼ 𝜈0, and 𝜅 ∼ 𝜅0, (46)

where 𝜈0 and 𝜅0 are characteristic values of 𝜈 and 𝜅. We assume that the pressure and buoyancy

terms in (2) scale with the Coriolis term and that the buoyancy perturbation scales with the

background buoyancy scale:

𝜕𝑃

𝜕𝑥
∼ 𝑓𝑈 and 𝑏′ ∼ 𝑓𝑈

tan 𝜃
= 𝑁2𝐻0. (47)

Assuming an advective timescale, so that

𝑡 ∼ 𝐻0
𝑈 tan 𝜃

=
𝑓

𝑁2 tan2 𝜃
, (48)

then yields the nondimensional 1D equations460

−𝑢𝜂 = −𝜕𝑃

𝜕𝑥
+ 𝑏′ + 𝜀2 𝜕

𝜕𝜁

(︃
𝜈
𝜕𝑢𝜉

𝜕𝜁

)︃
, (49)

𝑢𝜉 = 𝜀2 𝜕

𝜕𝜁

(︃
𝜈
𝜕𝑢𝜂

𝜕𝜁

)︃
, (50)

𝜇𝜚

(︃
𝜕𝑏′

𝜕𝑡
+ 𝑢𝜉

)︃
= 𝜀2 𝜕

𝜕𝜁

[︃
𝜅

(︃
1 + 𝜕𝑏′

𝜕𝜁

)︃]︃
, (51)∫ ∞

0
𝑢𝜉 𝑑𝜁 = 𝑈𝜉 , (52)

where all variables are redefined to their scaled versions. The nondimensional parameters for the

1D problem are thus the Ekman number 𝜀2 = 𝜈0/ 𝑓 𝐻2
0 , the Prandtl number 𝜇 = 𝜈0/𝜅0, and the

slope Burger number 𝜚 = 𝑁2 tan2 𝜃/ 𝑓 2, although 𝜇 and 𝜚 only appear as a product, so 𝜇𝜚 can be

considered a single parameter. The reason for defining the Ekman number as 𝜀2 will become clear

in the BL analysis below.465
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To develop the asymptotic theory, we assume the scaling 𝜀 ≪ 1 and 𝜇𝜚 ∼ 1. While the Burger

number is typically small in the abyss, the turbulent Prandtl number may be large if momentum

fluxes by baroclinic eddies are taken into account. If instead 𝜇𝜚 ≪ 1, buoyancy advection is

negligible in the BL, and the theory developed with 𝜇𝜚 ∼ 1 remains accurate (Fig. 3a).

We begin with the interior and expand all variables in 𝜀2: 𝑢𝜉I = 𝑢
𝜉

I0 + 𝜀2𝑢
𝜉

I2 + . . . , etc. This470

expansion into even powers of 𝜀 is sufficient because 𝜀 only appears as 𝜀2 in the interior equations.

The 𝑂 (1) interior flow then satisfies

−𝑢𝜂I0 = −𝜕𝑃0
𝜕𝑥

+ 𝑏′I0, (53)

𝑢
𝜉

I0 = 0, (54)
𝜕𝑏′I0
𝜕𝑡

= 0. (55)

At this order, the interior along-slope flow is in balance with the barotropic pressure gradient and

the projection of the buoyancy perturbation, and the interior cross-slope flow is zero. The 𝑂 (1)
buoyancy equation is trivial, implying that the interior buoyancy evolution is slow compared to the475

advective timescale assumed in the scaling.

To obtain the evolution of the𝑂 (1) interior buoyancy, we need to go to𝑂 (𝜀2) and also expand
the time coordinate, 𝜕𝑡 = 𝜕𝑡0 + 𝜀2𝜕𝑡2 + . . . Higher-order buoyancy terms inherit the slow evolution

from the low orders, so 𝜕𝑡0𝑏′I2 = 0. The buoyancy equation (51) at 𝑂 (𝜀2) is then

𝜇𝜚

(︃
𝜕𝑏′I0
𝜕𝑡2

+ 𝑢
𝜉

I2

)︃
=

𝜕

𝜕𝜁

[︃
𝜅

(︃
1 +

𝜕𝑏′I0
𝜕𝜁

)︃]︃
. (56)

This implies that advection and turbulent diffusion operate on a slow time 𝑡2. Since the 𝑂 (1)480

and 𝑂 (𝜀) interior cross-slope flows are zero, the dominant buoyancy advection is by the second-
order flow in the interior, given by (50) at 𝑂 (𝜀2):

𝑢
𝜉

I2 =
𝜕

𝜕𝜁

(︄
𝜈
𝜕𝑢

𝜂

I0
𝜕𝜁

)︄
. (57)

Equations (53), (56), and (57) comprise the leading-order interior dynamics. They can be expressed

in terms of the streamfunction 𝜒I, whose leading non-zero component is 𝜒I2, recovering (10)
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and (11) above (assuming 𝑈𝜉 = 0). The interior along-slope flow can be obtained by integrating485

the thermal-wind balance 𝜕𝜁𝑢𝜂I0 = −𝜕𝜁𝑏′I0, which follows from a 𝜁-derivative of (53):

𝑢
𝜂

I0 = 𝑢
𝜂

I0(0) −
[︁
𝑏′I0 − 𝑏′I0(0)

]︁
. (58)

The integration constant 𝑢𝜂I0(0) must be determined from the BL correction. If the transport
constraint is𝑈𝜉 = 0, one finds that 𝑢𝜂I0(0) = 0.

In the thin bottom BL, 𝜁-derivatives are enhanced, elevating the diffusion terms in (49)–(51)

to 𝑂 (1). Given that the BL thickness scales with 𝜀, we assume the BL variables to depend on the490

re-scaled vertical coordinate 𝜁̄ = 𝜁/𝜀, with which 𝜕𝜁 = 𝜀−1𝜕𝜁̄ . The nondimensional BL equations

are then

−𝑢𝜂B = 𝑏′B + 𝜕

𝜕𝜁̄

(︄
𝜈
𝜕𝑢

𝜉

B
𝜕𝜁̄

)︄
, (59)

𝑢
𝜉

B =
𝜕

𝜕𝜁̄

(︄
𝜈
𝜕𝑢

𝜂

B
𝜕𝜁̄

)︄
, (60)

𝜇𝜚

(︃
𝜕𝑏′B
𝜕𝑡

+ 𝑢
𝜉

B

)︃
=

𝜕

𝜕𝜁̄

(︃
𝜅
𝜕𝑏′B
𝜕𝜁̄

)︃
. (61)

Crucially, the insulating bottom boundary condition picks up a factor of 𝜀−1 after this re-scaling:

1 +
𝜕𝑏′I
𝜕𝜁

= −1
𝜀

𝜕𝑏′B
𝜕𝜁̄

at 𝜁 = 0. (62)

This factor of 𝜀−1 means that we need an 𝑂 (𝜀) BL buoyancy to absorb the 𝑂 (1) interior buoyancy
flux into the BL. We thus expand the BL variables in terms of 𝜀 rather than 𝜀2. We immediately495

find that the 𝑂 (1) BL buoyancy flux must vanish at the bottom: 𝜕𝜁̄𝑏′B0 = 0. In the case with zero

net transport (𝑈𝜉 = 0), this condition, along with the boundary conditions on the flow 𝑢
𝜉

B0 = 0 and

𝑢
𝜂

B0 = −𝑢𝜂I0 at 𝜁̄ = 0, forces the 𝑂 (1) BL flow to vanish and the 𝑂 (1) interior along-slope flow
to go to zero at the bottom, consistent with the examples shown in Fig. 3 (see appendix A for the

𝑈𝜉 ≠ 0 case). The BL flow instead comes in at 𝑂 (𝜀), in between the orders of the interior along-500
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and cross-slope flows. This 𝑂 (𝜀) BL flow satisfies

−𝑢𝜂B1 = 𝑏′B1 +
𝜕

𝜕𝜁̄

(︄
𝜈
𝜕𝑢

𝜉

B1
𝜕𝜁̄

)︄
, (63)

𝑢
𝜉

B1 =
𝜕

𝜕𝜁̄

(︄
𝜈
𝜕𝑢

𝜂

B1
𝜕𝜁̄

)︄
, (64)

𝜇𝜚𝑢
𝜉

B1 =
𝜕

𝜕𝜁̄

(︃
𝜅
𝜕𝑏′B1
𝜕𝜁̄

)︃
, (65)

with the bottom boundary conditions 𝜕𝜁̄𝑏′B1 = −(1 + 𝜕𝜁𝑏
′
I0), 𝑢

𝜉

B1 = 0, and 𝑢𝜂B1 = 0. The tendency

term 𝜕𝑡0𝑏
′
B1 is dropped because the interior does not evolve on this timescale, so the BL will not

either. These BL equations are equivalent to (12) and (17).

This more rigorous derivation of the 1D BL equations clarifies the asymptotic orders of the505

various components of the flow. The leading-order contributions are 𝑂 (𝜀2) for the interior cross-
slope flow, 𝑂 (1) for the interior along-slope flow, and 𝑂 (𝜀) for both components of the BL flow.
Buoyancy does not have an 𝑂 (1) BL correction—only its derivative does.

b. Two-dimensional asymptotics

The 2D asymptotics follow in much the same way as in 1D. We again nondimensionalize the510

equations of motion (25)–(29), setting characteristic scales equivalent to (46)–(48):

𝜉 ∼ 𝐿, 𝑢𝜉 , 𝑢𝜂 ∼ 𝑈, 𝑢𝜎 ∼ 𝑈

𝐿
, 𝐻 ∼ 𝐻0, 𝜈 ∼ 𝜈0, 𝜅 ∼ 𝜅0,

𝑝 ∼ 𝑈 𝑓 𝐿, 𝑏 ∼ 𝑓𝑈𝐿

𝐻0
= 𝑁2𝐻0, 𝑡 ∼ 𝐿

𝑈
. (66)
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We then arrive at the nondimensional 2D PG equations

−𝑢𝜂 = −𝜕𝑝

𝜕𝜉
+ 𝜎

𝜕𝐻

𝜕𝑥
𝑏 + 𝜀2

𝐻2
𝜕

𝜕𝜎

(︃
𝜈
𝜕𝑢𝜉

𝜕𝜎

)︃
, (67)

𝑢𝜉 =
𝜀2

𝐻2
𝜕

𝜕𝜎

(︃
𝜈
𝜕𝑢𝜂

𝜕𝜎

)︃
, (68)

1
𝐻

𝜕𝑝

𝜕𝜎
= 𝑏, (69)

𝜕

𝜕𝜉

(︂
𝐻𝑢𝜉

)︂
+ 𝜕

𝜕𝜎

(︂
𝐻𝑢𝜎

)︂
= 0, (70)

𝜇𝜚

(︃
𝜕𝑏

𝜕𝑡
+ 𝑢𝜉

𝜕𝑏

𝜕𝜉
+ 𝑢𝜎

𝜕𝑏

𝜕𝜎

)︃
=

𝜀2

𝐻2
𝜕

𝜕𝜎

(︃
𝜅
𝜕𝑏

𝜕𝜎

)︃
, (71)

where 𝜚 = 𝑁2𝐻2
0/ 𝑓

2𝐿2 is now the conventional Burger number. Again assuming the scaling 𝜀 ≪ 1

and 𝜇𝜚 ∼ 1, expanding interior variables in 𝜀2, and matching orders as before, we arrive at the

complete set of interior equations515

−𝑢𝜂I0 = −𝜕𝑝I0
𝜕𝜉

+ 𝜎
𝜕𝐻

𝜕𝑥
𝑏I0, (72)

𝑢
𝜉

I2 =
1
𝐻2

𝜕

𝜕𝜎

(︄
𝜈
𝜕𝑢

𝜂

I0
𝜕𝜎

)︄
, (73)

1
𝐻

𝜕𝑝I0
𝜕𝜎

= 𝑏I0, (74)

𝜕

𝜕𝜉

(︂
𝐻𝑢

𝜉

I2

)︂
+ 𝜕

𝜕𝜎

(︂
𝐻𝑢𝜎I2

)︂
= 0, (75)

𝜇𝜚

(︃
𝜕𝑏I0
𝜕𝑡2

+ 𝑢
𝜉

I2
𝜕𝑏I0
𝜕𝜉

+ 𝑢𝜎I2
𝜕𝑏I0
𝜕𝜎

)︃
=

1
𝐻2

𝜕

𝜕𝜎

(︃
𝜅
𝜕𝑏I0
𝜕𝜎

)︃
. (76)

We again find that the interior along-slope flow is of lower order than the interior cross-slope flow,

and the interior buoyancy evolution is again slow. In 2D, the interior slope-normal flow 𝑢𝜎I2 comes

in, contributing a second-order advective flux in the vertical, along with the cross-slope advection.

Formulated using the streamfunction 𝜒I2, this recovers the interior equations (33) and (34) derived

above. The 𝑂 (1) interior along-slope flow can again be obtained by integrating thermal wind in520

the vertical, with the bottom correction 𝑢𝜂I0(−1) dropping out for𝑈𝜉 = 0.

The BL contribution can again be assessed after a re-scaling of the vertical coordinate such

that 𝜎̄ = 𝜎/𝜀. We again find that the 𝑂 (1) BL flow, along with the interior along-slope flow 𝑢
𝜂

I0 at
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the bottom, vanishes when𝑈𝜉 = 0. The BL flow is instead of 𝑂 (𝜀), satisfying

−𝑢𝜂B1 = −𝜕𝐻

𝜕𝑥
𝑏B1 +

1
𝐻2

𝜕

𝜕𝜎̄

(︄
𝜈
𝜕𝑢

𝜉

B1
𝜕𝜎̄

)︄
, (77)

𝑢
𝜉

B1 =
1
𝐻2

𝜕

𝜕𝜎̄

(︄
𝜈
𝜕𝑢

𝜂

B1
𝜕𝜎̄

)︄
, (78)

𝜇𝜚𝑢
𝜉

B1
𝜕𝑏I0
𝜕𝜉

=
1
𝐻2

𝜕

𝜕𝜎̄

(︃
𝜅
𝜕𝑏B1
𝜕𝜎̄

)︃
, (79)

with hydrostatic balance and continuity implying that 𝑝B1 = 0 and 𝑢𝜎B1 = 0, respectively. The BL525

is again characterized by a balance between cross-slope advection and down-gradient diffusion

of buoyancy, with the BL buoyancy flux due to 𝑏B1 balancing the interior buoyancy flux due to

𝑏I0 at the bottom as before: 1 + 𝜕𝜎𝑏I0 = −𝜕𝜎̄𝑏B1 at 𝜎 = −1. The tendency term in (79) is again

dropped because the interior evolution is slow, so the BL evolutionmust be slow as well. Expressing

𝐻𝑢
𝜉

B1 = 𝜕𝜎̄𝜒B2, vertically integrating (79), and enforcing 𝜒I2+𝜒B2 = 0 at𝜎 = −1 yields an effective530

boundary condition on the interior. The BL-interior exchange velocity 𝑢𝜎I2 = −𝑢𝜎B2 at 𝜎 = −1 may

be obtained by vertically integrating

𝜕

𝜕𝜉

(︂
𝐻𝑢

𝜉

B1

)︂
+ 𝜕

𝜕𝜎̄

(︂
𝐻𝑢𝜎B2

)︂
= 0. (80)

The leading-order equations obtained using this more rigorous approach again match the expres-

sions derived heuristically above. The asymptotic orders revealed by this approach are the same as

in the 1D case.535

5. Discussion

Callies and Ferrari (2018) studied the mixing-generated abyssal circulation in an idealized global

basin using PG dynamics, but their model employed Rayleigh drag rather than a Fickian friction.

The models and theory presented here make use of a down-gradient turbulence closure of the

momentum fluxes, allowing them to produce more realistic BLs and avoid unphysical interior540

momentum sinks. Still, the results presented here provide some insight into the conclusions from

this previous study. With Rayleigh drag, Callies and Ferrari (2018) found that the canonical 1D

model was a reasonably accurate emulator for the full dynamics over slopes with a constant initial
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stratification. This may have been somewhat of a coincidence, as in their case the steady state

canonical transport 𝜅∞ cot 𝜃 was zero everywhere, adding a transport constraint to the canonical545

1D model. With Fickian friction, setting 𝜅∞ = 0 does not immediately make the canonical 1D

model equivalent to the transport-constrained 1D model because it still evolves diffusively and

with nonzero transport, taking thousands of years to equilibrate (PC22). Rayleigh drag, in contrast,

damps flow in the interior, allowing for fast adjustment (in a matter of years, not shown) to

the𝑈𝜉 = 0 steady state. The combination of 𝜅∞ = 0 and Rayleigh drag thus conspired to let Callies550

and Ferrari (2018) get the right answer from the canonical model, but modifying either of these

choices would have made the argument fall apart.

Furthermore, Callies and Ferrari’s (2018) application of BL theory was somewhat ad hoc. For

slopes steep enough for the canonical BL theory to apply, the steady-state transport was exactly

zero, meaning that all upslope transport was exactly balanced by downslope transport above. The555

BL theory broke down at the base of the slopes, allowing the BLs to be fed by dense water from

the south and the less dense downwelled water to return south, forming a basin-wide circulation

that constituted an overturning. The overturning transport could thus be estimated with an isobath

integral of the upslope transport in BLs on the slopes. As Drake et al. (2020) pointed out, however,

this approach is not successful if the interior stratification is far from constant and canonical BL560

theory does not apply. The theory presented here supplies a globally valid expression for the BL

transport that allows for variations in the interior stratification. At this point, this expression is

only a diagnostic tool, itself depending on the interior dynamics, but it unambiguously describes

how the interior can exert control on the BL, and vice versa, ultimately generating a basin-wide

circulation that involves both BL and interior pathways—and mass exchange between them. This565

sharpens our view of the abyssal overturning, with no confusion about the roles of the BL and

interior.

The framework presented here can also help understand the results from Drake et al. (2020)

regarding how water mass transformations are affected by changes in the interior stratification.

Using the same 3D PG model with Rayleigh friction as in Callies and Ferrari (2018), they found570

that the degree of compensation between BL upwelling and interior downwelling is strongly

dependent on vertical variations in the initial stratification. With only the canonical 1D theory

as a starting point, they were unable to explain the vertical extent and structure of water mass
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transformations. The BL theory presented here would enable us to understand these physics more

clearly, because it explicitly separates the BL and interior components of the flow. This allows us575

to describe the abyssal circulation in terms of flows into and out of the BL, rather than simply bulk

diapycnal motion throughout the water column. In section 3, we demonstrated the power of this

framework in describing abyssal spin up in 2D with exponential initial stratification. Applied to

3D simulations such as those in Drake et al. (2020), this approach would undoubtedly shed light

on what shapes the vertical structure of water mass transformations in the abyss.580

Here, we have only presented results in 1D and 2D. We leave the 3D case to a future paper, but

preliminary work indicates that much of the theory developed here carries over, although there are

some key differences. In 3D, the interior dynamics satisfies geostrophic balance in both the 𝜉 and 𝜂

directions. Because of this, the asymptotics in 3D are qualitatively different from those presented

in section 4 of this paper: instead of evolving on a slower timescale, the leading-order 3D interior585

buoyancy field is advected by the geostrophic velocities, with diffusion only playing a role at higher

order. We anticipate that this qualitative difference between 2D and 3Dmay be crucial in explaining

the full 3D abyssal circulation. In 3D, it is also no longer possible to write the PG inversion in terms

of a scalar streamfunction. This makes the mathematics more complicated, but it is still possible

to write down an expression for the 3D BL transport in terms of interior variables evaluated at the590

bottom. As in 2D, the 3D BL mass and buoyancy transports feed back on the interior, now with

gradients in the 𝜂 direction shaping the flow field. A future extension to 3D will allow us to explain

the dynamics of abyssal circulations in more complicated and realistic geometries, including cases

with variations in 𝑓 .3

Our BL theory results are not only theoretically useful but could also lighten the computational595

demand of simulating the abyssal circulation. The interior solution can be computed without the

need to resolve the thin BL, allowing numerical models to have coarser grids and larger timesteps.

This is crucial when studying the 3D system over long abyssal timescales of thousands or tens

of thousands of years (e.g., Wunsch and Heimbach 2008; Liu et al. 2009; Jansen et al. 2018).

This framework could even be used to analyze tracer transport without explicitly resolving the BL,600

allowing us to better understand carbon and heat storage (e.g., Sarmiento and Toggweiler 1984)

3Variations in 𝑓 will allow for vortex stretching in the absence of friction: 𝛽𝑢𝑦 = 𝑓 𝜕𝑧𝑢
𝑧 , where 𝛽 = 𝜕𝑦 𝑓 . In the 𝑓 -plane solutions considered

here, a non-zero interior vertical velocity only appears at second order (see section 4).
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and Lagrangian pathways (e.g., Rousselet et al. 2021) in the abyss. If needed, the BL correction

can be computed after the fact on a finer grid as was done for Figs. 3 and 6.

Although the results presented here are derived in the context of PG dynamics, they might also

point the way towards a parameterization of the effects of BLs over a sloping seafloor in primitive-605

equation models. Applying effective boundary conditions on the interior evolution, following the

BL framework, should most easily be accomplished in models with terrain-following coordinates

But a translation to 𝑧-coordinates also appears feasible, which would alleviate not only the need to

resolve thin boundary layers in the vertical but also the need to capture BL flow across the artificial

steps in the topography in such models. An extension of the BL theory to 3D is needed, however,610

to produce expressions directly useful for such a parameterization effort.

The circulation in the examples presented in this paper depend on the particular, simple closure

of turbulent momentum and buoyancy fluxes employed in all of them. Although Fickian friction

is much more physical than Rayleigh drag, our use of it with a simple profile for 𝜈 still glosses

over the true complexity of turbulence in the abyss. Without a more faithful representation of the615

internal-wave field and baroclinic eddies in abyssal mixing layers, we cannot claim to be accurately

simulating the dynamics of the real ocean. The BL framework, however, is robust to the choice of

turbulence parameterization—as long as the vertical scale of the turbulent mixing in the interior is

larger than the thickness of the BL, our approach should require minimal modification. The results

presented here are in terms of a particular choice of parameterization, but the general themes620

describing how the BL and interior communicate will carry over to more complex closures. This

flexibility makes BL theory an attractive tool for understanding the mixing-generated abyss over a

hierarchy of complexities.

6. Conclusions

Motivated by observations of bottom-enhanced mixing, recent work on the abyssal circulation has625

focused on the role of thin bottom BLs (Ferrari et al. 2016; de Lavergne et al. 2016; McDougall

and Ferrari 2017; Holmes et al. 2018; Callies and Ferrari 2018; Drake et al. 2020). Until now,

the coupling between these BLs and the interior circulation remained opaque, with most of our

understanding coming from somewhat heuristic arguments using 1D theory. The framework pre-

sented in this work uses BL theory to paint a clear picture of the interior–BL interaction of the630
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mixing-generated abyssal circulation. By explicitly defining BL and interior contributions to the

flow, we obtain expressions for the BL transport in 1D and 2D that are bounded for all bottom

slopes, solving the old 1D conundrum of the steady total transport 𝜅∞ cot 𝜃 being set by the far-

field mixing and diverging for small slopes. In the revised theory, the BL transport is set by local

flow parameters and interior variables evaluated at the bottom, with the total transport allowed to635

evolve according to the global context. The interior dynamics are themselves modified by this BL

transport, which advects dense water up-slope and thus modifies the interior bottom boundary con-

dition. This two-way coupling provides a complex yet transparent story of how BLs influence the

abyssal circulation, and this framework makes previously unwieldy problems, such as determining

the response to vertically varying initial stratification, comparatively simple. With these promising640

results, we anticipate that BL theory will play a crucial role in the development of a more complete

understanding of the abyssal circulation in the real ocean.

Data availability statement. The numerical models for all the simulations presented here are

hosted at https://github.com/hgpeterson/nuPGCM.
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APPENDIX A

BL Theory when 𝑈𝜉 ≠ 0

For completeness, we here show how the BL theory derivations in sections 2 and 3 are slightly650

altered when the transport𝑈𝜉 is non-zero. In both 1D and 2D, the interior inversion is modified to

include the added transport term. The BL accounts for 1/(1 + 𝜇𝜚) of the total transport, leading to
a modified interior bottom boundary condition compared to before. The 2D case is special in that

the total transport is itself a function of the flow and geometry of the domain (see appendix B of

PC22), allowing us to derive an explicit equation for𝑈𝜉 in that case.655

a. One-dimensional theory

The 1D interior inversion for general𝑈𝜉 is

𝑓 2

𝜈
(𝜒I −𝑈𝜉) = −

𝜕𝑏′I
𝜕𝜁

tan 𝜃. (A1)

This does not affect 𝜕𝜁 𝜒I, leaving the interior evolution equation (11) unchanged. This new interior

balance results in a modified bottom boundary condition compared with equation (15):

𝜅

[︃
𝑁2 + (1 + 𝜇𝜚)

𝜕𝑏′I
𝜕𝜁

]︃
= 𝑈𝜉𝑁2 tan 𝜃 at 𝜁 = 0. (A2)

The added flux on the right-hand side represents the integrated buoyancy supplied to the column660

by the net transport𝑈𝜉 . The BL transport (cf. 16) now takes the form

𝜒I =
𝑈𝜉

1 + 𝜇𝜚
+ 𝜅 cot 𝜃

𝜇𝜚

1 + 𝜇𝜚
at 𝜁 = 0, (A3)

supplying a fraction of the total transport. For 𝜇𝜚 ≪ 1, the BL absorbs the majority of the added

transport. Note that the bottom boundary condition may be written as 𝜅(𝑁2 + 𝜕𝜁𝑏
′
I) = 𝜒I𝑁

2 tan 𝜃

regardless of whether 𝑈𝜉 is nonzero. The BL correction 𝜒B remains the same as in (18), with 𝜒I

at 𝜁 = 0 now coming from (A3).665

The asymptotic order of 𝑈𝜉 must match that of 𝜒I, so it must be restricted to be 𝑂 (𝜀2). It is
then simple to incorporate𝑈𝜉 ≠ 0 into the theory presented in section 4.
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b. Two-dimensional theory

In 2D, the general interior inversion is

𝑓 2

𝜈
(𝜒I −𝑈𝜉) = 𝜕𝑏I

𝜕𝜉
− 𝜎

𝐻

𝜕𝐻

𝜕𝑥

𝜕𝑏I
𝜕𝜎

, (A4)

and again the BL absorbs a fraction of the added transport so that (37) becomes670

𝜒I =
𝑈𝜉

1 + 𝜇𝜚
+ 𝜅

𝜕𝑥𝐻

𝜇𝜚

1 + 𝜇𝜚
at 𝜎 = −1, (A5)

where 𝜚 = −𝜕𝑥𝐻𝜕𝜉𝑏I/ 𝑓 2 at 𝜎 = −1. For symmetric topography, 𝑈𝜉 = 0, but this is not the case

in general. We can infer 𝑈𝜉 for asymmetric geometries with knowledge of the interior buoyancy

distribution. Evaluating (39) at 𝜎 = 0 and taking the mean in 𝜉, denoted by ⟨·⟩, we have

⟨︁
𝑢
𝜂

I (0)
⟩︁
= 0 = −

⟨︃
𝑓

𝑞𝜈
𝜒I

⟩︃
+

⟨︃
𝐻

𝑓

∫ 0

−1

𝜕𝑏I
𝜕𝑥

(𝜎) 𝑑𝜎
⟩︃
, (A6)

where, crucially, theBL transport fromequation (A5) nowdepends on𝑈𝜉 .Wehave assumed that the

domain is tall enough such that gradients in buoyancy at 𝜎 = 0 are small and therefore ⟨𝑢𝜂I (0)⟩ = 0.675

Solving for𝑈𝜉 yields

𝑈𝜉 =

⟨︂
𝐻

∫ 0
−1

𝜕𝑏I
𝜕𝑥

(𝜎) 𝑑𝜎
⟩︂
+

⟨︂
1
𝑞

𝜕𝜉 𝑏I
1+𝜇𝜚

⟩︂⟨︂
𝑓 2

𝑞𝜈
1

1+𝜇𝜚

⟩︂ , (A7)

where all variables are evaluated at 𝜎 = −1 unless otherwise noted. Simulations of an asymmetric

ridge, similar to that in appendix B of PC22, confirm the accuracy of this formula (not shown).

Again, we restrict ourselves to cases where the non-dimensional 𝑈𝜉 is 𝑂 (𝜀2), the same order
as 𝜒I. This is true when the second term on the right in equation (A6) of lower order than the first.680

This is always the case after a fast initial adjustment.
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APPENDIX B

Axisymmetric Coordinates

For simulations of an idealized seamount, we transform to axisymmetric coordinates, assuming

rotational symmetry. The depth 𝐻 is then a function of the radial distance 𝑟 and invariant under685

rotation about the origin by some angle 𝜙, leading to effectively 2D flow. Defining 𝜌 = 𝑟 and 𝜎 =

𝑧/𝐻, we have

−𝜌 𝑓 𝑢𝜙 = −𝜕𝑝

𝜕𝜌
+ 𝜎

𝜕𝐻

𝜕𝑟
𝑏 + 1

𝐻2
𝜕

𝜕𝜎

(︃
𝜈
𝜕𝑢𝜌

𝜕𝜎

)︃
, (B1)

𝜌 𝑓 𝑢𝜌 =
𝜌2

𝐻2
𝜕

𝜕𝜎

(︃
𝜈
𝜕𝑢𝜙

𝜕𝜎

)︃
, (B2)

𝜕𝑝

𝜕𝜎
= 𝑏𝐻, (B3)

𝜕

𝜕𝜌
(𝜌𝐻𝑢𝜌) + 𝜕

𝜕𝜎
(𝜌𝐻𝑢𝜎) = 0, (B4)

𝜕𝑏

𝜕𝑡
+ 𝑢𝜌

𝜕𝑏

𝜕𝜌
+ 𝑢𝜎

𝜕𝑏

𝜕𝜎
=

1
𝐻2

𝜕

𝜕𝜎

(︃
𝜅
𝜕𝑏

𝜕𝜎

)︃
. (B5)

The streamfunction inversion takes the same form as in Cartesian coordinates,

1
𝐻4

𝜕2

𝜕𝜎2

(︃
𝜈
𝜕2𝜒

𝜕𝜎2

)︃
+ 𝑓 2

𝜈
(𝜒 −𝑈) = 𝜕𝑏

𝜕𝜌
− 𝜎

𝐻

𝜕𝐻

𝜕𝑟

𝜕𝑏

𝜕𝜎
, (B6)

with a slight difference in the streamfunction definition due to the new form of the divergence

operator:690

𝑢𝜌 =
1
𝐻

𝜕𝜒

𝜕𝜎
and 𝑢𝜎 = − 1

𝜌𝐻

𝜕 (𝜌𝜒)
𝜕𝜌

. (B7)
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