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Abstract— In this paper, we showcase a framework for
cooperative mixed traffic platooning that allows the platooning
vehicles to realize multiple benefits from using vehicle-to-
everything (V2X) communications and advanced controls on
urban arterial roads. A mixed traffic platoon, in general, can
be formulated by a lead and ego connected automated vehicles
(CAVs) with one or more unconnected human-driven vehicles
(UHVs) in between. As this platoon approaches an intersection,
the lead vehicle uses signal phase and timing (SPaT) messages
from the connected intersection to optimize its trajectory for
travel time and energy efficiency as it passes through the
intersection. These benefits carry over to the UHVs and the ego
vehicle as they follow the lead vehicle. The ego vehicle then uses
information from the lead vehicle received through basic safety
messages (BSMs) to further optimize its safety, driving comfort,
and energy consumption. This is accomplished by the recently
designed cooperative adaptive cruise control with unconnected
vehicles (CACCu). The performance benefits of our framework
are proven and demonstrated by simulations using real-world
platooning data from the CACC Field Operation Test (FOT)
Dataset from the Netherlands.

I. INTRODUCTION

Stop-and-go traffic caused by unconnected human-driven
vehicles (UHVs) is one of the main reasons for traffic oscilla-
tions and crashes [1]. Connected automated vehicles (CAVs)
provide a potential solution to address improper human
driving behaviors at intersections [2], [3]. The emergence of
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
wireless communication enable CAVs to communicate with
other connected vehicles, obtain information about traffic
signal phase and timing (SPaT) at connected intersections,
and control the CAVs’ movements cooperatively. Therefore,
compared to traditional UHVs, CAVs can use SPaT and
motion information to further optimize their own motion
with respect to safety, driving comfort, energy consumption
and mobility. Existing research on optimizing CAV motion
through connected intersections focuses on either controlling
a single CAV, or the interactions between CAVs and con-
nected infrastructure in a fully connected traffic environment.
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Fig. 1. Mixed traffic platoon composed of a a lead CAV, preceding CHVs,
and an ego CAV. V2I and V2V communications are shown

Fig. 1 shows a mixed traffic platoon composed of UHVs
and CAVs examined in this paper. The platoon is arranged
with a leading CAV, followed by one or more UHVs, then
followed by an ego CAV. The cooperation between the lead
CAV and connected infrastructure at intersections by means
of V2I SPaT messages allows the lead CAV to optimize its
speed profile through the intersection. The cooperation yields
benefits not only to the lead CAV but also to the rest of the
platoon, as the UHVs and the ego CAV track the speed profile
of the lead CAV. Such benefits in terms of energy efficiency
and mobility are realized in a few previous studies. Research
[4] examined a mixed traffic platoon consisting of a leading
CAV and n following UHVs and showed that the mobility
and fuel consumption of the entire platoon are improved
by controlling the lead CAV. Similar research [5] developed
frameworks for multiple CAVs to pass the intersection on
a green phase and save fuel. Indeed most research on the
interaction of mixed platoons with intersections focuses on
fuel consumption, and does not account for the uncertain
motion of UHVs.

While the V2I communication can be used to optimize
the trajectory of the lead CAV, the V2V communication
between the lead CAV and the ego CAV allows to optimize
the performance of the ego CAV in the mixed platoon. In
this case, the choice of control modes of the ego CAV
needs to be investigated. Without connectivity, automated
vehicles (AVs) may use adaptive cruise control (ACC) [6]
where they use sensors to monitor the immediate predecessor.
ACC typically improves safety over human-driven vehicles,
but can not mitigate oscillations introduced by downstream
vehicles [7]. This limitation can be overcome by Cooperative
Adaptive Cruise Control (CACC) [8] which allows each
CAV to obtain additional information about the predecessor
(such as acceleration) via V2V communication. The main
limitation of CACC is that all vehicles in the platoon must
be CAVs. To reap the safety, driving comfort and energy
efficiency benefits of CACC in mixed traffic, a cooperative
adaptive cruise control with unconnected vehicles (CACCu)
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framework was developed [9]–[11]. In this paper two specific
implementations of CACCu are considered; one that features
a linear feedback controller (Linear-CACCu) [9], and one
that uses an adaptive model predictive controller (A-MPC-
CACCu) [10]. The latter accounts for uncertain factors such
as signal phase change and number of unconnected vehicles
in the platoon. While A-MPC-CACCu generally outper-
forms Linear-CACCu for systems with large uncertainty, A-
MPC-CACCu requires more computation effort than Linear-
CACCu. Previous research on the CACCu only focused on
the control of the ego vehicle at the end of the platoon in
a highway environment, without considering the behavior
of the lead vehicle. Thus, it is necessary to investigate the
synergy between optimizing the speed profile of the lead
vehicle through V2I and using CACCu for the ego vehicle
(see Figure 1).

Fig. 2. Connected Signal and Control Zone for Mixed Traffic
OCA+CACCu Platoon

We proposed a framework to realize cooperative con-
trol between the lead vehicle and ego vehicle as well as
cooperation between the lead vehicle and the connected
intersection for trajectory optimization, aiming at improving
traffic efficiency (travel time) and energy efficiency, as well
as ego vehicle performance in terms of safety and driving
comfort in a mixed traffic platoon, as shown in Fig. 2.
For cooperation between the lead vehicle and the connected
traffic light, a sub-module of an optimal control algorithm
(OCA) [12] was utilized to optimize the trajectory for the
lead vehicle to pass during the green phase of the connected
intersection. The OCA generates an optimal solution under
the hard safety constraints of collision avoidance given the
initial state and final state of the lead vehicle. The car
following behaviors of following UHVs are given by the
intelligent driver model (IDM) [13] for UHVs. The ego
vehicle communicates with the lead vehicle through V2V
communication and is controlled by CACCu.

The remainder of this paper is organized as follows:
Modeling framework section explains trajectory optimization
of the lead vehicle using OCA, model the motion of the
unconnected predecessors, and describes the control modes

for the ego vehicle. Simulation and performance comparison
section describes the real-world urban arterial traffic data
used for our simulation study, and evaluates the performance
of the lead vehicle utilizing OCA and ego vehicles using
ACC, Linear-CACCu, and A-MPC-CACCu. Finally, the find-
ings and future work were summarized and discussed.

II. MODELING FRAMEWORK

A. Mixed Traffic Platoon

A mixed traffic platoon on an urban arterial road with an
intersection is shown in Fig. 2 a. The platoon consists of a
lead vehicle (CAV), followed by one or more unconnected
predecessors (UHVs), and then followed by a CAV referred
to as an ego vehicle. As the mixed traffic platoon moves
through urban arterial roads, the lead vehicle receives and
reacts to Signal Phase and Timing (SPaT) messages from
the connected traffic signals at the intersections. The lead
vehicle utilizes this information to optimize its motion to
pass the intersection in green phase in Fig. 2.b.

B. Lead Vehicle Trajectory Optimization

In the modeling framework, we make the following as-
sumptions about the lead vehicle in a mixed platoon:

• The lead vehicle is a CAV that receives time-to-green
information from connected traffic signals though V2I
communication without packet loss and latency once it
enters control zone.

• The lead vehicle passes through the signalized intersec-
tion without performing lane changes.

• The lead vehicle can follow the acceleration commands
from the controller using Optimal Control Algorithm
(OCA) without any error.

• The control zone spans the entire road segment between
the two intersections. It is noted that the framework
presented in this paper can be generalized to scenarios
where the control zone is only part of the road segment
between two intersections.

When approaching the intersection with a traffic signal
ahead, a human-driven vehicle may behave according to two
scenarios. In the With Signal Change (WSC) scenario, a
human-driven vehicle enters the control zone and experiences
traffic light turning from red to green. Thus, the vehicle
decelerates and stops or almost stops at the stop bar, see
Fig. 3a in the next section. In the Without Signal Change
(WoSC) scenario, the vehicle enters the control zone and
crosses the intersection in the green phase so that it does
not need to decelerate to a stop and crosses the intersection
relatively smoothly, see Fig. 3b in the next section.

Previous research has shown that WSC situations are in
general more safety critical than WoSC situations due to
acceleration fluctuations in the following vehicles [11]. To
avoid the WSC case, an optimal control algorithm (OCA)
[12] was proposed to optimize the trajectory of the lead CAV
in the mixed platoon based on SPaT messages received from
the connected traffic light. Compared with other trajectory
optimization methods which utilize constant acceleration,
the trajectory generated by OCA is optimal under safety
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Fig. 3. Two Examples without (a,b) and with (c,d) Optimal Control
Algorithm (OCA) Optimization (a, c or b, d are the same signal timing)
: Speed Trajectory of the Lead Vehicle through Signalized Intersection

constraints given initial states and final states of the lead
vehicle. We note that the benefits of this algorithm carry over
to the following vehicles as they follow the speed profile of
the lead vehicle through the intersection.

For the lead vehicle, the state within the control zone is
given by

xl(t) =


dl(t)
vl(t)

�
, ẋl(t) =


vl(t)
ul(t)

�
(1)

where t 2 R+ is the time, xl is the vector of position
and velocity of lead vehicle and ul is the control input
(acceleration of the lead vehicle). We impose the constraints:

umin  ul(t) umax, vmin  vl(t) vmax, 8t 2 [t0, t f ] (2)

where [t0, t f ] is the time interval the lead CAV spends in
the control zone; umin and umax are minimum and maximum
values of the control input, and vmin and vmax are minimum
and maximum speeds respectively. Combining functions (1)
and (2), we define the optimization problem:

minimize
1
2

Z
t f

t0
u

2
l
(t)dt

subject to (1),(2)
(3)

The motion of the vehicle can be calculated by solving the
constants of integration which are functions of time and
states, please see [12] for details.

C. Unconnected Preceding Vehicle Maneuvers

For each platoon, there are n unconnected human-driven
vehicles between the lead vehicle and the ego vehicle. We

assume that they follow the lead vehicle through the inter-
section in the same signal phase and without lane changes.
We modeled the UHV motion with the intelligent driver

Fig. 4. Intelligent Driver Model

model (IDM) [13] in Fig. 4. where i represents i
th preceding

vehicles. The acceleration of the preceding UHV i (where i

ranges from 1 to n, see Fig. 2) is given by

ui(t) = ui,max


1� (

vi(t)

vi,d
)s � (

M di,d(vi(t),M vi(t))

M di(t)
)2
�

(4)

M di,d(t) = s0 +max

✓
vi(t)⇤T +(

vi(t)· M vi(t)

2pui,max ·ui,d
), 0

◆
(5)

vi, vi,d and ui are the speed, desired speed and predicted
acceleration of vehicle i; M vi, M di and M di,d are speed
difference, gap and minimum desired gap between vehicle
i and i+1; T is the time headway. The parameters used in
this paper are listed as follows. Acceleration exponent s is
4, jam distance s0 is 5 m, desired deceleration ui,d is 3 m/s

2,
maximum acceleration ui,max is 3 m/s

2.

D. Ego Vehicle Control Mode

We make the following assumptions about the ego vehicle
• The ego vehicle is a CAV equipped with sensors and re-

ceives motion information from the lead vehicle through
V2V communication, see Fig. 2.

• The ego vehicle can utilize three control modes:
– Adaptive Cruise Control (ACC)
– Linear Cooperative Adaptive Cruise Control with

unconnected vehicles (Linear-CACCu)
– Adaptive MPC Cooperative Adaptive Cruise Con-

trol with unconnected vehicles (A-MPC-CACCu)
• The ego vehicle follows the preceding vehicles to pass

the intersection in the same signal phase and without
lane changes.

1) ACC mode: Without connected predecessors ahead, the
ego vehicle is controlled by ACC which attempts to match
the speed of the immediate predecessor whilst keeping a safe
headway shown in Fig. 5.a. The high-level ACC controller
utilizes proportional-derivative (PD) control, and the control
input ue(t) can be written in terms of the spacing error e(t):

ue(t) = ke,pee(t)+ ke,dėe(t) (6)

where ke,p, and ke,d are proportional and derivative gains,
respectively. The spacing error ee(t) = de,d(t) � de(t) is
the difference between desired gap from the immediate
predecessor de,d and the actual gap de. The desired gap
de,d(t) = ve(t) · Te + d0 is defined by the time headway Te,
current speed ve and standstill distance d0. The low-level
controller is modeled by a first-order lag t to the acceleration
command: ȧia(t) =� aia(t)

t + uia(t)
t .
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Fig. 5. Control Modes of the Ego Vehicle in Mixed Traffic Platoon

2) Linear-CACCu mode: The linear-CACCu [9] system
extends the proportional-derivative (PD) controller of the
ACC (6) with a feed-forward filter which utilizes the accel-
eration of the lead vehicle al(t) to predict the motion of the
immediately preceding unconnected vehicle. It applies the
linearized optimal velocity model (OVM) [14] to estimate the
car-following behavior of the preceding unconnected vehicles
(Fig. 5 b). The control output ue(t) for the Linear-CACCu
is defined as:

ue(t) = ke,pee(t)+ ke,dėe(t)+ f (al(t)) (7)

We note that the feedforward filter f (·) is calculated using
Laplace transforms by setting the spacing error ee(t) to zero.
For further details of this calculation see [11].

3) A-MPC-CACCu strategy: The rule-based design of
linear-CACCu may limit performance benefits if the pa-
rameters of unconnected predecessors change significantly
with time. To overcome this, A-MPC-CACCu [10] uses
an adaptive model predictive controller to estimate the
dynamic parameters of unconnected vehicles online (Fig.
5.c). A second-order model in Autoregressive Exogenous
(ARX) structure is utilized to estimate the dynamics of
unconnected predecessors in the mixed traffic platoon. A
Kalman filter then used to predict the acceleration of the
immediate predecessor every time step (which is 0.1s in
our work). Afterwards, the model predictive control solves a
rolling-horizon optimization problem at every time step. The
objective function is designed to reduce spacing error ee,
speed difference ev from the immediately preceding vehicle,
and acceleration of the ego vehicle ae:

Minimize
N

Â
i=0

[wpe
2
e
(t + iDt)+wve

2
v
(t + iDt)

+waa
2
e
(t + iDt)+wuu

2
e
(t + iDt)+re2]

subject to epmin � e  ep  epmax + e;
uimin � e  ue  uimax + e;
u
0
imin

� e  u
0
e
 u

0
imax

+ e;

(8)

where wp, wv, wa, and wu are weights of spacing error ee,
speed error ev, ego vehicle acceleration ae, and acceleration
command ue, respectively, e is a slack variable for the penalty
term, r is the penalty weight, and N is the time horizon. In
this paper, we set weights wp = 1, wv = 3, wa = 3, wu = 9,
r = 10000. The maximum and minimum spacing error are
2 m and �2 m. The maximum commanded acceleration and
deceleration are 3 m/s2 and �3 m/s2. The limitations on the
jerk are 1 m/s3 and �2 m/s3, respectively. The time horizon
N is 30, corresponding to 3 s. These parameters are derived
from [10].

III. SIMULATION AND PERFORMANCE EVALUATIONS

A. CACC Field Operation Test Dataset

The CACC Field Operation Test (FOT) dataset [15] was
collected from the Province of Noord-Holland in the Nether-
lands. It consists of GPS coordinates and velocities of 3-
vehicle and 7-vehicle platoons as well as the traffic signal
phases and timing of the intersections. A 3 km straight
road segment containing one intersection with a connected
traffic signal from FOT dataset shown in Fig. 6 was used
in this study. Five different scenarios based on ego vehicle
control modes and SPaT information were recorded. We
considered two scenarios for the unconnected preceding
vehicles (UHVs) in the platoon. In the baseline data, the
lead vehicles and preceding vehicles are human-driven.

Fig. 6. Selected Segment of CACC Field Operation Test Dataset [15]

B. Simulation Settings

The FOT dataset recorded human-driven platoons with 10
WoSC (without signal change) scenarios and 6 WSC (with
signal change) scenarios shown in Fig. I. For each scenario,
the platoon was simulated for different numbers (n = 1,2,3)
of preceding vehicles. In all, the ego vehicles of human-
driven platoons experienced 26 runs for the WSC scenario
and 10 runs for the WoSC scenario shown in TABLE II.

The ego vehicle was simulated in Matlab with Simulink
and PreScan [16] using an Audi A8 as the vehicle model. To
obtain a high-fidelity response from controller commands, a
lower-level controller received acceleration commands from
ACC, CACC, and CACCu controllers and transformed these
to throttle/brake commands for the PreScan vehicle model.
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C. Lead vehicle performance

Previous research has shown that reducing fluctuations
in the lead vehicle’s acceleration benefits the safety of the
following vehicles in the platoon [11]. With this in mind, we
monitored the performance of lead vehicles in terms of RMS
acceleration, minimum speed, travel time, distance and fuel
consumption (see TABLE I)

The two examples of the lead vehicle behavior in WoSC
and WSC scenarios are shown and compared in Fig.3.
Human driven lead vehicle profiles for the WSC and WoSC
scenarios taken from the FOT dataset are shown in Fig. 3a
and b respectively. Fig. 3a shows the speed profile of the
lead vehicle in WSC situation when the lead vehicle slowed
down and stopped after the traffic light turn red (red dashed
line) and then accelerated from a stop when the light turned
green (green dashed line). If instead of a UHV we have a
CAV that uses SPaT information and OCA (as in Fig. 3c) the
CAV slows down pre-emptitively before the light turns red,
and as a result can cross the intersection without stopping.

For the WoSC situation in Fig. 3b, the human driven vehi-
cle arrives at the light after the light turned green, so in this
scenario the human-driven vehicle decelerates to 15 m/s in
the red phase. Here a CAV with OCA can also improve upon
the human-drivers performance by decelerating preemptively
(Fig. 3d.), and cross the intersection at over 20 m/s as a result.

TABLE I
PERFORMANCE COMPARISON OF LEAD VEHICLES IN TWO TRAFFIC

SITUATIONS WITHOUT AND WITH OCA OPTIMIZATION

Lead
Vehicle

Acceleration
RMS

Speed
Min
[m/s]

Travel
Time
[s]

Distance
[m]

Fuel
Consumption

[ml]
With Signal change (WSC, 10 scenarios)

Human
Driven 0.49 3.6 167 3200 169

OCA 0.19 15.7 148 3200 157
Without Signal change (WoSC, 6 scenarios)

Human
Driven 0.27 17.2 146 3309 171

OCA 0.08 20.8 136 3311 179

The performances of lead vehicles from mixed traffic
platoons in two traffic situations with OCA optimization
were compared with performances of the human-driven
vehicles from the FOT dataset (without OCA optimization)
in TABLE. I. For baselines which are real-world data, the
fluctuation in acceleration of the lead vehicle was smaller in
WoSC situation than that in WSC situation, which brought
significant benefits to the travel time and distance. It is noted
that the fuel consumption of the platoon with human-driven
preceding vehicles in WoSC scenario was higher than that in
WSC. The reason is that the human drivers in WoSC scenario
drove a longer distance than in WSC scenario.

With OCA optimization, the lead vehicle was able to
reduce its RMS acceleration by a factor of 2-3 compared
to the experimental human-driven data. This applies to both
WSC and WoSC scenarios. Besides, the minimum speed

was improved by a factor of 2-3 with OCA in WSC cases
and a factor of 1-1.5 in WoSC cases. We note that for our
scenarios the minimum speed improved and OCA allowed
the lead vehicle and its following vehicles pass through
the intersection in a green phase. The travel time for OCA
improved by 10% if there was a signal change, and by 5�7%
when there was no signal change. The fuel consumption
improved by around 10% when there was a signal change,
while in the scenarios where the signal did not change, the
lead vehicle with OCA consumed more fuel than the human-
driven vehicle. This is due to the lead vehicle typically
keeping higher speed through the intersection to save travel
time.

D. Ego vehicle performance

In this section, we assess the cumulative impacts of the
OCA and CACCu strategies on the performance of the ego
CAV at the end of the platoon (Fig. 1). We considered
the spacing error RMS, acceleration RMS, and total fuel
consumption of the ego vehicle which relate to safety, driving
comfort and energy efficiency respectively.

TABLE II
EGO VEHICLE PERFORMANCE OF PLATOONS IN WITH AND WITHOUT

SIGNAL CHANGE (WSC AND WOSC) SITUATIONS WITH OR WITHOUT

OPTIMAL CONTROL ALGORITHM (OCA) OPTIMIZATION

Control Mode Spacing
Error RMS

Acceleration
RMS

Fuel
Consumption [ml]

OCA OCA OCA
W/O W W/O W W/O W

WSC (26 scenarios; 10, 8, 8 runs for n*= 1, 2, 3, respectively)
A-MPC-CACCu 0.82 0.63 0.69 0.24 174 153
Linear-CACCu 1.01 0.28 0.68 0.24 175 154
ACC 2.10 0.63 0.71 0.24 177 154
Human-driven N/A N/A 0.77 N/A 179 N/A

WoSC (10 scenarios; 6, 2, 2 runs for n = 1, 2, 3, respectively)
A-MPC-CACCu 0.66 0.62 0.41 0.16 192 183
Linear-CACCu 0.67 0.28 0.41 0.18 193 184
ACC 1.17 0.45 0.43 0.18 196 184
Human-driven N/A N/A 0.45 N/A 196 N/A
* The number of preceding vehicles.

To investigate the ego vehicle performance in WSC and
WoSC cenarios, the CACCu controlled ego vehicles were
compared with real world data (human-driven vehicles) and
ACC. The comparisons of ego vehicles in different control
modes without OCA optimization in WSC and WoSC sit-
uations are shown in TABLE II. It is noted that results of
human-driven vehicle are taken from the experiment. From
Table II, in the WSC scenario, the CACCu algorithms out-
performed ACC in all metrics. The most significant benefits
occur in the scenario where OCA is not implemented on
the leader vehicle, since the lead vehicle’s speed changes
dramatically as it passes through the intersection, see Fig.
3a. In the scenario where OCA is implemented, the linear
CACCu provides significant benefits over ACC in spacing
error, however the CACCu algorithms provide less benefit
over ACC in this case since the leader’s speed profile is
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smooth, as in Fig. 3c. Similarly, for the WoSC runs, the
CACCu algorithms outperform the ACC algorithm when
OCA is not used. In the case OCA is used, Linear CACCu
performs best, while the A-MPC-CACCu performs worst
in terms of spacing error, and both CACCu controllers
outperform ACC in the rest of the metrics.

Overall we see that Linear-CACCu allows the ego vehicle
to consistently outperform ACC regardless of whether the
lead vehicle of the platoon is using OCA. Additional benefits
for the ego vehicle can be extracted by A-MPC-CACCu
when the lead vehicle is not running OCA.

E. Platoon performance

Apart from benefits gained by single vehicles in terms
of safety, driving comfort and energy efficiency, the whole
platoon performance (travel time and fuel consumption) was
improved with trajectory optimization of lead vehicles. The
travel time of the vehicles in the platoon for the three control
modes (ACC, Linear-CACCu, A-MPC-CACCu) through the
intersection decreased by 10% from 163 s to 146 s on average
with introduction of OCA. Moreover, the fuel consumption
of the vehicles in the platoon was reduced by around 13%
on average when OCA was used (183 ml to 149 ml for A-
MPC-CACCu, 183 ml to 160 ml for Linear CACCu and 184
ml to 160 ml for ACC).

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we improved the operation of mixed traffic
vehicle platoons on sparse urban arterial roads by integrating
an optimal control algorithm (OCA) and cooperative adaptive
cruise control with unconnected vehicles (CACCu). In this
framework, the lead connected automated vehicle (CAV)
used signal phase and timing (SPaT) information from con-
nected traffic lights to optimize its travel time and energy
consumption using OCA. Then the ego CAV located at the
end of the mixed platoon (Fig. 1), used basic safety message
(BSM) information from the lead CAV to further optimize
its motion by minimizing spacing error, acceleration, and
energy consumption. Simulations using multiple runs of data
collected in the Netherlands FOT dataset were used to show
the performance benefits of OCA+CACCu algorithm, which
carry over to the entire platoon, including the unconnected
human-driven vehicles.

We note that the study considers platooning in urban
arterial roads without accounting for surrounding traffic. In
congested situations where multiple vehicles travel around
the OCA+CACCu platoon, the behaviors of the lead vehicle
(and in turn other members of the platoon) may be influenced
by surrounding vehicles. In such situations it might not
be possible for the entire platoon to pass the intersection
during a green phase as dictated by the OCA algorithm. The
size of the platoon will play a critical role in the platoon’s
ability to pass the intersection. We shall design decisions for
the CAV to merge into platoons or split existing platoons.
Such optimized decisions would increase the applicability
and benefits of mixed traffic platoons.
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