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We propose a new method to compute magnetic surfaces that are parametrized in
Boozer coordinates for vacuum magnetic fields. We also propose a measure for quasi-
symmetry on the computed surfaces and use it to design coils that generate a magnetic
field that is quasi-symmetric on those surfaces. The rotational transform of the field
and complexity measures for the coils are also controlled in the design problem. Using
an adjoint approach, we are able to obtain analytic derivatives for this optimization
problem, yielding an efficient gradient-based algorithm. Starting from an initial coil set
that presents nested magnetic surfaces for a large fraction of the volume, our method
converges rapidly to coil systems generating fields with excellent quasi-symmetry and low
particle losses. In particular for low complexity coils, we are able to significantly improve
the performance compared to coils obtained from the standard two-stage approach,
e.g. reduce losses of fusion-produced alpha particles born at half-radius from 17.7% to
6.6%. We also demonstl;ate 16-coil configurations with alpha loss < 1% and neoclassical
2
f

transport magnitude 62 less than approximately 5 x 1077,

1. Introduction

Single-stage coil design, in which one optimizes for the geometry and currents of
electromagnetic coils at the same time as the target magnetic configuration, is a promising
approach for stellarator design as it considers physics goals and engineering constraints
simultaneously (Giuliani et al. 2020; Henneberg et al. 2021; Wechsung et al. 2021; Yu et al.
2022). It has the potential to yield designs with coil systems that are easier to manufacture
and position. In the single-stage method, the optimization objective must explicitly favor
both the existence of nested flux surfaces for a large fraction of the plasma volume, as
well as good particle confinement. This is empirically known to be more complicated than
in the more common two-stage coil design strategy (Merkel 1987; Drevlak 1998; Strickler
et al. 2002, 2004; Brown et al. 2015; Zhu et al. 2017; Landreman 2017; Paul et al. 2018;
Singh et al. 2020). One single-stage optimization approach was demonstrated in Giuliani
et al. (2020), based on the near-axis expansion for quasi-symmetry in Garren & Boozer
(1991); Landreman & Sengupta (2018); Landreman et al. (2019); Landreman & Sengupta
(2019). This approach was motivated by the fact that quasi-symmetric magnetic fields
are known to have good confinement properties (Helander 2014; Landreman & Paul
2022). We demonstrated that this single-stage method effectively produced vacuum quasi-
symmetric magnetic fields in the vicinity of the magnetic axis. However, we also observed
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that quasi-symmetry degraded with distance from the magnetic axis. The purpose of the
present article is to introduce an optimization objective that targets quasi-symmetry at
an arbitrary number of surfaces, potentially far from the magnetic axis. We show that
this formulation results in coil systems producing a vacuum field with excellent quasi-
symmetry for a large fraction of the plasma volume.

In order to optimize for quasi-symmetry on a given surface, we need to measure
the degree of departure of the magnetic field from quasi-symmetry, which we do using
Boozer coordinates (Boozer 1981). The first contribution of the present article thus is a
new numerical method for computing magnetic surfaces directly parametrized in Boozer
coordinates. It relies on a partial differential equation (PDE) directly derived from to
contra- and covariant expressions for the field in Boozer coordinates. This PDE can be
discretized either as a balanced or over-determined system of nonlinear equations, solved
exactly or in a least squares sense, respectively.

The second contribution of this article is the formulation of a single-stage optimization
problem for highly accurate quasi-symmetry and a target rotational transform on an
arbitrary number of surfaces subject to engineering constraints for the coils. Penalty
terms are constructed to favor simpler coils by constraining their minimum pairwise
distance, length, maximum curvature, and mean squared curvature, similar to constraints
used for two-stage coil design (Zhu et al. 2017; Kruger et al. 2021; Singh et al. 2020). We
consider zero-thickness filament coils for simplicity, but our approach can be generalized
to coils of finite thickness, e.g., following the method proposed in Singh et al. (2020).

We rely on gradient-based optimization tools for efficient and robust convergence to
minimizers. To compute the required gradients in an efficient and accurate manner, we use
an adjoint sensitivity approach. As a result, the performance of the method to compute
gradients is independent of the number of coil degrees of freedom, which is of the order
of hundreds in our example.

We apply our method to improve a set of coils obtained from the classic two-stage ap-
proach. These coils were optimized to approximate the precise quasi-symmetric magnetic
fields recently discovered in Landreman & Paul (2022). Our approach allows us to improve
quasi-symmetry on surfaces compared to the results from the two-stage approach, without
increasing our measures for coil complexity, i.e., maximum curvature, mean squared
curvature, minimum pairwise coil distance, and total coil length. For this particular
example, our approach can be viewed either as a third stage improving an existing design
found from the standard two-stage approach, or as single stage coil optimization approach
using a good initialization for the coils.

The resulting configurations have impressive confinement, even though they only rely
on 16 coils. When the three longest coil configurations are scaled to a reactor, losses of
collisionless fusion-produced alpha particles born at half-radius are found to be below
1%. Moreover, the magnitude of the 3D neoclassical transport metric 62142 (Nemov et al.
1999) is less than approximately 5 x 107%. To our knowledge this value is smaller than
in any previous stellarator, smaller even than in tokamaks (Figure 15 of Spong (2015)).

The structure of this article is as follows. Sections 2 and 3 focus on our new numerical
method for computing surfaces in Boozer coordinates: in Section 2, we introduce a
parametrization to approximate toroidal surfaces, and in Section 3 we introduce the
partial differential equations that the surfaces in Boozer coordinates satisfy, and the
numerical method used to solve them. In Section 4, we define the coil optimization
problem, which combines our surface computation approach, the physics goals of quasi-
symmetry and a target rotational transform, with standard engineering constraints. In
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Section 5, we study the performance of our new optimization scheme for the design of a
quasi-axisymmetric magnetic configuration, and we summarize our work in Section 6.

2. Surface parametrization

We approximate a generic toroidal surface X that satisfies ngp-rotational symmetry
with a finite-dimensional surface X(p,0) : [0,1)2 — (z,y,2). The parametrization of
Xs(p,0) detailed below directly incorporates the discrete rotational symmetry, making
it efficient and convenient to work with. For mpo1, neor = 0, it is given by

x = cos(2mp)E — sin(2mp)y
y = sin(2m)& + cos(2mp)y
2Mpol 2ngor

z = Z Z Zi,jwi(e)vj(@)

i=0 ;=0
with
TL

T = Z in,jwi(e)%‘(@) an Z Z Yi,jwi(0)v; ()

i=0 j=0 i=0 ;=0
and the basis functions

w(f) = (1, cos(27m8), sin(27h), . . ., cos(2mmpo18), sin(2wmperf))

v(p) = (1, cos(2mnepp), sin(2mnge), - - ., cos(2mnpNord), Sin(2TnepMord)).

The functions &, ¢ and z are linear combinations of tensor-product basis functions, which
are ng,-periodic in . In order to achieve rotational symmetry around the {z = y = 0}
axis, we apply a rotation to £ and g, which ensures that X is ng,-rotational symmetric,
as we show explicitly in Appendix A.

For stellarator-symmetric surfaces, we additionally require that

x(‘pv 9) = ff(—% _0)
y(e,0) = —y(—p, —0) (2.1)
Z(‘Pv 9) = —Z(—(p, _9)

This is achieved by removing the basis functions in the z, y, z expansions that do
not satisfy (2.1). In particular, basis functions of the form sin(2mnng,¢) cos(2nm6) and
cos(2mmng,p) sin(2nmwd) are removed from . Similarly, basis functions of the form 1,
sin(2mmng) sin(2nmd), and cos(2mngmp) cos(2nmh) are removed from § and z. This
results in a surface representation that has ng = 3[2n¢orMpol +Mpol + Nor + 1] —2 degrees
of freedom. In the remainder of this manuscript we only consider stellarator-symmetric
surfaces. Note that the work described below is not fundamentally restricted to this
surface parametrization and others can be used. For example, we have also used a surface
parametrization where the geometric degrees of freedom correspond to pointwise solution
values and spatial derivatives are obtained using spectral differentiation matrices.

Note that the surface parametrization used, e.g., in VMEC (Hirshman & Whitson
1983) uses a parameterization in cylindrical coordinates X, (¢,6) = (r(¢,0), ¢, z(¢,0)).
This parameterization has fewer degrees of freedom to represent surfaces, but it is
inappropriate for our purposes because it cannot directly be used to parametrize a surface
in Boozer coordinates. This is because the toroidal angle used is the cylindrical angle ¢,
which does not correspond to the Boozer toroidal angle . It is not the choice of coordinate
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system that is the issue as either cylindrical or Cartesian coordinates could describe a
surface; we cannot directly use the VMEC representation due to the incompatibility of
Boozer ¢ and cylindrical ¢ as described above.

3. Computing surfaces

Given a magnetic field with flux surfaces, Boozer coordinates (¢, 8) satisfy
B=V¥ xV0+:Vp x VY, (3.1)

where ¥ is the toroidal flux, derivatives are taken with respect to Cartesian coordi-
nates (D’haeseleer et al. 2012), and we assume that ¢ # 0. Note that (3.1) does not apply
in regions in which the magnetic field lines are stochastic and fill a volume. In a vacuum,
the magnetic field can be written as

B =GV, (3.2)

where G is a constant. This is because V x B = 0 and V - B = 0 implies that B = VV
for some potential V' = Gg. Taking the dot product of both sides of (3.1) and (3.2) with
each other and dividing by G, we obtain

2

B
VU -V x V= Xk (3.3)
where the field strength is given by B := ||B]||. Using (3.3) with the following dual
relations (Boozer 2005),
G 0¥ G 00X G 00X
Wi = — W _— = — _— = —
Ve xV 52 ETR \% xV9B2 a5 aLndVHXVLpB2 57
we conclude that surfaces represented in Boozer angles must satisfy
ox ox
GB—|B|?|(=—=+:=]=0 3.4
B2 (52 + 55 ) o (3.40)
V(X) — Viarget = 0. (3.4b)

Here, B is the magnetic field on X. In (3.4b), V(X)) is the volume enclosed by X' and
Viarges € R\{0} is a given target volume. The label constraint (3.4b) is necessary to make
(3.4) a closed system. For the volume, we use the formula

IR oY 0x

The unknowns in (3.4) are G € R, the surface X, and the rotational transform ¢. The
solution to (3.4) is a magnetic surface for the field B that is parametrized in Boozer angles.
In principle, we know that G = ng, (/) 2,@’;1 Ij, for an exact stellarator symmetric
magnetic surface, where [Ij is the current in the kth coil. However, we include G as an
unknown since this may not be true for finite dimensional approximations of (3.4). As
illustration of our parameterization, we show a surface that is everywhere tangent to a
magnetic field generated by a subset of the NCSX coils in Figure 1, as well as curves of
constant Boozer angle ¢, 6 on that surface. The Boozer angles ¢, 6 increase, respectively,
the long and short way around the toroidal surface.

In the next sections, we discuss the nonlinear system resulting from replacing X' with
the finite-dimensional surface Xs(p, 6) from section 2 and enforcing (3.4) on a grid of
collocation points. Depending on the number of degrees of freedom in the parametrization
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FicUre 1. Left: Collocation points on a surface with nir = mpot = 3, grouped by color.

When stellarator symmetry is assumed, we choose one green, blue, purple, and red grouping
of collocation points. Choosing points from two groups of the same color results in redundant
equations. The y and z components of the residual at the origin are always included as the =
component is zero due to stellarator symmetry. Right: Lines of constant Boozer angles ¢, 6 on a
magnetic surface of the field generated by a subset of the NCSX coils (section 6 of Giuliani et al.
(2020)). Arrows indicate increasing ¢ and 6, which respectively follow the long and short way
around the torus. Note that the toroidal Boozer angle is not equal to the cylindrical toroidal
angle.

and the number of collocation points, we either obtain a balanced system where the
number of degrees of freedom is the same as the number of nonlinear equations, or an
overdetermined system where the number of equations is larger than the number of
unknowns. The derived PDE holds only in regions of the magnetic field where Boozer
coordinates can be constructed. Despite this, we show an approach to nevertheless
compute surfaces in regions of the magnetic field where nested flux surfaces do not exist.

3.1. Balanced system

We obtain a balanced system by using a parametrization ¥, of ¥ with unknowns
s € R™ | requiring (3.4) to be satisfied at the same number of collocation points, i.e.,

0., 0%
2 8,1, s ) _ -
\ ( 9y + 50 )—O, V(i,j) €C

V(Zs) - Vtarget = 07

r;j(s) =GB ; — B

(3.6)

where C is the set of indices of collocation points on a regular grid, X ; ; = X(v; j,0i;),
and V(X)) is the volume enclosed by the surface, computed as

1 05, 05, .
V(ES) = W Zzzs,i,j . < 8(‘0 J X 20 j> for ('L,]) S C/, (37)

g

where C’ is a set of quadrature points on a regular nfp x ny grid that is possibly different
from the ones used by the collocation method C to ensure an accurate computation of
the volume enclosed by the surface. The equations (3.6) require that the residual at a
set of collocation points (¢; ;,6; ;) be zero. We place a grid of (2nor + 1) X (2mper + 1)
equispaced collocation points on [0, 1/nng,) X [0, 1) and refer to surfaces that satisty (3.6)
at each point on that grid as BoozerExact surfaces.

Assuming stellarator symmetry, a number of these points are redundant and we
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choose a subset of them. First, the z-component of the residual at the quadrature point
associated to the origin, ¢ = j = 0, or ¢ = 6 = 0, is always zero for all surfaces, so
this equation can be ignored. To see why this is the case, note that the z-component of
stellarator symmetric magnetic fields is zero when ¢ = 6 = 0. Similarly, differentiating
the first equation in (2.1) with respect to ¢ or 6 shows that the z-component of the
surface tangents are zero when ¢ = § = 0. Second, if we include (y; ;,6; ;) then the
collocation point associated to (—¢; ;, —0; ;) is unnecessary. This is because the residual
evaluated at (y; j,0; ;) is the residual at (—¢; ;, —6; ;) subject to a reflection. This is
illustrated on the left in Figure 1, where the collocation points are grouped by color.
We are free to choose one green, blue, purple, and red grouping. Choosing points from
two groups of the same color would result in redundant equations. In all examples, we
place collocation points on [0,1/2ng,) % [0,1) from zones la, 2a, 3a, and 4a, resulting in,
respectively, n, = nor + 1 and mg = 2mpo + 1 quadrature points in the toroidal and
poloidal directions (before removing redundant quadrature points in group 3b and at the
origin).

After removing the redundant collocation points, the number of equations that must
be satisfied is

3[2n40rMpol + Mpol + Ngor + 1] — 1 + 1 = 3[2n40:Mpol + Mpol + Ngor + 1]. (3.8)

This is the same as ngs+2, the number of geometric degrees of freedom in the parametriza-
tion ng with ¢ and G. Since this is a balanced system of nonlinear equations, we can use
Newton’s method to solve it.

3.2. Owerdetermined system

As we will show in numerical examples, the above balanced approach can fail to con-
verge when the magnetic field lines have chaotic regions and islands. For such problems,
we propose an alternative approach in which we relax the requirement that the residual
be zero everywhere. Instead, we compute a surface that solves (3.4) in a least-squares
sense. That is, it minimizes

£8) = 5 S rsa I + 50 (V(2) = Varser)* (39)

Here, the nonlinear least squares objective contains the sum of squares of (3.4) at a
number of collocation points with a penalty term with weight w > 0 to approximately
enforce the surface volume condition (3.4b). The first-order optimality condition for a
minimizer of f is

Vsf =0 (3.10)
and the optimization problem can be solved using a Levenberg-Marquardt or New-
ton’s method. In numerical experiments, we typically first compute a solution with
the Levenberg-Marquardt method, which is known to work robustly for nonlinear least
squares problems (Nocedal & Wright 2006). If the stationarity condition (3.10) is not
satisfied to sufficient precision, then we further improve the solution using a few steps of
Newton’s method. We refer to surfaces that satisfy (3.10) as BoozerLS (“Boozer Least
Squares”) surfaces. Note that the BoozerLS surface has similarities with the quadratic
flux minimizing (QFM) surfaces of Dewar et al. (2010). QFM surfaces are obtained by
finding surfaces so that (B - mn)? is minimized on them. This results in a surfaces that
are approximately tangential to the magnetic field. Surfaces that satisfy (3.4a) have the
stricter requirement that the magnetic field must be aligned in the direction %—E + L%
and not just any tangential direction. In all examples, we place equispaced coﬁocation
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points on [0,1/2ng,) x [0, 1), resulting in respectively n, = nior + 6 and mgy = 2mp1 + 6
quadrature points in the toroidal and poloidal directions.

3.3. Example: Surfaces of an NCSX-like magnetic field

In this section, we use a challenging magnetic field to study the behaviour of the
BoozerExact and BoozerLS approaches for computing surfaces. Specifically, we use the
18 nonplanar coils and currents, corresponding to the CO9R00 boundary configuration,
of the national compact stellarator experiment (NCSX) to generate a vacuum magnetic
field. The original NCSX design included planar toroidal and poloidal field coils that we
do not use here. We have also previously considered this set up in section 6 of Giuliani
et al. (2020). The field is challenging as it does not have nested flux surfaces everywhere,
and presents an island chain in the neighborhood of the low-order rational ¢ = 3/7. The
magnetic field B on the surface X' in (3.4a) is evaluated using the Biot-Savart law since
we are working with vacuum fields. Newton’s method requires the Jacobian of (3.6) or
(3.10), which are functions of the magnetic field and its first spatial derivatives for (3.6),
and of its first and second spatial derivatives for (3.10). Since the field is computed with
the Biot-Savart law, we have explicit formulas to compute these quantities.

Due to the local convergence properties of the Newton and Levenberg-Marquardt
algorithms to compute surfaces, they require initializations that should not be too far
from the target surface. We use a continuation approach, i.e., we first compute a surface
close to the axis, i.e., with a small value of Viarget. For that purpose, we generate a
toroidal surface centered on the magnetic axis with a fixed minor radius. This does
not correspond to a magnetic flux surface. However, in the neighborhood of the magnetic
axis it is typically close enough for Newton’s method to converge. We then use previously
computed surfaces as initialization for finding the surface for the next larger Viarget-

In Figure 2a, we show cross sections of surfaces obtained with the BoozerExact
approach, i.e., using the same number of unknowns as equations. In particular, we solve
(3.6) with mpo1 = nyor = 11. As can be seen, when the Poincaré plot suggests the existence
of magnetic surfaces, the BoozerExact approach converges to surfaces that align well with
the Poincaré plot. In chaotic regions or regions containing magnetic islands, the approach
may not converge, or it may find self-intersecting surfaces (as shown in red in the figure).

We next show that the BoozerLS approach is more robust in the presence of islands
and chaotic regions. We again use mpo = tor = 11 and the volume constraint penalty
w = 1000, which results in a small relative error in the volume contained by the surface,
ranging from 107° to 107°. The resulting cross sections are shown in Figure 2b. It
can be seen that when the Poincaré plot indicates the existence of good surfaces, the
BoozerLS surface cross sections visually coincide with the Poincaré plot and with the
cross sections obtained with the balanced BoozerExact approach. In other regions, the
BoozerLS approach results in layered smooth surfaces that do not have self-intersections
(green curves). BoozerLS surfaces can either be computed using a standard continuation
procedure, or alternatively, using possibly self-intersecting BoozerExact surfaces as initial
guesses.

Finally, we numerically show that BoozerExact surfaces, i.e., solutions to (3.6), are not
necessarily unique in the presence of chaos. This is more of theoretical interest than a
fundamental problem as this is still a practical approach for computing magnetic surfaces
when they exist. In addition, we will show in section 4 that it also can be used to optimize
coils for quasi-symmetry. In Figure 2¢, we show two BoozerExact surface cross sections
with the same target volume enclosed, Viarget = 1. The red surfaces in Figure 2a and c
are the same. The cyan cross section in Figure 2c is a BoozerExact surface initialized
from the cyan BoozerLS surface in Figure 2b. It is still possible that the BoozerLS solver
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F1GURE 2. Poincaré plots (in grey) and surface cross sections for the field generated from a set
of NCSX modular coils. at ¢ = /3. In a), we show cross sections of surfaces computed with
the BoozerExact approach (in red and black). The red cross section is self-intersecting as it is
close to an island chain. In b) we show cross section obtained with the BoozerLS algorithm (in
black, green and cyan), which results in nested surfaces that do not self-intersect in the presence
of islands. The red and cyan cross sections in a) and b) have the same target surface label, but
are computed using BoozerExact and BoozerLS formulations, respectively. Green cross sections
correspond to additional surfaces not shown in a). In ¢), we show two BoozerExact surfaces that
have the same enclosed surface volume.

does not converge or for a self-intersecting BoozerLS surface to be found. However we
find that this happens less frequently than it does for BoozerExact surfaces.

To further study the BoozerLS method in the presence of islands or chaotic fields,
we examine the behavior of the residual as the number of Fourier modes (ngor, Mpol)
and collocation points used in the parametrization of the surface increases (Figure 3).
As the number of degrees of freedom and collocation points in Xy increase, the residual
decreases. However, this is only true for surfaces that do not pass through island chains.
In the neighborhood of the island chain, we observe that the residual does not decrease
with increasing surface complexity and appears to stagnate. This hints at an approach
to optimize for magnetic fields without islands: adding the square of the residual at the
collocation points of the BoozerLS surfaces to the objective function. This approach is
not used in the coil optimization discussed next, which relies on BoozerExact surfaces.
However, it will be the subject of future work.

4. Optimization for quasi-axisymmetry on surfaces

To target quasi-symmetry on magnetic surfaces within an optimization problem, we
need a measure of quasi-symmetry on a given surface. For that purpose, we recall that
the field strength B := ||B|| of a quasi-axisymmetric field on a magnetic surface in Boozer
coordinates only depends on the angle 6. This motivates us to consider a decomposition
into a quasi-axisymmetric and non-quasi-axisymmetric component

B(¢,0) = Bas(0) + Buon-gs (¢, 0)-

This decomposition is not unique, and we choose Bgg(#) such that it is closest to the
field strength B when measured using the Ls-norm (fz:g f? dS)'/?, that is,

1/ng
? B(Xs
pes(e) = 12" B 0) 1
Qs 1/nep
fo H 9%s x #H dp
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F1GURE 3. BoozerLsS residual in the NCSX-lite configuration with increasing number of Fourier
modes used to represent the surface. First figure shows the BoozerLsS residuals as a function of
the surface label. We observe that it stagnates in the neighborhood of ¢« = 3/7, which corresponds
to an island chain. Second figure shows the rotational transform with respect to surface label
for different resolutions. The vertical dashed line approximately indicates the volume for which
L = 3/7 is achieved.

Evaluating these quantities is straightforward because our surfaces are already
parametrized in Boozer coordinates.

4.1. Optimization problem formulation

Now that we are able to compute surfaces and a measure for quasi-symmetry, the
goal is to formulate and solve optimization problems for coils generating magnetic fields
with good quasi-symmetry properties on a large number of toroidal surfaces. We seek a
design with N, independent modular coils, to which stellarator and rotational symmetries
are applied. After application of these symmetries, the stellarator is made up of 2ng, N,
modular coils. Each coil is parametrized with a current and n. geometric degrees of
freedom using a Fourier basis as in Giuliani et al. (2020). All coil degrees of freedom
and their currents are summarized into a vector ¢ € RNeme*tNe  OQur guiding principle
for designing the coils is to target quasi-symmetry of the magnetic field induced by
these coils on IV, surfaces. Each surface uses the parametrization from Section 2 with
ns geometric degrees of freedom. The resulting surface Fourier coefficients, ¢, and G are
summarized into a vector s € RNs"sT2Ns In the optimization formulation below, we
use BoozerExact surfaces (Section 3.1). Finally, the optimization also includes various
(inequality) constraints for the coils that are motivated by engineering considerations,
which are critical in terms of the feasibility and cost-efficiency of a design (Strykowsky
et al. 2009; Neilson et al. 2010; Klinger et al. 2013). These coil constraints are typically
not difficult to compute as they explicitly depend on the coil degrees of freedom. This is
in contrast to the terms that depend on the surfaces, which have an implicit dependence
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on the coil degrees of freedom. The optimization problem is

ceRNcnc+NIcr_/lisIéRN3n5+2Ns J(c’ S) (4.1(1)
subject to (3.6) on each of the Ny surfaces, (4.1d)
1 &
— > =1 (4.1¢)
N k=1
U =, (4.1d)
Rmajor - RO; (416)
Ne
Z Lgl) g Lmax7 (41f)
i=1
Ki € Kmax, izla"'vch (419)
1
—/ K2 dl < Kmse, i =1,..., N, (4.1h)
L9 Jro
HF(Z) - F(j)” 2 dyin for i 7& Js (412)

where the objective function is the average (normalized) non quasi-axisymmetry on the
surfaces X5, k=1,...,Ng:

j(C S) frng i NS fzs,k BHOH'QS;k)(C)S)2 dS
o Ny fzﬁyk BQS,k(C,S)2 ds

The above objective is the average ratio of the squared 2-norm of the field magnitude’s
non-quasisymmetric and quasisymmetric components. The objective is subject to the
surface constraints (4.1b)—(4.1e) and the coil constraints (4.1f)—(4.14). In particular, (4.1¢)
ensures that the average rotational transform across the surfaces is 7. (4.1d) fixes the
toroidal flux on the innermost surface to a given value ¥, and prevents the currents from
going to zero. (4.1e) fixes the major radius on the innermost surface to a given Ry and
prevents the length scale of the stellarator from changing. (4.1f) prevents the sum of the
independent modular coil lengths ZZV:CI Lgl)(c) from exceeding a given value Ly.x > 0.
(4.1g) and (4.1h), respectively, prevent the curvature and mean squared curvature on
each coil from exceeding values kmax and Kpgse. Finally, (4.17) ensures that the coils stay
at least dpyi, > 0 away from one another.

(4.2)
k=1

4.2. Computational aspects

Our computational approach to finding minimizers for (4.1) uses a gradient-based
descent algorithm to minimize the objective. This requires appropriate gradients of the
objective, which take into account the equality PDE-constraints (4.1b) describing the
surfaces, as well as the remaining equality and inequality constraints (4.1¢)—(4.14). To
enforce the PDE-constraints (4.1b), we use the method of Lagrange multipliers (Troltzsch
2010; Giuliani et al. 2020). For that purpose, we consider the objective as a function just
of the coil degrees of freedom, i.e., J(c) := J(c,s(c)) by considering the surfaces as
functions of the coils, i.e., s = s(c) implicitly defined through the solution of (3.6).
Computing the gradient of J with respect to ¢ can be done efficiently by introducing
Lagrange multipliers and using the adjoint method. Computing gradients then requires
solving two systems of equations per surface, both with ng + 2 equations: the nonlinear
system of equations (3.6) and a linear system for the adjoint variable. This method
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compares favorably to finite difference approaches for computing gradients, where the
number of times (3.6) must be solved scales with n., the number of degrees of freedom
used to represent the coils.

The constraints (4.1¢)—(4.14) are enforced approximately using a penalty method, with
penalties that only become active when the constraint is violated. We next detail the
penalty terms used, and discuss a practical strategy to choose and adjust the weights for
these penalties at the end of this section.

For the penalty on the sum of the independent modular coil lengths, we use the
standard quadratic penalty

1 al ’
- @(e) —
5 [max (O, 2LC (c) Lmax>] .

The penalty on the maximum curvature for coil I'¥ is

Ne
Z % / [max (07 Hi(c) - ’imax)]Q dl;,

=l ro

and, as in Giuliani et al. (2020), the penalty on the minimum pairwise coil distance is

1 ) ) 2
52 / / [max(0, dyiy = [T = TD||5)|" dl i (4.3)

#jp(i) ra)

For the equality constraints, we add quadratic penalties to the objective. For instance,
to prevent the currents in the coils from becoming zero, for the toroidal flux ¥ of the
innermost surface we use

1 2

5 (e,9) ~ )",

Here, the toroidal flux through a toroidal cross section of constant Boozer angle ¢ = 0,
Sp—0, of a surface is given by

¥U(c,s) = /S

where A is the vector potential, such that B =V x A, and where we have used Stokes’
theorem to turn the surface integral for the flux into a line integral. Additionally, we
include a penalty term on the major radius Rmajor Of the innermost surface:

1
2
This provides a characteristic length scale to the stellarator configurations we optimize,
and maintains the aspect ratio of the surfaces in the volume. Details of how we compute

this quantity are given in Appendix B. To constrain the mean rotational transform of
the surfaces to be close to a given value 7, we use the penalty term

11 & N\
2<N2Lk(s)—b> ,

S k=1

1
B~ndS:/ A-2x.0.0) a0, (4.4)
o o0

»=0

(Rmajor(s) — Ro)” .

where ¢, is the rotational transform on the kth surface. While here we target the average
rotational transform, other choices are possible in our framework, such as constraining
any number of surface rotational transforms to a given value or interval. Finally, we
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include a penalty that favors coils with an approximately uniform incremental arclength

Ne  r1
S [, - 0y de
i=170

with () = fol |||y de, where € € [0,1) is the angle parameterization of the coil.
This prevents the incremental arclengths from getting close to zero, where the length
penalty term is nondifferentiable. Note that it might not be possible to attain a uniform
incremental arclength at all points on the coil. However, this is not necessary as the
purpose of this penalty is to avoid the above issue. Numerical experiments confirm that
this term does not substantially affect the value of the objective over a wide range of
penalty weights.

We compute analytical gradients of the (reduced) objective J(c), and use the BFGS
method (Nocedal & Wright 2006) with linesearch to find a minimizer. Compared to
steepest descent, BFGS has the advantage that it approximates second-order information
of the objective, which typically results in faster convergence or, in some cases, avoids
that the iteration progress stalls.

To choose appropriate penalty weights, we follow a simple strategy that appropriately
increases these weights throughout the iteration. Namely, if any of the constraints are not
satisfied to within a 0.1% relative tolerance after 3,000 iterations of BFGS, we increase
the weights on the associated penalty terms by a factor of 10. Additionally, we allow for
a maximum number of 45,000 BFGS iterations. However, since we choose a judicious set
of initial weights informed from previous runs, weights are increased rarely.

4.3. Coil optimization for precise quasi-axisymmetry on surfaces

In this example, we revisit a coil set obtained in (Wechsung et al. 2022) with the second
stage of the standard two-stage optimization method, where the goal was to produce the
precise QA magnetic field presented in Landreman & Paul (2022) using a realistic set
of coils. In the first stage, that field was optimized for precise QA on a toroidal volume
with aspect ratio 6, and the average rotational transform in the volume was 0.42. The
stage II optimization found N, = 4 coils with a minimum pairwise coil distance of
dmin = 0.1m, and maximum curvature and mean squared curvature of Kmayx = 5m™?
and Kuyse = 5 m 2. Various coil designs are found where the the sum of the lengths of the
4 base coils is constrained to be below L,y = 18 m,20m,22m,24 m. Here, the major
radius of the device is approximately 1 m. In the following optimization, we use the same
values for dmin, Kmax, Fmse as in the stage II optimization from Wechsung et al. (2022).

Building on the results from this two-stage coil design, we aim at improving the quasi-
symmetry on multiple surfaces uniformly distributed throughout the volume using the
optimization approach presented in the previous section. Since the fields resulting from
the coils in Wechsung et al. (2022) appear to avoid islands, we use BoozerExact (rather
than BoozerLsS) surfaces in this optimization. Should islands appear in the vicinity of
the surfaces over the course of the optimization, the BoozerExact surfaces might begin
to self-intersect and no longer correspond to flux surfaces of the magnetic field that we
are trying to optimize. However, as will be shown, this does not happen in the final
coil designs. Generalizing the formulation (4.1) to BoozerLS surfaces, in order to handle
magnetic fields with islands in a robust manner, and to optimize the coils to eliminate
such islands, will be part of future work.

We first optimize coils using five BoozerExact surfaces uniformly spaced in terms of the
surface label vV, which is proportional to the minor radius. We choose Mpol = Ntor = 10,
and the outermost surface in the initial configuration has aspect ratio approximately
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F1GURE 4. Norm of gradient in each iteration where five surfaces are used. Gradients at the initial
configuration were O(10™*), but we truncate the y-axis in order to better observe convergence
to optimality. Every 3,000 iterations (indicated by dotted vertical lines), the penalty weights are

increased until the (in)equality constraints in (4.1) are satisfied to sufficient precision. Since a
suitable set of initial weights were chosen, this does not occur frequently.
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FIGuRE 5. Two measures of the field’s departure from quasi-symmetry: the ratio
|| Bron—qs||/+/area (left), and the maximum symmetry-breaking Fourier mode (right). In both
plots, the magnetic field is normalized to be 1 T on the magnetic axis. The curves corresponding
to the QA-III coils in the left figure have two line styles: dotted (:---+), and solid (—), which
correspond to configurations resulting from optimization on five and nine surfaces respectively.
The maximum symmetry-breaking Fourier mode is calculated by computing a two-dimensional
FFT of the field strength, and finding the maximum |By, | for n # 0, corresponding to the
Fourier modes introducing variation in ¢. The thick and thin vertical black lines correspond
respectively to the five surfaces used in the initial optimization and the four surfaces added
in the nine surface optimization run. The shaded gray region of the plot corresponds to field
strengths below 50 nT, corresponding to the Earth’s background magnetic field.
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equal to 6, similar to the optimization in Landreman & Paul (2022). We set the target
toroidal flux (equation (4.1d)) and major radius (equation (4.1e)) of the innermost surface
to be the same as the one in the stage II coil set. In addition, we use the same coil
engineering requirements (equations (4.1f)-(4.1¢)) as the ones used in Wechsung et al.
(2022). Each of the four base modular coils is described by a Fourier representation with
16 Fourier modes, which results in an optimization problem with 400 degrees of freedom
corresponding to the geometry and coil currents.

Unlike in Landreman & Paul (2022), we do not directly fix the aspect ratio of the
outermost surface. Instead, we fix the major radius of the innermost surface and the
volume of the outermost surface. We empirically observe that this effectively limits the
variation of the aspect ratio of the outermost surface over the course of the optimization.
Once the coils are optimized on five surfaces, we increase the number of BoozerExact
surfaces to nine by keeping the original five surfaces and introducing four new surfaces
in between, and again run at most 45,000 BFGS iterations.

In the following description of the results, we will refer to the stage I precise QA
magnetic field of Landreman & Paul (2022) as QA-I, the configurations obtained from
the classical stage II coil optimization in Wechsung et al. (2022) for different maximum
coil lengths as QA-II[Ly,ax], and the stage III coils obtained from solving the optimization
problem described in this manuscript as QA-III[Lpax]-

When optimizing on nine surfaces, all coil sets considered in this manuscript reached
optimality, (|[VJ|s < 10719), within the maximum number of iterations and the
gradient was reduced by at least six orders of magnitude. More iterations are required
for longer coil lengths since the optimization problem becomes more ill-conditioned (see
Figure 4). In Figure 5, we provide two similar measures of quasi-symmetry: the norm of
the non-quasisymmetric component of the field magnitude and the maximum symmetry-
breaking Fourier modes. Significant improvements in quasi-symmetry are observed after
optimization on five surfaces. Additional minor improvement is observed when increasing
from five to nine surfaces (Figure 5a). This suggests that for this particular setup, five
surfaces were sufficient to optimize for QA throughout the volume and not just in the
neighborhood of the surfaces.

In our implementation, we use MPI-based parallelism to launch N, tasks that concur-
rently compute surfaces and adjoint variables, meaning that the time taken to evaluate
the objective and its gradient does not substantially increase with the number of surfaces
on which quasi-symmetry is optimized. Since five surfaces might not be sufficient in all
configurations, the possibility of parallelizing the surface and adjoint solves, as available in
our implementation, means that we do not have to compromise on the number of surfaces
used. Our implementation relies heavily on the open-source stellarator optimization
package SIMSOPT (Landreman et al. 2021) where many aspects of this work are
contributed. We also use SIMSOPT’s “optimizable” framework for efficient representation
of our objective (appendix C). In the above example, a typical iteration of BFGS takes
approximately two seconds on Intel Xeon Platinum 8268 processors when optimizing on
five or nine surfaces.

In Figure 5b, we provide the magnitude of the maximum symmetry-breaking mode of
the field magnitude and compare with eight previous configurations taken from figure 6a
in (Landreman & Paul 2022). The shaded area of the figure indicates field magnitudes
that are smaller than the Earth’s background magnetic field (50 pT). We highlight that
after optimization, the symmetry-breaking errors of the QA-III[24] coils improve not only
on the QA-II[24] field, but even on the original QA-I field. This might have a number of
explanations. For example, the dimension of the optimization problem here is 400 and
thus just over three times larger than the dimension of the problem used to design QA-I,
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Lax | Maximum Mean-squared Coil-coil Coil-surf.
curvatures curvatures separation separation
QA-II[18] | 4.33,4.42,4.29,4.47 4.56,4.85,4.90,4.98 0.132 0.271
QA-II[20] | 4.89,4.84,4.67,5.00 4.60, 5.00, 5.00, 5.00 0.113 0.287
QA-II[22] | 5.00, 5.00, 5.00, 5.00 4.17,5.00, 5.00,5.00 0.099 0.303
QA-II[24] | 5.00, 5.00, 5.00, 5.00 3.99,4.92,5.00,5.00 0.099 0.307
QA-ITI[18] | 3.54,4.07,4.74,4.36 5.00, 5.00, 5.00,4.30 0.108 0.239
QA-III[20] | 4.76,5.00, 5.00, 4.97 5.00, 5.00, 5.00, 5.00 0.099 0.272
QA-III[22] | 4.87,5.00,5.00, 5.00 5.00, 5.00, 5.00, 5.00 0.099 0.289
QA-III[24] | 5.00, 5.00, 5.00, 5.00 5.00, 5.00, 5.00,5.00 0.099 0.297

TaBLE 1. Comparison of geometric coil properties obtained from stage II and stage III
optimization for different modular coil lengths. Stage III results are optimized using nine
surfaces. Coil-to-surface distance is computed with respect to the surface used for coil design
in the stage II rows, and the outermost surface on which quasi-symmetry is optimized for the
stage I1II rows.

FI1GURE 6. From left to right, inboard view of the 18 m,20m, 22 m, 24 m coils before and after
optimization. Grey and gold correspond respectively to the stage II coils and stage III coils (nine
surface optimization). The color on the surface corresponds to the magnetic field strength.

which is 120. This also might be because we use discretely exact gradients in this work,
and all coils in the nine surface optimization reached optimality, to very close precision.
This is in contrast to the QA-I field computations, where only finite difference gradients
were used, thus potentially limiting the accuracy of gradients and as a result how much
the objective could be decreased.

In the physics results discussed below, we now only analyze the coils optimized for QA
using nine surfaces. Geometric properties of the final coils after optimization for QS on
nine surfaces are provided in Table 1 and the coils are shown in Figure 6. The full coil set
for the QA-I11[24] configuration is shown in Figure 8 (left). As Lyax increases, the coil-to-
surface separation increases as coils can move further away from the outermost surface,
thereby reducing the effects of the discrete nature of the coils and producing better
quasi-symmetry in the volume. As the coil length increases, the maximum curvatures,
mean-squared curvatures, and the coil-coil separation approach and attain Kmax, Fmsc,
dmin, respectively. We observe that although the surfaces do not change substantially in
the optimization (Figure 9), the coils do (Figure 6).

Cross sections of surfaces in the magnetic field after stage III optimization on nine
surfaces and Poincaré plots are provided in Figure 9 (left), where there are no visible
islands. The rotational transform is approximately constant and equal to 7 throughout
the volume on which we are optimizing, varying between 0.415 and 0.428 for the different
coil lengths. We also compare cross sections of surfaces in the stage II and stage III fields
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Ficure 7. Losses of alpha particles spawned on the surface with normalized toroidal flux 0.25.
We observe significant improvements in confinement for the shorter coils. For Li,ax = 18 m, losses
are reduced from 17.7% to 6.6%, for Lmax = 20 m, losses are reduced from 1.7% to 0.7%. The
stage II and III coils with lengths Li,ax = 22 m, 24 m present comparable particle losses, despite
significantly better quasi-symmetry for the stage I1I coil sets. The previous configurations, shown
in grey, are detailed in Landreman & Paul (2022).

in Figure 9 (right). We observe that although the coils change substantially (Figure 6),
the surfaces do not.

We compute two measures to quantify the confinement properties of our optimized
magnetic configurations: alpha particle losses (Figure 7) and the thermal collisional
transport magnitude ei’f{f (Figure 8 right). The alpha particle losses are calculated as
follows. Each configuration is first scaled to match the minor radius and average field
strength of the ARIES-CS reactor, 1.70m and 5.9T. Alpha particles are initialized
isotropically in velocity space with 3.5 MeV energy, and uniformly on the flux surface
with toroidal flux 1/4 that of the outermost computational surface, corresponding to half
of the effective minor radius. The collisionless guiding-center trajectories are followed
using the SIMPLE code (Albert et al. 2020a,b), and particles are considered lost if
they exit the outermost surface. When considering the confinement of alpha particles,
we see the most significant improvements for the two shorter coil sets. For QA-ITI[18],
losses are reduced from 17.7% to 6.6%, for QA-III[20], losses are reduced from 1.7%
to 0.7%. For the longer QA-III[22] and QA-III[24] coils, the (small) particle losses are
comparable to those for QA-I1[22] and QA-I1[24] respectively, despite significantly better
quasi-symmetry throughout the volume. We note that this imperfect correlation between
quasi-symmetry and energetic particle confinement is consistent with the findings in
Bader et al. (2021), and in Landreman & Paul (2022) where the QA+Well configuration
had lower particle losses than the QA configuration despite worse quasi-symmetry. For
eZ’f/fz (Nemov et al. 1999) we observe significant improvement compared to the coils of
Wechsung et al. (2022), and our procedure is even able to improve the results from the
target field of Landreman & Paul (2022).
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FIGURE 8. Left: The QA-111[24] stellarator and the outermost surface on which quasi-symmetry

is optimized. Right: The thermal collisional transport magnitude eif/fz is significantly reduced; the
QA-III[20], QA-III|22], and QA-III[24] configurations even improve on the QA-I configuration.
The previous configurations, shown in grey, are detailed in Landreman & Paul (2022).
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F1GURE 9. Shown on the left and right with solid lines (—) are cross sections of the nine surfaces
used in the QA-III[18] coil set optimization at ¢ = 0,7/4,7/2 in black, red and blue. Grey lines
on the left correspond to Poincare plots. Shown on the right are cross sections of surfaces in the
QA-II[18] field using dashed lines (- - -). The longer coil sets result in comparable cross sections,
but the difference between stage II and III cross sections become smaller.

5. Conclusions

The main contributions of this work are twofold: the introduction of a novel approach
for computing surfaces directly parametrized in Boozer coordinates (section 3), and the
optimization of a vacuum magnetic field generated by coils for quasi-symmetry on a
number of magnetic surfaces (section 4).

The method we call “BoozerExact surfaces” can be used to accurately compute mag-
netic surfaces when islands or chaos are not present. In contrast, we have shown that the
method we call “BoozerLLS surfaces” is a more robust approach to compute surfaces, even
in regions where nested flux surfaces do not exist. In addition, the BoozerLS residual can
effectively be used to identify regions where the assumption of nested flux surfaces is no
longer valid.
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In the second part of the article, we have shown that our new framework to compute
magnetic surfaces can be used to optimize the geometry and currents of filamentary
coils, with the goal of improving the quasi-symmetry of the magnetic field generated
by these coils. At the moment, this approach requires an initial coil set that already
produces a magnetic field with surfaces that can be parametrized in Boozer coordinates.
In other words, it requires a “warm-start”. In addition, the method only works in a
robust manner if islands or chaotic regions do not appear over the course of the coil
optimization. In section 4.3, we demonstrate that this technique is highly effective when
these requirements are satisfied. In fact, for the QA-I11[24] configuration, we found a coil
design with quasi-symmetry that improved on the quasi-symmetry of the original QA-I
configuration. This could be attributed to the higher dimensionality of our optimization
problem, or our use of analytical gradients as opposed to those obtained using finite
differences. For the shorter coil configuration QA-III[18], we are able to significantly
improve performance compared to coils obtained from the standard two-stage approach:
the thermal collisional transport magnitude ezf/f is reduced by more than an order of
magnitude, and alpha particle losses are reduced from 17.7% to 6.6%. Future work will
include using BoozerLsS surfaces and their residual to optimize coils with less suitable
initial coil configurations. We also will consider a stochastic version of this objective to
find coils that are robust to manufacturing errors.

Availability of code and optimized configurations

The coil and surface parametrizations, Biot-Savart kernel, as well as the solver used
to compute BoozerExact and BoozerLS surfaces were implemented in the SIMSOPT
package (Landreman et al. 2021), available at:

https://github.com/hiddenSymmetries/simsopt.
Driver scripts for work are available at:
https://github.com/andrewgiuliani/PySurfacelpt.
The stage III coils discussed in this work are available at the above repository as well.
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A. Properties of the surface discretization

We give a brief derivation of the surface discretization described in Section 2. First, note
that any periodic smooth function f in one dimension can be approximated arbitrarily
well by functions of the form

2n4or+1

Fro (@)= Y aivi(p),v; € Ver

i=1

where V™er = {1 cos(2mp), ..., cos(Nyor2mp), sin(2mwp), ..., sin(nyo2mp)}. Hence, by
considering the tensor product of this Fourier basis, we obtain that any periodic smooth
function g of two variables can be approximated arbitrarily well by functions of the form

2ngor+1 2Mmpor+1

Tneorimpe (0:0) = D Y i jui(@)w; (0),v; € Vor w; € Vel
i=1 j=1
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Hence, any surface X(¢, 0) that can be smoothly parametrized in terms of periodic angles
o and 6 can be approximated by

> Tigvi(p)w;(0)
2(9079) = Zi,j ylijl(w)wj(o) )
2i Zinvi(p)w;(0)
where the bounds on 7 and j in the double summation have been neglected for brevity. To

describe stellarator relevant surfaces efficiently, we want to be able to exploit rotational
symmetry. Denoting the rotation matrix by

cos(2mp) —sin(2mp) 0
M(p) = |sin(2mp) sin(2rp) 0,
0 0 1

a surface X satisfies ng,-fold rotational symmetry if
(e +1/ngp,0) = M(1/ng,) X(p, 0).

Hence, denoting

2(@, 6) = M(*SO)E(% 0))
we note that X is 1/ng, periodic in ¢, since
2«0 + l/nfp? 9) = M(_<p - 1/nfp)2(§0 + 1/nfp7 9) = M(“P)E(% 9) = S(QO, 9)
We conclude that a surface with ngy-fold rotational symmetry can be approximated by
functions of the form

Zi,j ;50 (ngp)w; (6)
X(p,0) = M(p) Zi,j Yi,jvi(nepp)w; (6)
Zi,j zi,j0i(nepp)w; (0)

B. Derivation of the major radius formula

The formula for the major radius is computed from the mean cross sectional area A
and volume enclosed by the surface

Rmajor(s) =V (s)/(2m A(s)),

where
T

- 1
A(S) = om . A¢ dgb,
where Ay is the surface’s cross sectional area computed at the cylindrical angle ¢. Note
that there are multiple ways to evaluate this term. One possibility is to determine the
cross sectional area at a fixed number of cylindrical angles ¢, and then average. This is
difficult with our surface representation, as it requires solving several nonlinear equations.
We follow an alternative approach that is less complex implement and more elegant. The
cross sectional area can be written as
' 0z
Ay = /0 R 20 do,

where R(6), Z(6) are points on the boundary of the cross section at the angle ¢. Next,
writing the above integrand in terms of the surface’s Boozer angles, we have

As = [ R((6.0).0) 3512(0(6,6),0)) db.
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Ficure 10. A simplified dependency graph of the various quantities used to define the
optimization problem. In this model problem, there is one surface (“BoozerSurface” node) on
which we are trying to optimize for quasi-symmetry (“NonQuasiAxisymmetricRatio” node),
target a specific rotational transform (“Iotas” node), major radius (“MajorRadius” node) and
toroidal flux (“ToroidalFlux” node). These penalty terms depend on on the magnetic field
computed via the Biot Savart law (“BiotSavart” node) and on the geometry of the Boozer surface
(“BoozerSurface” node). The Biot Savart node then depends directly on the four stellarator coil
geometries and associated currents.

where R = R(p(4,0),0) and Z = Z(p(,0),6). The expression for the average cross
sectional area then becomes

27r//R (:0),0) 75 [((¢,),)]d9d¢,

Instead of integrating over cylindrical ¢, we complete the change of variables

(¢,0) = (atan2(y(p, 0), =(¢, 0)), 0).

After the change of variables, the average cross sectional area is

0Z dp 07
27T/ / [869 + 39:| det J dyp db,

where det J is the determinant of the mapping’s Jacobian.

C. Optimizable graph for efficient representation of the objective

The different penalty terms of the optimization problem in section 4.1 are implemented
using the “optimizable” framework in SIMSOPT (Landreman et al. 2021). The depen-
dencies between the various quantities in optimization problems result in a directed
acyclical graph, which can be used for efficient caching, i.e., terms are only recomputed
when quantities that they depend on are changed. The dependency graph for a simplified
version of the optimization problem solved in section 4.1 is provided in Figure 10. A
quantity associated to any of the nodes in the graph is only recomputed if any of its
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ancestors have been modified. The full optimization problem solved in section 4.1 results
in a much more complex dependency graph that we do not show here for brevity.
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