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Abstract—Smart devices have entered all spheres of modern
living, from monitoring the steps we walk to managing refriger-
ator inventory, ushering in the dawn of a new urban experience.
The kitchen is the heart of the home; a place to share, care
for and nurture the family unit, but also a place seeing the
greatest impact from the introduction of smart devices. The
smart sensing and remote control capability of smart appliances
have enabled great physical convenience for users but have had
less impact on cognitive conveniences. While such devices can
sense what they are working with, they fail to understand who
they are working for, leaving much of the burden of trivial
planning and decision-making to humans with less personalized
services. Hence, we introduce TupperwareEarth, a knowledge-
based ontological semantic network for the “Internet of Kitchen
Things” with the aim of reducing physical as well as cognitive
loads of humans in cooking tasks. Also, we present a testbed
for exploring kitchen innovation and validating the effectiveness
of TupperwareEarth that combines intelligent kitchen storage
containers, Smart Tupperware, and existing smart kitchen ap-
pliances through an IoT network and a user-friendly front-end
interface, Tuppy. Using this testbed, the quantitative user studies
show a 33% reduction in average food preparation time and
qualitative user surveys show that 75% of the users observed
a significant reduction in cognitive loads, thereby validating the
cognitive conveniences granted by TupperwareEarth.

Index Terms—Internet of Kitchen Things, Smart Kitchen,
Smart Tupperware, Ontological Semantics

I. INTRODUCTION

Today, smart appliances such as smart speakers, smart secu-
rity cameras, and smart thermostats have become quintessen-
tial parts of the modern home, bringing remote-control con-
venience to users anywhere on Earth. While the grand vision
of a transformed ever-connected lifestyle, empowered by the
Internet of Things (IoT) [1], has yet to be fully actualized, the
increasing “interconnectedness” among devices and the ability
of control from anywhere is valuable and welcomed.

Remote-control affords user conveniences that reduce phys-
ical burdens; turning lights on and off with a voice command
through a smart speaker saves the time and energy of walking
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up to the switch. However, remote control has clear limi-
tations when it comes to the kitchen, a space where more
complex and sophisticated activities occur through interactions
among the users and appliances. Kitchen activities, such as
preparing meals, require further complex human planning and
add cognitive burdens, as compared to the activity of turning
the light on and off. While it is easier to automate push-
button tasks, alleviating cognitive burdens demands intelligent
decision making, that is customized to the user’s preferences.

The kitchen requires extensive decision making from the
user. The user decides what to cook based on factors such
as availability of ingredients, personal preference, time of
day, and the occasion. Further, the user must then orchestrate
the process of cooking, from pre-processing the ingredients
to using the array of devices needed for specific cooking
techniques, finally cleaning and serving. The human-driven
nature of activities in the kitchen demands smart devices to
possess intelligence and an inherent comprehension of the per-
son and the context to be of help. Yet, currently available smart
devices just manage to automate certain physical processes
such as heating for a certain time based on a pre-programmed
recipe (for example, cooking potatoes in a microwave by just
selecting the potato option). The limitation of such devices
lies in their failure to predict the user’s action to collaborate
seamlessly. Hence, with the aim of addressing both physical
and cognitive burdens of users in the kitchen, we present
TupperwareEarth.

TupperwareEarth is an intelligent network of smart devices
with the capability of “understanding” the user, the context
of the kitchen, and decision-making abilities by leveraging a
knowledge-based ontological semantics. The novel ecosystem
of TupperwareEarth goes beyond push-button automation and
alleviates cognitive burdens by integrating physical compo-
nents with efficient communication network and intelligence.
The Smart Tupperware acts as the physical layer of the
network, connected using the communication and network
layer, as illustrated in Fig. 1. The data aggregated from this
network is processed using the analytic layer wherein the
ontology-based knowledge is used to extract actionable items
with respect to the context. By understanding the context of the
activities and the availability of devices and ingredients, the
system recommends appropriate recipe choices to the user. The
user-friendly voice assistant enabled by the mobile application,
Tuppy, acts as a bridge between the user and the network. The
system guides the user throughout the process of each cooking
task, thereby reducing both physical loads – by automating



the actuation of connected devices – and cognitive loads – of
deciding next steps.

Fig. 1: A worldwide network of Smart Tupperware connected
via TupperwareEarth to share data between containers for
enhanced user experience and reduced burdens in the kitchen.

The three main contributions of this paper are listed as
follows:

• A IoT-based network of Smart Tupperware that enables
real-time monitoring and management of kitchen inven-
tory through smart sensing, knowledge-based decision
making and actuation.

• An ontology-based knowledge database of the kitchen
for TupperwareEarth. An application of ontological se-
mantics using this knowledge base is developed for the
applications in suggesting recipes based on user pref-
erence, current inventory, availability of appliances, and
other contextual information.

• Creation and validation of TupperwareEarth using the
Smart Tupperware IoT network as a testbed. User study
experiments go beyond physical load reduction to val-
idate the effectiveness of TupperwareEarth in reducing
cognitive loads in daily kitchen activities.

The organization of this paper is as follows: Section II
presents the review of the published literature. Section III
discusses the architecture of TupperwareEarth which consists
of three layers: the physical layer of the system, the network
layer, and lastly the analytics layer. The experimental valida-
tions are presented in Section IV with the results of the user
study experiments. Finally, the discussion and the conclusion
are presented in Section V and VI correspondingly.

II. LITERATURE REVIEW

Kitchen is the focal point of a household wherein people
relax, seek nourishment, spend time as families preparing
meals, and express their creativity through food. Being the
“nerve center”, the kitchen affects everyone, and this cuts
across cultures and nationalities. A smart home’s advanced
kitchen is the one space that, arguably, has the greatest
potential to enhance everyday lives.

Smart devices have the greatest potential to enhance user
conveniences in the kitchen due to their existing intricate
intertwinement of appliances in many diverse activities. Today,
one can easily picture remotely starting the coffeemaker using
a phone-based app or preheating the oven through a smart
speaker by voice control. The remoteness in using these
appliances brings conveniences, however, they are limited to
a surface level. In order to ensure much deeper penetration of
these conveniences in sophisticated and intricate activities, a
richer understanding of the theater of the kitchen is needed.

In this section, the review of recent literature pertaining to
the advancements in the integration of IoT-enabled automation
in the modern kitchen is presented. The aim is to identify the
shift of the vision in the kitchen IoT across the academic and
industrial perspectives. The industry-driven goal of aggregat-
ing sensor data for enhancing productivity highlights the need
for higher-level inference to transform the aggregated data into
increased customer convenience. For this need, a review of the
literature of semantics and existing ontology framework, in
domains across IoT and food science, investigating the state-
of-the-art is also presented in this section.

A. Kitchen IoT

The term “IoT” originated within the context of supply
chain management [2], but the concept has rapidly extended
across different applications, including homes, healthcare,
transportation, and automation. In fact, one of the most
significant growth areas of IoT integration is in our homes
and kitchens. Not only for personal use, but with the rise
of commercial services [3] such as Air-BnB (which allows
homeowners to rent out their own homes), IoT-controlled
locks, thermostats, and smoke alarms have become quite
valuable – though, perhaps, not indispensable – to remotely
manage the properties from a business case perspective. In this
section, we review recent works in kitchen IoT and summarize
our findings in Table I.

Prior works attempted integrating technology into the
kitchen to bring intrinsic changes to daily kitchen activities.
La Cantina [4] was a smart kitchen space from MIT where an
interactive recipe was projected down onto the kitchen counter
and allowed the user to manipulate over a capacitive touch
sensor embedded on the surface. Living Cookbook developed
by Terrenghi et al. [5] used a touch screen embedded on top
of the stove to provide active cooking supports such as the
location of tools, ingredients, and recipes. Similarly, Semantic
Cookbook [6] recorded cooking processes and provided a
software framework to share the records with other people to
enhance the cooking activities. These early academic works
shared the grand vision, with a rise of the IoT in the 2000s,
of embedding technological advancements in various aspects
of everyday life [17].

This grand vision of the IoT was perceived by both
academia and industry, with the common thread of conver-
gence of technology bringing positive impacts to daily opera-
tions, whether that be in the workspace or in the home. Several
industrial products shown in Table I such as PantryChic [14]



TABLE I: The Review of the Kitchen IoT Literature

Author(s) / Name Ingredient
Recognition

Volume
Detection

Expiration
Warning

Recipe
Suggestion

Cooking
Instruction

Cooking State
Detection

Appliance
Automation

Personalized
Adaptation

G. Bell & J. Kaye [4] ✓
Terrenghi et al. [5] ✓
M. Schneider. [6] ✓ ✓
Stander et al. [7] ✓ ✓ ✓ ✓
Blasco et al. [8] ✓ ✓ ✓
Gullà et al. [9] ✓ ✓

Neumann et al. [10] ✓ ✓ ✓
Achary et al. [11] ✓
Shariff et al. [12] ✓ ✓
Jinila et al. [13] ✓ ✓
PantryChic [14] ✓ ✓

Ovie Smartware [15] ✓ ✓
Hestan Cue [16] ✓
TupperwareEarth ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

and Ovie Smarterware [15] have emerged aiming to assist
food pantry management. Smart cookwares with temperature
sensors and wireless communication are also not rare [16].
The perception in academia mirrors the trajectory of industry-
based IoT, which is the primary economic driver. Numerous
innovative uses of sensors have enabled automatic monitor-
ing of remaining volumes [11]–[13] and expiration date or
spoilage of food ingredients [12], [13]. While both industrial
and academic applications of integrating IoT into the kitchen,
as described above, bring convenience to the user to some
extent, they lack the capability to understand the data and the
task, thereby still need user supervision albeit remotely.

To further unleash the full benefits of the data collected
by these devices, several recent works focused on making
inference through all devices in the kitchen environment
instead of analyzing the data of each device separately. By
augmenting user profile into the analysis, [8] and [9] are able
to make adaptations to users of various types of impairments,
facilitating their independent living. Other systems focus on
interactive and intelligent cooking guidance. In [7] and [10],
multiple sensors and cameras are used to detect the user’s
action and the state of the cooking environment, which enabled
their systems to automate of the cooking appliance based on
the detection in addition to simple remote control. In [7] an
RFID sensor on their refrigerator enables detection of items
with RFID tags. Through modeling the cooking workflow
using XPDL4USE [18], a semantically annotated workflow
language, the cooking guidance in [7] can automate kitchen
appliances and transit upon completion of the previous step.

B. Ontological Semantics
Achieving a system capable of higher-level inference has

been a topic of extensive research. The earlier work from
Berners-Lee et al. [19], who invented the Web, sets a founda-
tion for today’s standards and formats of the ontologies with
the development of OWL (Ontology Web Language) and RDF
(Resource Description Framework) schema. In this literature
review, the on-going work of integrating semantics through
the ontologies in various domains has been described.

Ontology is about the nature of being that sets the logic
and rules of how a particular “world” works. By containing
information about how the nature of the kitchen works, ontol-
ogy can provide knowledge to the system for reasoning and
inferring the daily activities occurring in the kitchen sphere
monitored by the IoT system. The ways of integrating an
ontology into an IoT system vary in different approaches of
addressing the integration at various layers of the hierarchy
or through middleware or services. However, many of the
ontologies described in the literature are still at the prototype
stage and are specific to the applications of that particular
research project [20].

IoT-Lite was proposed as a lightweight semantics engine of
the Semantic Sensor Network (SSN) that reduced the time of
query/response and simplified the annotations of the objects.
However, the shallow depth of knowledge of the model is more
suitable for sensor discovery with strict latency requirement
than complex reasoning tasks with rich knowledge about
kitchen and cooking [21]. FIESTA-IoT ontology aimed to
address the interoperability issues by interconnecting existing
IoT solutions of M3-Lite, SSN, and IoT-Lite [22]. The model
facilitated interoperability by linking sevevral popular IoT
ontologies; however, it created an issue of redundant infor-
mation and lacked the support for context-aware services and
information [23]. On the other hand, BOnSAI (Smart Building
Ontology for Ambient Intelligence) is an ontology with a
focus on services and context-awareness in the application of
Smart Buildings [24]. Despite the number of ontologies in the
IoT domain, an all-encompassing ontology for the kitchen is
difficult to be found due to the broadness and complexity of
the domain.

III. TUPPERWAREEARTH ARCHITECTURE

In this work, we present a system that integrates ad-
vanced ontological semantics with the sensing and com-
munication ability of smart containers for improving user
experience, called TupperwareEarth. TupperwareEarth is an
extended testbed for the “Internet of Kitchen Things” in-
tegrated with an ontological reasoning system that reduces



human planning burden through intelligent automation of the
kitchen appliances and tasks. TupperwareEarth derives its
name from “RoboEarth”, a worldwide data and intelligence
sharing network of robots [25]. Extending the concept of
sharing data, TupperwareEarth uses ontological reasoning to
add intelligence into the network of kitchen things as shown in
Fig. 2. It enables communication among the Smart Tupperware
containers and other kitchen appliances in the testbed, allowing
them to operate together to accomplish complicated kitchen
activities with the knowledge derived from the ontological
database. Overall, TupperwareEarth as shown in Fig. 3, com-
prises of three major layers: 1) Physical Layer (constituting
the devices and hardware), 2) Network Layer (constituting
of the communication and networking infrastructure), and 3)
Analytics Layer, implemented across different Amazon Web
Service (AWS) platforms that offer serverless computing.

The physical layer of TupperwareEarth comprises the
testbeds for the Internet of Kitchen Things. The testbeds
include the in-lab created Smart Tupperware and other in-
dustrial kitchen appliances. Over the decade-long evolution of
reformation in creating Smart Tupperware in different forms
and functionalities [26], [27], [28], a new hardware of Smart
Tupperware embedded into Tupperware’s SmartFridge [29]
container is created with a low-power-managed custom PCB
and multiple off-the-shelf sensors. In this project, the Paragon
Smart Induction Cooktop from First Build [30] is used as a part
of the testbeds with multiple Smart Tupperware containers.

The testbeds build an infrastructure of the kitchen things for
the network layer to form extensive communication between
each kitchen appliance. Tens of Smart Tupperware containers
residing in the kitchen build an inventory management system
that monitors the food contents inside the containers and pro-
vide the raw data to the analytics layer. By extending the com-
munication with other kitchen appliances, TupperwareEarth is
capable of collecting more raw data from sensors embedded
in each appliance and enables more services through the
actuation of diverse kitchen activities. The communication
further expands to Tuppy, the custom-built Android app for
the user interface to deliver the enhanced convenience directly
to the user at the front-end through a voice service.

The network layers is a gateway for the appliances to share
the data and allow the analytics layer to further processing
of the raw data transformed into information for user conve-
nience. The analytics layer contains an ontological knowledge
database that stores the data collected from the physical layer
and inference engine with defined semantic rules. By reasoning
based on the stored data with semantic rules, TupperwareEarth
enables the applications for user convenience in providing a
recipe suggestion and automation of the cooking tasks. These
applications aim to reduce the human planning in cooking ac-
tivities for enhanced convenience that overcomes the limitation
of remote control in today’s smart kitchen appliances.

A. Physical Layer

1) Smart Tupperware Hardware Design: Smart Tupper-
ware is an ecosystem of electronics-embedded kitchen con-

Fig. 2: The architecture of TupperwareEarth

Fig. 3: The three layers of TupperwareEarth architecture with
their essential functions.

tainers. Each container consists of an electronic substrate that
monitors local sensors and connects to a wireless network [26].
Moreover, it hosts a suite of software applications, such as
recipe suggestions or automatic shopping lists, that provide
capabilities helpful to the kitchen nerve center [28]. In the
past, different prototypes were fabricated in various shapes and
sizes, including LCD-mounted container to barcode-embedded
plastic cups, that explored various design challenges of build-
ing Smart Tupperware [27].

Following up with the prior work on exploring different
designs of Smart Tupperware, the new hardware was manufac-
tured by incorporating the design challenges for low-cost and
low-power systems. Tens of Tupperware containers, commonly
used for food storage, are located everywhere in the kitchen
from inside of a pantry to a refrigerator. Customers of the
Tupperware containers do not desire expensive high-power
electronics to be used as food storage everywhere in their
kitchens. Thus, keeping these two design challenges as the
major constraints for the microcontroller, size of the PCB,
and number of sensors on-board were decided. The aim was to
achieve low-cost manufacturing while maintaining low-power
in operation. Using nRF52832 as a microcontroller with a
built-in Bluetooth, the custom PCB minimized the number and
cost of components as it excluded the external circuitry for
wireless communication. The design specifications of Smart



TABLE II: The Comparison of Benchmark Specifications

Smart Tupperware LCD Container [26] Bar-code Cup [27] Ovie Smarterware [15]

Microcontroller nRF5282 ATMega128L - -
Advertisement Current (mA) ∼ 2 0.4 - Unspecified

Battery (mAh) 80 950 - Unspecified
Lifetime (days) ∼ 365 ∼ 1460 Infinite ∼ 365

Information Delivery 4.0” E-Ink Display LCD Display Embedded Bar-Code LED Indicator

Sensors

Accelerometer, Light
Intensity, Temperature,
Humidity, Camera, Gas,
Strain Gauge

IR, Strain Gauge, RGB
Color - -

Wireless Communication BLE Bluetooth RFID BLE
Size of Electronic Substrate (mm) 59.8 x 107 x 2.85 279 x 94.0 x 170 73.7 x 73.7 x 145 9.53 x 31.8

Tupperware are shown in Table II and compared to the
prior prototypes as well as the industrial application of Ovie
Smarterware [15].

2) Mechanical Fabrication: While injection and over-
molding are the conventional manufacturing techniques used
in producing the plastic containers, these methods require a
mold design that fits the machine, and survival of electronic
substrate under these operations remains a challenge. There-
fore, we first use a casting method with a curable liquid
material by using a mold to duplicate the plastic container.
The electronic substrate was placed inside the mold before
the liquid two-parts polyurethane was poured, then cured. As
a result, shown in Fig. 5a, the whole electronic substrate sur-
vived through the curing process and was tested for verifying
that all functionalities were working correctly. The embedded
container was able to update the E-Ink displays by connecting
to the app via Bluetooth connection.

The same process was used to embed the electronic sub-
strate into the form of the label to create a “smart label” which
can be later over-molded onto the plastic container. The con-
cept of over-molding a label comes from one of Tupperware’s
products that over-molds a thin printed label on the top surface.
Embedding the electronic substrate by casting into the material
had the advantage of exploring flexible designs. For instance, a
two-split display design of electronic substrate was embedded,
as shown in Fig. 5a, creating a smart label constrained within
the allowed fit for the container. The overall dimension of the
electronic substrate as shown in Figs. 4a and b are 59.79 mm
by 107.0 mm which was under the required dimension of the
mold for embedding the labels. The thickness of the electronic
substrate was 2.85 mm as shown in Fig. 4c, which is much
thicker than a conventional label embedded onto Tupperware
containers but is under the maximum limitation of the mold
dimension of 3.00 mm thickness.

Conventional manufacturing of plastic containers uses
polypropylene that involves high temperature and pressure
during the injection and over-molding processes. In com-
parison to the casting method of using polyurethane, which
required relatively lower temperature and pressure for the
curing process, the manufacturing of polypropylene containers
makes it difficult for the electronic substrate to survive under
harsh conditions. Although mechanical fabrication is not the

focus of this paper, we conducted a number of trials of embed-
ding electronic substrate into polypropylene through injection
molding at Tupperware’s production facility to explore the
survival rate. The main challenge of successful molding was
the fragility of the displays that were part of the electronic
substrate. Notably, we found that the E-Ink displays were
mostly compatible with a polypropylene under high tempera-
ture and pressure conditions as shown in Fig. 5b. However, the
rigid-glass displays often did not survive the physical stresses
of the process. We collaborated with Tupperware to explore
preliminary work of mechanical fabrication in creating a fully
fused form of Smart Tupperware, but more trials are needed
to achieve a high success rate of fabrication.

3) Sensor Design: In the past, Smart Tupperware designs
have explored various types of sensing such as weight, volume,
and color of the food contents inside the container [26]. While
the new hardware of Smart Tupperware inherits the past sensor
designs, it adds six new sensors: accelerometer, light intensity,
temperature, humidity, camera, and gas sensors. The set of new
sensors allows each Smart Tupperware container to act as a
rich data-aggregating IoT node, allowing the analytics layer
to create more value out of the abundant raw data collected
from each node. This value creation generates the desired
information that enhances the user convenience and enables
high-level inference at the front-end.

Smart Tupperware efficiently manages power by using an
optimized wake-up interval for collecting sensor data and
updating the display, while using minimal power for the rest
of the time. Despite the one-hour interval sequence, there are
occasions that demand Smart Tupperware to wake up due to
sudden changes in the environment. For example, occasions
when the user is actively using the container, so the display
needs to provide the latest information or when the location
of the container changes from inside of the refrigerator to the
top of the kitchen counter with an uncontrolled temperature
environment. All these situations require the system to rec-
ognize state changes such as change of usage or change of
location of the containers. Once such a change is detected,
the system updates the sensor data, correspondingly. We used
LTR-329ALS for light intensity sensing and LIS3DHTR as
the accelerometer to detect motion such as the opening of the
lid or rigorous shaking of the container. Changes that exceed



Fig. 4: The design of the electronic substrate used for Smart
Tupperware: (a) the front incorporates the E-ink display for
displaying information. (b) the back shows the wireless charg-
ing coils and the custom circuitry and (c) the thickness shows
the height of different sub-components.

the threshold values for light intensity and accelerometer
trigger the microcontroller to wake up, update sensor data and
allow the users to control Smart Tupperware without manually
turning the power on.

When tens and hundreds of Smart Tupperware containers
connect together and collect data of the food stored in each
container, an inventory management system is created in the
kitchen that automatically monitors the conditions of all food
contents. With the given set of sensors on board, Smart

Fig. 5: The electronic substrate is embedded into the
polyurethane by casting (a) into the container and (b) the label
molds.

Tupperware is capable of providing numerical values of raw
data as information to the user. However, one of the most
desired information in the inventory management system is
to identify the food type and automatically generate labels
without human intervention. In the past, we have explored the
designs of embedding bar-code labels into the cups to store
the static information and allow the user to easily scan the
codes through the plastics [27]. In our newest design, we added
a camera sensor, OV2640 with a resolution of 1600 x 1200
pixels, to collect the images of the food contents and identify
their type by using a real-time object detection model. Thus,
we store dynamic information of food contents with automatic
labeling.

To implement the object recognition system, we trained a
YOLOv3 [31] using the images of the food contents collected
from various Smart Tupperware containers. The training of
identifying food type requires a massive database of pre-
stored images of various food types. We finished a preliminary
work of identifying two vegetables, mushroom and broccoli,
in real-time as shown in Fig. 6a. Each 200 raw images
were collected for mushroom and broccoli from the Smart
Tupperware containers and processed for 80% and 20% split
for train and test correspondingly. Pre-trained weights from the
Imagenet were used and re-trained on the dataset for 10,000
iterations. The training accuracy resulted in 98.1% and the test
accuracy was 94.7%. Some of the raw images collected from
the containers used in this dataset had moisture and made the
objects blurry as shown in Fig. 6b. This will be a common
case when Smart Tupperware containers are used for a long-
term monitoring of the food contents and further research on
training in harsh conditions is recommended.

Another main burden that adds to the user’s daily routine of
managing kitchen inventory is checking on the expiration of
food contents. Humans usually keep track of their inventories,
remembering when they purchased the food contents and
estimate the expiration dates. However, there are still occasions
when the user directly needs to check whether the food
contents expired or not by inspecting using sight, smell, touch,
or even taste, if necessary. In the past, we explored a tracking
system on the estimated expiration dates obtained from the
product information, using bar-code or user’s manual input to
provide alerts to the user upon the expiration dates [28]. The



Fig. 6: Real-Time Object Detection in Smart Tupperware using
YOLOv3 for (a) identifying food types, (b) identifying food
types in harsh conditions, and (c) detecting mold growth for
food expiration.

new Smart Tupperware hardware adds three new environment
sensors to collect humidity, CO2, and air quality levels and
utilizes the camera sensor in detecting mold growth which is
one of the most significant indicators of food expiration.

We used CCS811 as the gas sensor in measuring the Carbon
Dioxide (CO2) levels in equivalent CO2 (eCO2) value and
the air quality levels in Volatile Organic Compound (VOC)
value. The humidity level is measured in relative humidity
(RH) percentage by using a BME680 sensor. The combinations
of these three measurements are used as the indication of the
organic activities related to the level of freshness of the food
contents. A threshold value was used for all three sensing
parameters. Whenever the measurement levels exceeded the
thresholds an alert was triggered.

Along with these measurements, detection of mold growth
on food is added for a more accurate indication of a food
expiration. We utilized the camera sensor using the YOLOv3
object detection again to train the system in detecting mold
growth. Preliminary work on detecting the area of mold
growth in strawberries are shown in Fig. 6c. We used 85
raw images collected from the containers with 70% to 30%
split ratio of training to test. The training was completed with
pre-trained weights from the Microsoft Common Objects in
Context (COCO) dataset for 10 epochs. The accuracy on a
training set was 96.67% and it was 92.00% on a test set. While
mold detection also requires a large database of raw images,
sharing the raw images between Smart Tupperware containers
worldwide would help the training of the object detection and
increase the accuracy of the identification. Both food type and
food expiration detection are accomplished through sharing
the same database of raw images saved in the cloud.

Fig. 7: The wireless communication between Tuppy and Smart
Tupperware via BLE

B. Network Layer

The network layer connects the IoT devices in the physical
layer to communicate with each other. It also acts as a
gateway to exchange data with the analytics layer. Due to
the large amount of raw data collected from each appliance,
the network layer uses Bluetooth Low Energy (BLE) to keep
power consumption low and also assigns a unique identifier for
each physical device. On the other hand, a Message Queuing
Telemetry Transport (MQTT) protocol is used to allow the
analytics layer to subscribe and publish to a specific topic for
reading and writing data from and to the kitchen appliances.

1) BLE Communication: BLE satisfies two requirements
of our design challenges: keeping the power consumption
of the electronic substrate low and enabling a bi-directional
communication with a unique identifier for each device as
shown in Fig. 7. These are advantages of BLE over past
Bluetooth standards. We integrate each Smart Tupperware to
be a unique IoT node in TupperwareEarth. Using BLE to
wirelessly connect with an app draws about 2mA when the
connection is made during the active mode.

2) MQTT Protocol: TupperwareEarth extends the connec-
tion of Smart Tupperware to the network of kitchen ap-
pliances through the MQTT protocol. The infrastructure of
smart kitchen appliances exists, but interoperability remains a
challenge with different types of communication and protocols
being used. The wireless communication protocol varies from
Bluetooth to Wi-Fi and the APIs are not shared as open-
source by the manufacturers. MQTT brings an advantage
of connecting the appliances under different protocols by
exchanging data in a format of JavaScript Object Notation
(JSON).

MQTT protocol uses a subscribe/publish model that pro-
vides flexibility for any appliance to subscribe as a client to
exchange the data. The attributes are the topics that contain
values of the data to which the server and client can subscribe
to read the stored data or write the newly collected data to.
For instance, Smart Tupperware comes with one actuator, a
display, and several sensors. Each actuator and sensor data



TABLE III: The Comparison of Ontologies in IoT Domain

Name TupperwareEarth SOSA [32] IoT-Lite [21] FIESTA-IoT [22] BOnSAI [24]

Domain of Application Cooking, tool, appliance,
recipe, sensing, actuating

Sensing, actuation,
sampling

Device, entity, ser-
vice, resource

Device, entity, ser-
vice, resource, ob-
servation

Context, service,
hardware,
functionality

Contribution

Enable appliance automation,
recipe suggestion and other
knowledge-based decisions in
kitchen context

Providing a
lightweight and
flexible ontology
of IoT devices

Based on SSN that
reduced response
time and simplified
annotations

Extension of IoT-
Lite, addressing
interoperability in
hardware

Categorizing
services and
enabling context
awareness

Approach

Incorporating cooking domain
knowledge; ontological imple-
mentation of MILK [33]; ex-
tracting knowledge from net-
work of Smart Tupperware

Modularization
through vertical
and horizontal
segmentation

Only defining the
most frequent IoT
concepts

Merging and
reusing existing
popular ontologies

Extending existing
ontology to pro-
vide ambient intel-
ligence

are expressed as attributes containing a specific value. The
attribute for the color sensor would contain RGB data as a
value. This provides simplicity and ease of sharing data with
the system, thereby reducing the communication traffic by
customizing the subscription of the appliances.

3) Tuppy and Skillset: Tuppy is a custom android app that
communicates with multiple Smart Tupperware containers at
the same time and delivers the desired information to the
users. Tuppy connects to each Smart Tupperware via BLE
and obtain data from the analytics layer through the Wi-Fi.
The user interface of Tuppy inherits from its precursor [26]
which focused on delivering the raw data directly to the user
by displaying them. However, Tuppy extends the assistance by
enabling a voice-service and connecting to Alexa with Tuppy
Skillset to allow the user to access the information without
opening the app. The voice-assistance allows Tuppy to provide
step-by-step instructions during the cooking process, alerts
based on expiration of food contents and actively listen for
user requests through Alexa.

C. Analytics Layer

The world of a kitchen closely revolves around the function-
alities of various appliances and their uses in various cook-
ing tasks. Humans comprehend the purpose and appropriate
usage of each appliance in cooking tasks through years of
learning and practice. We integrate an ontological knowledge
database to embed a similar level of comprehension in Tup-
perwareEarth. The knowledge database enables the system to
understand the context of the kitchen, wherein it comprehends
the existing knowledge about the coherence among kitchen
appliances and cooking tasks. To understand semantics of
the cooking tasks, TupperwareEarth uses recipes annotated in
Minimal Instruction Language for the Kitchen (MILK) [33],
which concisely abstracts a recipe into instructions of actions,
ingredients and tools. Using the knowledge stored in the
database, TupperwareEarth further infers semantic knowledge
with a rule-based reasoning architecture.

An ontology is a formal organization of information, in
terms of properties, entities, and their relationships, thereby
providing a holistic map of the domain. An ontology helps to
reduce complexity while studying and modeling a field. With
the ontological model defining entities and relations among
them, rule-based reasoning is used to infer new knowledge for

adding semantics into TupperwareEarth. The integration of on-
tology and reasoning allows TupperwareEarth to deliver user
convenience in the forms of recipe suggestion and automation
of appliances. Both tasks are a major part of the cognitive and
physical loads in the process of meal planning and cooking.
With ontology defined for the kitchen of a particular user,
TupperwareEarth delivers customized conveniences for the
user.

1) Ontology for the Kitchen: TupperwareEarth’s ontology
is the knowledge database of our smart kitchen environment
represented in Web Ontology Language (OWL). We built the
ontology of TupperwareEarth using Protégé 5.5 [34], a popular
tool for ontology editing. In contrast to existing IoT ontolo-
gies shown in Table III, the ontology of TupperwareEarth
not only covers sensors and actuators on IoT devices, but
also integrates the cooking-related concepts such as recipe,
food and cooking techniques. Among several IoT models of
ontology, SOSA (Sensor, Observation, Sample, and Actuator)
is used as a foundation for TupperwareEarth’s IoT ontological
model. SOSA is a flexible lightweight ontology that provides
a fundamental framework of sensors and actuators [32]. The
advantage of using SOSA lies in the ease and simplicity of the
implementation of the ontological framework. As the SOSA
ontology was built for covering a broad range of sensors and
actuators, the implementation is easily extensible to cover
the different types of IoT-integrated kitchen appliances for
TupperwareEarth.

In addition, we integrated MILK [33] into TupperwareEarth.
MILK is a semantic parsing language for cooking recipes
based on a first-order logic. By mapping MILK into ontology
classes and properties, TupperwareEarth’s ontology can model
recipes step by step, providing a basis for inferring higher-level
knowledge to understand the cooking techniques in relation to
the appliances.

The class hierarchy of an ontological model describes
the components of the ontology in Description Logic (DL),
wherein each class contains subclasses and inherits the prop-
erties of the parental class. Inheritance of properties in classes
creates is-a-subclass-of relationships that describe the taxon-
omy of the kitchen environment. TupperwareEarth derives its
core structure from the SOSA model [32], wherein domain-
specific knowledge about the smart kitchen environment is



Fig. 8: TupperwareEarth’s ontology structure showing various class hierarchies and object property

further integrated. While the SOSA model provides a defini-
tion of sampling, which enables measurements of a subset of
the target, we do not include this class in the TupperwareEarth
model as we want to keep the ontology lightweight. Hence,
TupperwareEarth relies on one-time measurements from the
sensors and actuators rather than taking repeated samples to
reduce variance. The lightweight model thereby guarantees
responsiveness as the inference time increases exponentially
with complexity.

2) Class Hierarhcy: Fig. 8 shows the overall class hierar-
chy and object properties of TupperwareEarth. The Tupper-
wareEarth ontology extends from the SOSA ontology [32]
and maintains the majority of its concepts. Here we briefly
explain the definition of necessary SOSA concepts used in
TupperwareEarth. sosa:Actuator and sosa:Sensor are devices
that performs an sosa:Actuation or an sosa:Observavtion.
The target of sosa:Actuation or sosa:Observavtion is de-
scribed by the class sosa:FeatureOfInterest. The charac-
teristics of the sosa:FeatureOfInterest being observed or
actuated are represented as sosa:ActuatableProperty and
sosa:ObservableProperty. A sosa:Procedure is a reusable
workflow that defines the specifications of sosa:Observation
or sosa:Actuation.

The concepts in the device domain, shown in the right half
of Fig. 8, largely followed the Observation-Actuation design
inherited from SOSA ontology [32]. Since the kitchen activity
has a strong temporal component, we add madeLastObserva-
tion as a subproperty of sosa:madeObservation to emphasize
the latest observation result. An Appliance represents an IoT
device connected to TupperwareEarth. The class Tool covers
kitchen utensils, which is further divided into 13 subclasses ac-
cording to the functionality of the Tool instance. For example,
a Smart Tupperware is an Appliance and a StorageContainer,
a subclass of Tool. The class Appliance is not subdivided
into subclass to ensure the compatibility with smart appliances
of diverse compositions and functionalities. We defined some

subclasses within sosa:Sensor including Camera, GasSensor,
HumiditySensor, StrainGauge, Thermometer, Accelerometer
and LightIntensitySensor. We also defined some subclasses
within sosa:Actuator, including Display and Heater. Further-
more we added six subclasses to sosa:ObservableProperty
and three subclasses to sosa:ActuatableProperty. We used
sosa:hasSimpleResult and sosa:resultTime to describe the re-
sult of sosa:Actuation and sosa:Observation.

While many concepts in the cooking domain are subclasses
of sosa:Procedure and sosa:FeatureOfInterest, we defined new
classes and object properties to map relationships among
food ingredients, recipes, cooking actions, and entities in the
device domain. Concepts in the cooking domain are shown in
the left half of Fig. 8. The Recipe class and its associated
classes CookingMethod, Food, Tool, are used to track the
user’s preference which enhances personalization of the recipe
suggestion. The action in each step of the recipe is repre-
sented by RecipeProcedure. We created 14 such subclasses for
RecipeProcedure, each for a distinct type of action in MILK
[33]. At each step during a cooking session, a RecipeProcedure
individual, along with its object property usesFoodIngredient,
generatesFoodIngredient, usesTool, are created to denote the
cooking instructions based on the MILK annotation from the
recipe. Through ontology reasoning and incorporating with
the information from the device domain, the object properties
willMoveTo, willTransformTo and from are assigned automat-
ically. These generated properties from reasoning not only
enable accurate modeling of the entire cooking process, but are
also essential for potential automation of kitchen appliances to
provide the user with physical and cognitive convenience.

3) Rules for Reasoning: The logic of ontology is limited to
DL, failing to provide high-level contextual information about
the entities in terms of their properties. Thus, the reasoning
rules have been integrated with the ontology to extract new
knowledge based on the database and expand the use of
the data. We create new associations in the form of specific



Fig. 9: The reasoning engine transfers data between ontology
individuals, recipes and IoT devices and makes inference based
on SWRL rules

rules created using Semantic Web Rule Language (SWRL),
a language developed for the Semantic Web [19]. Creating
rules in SWRL enables the system to infer new knowledge
based on the existing knowledge stored in the ontological
database by embedding richer associations. Furthermore, rule-
based reasoning brings advantages in the form of memory
savings and simplification of the taxonomy of ontology. Also,
it provides the flexibility of adapting the user-desired reasoning
with any inference engine [35].

The SWRL rules for TupperwareEarth construct logical
reasoning in the following four domains: cooking technique
inference, mapping of recipe entities and physical entities,
kitchen environment modeling, and appliance automation. A
complete list of the rules is shown in the Appendix section.
Inferring cooking technique uses six rules that utilize the
availability of Tool and historical data of cooked recipes. We
assume that each Tool is capable of at least one cooking
method. Five rules are used for the mapping between the
entities in the recipe and the entities in the physical world. In
this mapping, we assume that each tool and food ingredient
in the recipe corresponds to a unique physical entity in the
kitchen, thus representing a unique individual in the ontology.
Four rules were defined to monitor the kitchen environment
during cooking. These rules infer the new kitchen state when
the cooking instruction and sensor data are provided. For
example, if the current cooking procedure requires putting the
ingredient stored in this Smart Tupperware to another Tool,
the ontology will assert an inference that this procedure is
already completed by the user when the weight sensor in Smart
Tupperware observes a reduction of value. Automation of
appliances uses five rules that utilize cooking instructions and
available appliance information to determine which Appliance,
with its associated sosa:Actuator and ActuatableProperty, is
suitable for the cooking step.

The rule-based reasoning is controlled by our inference

TABLE IV: TupperwareEarth SWRL Rules for the Example
Scenario

SWRL Rule

1⃝
madeLastObservation(?s, ?ob) ∧ sosa:hosts(?p, ?s) ∧ FoodType(?ft) ∧

Appliance(?p) ∧ sosa:Observation(?ob) ∧ sosa:Sensor(?s) ∧
sosa:observes(?s, ?ft) ∧ Food(?f) ∧ hasDescription(?f, ?res) ∧

sosa:hasSimpleResult(?ob, ?res) → sosa:hosts(?p, ?f)

2⃝
Tool(?p) ∧ MILKProcedure(InputProcedure) ∧

usesFoodIngredient(InputProcedure, ?f) ∧ Food(?f)
∧ sosa:hosts(?p, ?f) → from(InputProcedure, ?p)

3⃝ MILKCreateIng(InputProcedure) ∧ Tool(?p) ∧ from(InputProcedure, ?p)
→ ShowNextRecipeStep(OutputProcedure)

4⃝ MILKCreateTool(InputProcedure) ∧ usesTool(InputProcedure, ?t) ∧
Stove(?t) ∧ Appliance(?p) ∧ Stove(?p) → sameAs(?t, ?p)

5⃝

sosa:Actuator(?h) ∧ sosa:actsOnProperty(?h, ?temp) ∧
usesTool(InputProcedure, ?p) ∧ Appliance(?p) ∧ Timer(?b) ∧

Temperature(?temp) ∧ sosa:actsOnProperty(?h, ?timer) ∧
MILKCook(InputProcedure) ∧ sosa:hosts(?p, ?h)

→ sameAs(?timer, OutputProperty2) ∧ sameAs(?h, OutputActuator)
∧ sameAs(?p, OutputPlatform) ∧ sameAs(?temp, OutputProperty1)

6⃝ generatesFoodIngredient(?p, ?y) ∧ usesFoodIngredient(?p, ?x) ∧
MILKProcedure(?p) ∧ Food(?x) ∧ Food(?y) → willTransformTo(?x, ?y)

engine, which employs OWL API [36] and HermiT reasoner
[37]. The inference engine is also responsible for the com-
munication across recipes, IoT devices, and the ontology. Fig.
9 shows the data flow of the communication and the role of
the SWRL rule-based reasoning. For each step in the recipe,
the inference engine reads the annotated recipe, translates to
assertions to the ontology, and launches HermiT reasoner. The
new knowledge inferred by HermiT reasoner based on the
SWRL rules are used for recipe suggestion and automation
during cooking. The inference engine then performs necessary
cleaning and updating based on the inference results before
proceeding to the next step.

4) Example Scenario: We illustrate the use of SWRL rules
in TupperwareEarth with the following example recipe snippet:

create_ing(ing0, "broccoli")
create_tool(t0, "stove")
cook(ing0, t0, ing1, "cooked broccoli", "")

The rules used for this example scenario are listed in Table
IV. Assume we have the following precondition: A Smart
Tupperware containing broccoli is available in the kitchen.
The Smart Tupperware device is modeled as an individual
SmartTupperware0 of class Appliance and StorageContainer,
a subclass of Tool. In addition, a smart stove is available in
the kitchen and is modeled as an individual SmartStove0 of
class Appliance and Stove, a subclass of Tool, in the ontology.
The SmartStove0 has its own individuals of Temperature and
Timer, which are subclasses of sosa: ActuatableProperty.

At the first step, the inference engine reads the recipe
create_ing. Based on the inputs to the ontology, the
inference engine first creates a new individual ing0, which
hasDescription “broccoli”, and at the same time asserts the
class of InputProcedure to be MILKCreateIng. By rule 1⃝,
the reasoner infers that SmartTupperware1 sosa:hosts ing0.



By the rule 2⃝, the reasoner asserts that the ingredient used
by InputProcedure is from SmartTupperware1. Then by Rule
3⃝, the reasoner asserts that OutputProcedure is of class

ShowNextRecipeStep, meaning this procedure is complete be-
cause TupperwareEarth detected that the required ingredient
is available. The inferred class type ShowNextRecipeStep is
returned to the inference engine, which then proceeds to the
next step in the recipe and cleans up the ontology by removing
the inferred assertions of the input and output individuals.

At the second step, the inference engine reads the recipe
create_tool, and creates a new individual t0 of class
Stove. It also asserts that the class of InputProcedure to be
MILKCreateTool. By rule 4⃝, the reasoner asserts that this
t0 is the same individual as SmartStove0. This means that
we will use SmartStove0 in the kitchen for the subsequent
uses of t0 in the recipe. The reasoner also asserts that the
OutputProcedure is of class ShowNextRecipeStep. The inferred
class ShowNextRecipeStep is, again, read by the Reasoning
Engine to proceed to the next step and clean up temporary
assertions in the ontology.

At the third step, the inference engine reads the recipe
cook. The inference engine creates a new individual ing1
that hasDescription “cooked broccoli”. By the arguments of
cook, inference engine adds these assertions: InputProcedure
is-a MILKCook, InputProcedure usesTool t0, InputProcedure
usesFooodIngredient ing0, InputProcedure generatesFoodIn-
gredient ing1. Then by Rule 2⃝, the reasoner asserts that In-
putProcedure takes its ingredient from SmartTupperware0. By
Rule 5⃝, the reasoner infers the output individuals should be
the SmartStove0 and its associated actuatable Temperature and
Timer properties. The inferred types of the output individuals
are read by the inference engine to upload the temperature and
timer settings to the smart stove in the kitchen. At the end, by
rule 6⃝, ing0 willTransformTo ing1. After the user completes
this step, the inference engine will remove ing0, and assert
that SmartStove0 sosa:hosts ing1.

In the above example recipe, TupperwareEarth and the
SWRL rules reduce human planning and intervention by:
avoiding two steps of manual checking of kitchen environ-
ment, proceeding two steps in the recipe without interrupting
the user, and automatically uploading temperature and timer
settings to an appropriate cooking appliance.

5) Recipe Suggestion: Human planning in cooking activi-
ties in the kitchen involves both cognitive and physical loads.
These loads are associated with activities that demand the
user to have a clear thought-process in making decisions
or to physically complete a task. While physical loads can
be attributed to the physical performance of the task, such
as cutting, lifting, and churning, etc., cognitive loads are
attributed to planning, measuring, and checking the status of
the tasks or the processes. The human planning associated
with various cooking processes is complex and demanding,
hence TupperwareEarth aims to reduce these loads by provid-
ing meaningful assistance. TupperwareEarth brings advanced
conveniences to the user by sharing the cognitive loads as it
suggests personalized recipes for each user, and also helps in

the cooking process by automating various sub-processes and
providing step-by-step assistance.

Choosing a recipe requires the user to not only consider
what types of ingredients are currently available in the kitchen
and what type of cooking techniques can be performed with
available kitchen appliances, but also what types of cuisine
or recipe category are preferred. However, many of the ex-
isting online recipe suggestion or searching systems such as
Allrecipes [38] and Cookbooks [39] adds more cognitive loads
and human planning by requiring the users to manually check
the inventory and specify the preference. Using the inventory
management system of Smart Tupperware and ontological
reasoning, TupperwareEarth holds the advantage of reducing
human planning from the stored knowledge about ingredients,
kitchen appliances, and user profile.

To address the demand of the user comprehensively, our
recipe suggestion adopts a decision-tree that utilizes the
knowledge about cooking techniques and user preference from
the ontology. The reasoning-integrated system first narrows
down its search space to the recipes that only use cooking
techniques that can be performed, given the availability of
kitchen appliances as well as the user’s historical cooking
records. Then, the system infers the preferred recipe categories
based on the user’s demand. At the last step, the system
calculates the scores for each recipe based on the sum of
scores in matching, missing, and extra ingredients between the
inventory and required ingredient lists. The scoring function is
defined in Eqn. 1 shown below, where Smiss, Sextra, Smatch

are defined in Eqn. 2.

S(Iu, Ir) =
Smiss(Iu, Ir) + Sextra(Iu, Ir) + Smatch(Iu, Ir)

|Ir|
(1)

Smiss(Iu, Ir) = m1

∑
i∈Ir\Iu

w(i, cr)

Sextra(Iu, Ir) = m2

∑
i∈Iu\Ir

w(i, cr)

Smatch(Iu, Ir) = m3

∑
i∈Iu∩Ir

w(i, cr)

(2)

In Eqn. (2), Ir represents a list of required ingredients from
the recipe and Iu represents a list of available ingredients
in the user’s kitchen inventory. We use w(i, cr), the relative
frequency of ingredient i present in category of the recipe cr,
to weigh the ingredients. The intuition is that recipes within a
category tend to share the same set of major ingredients that
cannot be replaced for cooking. m1, m2, and m3 are used to
adjust the reward or penalty of missing, extra, and matching
ingredients. In practice, we set m1 = −2, m2 = −0.5 and
m3 = 2.

Our recipe suggestion system is integrated with Tuppy to
allow the user to request a suggestion and obtain the recipe as
a result through the voice service. The user can either directly
use the Tuppy app to request the in-app voice service or
use the smart speaker to use Tuppy skillset. In both ways,



Tuppy delivers convenience to the user through interaction
as a kitchen assistant. Due to a limited length of response
and the inefficiency of listing multiple top-scored recipes,
Tuppy delivers the highest scored recipe and leaves the rest as
optional information to check on the app.

Automation of Appliances The remote control requires hu-
mans to initiate the action due to the lack of understanding of
the intent from the system. The human initiation adds cognitive
loads, but also physical loads if the appliances need the user to
open an app and click a button without a voice service. While
the convenience desired in the kitchen is not a full autonomy
since the user still needs to drive the cooking actions such
as stirring or picking the ingredients, TupperwareEarth uses
the ontological database to infer which appliance needs to be
automated for what type of cooking tasks.

Twenty SWRL rules in the TupperwareEarth ontology de-
fine the relations between the cooking tasks and functionalities
of the kitchen appliances to infer knowledge about which
appliance with what type of sensors and actuators can perform
what type of cooking tasks. For instance, a cooking task of
boiling pasta noodles can be inferred by the rules to automate
the smart cooktop to set to boiling temperature with a timer.
The automation of cooking tasks reduces the cognitive loads
of the user initiative in setting up the temperature and timer
on the smart cooktop by manually clicking buttons.

IV. EXPERIMENTAL VALIDATIONS

Using the TupperwareEarth testbed, we designed the user
study experiment with the goal of investigating the signifi-
cance of TupperwareEarth’s assistance–in the form of recipe
suggestion, cooking guidance, and appliance automation–on
the physical and cognitive loads of users. The testbed includes
three Smart Tupperware containers, a Paragon smart induction
cooktop, and an Amazon Echo smart speaker enabled with
Tuppy as shown in Fig 10. In the experiment, each participant
was given the same testbed to perform the task of cooking
a macaroni salad twice; the conventional method is used in
the first trial wherein the participant manually controls the
appliance; the second trial uses TupperwareEarth to assist the
user through the task. The meal preparation time, measured
from the initial interactions with the testbed and ingredient
till the completion of appliance setups for cooking pasta al
dente, was compared between the participant groups in the
two settings and further analyzed for the reduction in time,
physical and cognitive loads.

Prior to the first trial, each participant filled out a pre-
study questionnaire to answer questions related to their level
of expertise in the cooking task and in the operation of smart
kitchen appliances (SKA). Five different levels of expertise
were given as choices for self-identification for each question.
The participants were also asked to estimate the average
time for them to decide on a menu based on a provided
list of available ingredients and then locating the specific
ingredients from their own kitchens. After the completion of
the second trial, participants were asked to fill out the post-
study questionnaire. Each participant rated the impact of the

Fig. 10: The user study experiment setup with Tupperwa-
reEarth testbed (a) at the start of the meal preparation and
(b) after the completion of the meal preparation.

TupperwareEarth system on their time-to-prepare and their
physical and cognitive loads. Overall, a total of 16 participants
completed the user study experiments.

A. Survey Results

In the pre-study questionnaire, participants were asked to
identify what they perceive as the sub-task with the highest
cognitive load in the meal preparation and cooking process.
Of the top three identified tasks, two of them which were
“locating and knowing the list of ingredients” and “configuring
the appliances.” These tasks involve less physical loads, but
require more cognitive loads of understanding and decision-
making based on knowledge. The ontological system with
the knowledge database enables TupperwareEarth to directly
address these desired assistance by reducing both physical and
cognitive loads of the tasks. However, the third identified task,
“verification of the ingredient being cooked” is directly related
to the quality of cooking and is not currently address by the
system.

• 7 users identified “Locating & Knowing the list of
ingredients”

• 5 users identified “Verifying that the ingredient is cooked”
• 2 users identified “Configuring the appliances”

Another question asked to the participants in the pre-study
questionnaire was to identify the most desired assistance to
receive from the smart kitchen appliances. The top four most
desired assistance identified by the participants are listed
below:

• Voice assistance for cooking instructions
• Automatic setup and timer, Alerting system
• Locating the ingredients
• Finding a recipe

These assistance require remote control to be a part of
the functionality, however, they also require the system to
make high-level inferences such as, when to alert the user,
or making a customized recipe suggestion. TupperwareEarth
addresses the all top four most desired assistance for enhancing
the convenience and overcomes the limitation of just remote
control in smart kitchen appliances.



(a) (b)

Fig. 11: Post-study questionnaire results from the User study
experiments on TupperwareEarth’s reduction of (a) cognitive
loads and (b) perceived time in cooking tasks.

In the post-study questionnaire, participants were asked the
following two questions in regard to their interactions with
TupperwareEarth system with answer choices of strongly-
agree, agree, neutral, disagree, strongly-disagree:

• Did the assistance from TupperwareEarth reduce your
time for the cooking task?

• Did the assistance from TupperwareEarth reduce your
cognitive load from the cooking task?

Fig. 11, shows that about 75% of the participants gave
positive answers by responding either “agree” or “strongly
agree” to the reduction in both perceived time and cognitive
loads of the cooking task. The high percentage of positive
answers shows that TupperwareEarth is addressing the need
of intelligent assistance in meal preparation from smart appli-
ances in the kitchen.

B. Analysis

1) Average Preparation Time: In addition to collecting
qualitative data from the survey results on perceived time
and cognitive loads of meal preparation, we also analyzed
the average meal preparation time between the groups of
participants from different groups to investigate the impact
of TupperwareEarth’s assistance.

We used a two-sample paired t-test to compare the meal
preparation time between the conventional method and the
TupperwareEarth assisted method with Bonferroni correction.
Table V summarizes the results of the analysis, including
the mean decrease in time and the 95% confidence interval,
where * and ** indicate p-values less than 0.05 and 0.01,
respectively. Regardless of cooking and SKA expertise, the
meal preparation time with assistance from TupperwareEarth
is on average 32.81 seconds less than using conventional
methods (p = 0.0015). A statistically significant decrease of
time is also found in the group of cooking non-experts (p
= 0.0030) and the group of SKA non-experts (p = 0.0018).
While the effect of TupperwareEarth on meal preparation time
is still in the positive for the two expert groups, the paired

Fig. 12: Box plots for average preparation time between the
conventional and TupperwareEarth methods by experts and
non-expert groups in cooking skills.

t-test showed no statistical significance with the Bonferroni
correction, which can be attributed to the limited sample size
of the participants in these groups.

The average preparation time for the expert and non-expert
participants are shown in Fig. 12. Both participant groups
lessened their time consumed in meal preparation with the
TupperwareEarth assisted approach. The group of experts has
a time reduction of 16.6 seconds, whereas the group of non-
experts has a more substantial time reduction of 49.0 seconds,
indicating a 53% reduction of average meal preparation time
from the conventional method. Unlike the wide variations in
performance observed in the conventional method, the prepa-
ration time with assistance from TupperwareEarth distributed
within a small range of 40 to 46 seconds. Although the experts
seemed to spend slightly more time than the non-experts when
using TupperwareEarth, a two-sample t-test does not show any
significance in this distinction (p = 0.4110). Consequently, the
result suggests that TupperwareEarth not only saves time on
meal preparation, but also mitigates the gap between cooking
experts and beginners. The reduction in time is consistent with
our goal of designing TupperwareEarth to reduce the burdens
of the users.

TABLE V: The Comparison of Average Preparation Times

Participants Group Average Preparation Time(s) Decrease in Time(s)
Conventional Tupperware Earth

Expert Cooking Skills 61.1 44.5 16.6 (-7.96, 41.22)*
Non-Expert Cooking Skills 91.8 42.8 49.0 (22.84, 75.12)**

Expert SKA 62.2 40.2 22.0 (-31.30, 75.30)
Non-Expert SKA 82.9 45.2 37.7 (17.71, 57.75)**

All Participants 76.44 43.63 32.81 (14.82, 50.80)**

2) Physical and Cognitive Loads: We further analyzed the
average preparation time in terms of physical and cognitive
loads by measuring an absolute physical load time and the cog-



nitive load time. In the experiment, we measured the absolute
physical load time with a participant who is an expert for both
cooking skill and operating the smart kitchen appliance. This
participant is fully trained for the given cooking instructions
in this experiment. The assumption is that the absolute time
of physical load only involves the physical labor of each
cooking tasks such as picking up the ingredient, placing the pot
onto the cooktop or clicking buttons for the cooktop settings.
Ultimately, it takes the same amount of time in physical
loads across all participants. The average time of absolute
physical load for the conventional method took 10.7 seconds,
while the time increased to 19.2 seconds when the participant
was assisted by the TupperwareEarth system. Subtracting the
physical load time from the average preparation time yields
the cognitive load time, as shown in Table VI.

The results show a significant reduction in cognitive loads
from 63.8 seconds to 24.0 seconds when TupperwareEarth
is used. The cognitive loads include understanding, planning
and decision-making. For instance, the participants had to
determine what ingredients were needed at which stage of
the recipe, what temperature and timer settings were needed
for the cooking skill, and the understanding of how to use
the cooktop. The non-expert group in cooking skill benefited
the most significant reduction in the time of cognitive loads
by 57.5 seconds which consists of 71% reduction from the
time of cognitive loads taken in the conventional method.
The results from the experiment proves that the difference in
level of expertise in cooking skill and operating smart kitchen
appliances affected the time of cognitive loads in completing
the cooking tasks.

However, the increase in the time of physical load shows a
contrast to the reduction in cognitive loads. Although remote
control reduces the burden of physically walking to the devices
and controlling them, a new digitized way of operating the
smart appliance using buttons and screens adds more time than
a traditional way. For instance, a simple knob replaced by the
buttons with touchscreen or pulling out an app to operate the
appliance for remote-control in fact adds more physical loads
(in terms of time) for the users. Therefore, remote control is
not the most desired assistance as the new way of controlling
smart appliances becomes an additional burden. The same
trend was seen in TupperwareEarth’s assistance by adding 8.2
seconds more to the physical loads. Most of the additional time
came from the user’s waiting time wherein they were waiting
for the voice-alerts and guidance from the system. However
the reduction in cognitive loads of 39.8 seconds was more
significant than the addition of physical loads. As a result, the
total preparation time still reduced.

The same absolute physical time is assumed in this exper-
iment to separate the physical and cognitive loads out of the
total meal preparation time. However, there are still variations
among the users on performing the same physical tasks. People
have different speed of action, such as grabbing the ingredients
or stirring. They also make mistakes that can slow down the
process of the physical tasks in cooking. Therefore, we can
hypothesize that the difference in level of cooking skills or

TABLE VI: Physical and Cognitive Loads of Average Prepa-
ration Time

Method Average Preparation Time(s)
Conventional TupperwareEarth

Time Consumption Category Abs Physical Cognitive Abs Physical Cognitive

Expert Cooking Skill

10.7

50.4

19.2

25.3
Non-Expert Cooking Skill 81.1 23.6

Expert SKA 51.5 21.0
Non-Expert SKA 72.2 26.0

All Participants 10.7 63.8 19.2 24.0

smart kitchen appliances can have impacts on the physical
loads. The experiment conducted in this study was designed
to measure the physical loads as the time for meal preparation,
however a new study to investigate further about the variation
of physical loads across the different participant groups is
recommended.

V. DISCUSSION

TupperwareEarth introduces a new paradigm of customized
conveniences for users in the kitchen. The Smart Tupperware
hardware distinguishes itself from the ones previously pub-
lished [15], [26], [27] by integrating sensors and actuators
designed for enabling a wide range of applications, such as
identifying food type and monitoring food expiration. With our
new, enhanced fabrication method of embedding the electronic
substrate into the plastics, we are able to deliver low-cost and
low-power smart containers that are suitable for the kitchen
environment. Smart Tupperware will evolve further to be dish-
washable and food safe. This advantage will make Smart
Tupperware ideal for large scale use and bring meaningful
customization to the users. We aim to deliver a commercialized
adaptation of Smart Tupperware in the future.

Seamless communication is the backbone of Tupperwa-
reEarth, tying all the pieces together. The integration of BLE
and MQTT protocols allow for efficient data management
among multiple IoT devices while maintaining low latency
across applications. Leveraging the seamless communication
among the devices, TupperwareEarth delivers step-by-step
instructions of the cooking process in real-time through Tuppy.
We prove that no statistically significant physical and cognitive
burdens were added from this application. The adaptation of
the industry standard communication protocols and intelligent
voice-based control through Tuppy will further bring user
incentives to our commercialized products. While we plan to
expand the TupperwareEarth’s IoT network to other kitchen
appliances, such as smart refrigerator or smart microwave, to
offer a greater set of services, we will also explore the security
enhancement in our network to ensure a safe communication
environment for each individual user.

The hardware and communication implementations are fur-
ther enriched by their intertwining with the semantic ar-
chitecture. The ontology-based semantic architecture grants
comprehension of the tasks, the needs of the user, and the func-
tionalities that each appliance offers. TupperwareEarth is the
first of its kind to leverage multi-domain ontological semantics



with smart kitchen appliances to attempt to “understand” the
user and the context of the kitchen by mapping the capabilities
of the appliances to the needs of the task at hand. We plan
to further enhance the customization by leveraging the users’
shopping and usage data into TupperwareEarth’s ontology,
deriving individual user’s daily patterns to personalize the
recipe suggestions and automatic shopping list.

VI. CONCLUSION

The rise of Internet-of-Things has propelled the integration
of technology in the kitchen. While numerous smart appliances
exist today, they primarily allow remote control and monitor-
ing leaving the human to still be in charge of the orchestration
of the processes. TupperwareEarth extends the utility of smart
devices by coupling them to an intelligent network that not
only grants the ease of remote control but also alleviates the
cognitive burdens of the user by actively participating in the
planning and orchestration of the cooking process.

In this paper, we implement TupperwareEarth by using
Smart Tupperware, a novel IoT-based smart container that en-
ables real-time monitoring and management of kitchen inven-
tory. These containers are connected by an agile network to the
TupperwareEarth system. Using an ontology-based knowledge
database for the kitchen, TupperwareEarth comprehends the
availability of appliances and ingredients, and also understands
user preference in the context of cuisines and time of day. The
ontology provides the knowledge to suggest recipes to the user
based on the inferred context. The TupperwareEarth system
then guides the user through the process of cooking with the
suggested recipe through the Tuppy user interface application.

The user study experiment proves that TupperwareEarth
reduces average food preparation time for both expert and
non-expert cooks. Notably, 75% of the users agreed that
TupperwareEarth resulted in reduced cognitive loads and re-
duction in time of the meal preparation. Analysis of expert
and non-expert participants (classified in terms of cooking
skills and use of appliances) showed that both groups benefited
from the use of TupperwareEarth. The group of non-expert
users benefited the most from TupperwareEarth with a noted
reduction of 53% of the total meal preparation time and 71%
of the time in the cognitive loads. Hence, the user studies
illustrate the effectiveness of TupperwareEarth in the kitchen.
In the future, the scope of TupperwareEarth can be extended
by incorporating robotic technology to assist the user in
further sophisticated kitchen processes, cooking more intricate
recipes.



APPENDIX

TABLE VII: List of SWRL Rules in TupperwareEarth Ontology

Catgory Name Condition Inference
Appliance Cooking

Cooking
Method

1 DeepFrier(?o) Frying(NextRecipeCookingMethod)

2 Grill(?o) Grilling(NextRecipeCookingMethod) ∧
Broiling(NextRecipeCookingMethod)

3 MicrowaveOven(?o)
Microwaving(NextRecipeCookingMethod) ∧

Roasting(NextRecipeCookingMethod) ∧
Baking(NextRecipeCookingMethod) ∧

4 Oven(?o) Baking(NextRecipeCookingMethod) ∧
Roasting(NextRecipeCookingMethod)

5 Stove(?o)

Boiling(NextRecipeCookingMethod) ∧
Blanching(NextRecipeCookingMethod) ∧
Braising(NextRecipeCookingMethod) ∧

StirFrying(NextRecipeCookingMethod) ∧
Brewing(NextRecipeCookingMethod) ∧
Frying(NextRecipeCookingMethod) ∧

Poaching(NextRecipeCookingMethod) ∧
Stewing(NextRecipeCookingMethod) ∧
Steaming(NextRecipeCookingMethod)

6 Recipe(?r) ∧ Frying(?m) ∧
requiresCookingMethod(?r, ?m) Frying(NextRecipeCookingMethod)

Entity
Mapping

7

Appliance(?p) ∧ sosa:hosts(?p, ?s) ∧ sosa:Sensor(?s) ∧
sosa:observes(?s, ?ft) ∧ FoodType(?ft) ∧

madeLastObservation(?s, ?ob) ∧ sosa:Observation(?ob) ∧
sosa:hasSimpleResult(?ob, ?res)

Food(?f) ∧ hasDescription(?f, ?res) sosa:hosts(?p, ?f)

8 Appliance(?p) ∧ Oven(?p)
MILKCreateTool(InputProcedure) ∧

usesTool(InputProcedure, ?t) ∧
Oven(?t)

sameAs(?t, ?p) ∧
ShowNextRecipeStep(OutputProcedure)

9 Appliance(?p) ∧ Refrigerator(?p)
MILKCreateTool(InputProcedure) ∧

usesTool(InputProcedure, ?t) ∧
Refrigerator(?t)

sameAs(?t, ?p) ∧
ShowNextRecipeStep(OutputProcedure)

10 Appliance(?p) ∧ Stove(?p)
MILKCreateTool(InputProcedure) ∧

usesTool(InputProcedure, ?t) ∧
Stove(?t)

sameAs(?t, ?p) ∧
ShowNextRecipeStep(OutputProcedure)

11 Tool(?p) MILKCreateIng(InputProcedure) ∧
from(InputProcedure, ?p) ShowNextRecipeStep(OutputProcedure)

Environment
Monitoring

12 Tool(?pl)
MILKPut(InputProcedure) ∧

usesTool(InputProcedure, ?pl) ∧
usesFoodIngredient(InputProcedure, ?f)

willMoveTo(?f, ?pl)

13 Tool(?p) ∧ Food(?f) ∧
sosa:hosts(?p, ?f)

MILKProcedure(InputProcedure) ∧
usesFoodIngredient(InputProcedure, ?f) from(InputProcedure, ?p)



14 Food(?x) ∧ Food(?y)
generatesFoodIngredient(?p, ?y) ∧

usesFoodIngredient(?p, ?x) ∧
MILKProcedure(?p)

willTransformTo(?x, ?y)

15

Appliance(?p1) ∧ Tool(?p2) ∧ sosa:hosts(?p1, ?f) ∧
sosa:Sensor(?s) ∧ Weight(?w) ∧ sosa:hosts(?p1, ?s) ∧

sosa:observes(?s, ?w) ∧
madeLastObservation(?s, ?ob1) ∧
madeNewObservation(?s, ?ob2) ∧
sosa:hasSimpleResult(?ob1, ?v1) ∧
sosa:hasSimpleResult(?ob2, ?v2) ∧

swrlb:lessThan(?v2, ?v1)

willMoveTo(?f, ?p2) ShowNextRecipeStep(OutputProcedure)

Appliance
Automation

16

Appliance(?p) ∧ sosa:hosts(?p, ?h) ∧ sosa:Actuator(?h) ∧
Temperature(?temp) ∧ Timer(?timer) ∧

sosa:actsOnProperty(?h, ?temp)
∧sosa:actsOnProperty(?h, ?timer)

MILKCook(InputProcedure) ∧
usesTool(InputProcedure, ?t)

sameAs(?temp, OutputProperty1)
sameAs(?timer, OutputProperty2) ∧

sameAs(?h, OutputActuator) ∧
sameAs(?p, OutputPlatform) ∧

17

Appliance(?p) ∧ sosa:hosts(?p, ?h) ∧ sosa:Actuator(?h) ∧
Temperature(?temp) ∧ Timer(?timer) ∧

sosa:actsOnProperty(?h, ?temp) ∧
sosa:actsOnProperty(?h, ?timer) ∧

Cookware(?t)

MILKCook(InputProcedure) ∧
usesTool(InputProcedure, ?t)

sameAs(?temp, OutputProperty1)
sameAs(?timer, OutputProperty2) ∧

sameAs(?h, OutputActuator) ∧
sameAs(?p, OutputPlatform)

18
Heater(?ac) ∧ Appliance(?t) ∧

sosa:hosts(?t, ?ac) ∧ Temperature(?p1) ∧
sosa:actsOnProperty(?ac, ?p1)

MILKSet(InputProcedure) ∧
usesTool(InputProcedure, ?t)

sameAs(?t, OutputPlatform) ∧
sameAs(?ac, OutputActuator) ∧
sameAs(?p1, OutputProperty1)

19
Appliance(?p) ∧

Content(?c) ∧ Display(?d) ∧
sosa:actsOnProperty(?d, ?c) ∧ sosa:hosts(?p, ?d)

MILKPut(InputProcedure) ∧
usesTool(InputProcedure, ?p)

sameAs(?p, OutputPlatform) ∧
sameAs(?d, OutputActuator) ∧
sameAs(?c, OutputProperty1)

20
Appliance(?p) ∧

Content(?c) ∧ Display(?d) ∧
sosa:actsOnProperty(?d, ?c) ∧ sosa:hosts(?p, ?d)

MILKPut(InputProcedure) ∧
from(InputProcedure, ?p)

sameAs(?p, OutputPlatform) ∧
sameAs(?d, OutputActuator) ∧
sameAs(?c, OutputProperty1)

The table is listed in the format that Appliance Condition ∧ Cooking Condition → Inference;
?x represents a variable that can be any individual in the ontology; ∧ represents conjunction of predicates
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[8] R. Blasco, Á. Marco, R. Casas, D. Cirujano, and R. Picking, “A smart
kitchen for ambient assisted living,” Sensors, vol. 14, no. 1, pp. 1629–
1653, 2014.
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