O 00 NO U b

10

11
12
13
14
15
16
17
18
19
20
21
22

23

24
25
26
27
28
29
30

Machine Learning Prediction of Critical Cooling Rate for Metallic

Glasses From Expanded Datasets and Elemental Features

Benjamin T. Afflerbach?®’, Carter Francis?, Lane E. Schultz?, Janine Spethson?, Vanessa
Meschke?, Elliot Strand?, Logan Ward®, John H. Perepezko?, Dan Thoma?, Paul M. Voyles?,
Izabela Szlufarska?, Dane Morgan®"
aUniversity of Wisconsin-Madison, PArgonne National Laboratory
*Corresponding Authors (bafflerbach@wisc.edu, ddmorgan@wisc.edu)

Abstract

We use a random forest model to predict the critical cooling rate (Rc) for glass formation of various
alloys from features of their constituent elements. The random forest model was trained on a
database that integrates multiple sources of direct and indirect Rc data for metallic glasses to expand
the directly measured Rc database of less than 100 values to a training set of over 2,000 values. The
model error on 5-fold cross validation is 0.66 orders of magnitude in K/s. The error on leave out one
group cross validation on alloy system groups is 0.59 log units in K/s when the target alloy constituents
appear more than 500 times in training data. Using this model, we make predictions for the set of
compositions with melt-spun glasses in the database, and for the full set of quaternary alloys that
have constituents which appear more than 500 times in training data. These predictions identify a
number of potential new bulk metallic glass (BMG) systems for future study, but the model is most
useful for identification of alloy systems likely to contain good glass formers, rather than detailed

discovery of bulk glass composition regions within known glassy systems.

Introduction and motivation

Bulk metallic glasses (BMGs) are a class of materials with exceptional properties that support a
wide range of application spaces including biomaterials, magnetic devices, and in surface coatings
[1,2]. A key challenge in BMG materials discovery is identification of BMG forming compositions in
existing glassy alloys and discovery of entirely new BMG alloys. Methods for discovery of BMGs have
generally fallen into two broad categories. The first category is qualitative predictions of good glass
forming ability (GFA) alloys and regions through identification of various qualitative and semi-

guantitative physics-based criteria (e.g., deep eutectics) such as those outlined by Inoue et al [3]. This
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methodology has had many successes and is responsible for the discovery of many of the BMG alloys
known today. The second category is models that quantitatively predict a metric of GFA such as the
critical cooling rate (Rc¢) or the critical casting diameter (D.). As our understanding of glassy alloys, and
the amount of available data increases, these quantitative models are becoming more appealing as

they can potentially reveal much more detailed information about the GFA across alloys.

Quantitative GFA predictions take many forms but can be organized by their choices of features,
models, and target predictions. Features typically range from approximately instantly accessible (e.g.,
elemental properties [4]) to moderately accessible properties needing some calculation (e.g.,
thermodynamic properties determined from CALPHAD [5], or liquid properties determined by
molecular dynamics [6]) to properties requiring extensive synthesis and characterization (e.g., glass
transition temperature [7-9] or fragility [10]). Models range from simple linear functions (e.g., the R¢
vs.  correlations [7]) to fully non-linear machine learning models (e.g., D. vs features fit with boosted
trees [9]). Target values range from qualitative categorical predictions (e.g., is a glass under melt
spinning [11-13]) to quantitative models of R¢ [7] and D. [9,14-16]. A comprehensive review is not
practical here, so we focus on the present status of efforts most similar to ours, where the focus is on
instantly accessible elemental property features and quantitative prediction of Rc or D.. We are not
presently aware of any study that has successfully built a demonstrably effective predictive model for
new BMG systems from simple elemental features. A few notable successes have been the work of
Ren et al. and Ward et al., demonstrating a significant ability to predict categorical results of glass
forming under melt-spinning, and optimizing GFA of existing known glass formers [17,18]. They fit to
over 6,000 melt spinning experiments and achieved a AUC of 0.80 in their ROC curve [17]. Zhang et
al. propose a combination of these ideas, using a two-step approach to layer classification predictions
with subsequent D¢ predictions from a similarly accessible feature set [19]. These works show the
power of elemental property features but do not provide an approach to predict new BMG systems.
In terms of predicting Rc and D¢ there have been striking successes for Rc predictions from
characteristic temperatures (liquidus, glass transition, and crystallization temperatures), with Long, et
al. reporting an R? of 0.93 vs. the ® parameter, which is a simple function of characteristic
temperatures [7]. D¢ has generally been harder to predict quantitatively [7] although Johnson et al.
[10] showed an outstanding result R? value of 0.98 in their predictions for D, as a linear function of
reduced glass transition temperature and fragility. These results suggest Rcis easier to model than Dc.
These results also suggest that quantitative models of Rcand Dc are possible, although they have only

been achieved by using very expensive features that require extensive synthesis and characterization
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for every new system. However, the above work also suggests that elemental properties can capture
physics of GFA, particularly when combined with the ability of modern machine learning methods to
model nonlinear relationships and automatically select features. Taken together these observations
raise the tantalizing possibility that an accurate model of R¢ as a function of elemental features might

be achievable.

The absence of a model relating R¢ to elemental properties is easily understood as a result of the
lack of adequate training data. There are approximately 10? Rc values from direct experimental
measurements available. In addition, researcher interest in BMGs and limitations on measuring Rc
(typically below 10* K/s) means most data is focused on alloys with known BMGs compositions, and
often within composition ranges associated with the BMG formation. A machine learning model that
is trained solely on this data will be heavily biased towards predicting that everything is a BMG,
limiting the model’s utility in identifying new BMG alloys. Limited and biased data are two critical
issues holding back machine learning predictions of Rc from simple features like elemental properties.

Similar arguments hold for D, although there are closer to 1,000 data points available [20].

Here we try to develop the first model for R¢ as function of elemental features, with a focus on
expanding the database of R¢ from its directly measured values, as this database is too small to
support robust machine learning models. This expansion is accomplished in three steps. First,
available D. data is converted to approximate Rc values using curve fitting to a functional form inspired
by simple assumptions about heat transfer during cooling and average thermodynamic properties of
metals. Second, available characteristic temperature data is used in combination with previously
developed models to estimate Rc for a range of alloys. And third, available melt spinning data is
assigned approximate values for Rc. The goals of adding these different set of data are to provide
more varied compositional space, increase the amount of training data, and expand the range of Rc
values available for training. These methods expanded the amount of training data available by over
an order of magnitude compared to direct measurements of Rc. Using this new dataset, a random
forest (RF) model has been trained and evaluated for accuracy in predicting Rc and has also been used

to predict the GFA in new BMG systems.
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Database details and Computational methods

Source Database

The starting Rc database was obtained primarily from Long et al. who gathered 53 experimental
measurements of critical cooling rate [7]. One data point (pure nickel) was removed from this
database due to being approximated by different methods. 25 more Rc measurements not in Long et
al.’s database were found from eight more papers for a total of 77 experimental Rc measurements
[21-28]. Rc values are converted to a log scale for easier representation across the wide range of
orders of magnitude. Values range from 102 to 10”7 K/s with an average of 10> K/s. We will call this

data set 1 (DS1).
Generated Rc Database

DS1 was expanded three ways. First, we estimated Rc from experimental measurements of critical
sizes from casting. We have used measurements of both critical casting diameter D¢ and critical
casting thickness Zc, and we denote both as Dc. Both of these values are converted to Rc values using

a generalization of the formalism outlined by Lin and Johnson [29] which suggests the relationship

Lin and Johnson’s proposed equation sets A=10 and B=2 based on assumptions about average
thermodynamic properties across all metals and an idealized interface between the alloy and mold.
Specifically, they assume a difference between melting temperature and glass transition temperature
of 400 K, Thermal conductivity of the melt being 0.1 W/cm s K2, and heat capacity per unit volume
of 4 J/cm3 K. Bis set to 2 based on an ideal A fit of log(Rc) vs. log(Dc¢) (Figure 1) for alloys is DS1 which
have both measurements gives A=631 (log(A)=2.81), B=1.8. This fit was then used to approximate Rc
values from all Dc and Z¢ values without a Rcin DS1. The A and B values shift quite significantly from
the values estimated by Lin and Johnson. This difference is likely due to the previous assumptions
ignoring surface interactions between the melt and the mold during casting. The application of Eq.1
in this first method added 342 approximate Rc values (which we call Data Set 2 (DS2)) and brings the

number of training values up from 77 experimental Rc values to a total of 419 training values.
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Figure 1. Comparison of a subset of training data with both experimentally measured RC and Dc
values. The line of best fit and its equation are shown. The fit has R? of 0.80, RMSE of 0.55 K/s, and
MAE of 0.44 K/s.

Second, we used the ® parameter initially proposed by Long et al to make approximations for R¢
for all datapoint for which we have measured Tg, Tx, and T,[7]. Specifically, we take all T, Tx, and T,
data we have available, determine ®, and then use the linear relationship between ® and R¢ to from
Long et al to predict Rc. As an additional verification of the w parameter, for the 25 additional points
added to Long et al.’s original data, their ® values were calculated and are shown in the
supplementary information as a test set specifically for the o relationship. All the new values fell
within the spread of the previous data, further demonstrating the ability of this parameter to
effectively transform characteristic temperatures into estimated critical cooling rate values. Refitting
the o relationship proposed by Long, et al. only resulted in minor changes so to avoid a proliferation
of almost identical models we simply used the fitting parameters established by Long et al.. This
second method added 141 approximate Rc values (which we call Data Set 3 (DS3)) for compositions
that do not overlap with previous datapoints, bringing the total to 560 compositions with approximate

Rc values.

Finally, we leveraged melt spinning experiments, which categorize compositions as amorphous,
partially amorphous, and crystalline under high-rate cooling. Based on what is known about typical
cooling rates during melt spinning, these categories correspond to approximate constraints on Rc. Due
to the overlap of the expected Rc values for amorphous melt spinning data (such alloys likely have Rc¢

<~10° K/s) with significantly higher quality measurements and approximations of Rc from the previous
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methods, the amorphous category data was excluded from the final dataset. This exclusion is done
because introducing such a large amount of very approximate Rc¢ data in the same range where we
have access to much higher quality data would likely drown out any signal that would allow the model
to differentiate BMGs (Rc< 10° K/s) from moderate glass formers and non-glass formers. We therefore
assigned approximate Rc values only to the partially amorphous and crystalline categories and
included them in our fitting. Specifically, we assigned the partially amorphous and crystalline cases Rc
values of 10>° and 107 K/s, respectively. When a cooled system comes out partially amorphous it is
likely that the actual cooling rate was a little slower than R, since some of the system had time to
crystallize. Furthermore, the cooling rate for melt spinning is known to be in the range 10* and 10°
K/s, or based on averaging the logs, about 10° K/s [30]. Therefore, for systems that are partially
amorphous it is likely that the true R. range is somewhat shifted toward higher values than the range
10% and 10° K/s, say 10*° and 10°%° K/s. We represent this range by averaging the logs to give 10°° K/s.
The value of 107 K/s for the fully crystalline was chosen to be a about one order of magnitude above
the fastest cooling rate likely obtained in melt-spinning data to represent the fact none of these alloys
formed amorphous structures. The exact R value chosen for the crystal forming alloys did not have a
significant effect on machine learning performance as we have an extremely small amount of direct
experimentally measured Rc values in this range that would be affected by the specific number
assigned to this data. Therefore, the main effect of including it and assigning a value is to allow the
model to differentiate between the better glass formers found elsewhere in the dataset, and these

poor glass formers.

The melt-spinning data is obtained from a review paper which provides over 8,000 melt-spun
compositions[31]. From this dataset we used 1248 compositions which formed crystalline metals after
melt-spinning, and 720 compositions which were categorized as partially amorphous. Although the Rc
values from this data are highly approximate, they are quite distinct from the bulk of the higher-
fidelity training data developed above and are therefore expected to constrain the fits without
polluting fitting to higher fidelity data. Figure 2 shows that the crystalline and partially amorphous
data do not overlap significantly with the rest of the training data. This process added 1,565
approximate Rc¢ values (which we call Data Set 4 (DS4)) for compositions that do not overlap with
previous datapoints, bringing the total to 2,125 compositions with approximate R¢ values. This is an
increase of almost 30 times greater than the initial set of measured Rc values. We call this final

integrated Data Set 5 (DS5).
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Figure 2. Distribution of Rc values in final training dataset (DS5)

Machine Learning Models

Using the complete DS5 of Rc data a random forest model was built and trained to predict Rc. The
random forest model is trained using the MAST-ML machine learning software package which builds
machine learning workflows using the underlying scikit-learn python package [32,33]. Inputs to the
model are obtained from compositional information and elemental features using the MAGPIE
approach proposed by Ward et al. [4,18]. Elemental features for each composition are generated as
composition averages, maximum, minimum, and difference. This feature set is chosen to be maximally
accessible as all the features can be generated almost instantaneously directly from available
elemental databases. Several other model types were also investigated along with the random forest
model but showed worse performance. Specifically, gradient boosted trees and Kernel Ridge
Regression models showed reduced performance under cross validation testing with a 5-fold cross
validated RMSE of 0.732 and 0.803, respectively (compared to 0.36 for random forest, discussed
below). We assessed the predictive ability of the model through random and leave-one-group-out
cross validation (CV). The random cross validation was done by repeating 5-fold cross validation 10
times (for a total for 50 left folds of data) and the predicted values for each excluded point were

averaged.
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192 The average predicted vs. true values are shown in the parity plot in Figure 3. We calculated the
193 following statistics from the 5-fold CV test: R*=0.97 + 0.01, root mean squared error (RMSE) = 0.36 £
194 0.09, mean absolute error (MAE) = 0.08 = 0.02, RMSE normalized by the standard deviation of all the
195 log(Rc) values (RMSE/cy where oy = 2.22) = 0.16 + 0.04 respectively. The error bars represent the
196 standard error in the mean of each statistic when averaged over all 50 CV folds. Although our model
197 uses only elemental features, the errors are comparable to or better than the best previous models
198 for Rc using characteristic temperatures. Specifically, the @ model for predicting Rc from characteristic
199 temperatures given in Long, et al. showed R? = 0.90 and RMSE = 0.67 log units [7]. These statistics are
200 influenced by the large amount of melt spinning data which is somewhat unusual due to it being
201 assigned the same Rc value. If the melt spinning data is excluded from the statistics RMSE value
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While the random CV is a useful standard test of model accuracy it is not a good test of the ability
of the model to predict new chemistries [34]. This limitation of the random CV score arises because
the data set often has multiple entries on closely related compositions due to the nature of
experimental research on GFA, so excluded points in the validation data are likely to have nearby
compositions in the training data that contain all the same elements with minor changes to the
composition. This allows the model to effectively serve as a “look-up” table for predicting all nearby
materials without learning the underlying physics causing good GFA. The random CV score therefore

likely overestimates how well the model will perform on new chemistries.

To assess errors on new chemistries we performed a leave-out-one-group CV, where we grouped
together similar compositions and left them out one by one, training on the remaining data. Groups
were defined by each unique alloy system (i.e., unique combinations of elements). For example, if the
dataset only contained three elements the total list of groups would be defined as EI1-EI2, EI1-EI3,
El2-El3, and EI1-EI2-EI3. As each group was left out the training data the average RMSE were recorded
and are summarized in Figure 4. Groups are sorted by the minimum number of overlap instances with
the training data between all elements in the group. For example, the elemental overlaps for an
excluded Cu-Zr alloy would be the lower value between the number of Cu and Zr containing alloys
were left in the training set. The dashed-dotted lines show the average RMSE of all groups within each

bin from 0-250, and 250-821 on the x-axis. The dashed line shows the average across all points.
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Figure 4. Leave out group cross validation sorted by amount of overlap with training data. The
blue dashed line shows the average RMSE of 0.88 log units. The orange dashed-dotted line shows
averages for each bin of data from 0-250 (0.89) and 250-821 (0.58).

Figure 4 shows how the model is performing on average and how it performs when there are
many or few representatives of the elements being predicted. The average RMSE (MAE) of 0.88 (0.82)
log units is noticeably larger than the random CV RMSE (MAE) of 0.36 (0.08) log units. This increase is
due to the larger amount of compositionally similar data being left out when an entire alloy system is
removed. Due do the nature of experimental data generation many systems have measurements
taken single digit atomic percents away from each other, which may cause the random CV method to
overestimate performance. RMSE (MAE) errors still stay below an order of magnitude (one log unit)
suggesting that in an average way the model is at least moderately robust to leaving out significant
chemical information. One might expect that the model will perform best when there is the most
training data. This effect is not particularly apparent from Figure 4 but the data does seem to cluster
into two groups, below about 250 and above, and the RSME goes from 0.89 to 0.58 in going from the
low to high group. This result suggests that establishing a cutoff of around 250 elemental overall

instances for elements in any predicted alloy systems may help improve the reliability of predictions.

Using the cutoff of 250 instances of overlap we can propose two searches for making predictions

with the random forest model to identify new BMG systems. The first search is to use the model to

10
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predict likely BMGs from known glass formers from melt-spinning data. As discussed during the
database generation section there is a set of melt-spinning data that was left out of model training
due to overlap with the higher fidelity experimental data. We will look for BMGs within this group of
alloys. We define a BMG as Rc < 10° K/s. This data has 3,755 compositions that were classified as glass
formers under melt-spinning conditions. Of those points there were 63 compositions predicted as R¢
< 103 K/s by our model and therefore predicted to be good BMG candidates. These predictions are
shown in Figure 5. Predicted critical cooling rates of melt-spun glasses. Points are color coded by
interest of the alloy composition. Red points being the least interesting, and yellow points being the
more promising as new BMG systems. with more details on the specific alloy systems given in Table
1. The probability of the prediction being a BMG is estimated directly from the random forest
confidence interval of each prediction using a one-sided Z-test. An analysis of these estimated

confidence intervals is included in the supplementary information in the section Error Bar Analysis.
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Figure 5. Predicted critical cooling rates of melt-spun glasses. Points are color coded by interest
of the alloy composition. Red points being the least interesting, and yellow points being the more
promising as new BMG systems.

While the machine learning model can potentially provide helpful guidance in discovering new
BMGs, its predictions must be considered by human researchers to assess their value to the
community. With this in mind, each prediction in Figure 5 is color coded based on our personal

assessment of the novelty of the alloy system for the BMG community. The color scheme is used in
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Table 1 as well. Red systems are likely the least interesting due to being a known BMG system in our
training data. These predictions only demonstrate that the model will predict nearby compositions to
training data. Yellow systems are not directly known BMG systems; however they have nearby BMG
guaternaries or ternaries with one additional minor alloying element. This limits the novelty of these
predictions since we would expect the higher component systems to have better glass forming ability
than the predicted lower component alloys. One of these systems, Al-Ca-Ga, is slightly different in
that its nearby system is the binary Al-Ca system that is also included in Table 1 which has less
components. Of the yellow systems, Al-Ca-Ga is therefore the most potentially interesting as following
the same logic this higher number of components in general may increase GFA compared to the
known Al-Ca BMG system. Finally, there are several green systems that are potentially the most
interesting due to not having any nearby known ternary or quaternary BMG systems. They can all be
broadly grouped into the category of Au-B-rare earth. Predictions for these systems fell slightly above
the previously established 103 K/s cutoff and are identified with an asterisk. This extension to higher
Rcvalues was considered because previous established estimated errors in predictions still place these
systems in the range of being potential glass formers. Based on our literature review this combination
of elements appears to be new, with some of the closest systems being the Au-Si-X BMG systems
introduced by Schroers et al.[35]. Our predicted alloys essentially replace the Si in the Au-Si-X BMG
with another nearby metalloid, B. However, while rare earth elements have been used in BMGs there
is not any previous literature combining gold and boron with rare earth elements of which we are
aware. Therefore, these types of systems are suspected to be novel and worth additional
consideration. As an additional check for potential interest in these systems we consider to what
extent they are consistent with previously established empirical rules for finding metallic alloys with
high glass forming ability. While these criteria have many forms the following properties of systems
proposed by Inoue et al. [36] are generally desirable: (1) multicomponent alloy consisting of more
than 3 elements, (2) significantly different size mismatch exceeding 12% among the main 3
constituent elements, (3) negative heats of mixing among their main elements. We also add to this a
fourth criteria, which is generally harder to assess without detailed thermodynamics models, which is
that the system shows deep eutectics. All alloys are ternaries so do not quite satisfy the first criteria,
but we know that BMG ternaries can be formed. All three systems easily satisfy the second criterion
due to the large size difference between Boron and the Rare-earth elements. All three systems also
satisfy the third criteria. Heats of mixing are calculated for each predicted composition from an

extended regular solution model following the methodology and binary interactions from Takeuchi
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and Inoue [37]. Mismatch percentage along with the estimated heats of mixing, are shown in in Table
1 for the average of predicted compositions in each system. With respect to the fourth criteria,
available binary phase diagrams from the ASM Alloy Phase Diagrams Database were analyzed which
reveal eutectics in all of the binary subcomponents of the Au-B-X ternary alloys [38]. Specifically,
eutectics occur near AuyoBso, near the edges of the B-X binaries as well as B;oGdss, and at many
compositions in the Au-X binaries. While we do not have access to full ternary phase diagrams to
investigate in more detail, agreement with many previously established criteria for discovery of BMG
alloys makes these three systems interesting candidates for further study.

Table 1. List of alloy systems predicted as BMGs. Systems are color coded by potential to be novel
BMG (see discussion in text for color coding).

Mixing Enthalpy

Known BMG  Size Mismatch (Kj/mol)
Cu Hf Nb No 22% -10.1
Cu Nb Zr No 23% -14.3

Cu Hf No 22% -15.9

CuPZr No 32% 27.4
Al Ca Ga No 39% -22.9

To give more insight into the model’s predictions, the Rc for systems in Table 1 were predicted
over the alloy’s full binary and ternary composition ranges and the full predictions for the Au-B-Pr
system are shown as an example in Figure 6. We can see from this example that a large portion of the
ternary system is predicted near or below the 10% K/s cutoff for predicted bulk formation. This result,
combined with the small dynamic range of predictions, with the majority of the ternary predicted
within one order of magnitude, suggests we cannot claim to make a prediction of any specific region

within the ternary being the most promising. This trend holds across most new predictions, suggesting
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that for new systems the model predictions can at best identify candidate BMG systems, rather than
pinpoint promising BMG regions within systems. This limitation is unfortunate but may be less
problematic in the future as the community is developing new combinatorial approaches to
experimentally investigate large composition ranges of a system. For example, researchers were
recently able to synthesis and characterize Rc over a large region of the Al-Ge-Ni ternary using high-

throughput methods [28].

Log(R¢)

0 10 20 30 40 50 60 70 80 90 100 3.0
Au (at%)

Figure 6. Predictions in 1% composition increments of the Au-B-Pr system.

A second search was performed to explore more widely for potential BMG systems. In the first
test above potential systems and compositions were obtained only from known melt-spinning glasses.
In this second test we considered every possible quaternary system composed of elements that meet
the criterion of more than 250 overlap instances with the training set. There are 10 elements that
meet this criterion in the training set: Al, Cu, Ni, Fe, B, Zr, Si, Co, Mg, and Ti. Making every single
potential quaternary gave 286 potential quaternary systems. In each system a 10% composition grid
was generated for the initial set of predictions. Due to the large number of predictions made multiple
steps were taken to filter the predictions to a more manageable number. First all three of the
previously discussed criteria proposed by Inoue were filtered against and systems which did not meet
the criteria were removed. Notably this means all ternary and binary systems were removed at this
stage. Predicted systems were also filtered against known BMG systems in the training data. Predicted

compositions were also individually compared to BMG training compositions and removed if they
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were within 10% elemental composition of any BMG training point. There are 44 systems which meet

these criteria, and they are summarized in Table 2.

Table 2. Predictions of GFA for systems constructed from elements with >250 overlap instances
in training data. Systems are color coded by potential to be novel BMG (see discussion in text for color

coding).

Idx Alloy System

1 CuFeSiZr
2 CoCuMgzr
3 CuMgsSizZr
4 CuFeMgZr
5 CuNiSizr
6 CoCuSiZr
7 BCuFeZr
8 BFeMgZr
9 BCusSiZr
10 BCuMgZr
11 BCuTizr
12 BCuNiZr
13 CuMgTiZr
14 BCoCuZr
15 CuMgNizr
16 BCoFeZr

18 BFeTiZr

20 CoFeSizr
21 CuFeTiZzr
22 BCuSITi

23 BCuMgSi
24 CoCuTizr
25 BCuFeTi
26 BFeMgSi
27 BCuMgTi

Size Mismatch

0.24
0.25
0.24
0.24
0.26
0.25
0.81
0.81
0.81
0.81
0.81
0.81
0.23
0.81
0.26
0.81

0.81

0.25
0.24
0.65
0.70
0.25
0.65
0.70
0.70

Minimum Mixing
Enthalpy (Kj/mol)

-85.88
-27.64
-80.12
-14.8
-90.88
-89.2
-53.88
-49.68
-91.48
-46.04
-60.92
-58.52
-11.32
-56.4
-34.2
-61.16

-66.84

-92.36
-19
-81.2
-47.64
-28.48
-50.04
-56.28
-51.16

Minimum Rc
Prediction log(K/s)

1.53
1.58
1.63
1.65
1.66
1.72
1.86
1.88
1.89
1.89
1.95
1.98
2.00
2.04
2.13
2.20

2.34

2.40
2.40
2.43
2.56
2.57
2.58
2.60
2.62
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343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

29 BFeMgTi 0.70 -55.76 2.67
30 BCoCuTi 0.65 -57.24 2.67
31 CoMgNiZr 0.26 -37.48 2.68
32 BFeSiTi 0.65 -80.76 2.70
33 CoMgSizr 0.25 -85.8 2.70
34 BCoCuMg 0.70 -29.24 2.73

37 CoCuMgTi 0.17 -11.52 2.80
38 BCuFeMg 0.70 -27.8 2.81

40 BCoFeTi 0.65 -62.92 2.83

42 BCoFeMg 0.70 -34.28 2.93
43 MgNiTiZr 0.26 -30.16 2.97
44 CuFeMgSi 0.16 -38.68 3.00

As with the previous set of predictions we have grouped systems based on relative novelty. We
will not discuss all systems in detail but will highlight several trends within the predicted systems as
well as commenting on specific systems which may be the most novel. The 16 yellow systems are
identified as containing the well-known Cu-Zr binary. Investigating their predictions further showed
all predictions had increasing R. moving away from the Cu-Zr binary suggesting that these alloys are
mainly being predicted due to adjacency to the binary. However, they still may be somewhat
interesting due to changes in other materials properties while having similar R.. Another trend in
predictions is systems that suggest replacements or additions to known ternary or quaternary
systems. System 19, B-Cu-Ni-Ti, is somewhat similar to the known Cu-Ni-Ti ternary and Zr-Cu-Ni-Ti
guaternary BMGs systems [29,39]. One potential limitation with these systems however is with the
combination of B and Ti which, as pointed out by Lin et al. may reduce GFA due to precipitation of
very stable borides. They claim reduced GFA in the Zr-Cu-Ni-Ti-B quinary compared to the quaternary
without Boron. System 36, Al-Co-Ti-Zr, is somewhat similar to the known Al-Co-Zr system [40], but
may provide some different properties. Furthermore, there is a septenary BMG system including all

of Al-Co-Ti-Zr elements, further suggesting that these elements may have good glass forming ability
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[41]. Because Al-Co-Ti-Zr is both a suballoy of a BMG and has suballoys that are BMGs it is a particularly
promising system to consider. System 41, Co-Si-Ti-Zr, is one of the more distinct combinations, with
no known BMGs in ternaries or quaternaries with simple replacements/additions of single elements.
The most similar BMG forming alloy we could identify is reported by Ramasamy et al. in which they
replace Nb with Zr In the Fe-Co-B-Si-Nb system to create Fe-Co-B-Si-Zr and report a decrease in GFA
due to the replacement [42]. Finally, we identify several systems including Fe-Zr. The Fe-Zr alloy is a
well-studied metallic glass though not a BMG [43]. And similar to previous systems there is a known
higher component BMG system in the Fe-Co-Ni-Zr-Mo-B system[44]. Systems 19, 36, 41, and the Fe-
Zr containing alloys make up all the 7 green systems in Table 2. By predicting across such a wide
composition space we identified systems that build off of binary BMGs, proposed substitutions to
ternary and quaternary glasses, and also predict entirely knew alloys with no nearby known glass
formers. Making predictions with such variety can hopefully inspire new synthesis and discovery of

BMG alloys.

With these searches complete we take a step back to analyze in more detail our confidence in the
predictions of new BMG compositions. Although our model is formally regression fit to R, in
predicting new BMGs we have effectively used it as a classifier which predicts either BMG or not BMG
if the predicted R. is > 10° K/s or < 103 K/s, respectively. We can therefore ask the classification model
guestion, what is the probability of an alloy actually being a BMG given that the model has predicted
it to be a BMG (i.e., what is our precision)? The precision (and recall) can be estimated for our
particular data by finding the true positive rate (TPR) and false positive rate (FPR) from the left-out
data in the 5-fold CV tests performed in Figure 3. This yields very encouraging results, with TPR = 0.963
and FPR = 0.013. In addition to this single set of statistics for a single cutoff, we report the full ROC
curve in Figure 8 of the supplementary information which has an area under the curve of 0.998. In
other words, for alloys left out in a fold, the criteria R. is < 10% K/s for being a BMG correctly identifies
an alloy with a known R, < 10% K/s 0.963 fraction of the time and finds an alloy with R, > 10° K/s 0.013
fraction of the time. However, the database used here is quite different from the composition space
we explore when we looked at all quaternaries made from 10 elements in the second search above.
In particular, the database we are using has far more BMGs than likely in the random search, which
changes the probability of correctly identifying a BMG. It is therefore necessary to correct the
probability of finding a BMG derived for our database for the fact that BMGs are quite rare in our new

search space. We therefore used Bayes Theorem to estimate a more accurate probability of correctly
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predicting a BMG from the space of relevant systems in our 10 element search. Equation 2 below

shows the details of Bayes theorem applied to the present calculation

TPR*Pr (BMG)
TPR+Pr(BMG)+FPR*(1-Pr(BMG))’

Pr(BMG|BMGyeq) =

Here Pr(BMG|BMGpred) is the probability of finding a BMG given that we predict a BMG, which is
what we seek, and Pr(BMG) is the probability of finding a BMG from a random alloy. TPR and FPR
are estimated above. Pr(BMG) is more difficult to obtain so we propose here a few methods. The
first 3 methods build from DS5 and count all the BMG datapoints within the dataset. We then identify
all elements which compose these BMG alloys, 41 elements total, and define a total composition
space of every elemental combination up to quinary alloys in 1% composition increments. Doing this
gives 838 BMG alloys in DS5 out of a total compositional space of 3.45%x10' potential alloys, for a
probability of finding a BMG at random of 2.43%x107°, This first method assumes that the 828 BMG
alloys in the dataset account for all the actual BMG alloys in this entire compositional space, which is
a very pessimistic assumption, and therefore serves as a lower bound on this estimate. Methods 2
and 3 modify this initial estimate as a probability ten times and one-hundred times this to represent
possibilities that the current 838 known BMG alloys only comprise 10% or 1% of the actual number
due to currently undiscovered alloys which could still be found in a random search. To give an upper
bound on this type of analysis we also propose a fourth method taken from an estimation performed
by Li et al. in which they performed a theoretical search for bulk glass formers using a number of
previously established rules of thumb for identifying BMGs [45]. In their study they estimated about
1% of syntheses of potential glassy alloys results in discovery of a BMG. This 1% estimate therefore
represents the probability of randomly discovering a new BMG given that you are an expert
researcher using knowledge to pick initially promising materials. Values and results for these four

methods are shown in Table 3.

Table 3. Probability estimates and results for a Bayesian analysis of probabilities of finding BMGs.

Probability of Probability of ML
Method Randomly ML True Positive | ML False Positive Prediction being
Number Finding BMG Rate on Database | Rate on Database BMG
1 2.43e-10 0.963 0.013 1.77e-8
2 2.43e-9 0.963 0.013 1.77e-7
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432
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434
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3 2.43e-8 0.963 0.013 1.77e-6
4 0.01 0.963 0.013 0.42

As noted above, the model has a TPR of 0.963 and a FPR of 0.013 on the database we have used
for cross validation, which suggests that the trained ML model should be quite good at identifying
BMG alloys from data like that used in the cross validation. However, when factoring in the overall
very small population of BMG alloys within a likely search space using Eq. (2) above, the probability
that any predicted BMG alloy will actually be a BMG when synthesized becomes very low for methods
1, 2, and 3. These probabilities range from an approximate 10® to 10 depending on which the
assumption for how many BMGs within the elemental set from DS5 have been found. This result
highlights that even with fairly good cross-validated performance statistics, machine learning models
are not sufficient for the discovery of new materials if the material is rare in the search space and no
human guidance is given. If now we consider method 4, in which we replace our estimate of finding a
BMG with that estimated for a search space selected by domain experts, we calculate the probability
that our model correctly identifies a new BMG when it predicts one to be 42%. What this result implies
is that the machine learning model is likely almost useless for finding BMGs when used on random
alloys, but potentially quite useful when used on a set of alloys prescreened by human experts using
gualitative rules of thumb. In general, this result suggests that a hybrid approach in which machine
learning models are not blindly trusted, but merged with existing domain knowledge and human

selection, can massively improve the likelihood of materials discovery.

Conclusions:

A machine learning model predicting critical cooling rates directly from compositional information
was trained and evaluated. The training data for the model was acquired from experiments of varying
leveling of fidelity with various approximations being used to combine the data in a single dataset of
critical cooling rates. The model shows promising predictive ability in alloys with significant elemental
representation in the training data. However, predictive ability where this overlap is low drops off
considerably and the likelihood for large errors in predictions increases. Furthermore, predictions of
specific composition regions within an alloy system are usually within the uncertainty of predictions

which suggests that the model is likely best used for identifying potential BMG systems as opposed to
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searching within new systems for optimal BMG regions. Viewing the results through the lens of
Bayesian statistics demonstrates that although results seem promising the ability for these types of
models to reliably predict new BMG models is significantly limited by the overall low likelihood of
finding BMGs. Therefore, there is still need for improvements and tight integration with human

guidance before machine learning models can be used to rapidly discover new BMGs.

Data Availability

All datasets and machine learning results which includes data for all figures and tables can be

found on FigShare at (10.6084/m9.figshare.15160197). The assembled dataset is also available

through the materials data facility (10.18126/nc04-ibut).

Supporting Information

The Supplementary Information is contained in a single file consisting of five sections:

e Complete Cross Validation Analysis

e Error Bar Analysis

e Comparison of Omega Parameter with Additional Data Points
e Complete ROC Curves for Classification of BMG Predictions

e Analysis of Melt-Spun R¢ Value Assignment
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