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Abstract 10 

We use a random forest model to predict the critical cooling rate (RC) for glass formation of various 11 

alloys from features of their constituent elements. The random forest model was trained on a 12 

database that integrates multiple sources of direct and indirect RC data for metallic glasses to expand 13 

the directly measured RC database of less than 100 values to a training set of over 2,000 values. The 14 

model error on 5-fold cross validation is 0.66 orders of magnitude in K/s. The error on leave out one 15 

group cross validation on alloy system groups is 0.59 log units in K/s when the target alloy constituents 16 

appear more than 500 times in training data. Using this model, we make predictions for the set of 17 

compositions with melt-spun glasses in the database, and for the full set of quaternary alloys that 18 

have constituents which appear more than 500 times in training data. These predictions identify a 19 

number of potential new bulk metallic glass (BMG) systems for future study, but the model is most 20 

useful for identification of alloy systems likely to contain good glass formers, rather than detailed 21 

discovery of bulk glass composition regions within known glassy systems. 22 

Introduction and motivation 23 

Bulk metallic glasses (BMGs) are a class of materials with exceptional properties that support a 24 

wide range of application spaces including biomaterials, magnetic devices, and in surface coatings 25 

[1,2]. A key challenge in BMG materials discovery is identification of BMG forming compositions in 26 

existing glassy alloys and discovery of entirely new BMG alloys. Methods for discovery of BMGs have 27 

generally fallen into two broad categories. The first category is qualitative predictions of good glass 28 

forming ability (GFA) alloys and regions through identification of various qualitative and semi-29 

quantitative physics-based criteria (e.g., deep eutectics) such as those outlined by Inoue et al [3]. This 30 

mailto:bafflerbach@wisc.edu
mailto:ddmorgan@wisc.edu


 

 2 

methodology has had many successes and is responsible for the discovery of many of the BMG alloys 31 

known today. The second category is models that quantitatively predict a metric of GFA such as the 32 

critical cooling rate (RC) or the critical casting diameter (Dc). As our understanding of glassy alloys, and 33 

the amount of available data increases, these quantitative models are becoming more appealing as 34 

they can potentially reveal much more detailed information about the GFA across alloys.  35 

Quantitative GFA predictions take many forms but can be organized by their choices of features, 36 

models, and target predictions. Features typically range from approximately instantly accessible (e.g., 37 

elemental properties [4]) to moderately accessible properties needing some calculation (e.g., 38 

thermodynamic properties determined from CALPHAD [5], or liquid properties determined by 39 

molecular dynamics [6]) to  properties requiring extensive synthesis and characterization (e.g., glass 40 

transition temperature [7–9] or fragility [10]). Models range from simple linear functions (e.g., the RC 41 

vs.  correlations [7]) to fully non-linear machine learning models (e.g., Dc vs features fit with boosted 42 

trees [9]). Target values range from qualitative categorical predictions (e.g., is a glass under melt 43 

spinning [11–13]) to quantitative models of RC [7] and Dc [9,14–16]. A comprehensive review is not 44 

practical here, so we focus on the present status of efforts most similar to ours, where the focus is on 45 

instantly accessible elemental property features and quantitative prediction of RC or Dc. We are not 46 

presently aware of any study that has successfully built a demonstrably effective predictive model for 47 

new BMG systems from simple elemental features. A few notable successes have been the work of 48 

Ren et al. and Ward et al., demonstrating a significant ability to predict categorical results of glass 49 

forming under melt-spinning, and optimizing GFA of existing known glass formers [17,18]. They fit to 50 

over 6,000 melt spinning experiments and achieved a AUC of 0.80 in their ROC curve [17]. Zhang et 51 

al. propose a combination of these ideas, using a two-step approach to layer classification predictions 52 

with subsequent DC predictions from a similarly accessible feature set [19]. These works show the 53 

power of elemental property features but do not provide an approach to predict new BMG systems. 54 

In terms of predicting RC and DC there have been striking successes for RC predictions from 55 

characteristic temperatures (liquidus, glass transition, and crystallization temperatures), with Long, et 56 

al. reporting an R2 of 0.93 vs. the  parameter, which is a simple function of characteristic 57 

temperatures [7]. DC has generally been harder to predict quantitatively [7] although Johnson et al. 58 

[10] showed an outstanding result R2 value of 0.98 in their predictions for Dc as a linear function of 59 

reduced glass transition temperature and fragility. These results suggest RC is easier to model than DC. 60 

These results also suggest that quantitative models of RC and DC are possible, although they have only 61 

been achieved by using very expensive features that require extensive synthesis and characterization 62 
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for every new system. However, the above work also suggests that elemental properties can capture 63 

physics of GFA, particularly when combined with the ability of modern machine learning methods to 64 

model nonlinear relationships and automatically select features. Taken together these observations 65 

raise the tantalizing possibility that an accurate model of RC as a function of elemental features might 66 

be achievable.  67 

The absence of a model relating RC to elemental properties is easily understood as a result of the 68 

lack of adequate training data. There are approximately 102 RC values from direct experimental 69 

measurements available. In addition, researcher interest in BMGs and limitations on measuring RC 70 

(typically below 104 K/s) means most data is focused on alloys with known BMGs compositions, and 71 

often within composition ranges associated with the BMG formation. A machine learning model that 72 

is trained solely on this data will be heavily biased towards predicting that everything is a BMG, 73 

limiting the model’s utility in identifying new BMG alloys. Limited and biased data are two critical 74 

issues holding back machine learning predictions of RC from simple features like elemental properties. 75 

Similar arguments hold for Dc, although there are closer to 1,000 data points available [20].  76 

Here we try to develop the first model for RC as function of elemental features, with a focus on 77 

expanding the database of RC from its directly measured values, as this database is too small to 78 

support robust machine learning models. This expansion is accomplished in three steps. First, 79 

available Dc data is converted to approximate RC values using curve fitting to a functional form inspired 80 

by simple assumptions about heat transfer during cooling and average thermodynamic properties of 81 

metals. Second, available characteristic temperature data is used in combination with previously 82 

developed models to estimate RC for a range of alloys. And third, available melt spinning data is 83 

assigned approximate values for RC. The goals of adding these different set of data are to provide 84 

more varied compositional space, increase the amount of training data, and expand the range of RC 85 

values available for training. These methods expanded the amount of training data available by over 86 

an order of magnitude compared to direct measurements of RC. Using this new dataset, a random 87 

forest (RF) model has been trained and evaluated for accuracy in predicting RC and has also been used 88 

to predict the GFA in new BMG systems. 89 

  90 
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 91 

Database details and Computational methods 92 

Source Database 93 

The starting RC database was obtained primarily from Long et al. who gathered 53 experimental 94 

measurements of critical cooling rate [7]. One data point (pure nickel) was removed from this 95 

database due to being approximated by different methods.  25 more RC measurements not in Long et 96 

al.’s database were found from eight more papers for a total of 77 experimental RC measurements 97 

[21–28]. RC values are converted to a log scale for easier representation across the wide range of 98 

orders of magnitude. Values range from 10-2 to 107.7 K/s with an average of 101.96 K/s. We will call this 99 

data set 1 (DS1). 100 

Generated RC Database 101 

DS1 was expanded three ways. First, we estimated RC from experimental measurements of critical 102 

sizes from casting. We have used measurements of both critical casting diameter DC and critical 103 

casting thickness ZC, and we denote both as DC. Both of these values are converted to RC values using 104 

a generalization of the formalism outlined by Lin and Johnson [29] which suggests the relationship 105 

 𝑅𝐶 =
𝐴

𝐷𝐶
𝐵. 1 106 

Lin and Johnson’s proposed equation sets A=10 and B=2 based on assumptions about average 107 

thermodynamic properties across all metals and an idealized interface between the alloy and mold. 108 

Specifically, they assume a difference between melting temperature and glass transition temperature 109 

of 400 K, Thermal conductivity of the melt being 0.1 W/cm s-1 K-1, and heat capacity per unit volume 110 

of 4 J/cm3 K-1. B is set to 2 based on an ideal  A fit of log(RC) vs. log(DC) (Figure 1) for alloys is DS1 which 111 

have both measurements gives A=631 (log(A)=2.81), B=1.8. This fit was then used to approximate RC 112 

values from all DC and ZC values without a RC in DS1. The A and B values shift quite significantly from 113 

the values estimated by Lin and Johnson. This difference is likely due to the previous assumptions 114 

ignoring surface interactions between the melt and the mold during casting. The application of Eq.1 115 

in this first method added 342 approximate RC values (which we call Data Set 2 (DS2)) and brings the 116 

number of training values up from 77 experimental RC values to a total of 419 training values.  117 

 118 
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 119 

Figure 1. Comparison of a subset of training data with both experimentally measured RC and Dc 120 
values. The line of best fit and its equation are shown. The fit has R2 of 0.80, RMSE of 0.55 K/s, and 121 
MAE of 0.44 K/s.  122 

Second, we used the  parameter initially proposed by Long et al to make approximations for RC 123 

for all datapoint for which we have measured Tg, TX, and Tl [7]. Specifically, we take all Tg, TX, and Tl 124 

data we have available, determine , and then use the linear relationship between  and RC to from 125 

Long et al to predict RC. As an additional verification of the  parameter, for the 25 additional points 126 

added to Long et al.’s original data, their  values were calculated and are shown in the 127 

supplementary information as a test set specifically for the  relationship. All the new values fell 128 

within the spread of the previous data, further demonstrating the ability of this parameter to 129 

effectively transform characteristic temperatures into estimated critical cooling rate values. Refitting 130 

the  relationship proposed by Long, et al. only resulted in minor changes so to avoid a proliferation 131 

of almost identical models we simply used the fitting parameters established by Long et al.. This 132 

second method added 141 approximate RC values (which we call Data Set 3 (DS3)) for compositions 133 

that do not overlap with previous datapoints, bringing the total to 560 compositions with approximate 134 

RC values.  135 

Finally, we leveraged melt spinning experiments, which categorize compositions as amorphous, 136 

partially amorphous, and crystalline under high-rate cooling. Based on what is known about typical 137 

cooling rates during melt spinning, these categories correspond to approximate constraints on RC. Due 138 

to the overlap of the expected RC values for amorphous melt spinning data (such alloys likely have RC 139 

< ~105 K/s) with significantly higher quality measurements and approximations of RC from the previous 140 
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methods, the amorphous category data was excluded from the final dataset. This exclusion is done 141 

because introducing such a large amount of very approximate RC data in the same range where we 142 

have access to much higher quality data would likely drown out any signal that would allow the model 143 

to differentiate BMGs (RC < 103 K/s) from moderate glass formers and non-glass formers. We therefore 144 

assigned approximate RC values only to the partially amorphous and crystalline categories and 145 

included them in our fitting. Specifically, we assigned the partially amorphous and crystalline cases RC 146 

values of 105.5 and 107 K/s, respectively. When a cooled system comes out partially amorphous it is 147 

likely that the actual cooling rate was a little slower than Rc, since some of the system had time to 148 

crystallize. Furthermore, the cooling rate for melt spinning is known to be in the range 104 and 106 149 

K/s, or based on averaging the logs, about 105 K/s [30]. Therefore, for systems that are partially 150 

amorphous it is likely that the true Rc range is somewhat shifted toward higher values than the range 151 

104 and 106 K/s, say 104.5 and 106.5 K/s. We represent this range by averaging the logs to give 105.5 K/s. 152 

The value of 107 K/s for the fully crystalline was chosen to be a about one order of magnitude above 153 

the fastest cooling rate likely obtained in melt-spinning data to represent the fact none of these alloys 154 

formed amorphous structures. The exact Rc value chosen for the crystal forming alloys did not have a 155 

significant effect on machine learning performance as we have an extremely small amount of direct 156 

experimentally measured RC values in this range that would be affected by the specific number 157 

assigned to this data. Therefore, the main effect of including it and assigning a value is to allow the 158 

model to differentiate between the better glass formers found elsewhere in the dataset, and these 159 

poor glass formers. 160 

The melt-spinning data is obtained from a review paper which provides over 8,000 melt-spun 161 

compositions[31]. From this dataset we used 1248 compositions which formed crystalline metals after 162 

melt-spinning, and 720 compositions which were categorized as partially amorphous. Although the RC 163 

values from this data are highly approximate, they are quite distinct from the bulk of the higher-164 

fidelity training data developed above and are therefore expected to constrain the fits without 165 

polluting fitting to higher fidelity data. Figure 2 shows that the crystalline and partially amorphous 166 

data do not overlap significantly with the rest of the training data. This process added 1,565 167 

approximate RC values (which we call Data Set 4 (DS4)) for compositions that do not overlap with 168 

previous datapoints, bringing the total to 2,125 compositions with approximate RC values. This is an 169 

increase of almost 30 times greater than the initial set of measured RC values. We call this final 170 

integrated Data Set 5 (DS5). 171 
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 172 

 173 

Figure 2. Distribution of RC values in final training dataset (DS5) 174 

Machine Learning Models 175 

Using the complete DS5 of RC data a random forest model was built and trained to predict RC. The 176 

random forest model is trained using the MAST-ML machine learning software package which builds 177 

machine learning workflows using the underlying scikit-learn python package [32,33]. Inputs to the 178 

model are obtained from compositional information and elemental features using the MAGPIE 179 

approach proposed by Ward et al. [4,18]. Elemental features for each composition are generated as 180 

composition averages, maximum, minimum, and difference. This feature set is chosen to be maximally 181 

accessible as all the features can be generated almost instantaneously directly from available 182 

elemental databases. Several other model types were also investigated along with the random forest 183 

model but showed worse performance. Specifically, gradient boosted trees and Kernel Ridge 184 

Regression models showed reduced performance under cross validation testing with a 5-fold cross 185 

validated RMSE of 0.732 and 0.803, respectively (compared to 0.36 for random forest, discussed 186 

below). We assessed the predictive ability of the model through random and leave-one-group-out 187 

cross validation (CV). The random cross validation was done by repeating 5-fold cross validation 10 188 

times (for a total for 50 left folds of data) and the predicted values for each excluded point were 189 

averaged. 190 
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Results and Discussion 191 

The average predicted vs. true values are shown in the parity plot in Figure 3. We calculated the 192 

following statistics from the 5-fold CV test: R2 = 0.97  0.01, root mean squared error (RMSE) = 0.36  193 

0.09, mean absolute error (MAE) = 0.08  0.02, RMSE normalized by the standard deviation of all the 194 

log(RC) values (RMSE/y where y = 2.22) = 0.16  0.04 respectively.  The error bars represent the 195 

standard error in the mean of each statistic when averaged over all 50 CV folds. Although our model 196 

uses only elemental features, the errors are comparable to or better than the best previous models 197 

for RC using characteristic temperatures. Specifically, the  model for predicting RC from characteristic 198 

temperatures given in Long, et al. showed R2 = 0.90 and RMSE = 0.67 log units [7]. These statistics are 199 

influenced by the large amount of melt spinning data which is somewhat unusual due to it being 200 

assigned the same RC value. If the melt spinning data is excluded from the statistics RMSE value 201 

increases to 0.70 which is still essentially equivalent to the best previous characteristic temperature 202 

based models.  203 

 204 

 205 

Figure 3. 5-fold cross validation performance of random forest model 206 



 

 9 

While the random CV is a useful standard test of model accuracy it is not a good test of the ability 207 

of the model to predict new chemistries [34]. This limitation of the random CV score arises because 208 

the data set often has multiple entries on closely related compositions due to the nature of 209 

experimental research on GFA, so excluded points in the validation data are likely to have nearby 210 

compositions in the training data that contain all the same elements with minor changes to the 211 

composition. This allows the model to effectively serve as a “look-up” table for predicting all nearby 212 

materials without learning the underlying physics causing good GFA. The random CV score therefore 213 

likely overestimates how well the model will perform on new chemistries. 214 

To assess errors on new chemistries we performed a leave-out-one-group CV, where we grouped 215 

together similar compositions and left them out one by one, training on the remaining data. Groups 216 

were defined by each unique alloy system (i.e., unique combinations of elements). For example, if the 217 

dataset only contained three elements the total list of groups would be defined as El1-El2, El1-El3, 218 

El2-El3, and El1-El2-El3. As each group was left out the training data the average RMSE were recorded 219 

and are summarized in Figure 4. Groups are sorted by the minimum number of overlap instances with 220 

the training data between all elements in the group. For example, the elemental overlaps for an 221 

excluded Cu-Zr alloy would be the lower value between the number of Cu and Zr containing alloys 222 

were left in the training set. The dashed-dotted lines show the average RMSE of all groups within each 223 

bin from 0-250, and 250-821 on the x-axis. The dashed line shows the average across all points. 224 

 225 
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 226 

Figure 4. Leave out group cross validation sorted by amount of overlap with training data. The 227 
blue dashed line shows the average RMSE of 0.88 log units. The orange dashed-dotted line shows 228 
averages for each bin of data from 0-250 (0.89) and 250-821 (0.58). 229 

Figure 4 shows how the model is performing on average and how it performs when there are 230 

many or few representatives of the elements being predicted. The average RMSE (MAE) of 0.88 (0.82) 231 

log units is noticeably larger than the random CV RMSE (MAE) of 0.36 (0.08) log units. This increase is 232 

due to the larger amount of compositionally similar data being left out when an entire alloy system is 233 

removed. Due do the nature of experimental data generation many systems have measurements 234 

taken single digit atomic percents away from each other, which may cause the random CV method to 235 

overestimate performance. RMSE (MAE) errors still stay below an order of magnitude (one log unit) 236 

suggesting that in an average way the model is at least moderately robust to leaving out significant 237 

chemical information. One might expect that the model will perform best when there is the most 238 

training data. This effect is not particularly apparent from Figure 4 but the data does seem to cluster 239 

into two groups, below about 250 and above, and the RSME goes from 0.89 to 0.58 in going from the 240 

low to high group. This result suggests that establishing a cutoff of around 250 elemental overall 241 

instances for elements in any predicted alloy systems may help improve the reliability of predictions. 242 

Using the cutoff of 250 instances of overlap we can propose two searches for making predictions 243 

with the random forest model to identify new BMG systems. The first search is to use the model to 244 
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predict likely BMGs from known glass formers from melt-spinning data. As discussed during the 245 

database generation section there is a set of melt-spinning data that was left out of model training 246 

due to overlap with the higher fidelity experimental data. We will look for BMGs within this group of 247 

alloys. We define a BMG as RC < 103 K/s. This data has 3,755 compositions that were classified as glass 248 

formers under melt-spinning conditions. Of those points there were 63 compositions predicted as RC 249 

< 103 K/s by our model and therefore predicted to be good BMG candidates. These predictions are 250 

shown in Figure 5. Predicted critical cooling rates of melt-spun glasses. Points are color coded by 251 

interest of the alloy composition. Red points being the least interesting, and yellow points being the 252 

more promising as new BMG systems. with more details on the specific alloy systems given in Table 253 

1. The probability of the prediction being a BMG is estimated directly from the random forest 254 

confidence interval of each prediction using a one-sided Z-test. An analysis of these estimated 255 

confidence intervals is included in the supplementary information in the section Error Bar Analysis.  256 

 257 

 258 

Figure 5. Predicted critical cooling rates of melt-spun glasses. Points are color coded by interest 259 
of the alloy composition. Red points being the least interesting, and yellow points being the more 260 
promising as new BMG systems.  261 

While the machine learning model can potentially provide helpful guidance in discovering new 262 

BMGs, its predictions must be considered by human researchers to assess their value to the 263 

community. With this in mind, each prediction in Figure 5 is color coded based on our personal 264 

assessment of the novelty of the alloy system for the BMG community. The color scheme is used in 265 



 

 12 

Table 1 as well. Red systems are likely the least interesting due to being a known BMG system in our 266 

training data. These predictions only demonstrate that the model will predict nearby compositions to 267 

training data. Yellow systems are not directly known BMG systems; however they have nearby BMG 268 

quaternaries or ternaries with one additional minor alloying element. This limits the novelty of these 269 

predictions since we would expect the higher component systems to have better glass forming ability 270 

than the predicted lower component alloys. One of these systems, Al-Ca-Ga, is slightly different in 271 

that its nearby system is the binary Al-Ca system that is also included in Table 1 which has less 272 

components. Of the yellow systems, Al-Ca-Ga is therefore the most potentially interesting as following 273 

the same logic this higher number of components in general may increase GFA compared to the 274 

known Al-Ca BMG system. Finally, there are several green systems that are potentially the most 275 

interesting due to not having any nearby known ternary or quaternary BMG systems. They can all be 276 

broadly grouped into the category of Au-B-rare earth. Predictions for these systems fell slightly above 277 

the previously established 103 K/s cutoff and are identified with an asterisk. This extension to higher 278 

RC values was considered because previous established estimated errors in predictions still place these 279 

systems in the range of being potential glass formers. Based on our literature review this combination 280 

of elements appears to be new, with some of the closest systems being the Au-Si-X BMG systems 281 

introduced by Schroers et al.[35].  Our predicted alloys essentially replace the Si in the Au-Si-X BMG 282 

with another nearby metalloid, B. However, while rare earth elements have been used in BMGs there 283 

is not any previous literature combining gold and boron with rare earth elements of which we are 284 

aware. Therefore, these types of systems are suspected to be novel and worth additional 285 

consideration. As an additional check for potential interest in these systems we consider to what 286 

extent they are consistent with previously established empirical rules for finding metallic alloys with 287 

high glass forming ability. While these criteria have many forms the following properties of systems 288 

proposed by Inoue et al. [36] are generally desirable: (1) multicomponent alloy consisting of more 289 

than 3 elements, (2) significantly different size mismatch exceeding 12% among the main 3 290 

constituent elements, (3) negative heats of mixing among their main elements. We also add to this a 291 

fourth criteria, which is generally harder to assess without detailed thermodynamics models, which is 292 

that the system shows deep eutectics. All alloys are ternaries so do not quite satisfy the first criteria, 293 

but we know that BMG ternaries can be formed. All three systems easily satisfy the second criterion 294 

due to the large size difference between Boron and the Rare-earth elements. All three systems also 295 

satisfy the third criteria. Heats of mixing are calculated for each predicted composition from an 296 

extended regular solution model following the methodology and binary interactions from Takeuchi 297 
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and Inoue [37]. Mismatch percentage along with the estimated heats of mixing, are shown in in Table 298 

1 for the average of predicted compositions in each system. With respect to the fourth criteria, 299 

available binary phase diagrams from the ASM Alloy Phase Diagrams Database were analyzed which 300 

reveal eutectics in all of the binary subcomponents of the Au-B-X ternary alloys [38]. Specifically, 301 

eutectics occur near Au20B80, near the edges of the B-X binaries as well as B70Gd30, and at many 302 

compositions in the Au-X binaries. While we do not have access to full ternary phase diagrams to 303 

investigate in more detail, agreement with many previously established criteria for discovery of BMG 304 

alloys makes these three systems interesting candidates for further study. 305 

Table 1. List of alloy systems predicted as BMGs. Systems are color coded by potential to be novel 306 
BMG (see discussion in text for color coding). 307 

Alloy 
System Known BMG Size Mismatch 

Mixing Enthalpy 
(Kj/mol) 

Cu Hf Nb No 22% -10.1 

Cu Nb Zr No 23% -14.3 

Cu Ti Zr Yes 23% -16.6 

Ni Zr Yes 26% -44.8 

Al Ca Yes 39% -18.0 

Au B Pr* No 131% -63.2 

Cu Hf No 22% -15.9 

Al Ca Mg Yes 39% -14.0 

Al Co Zr Yes 25% -46.0 

Au B Er* No 119% -64.6 

Au B Gd* No 125% -64.0 

Cu P Zr No 32% -27.4 

Al Ca Ga No 39% -22.9 

 308 

To give more insight into the model’s predictions, the RC for systems in Table 1 were predicted 309 

over the alloy’s full binary and ternary composition ranges and the full predictions for the Au-B-Pr 310 

system are shown as an example in Figure 6. We can see from this example that a large portion of the 311 

ternary system is predicted near or below the 103 K/s cutoff for predicted bulk formation. This result, 312 

combined with the small dynamic range of predictions, with the majority of the ternary predicted 313 

within one order of magnitude, suggests we cannot claim to make a prediction of any specific region 314 

within the ternary being the most promising. This trend holds across most new predictions, suggesting 315 
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that for new systems the model predictions can at best identify candidate BMG systems, rather than 316 

pinpoint promising BMG regions within systems. This limitation is unfortunate but may be less 317 

problematic in the future as the community is developing new combinatorial approaches to 318 

experimentally investigate large composition ranges of a system. For example, researchers were 319 

recently able to synthesis and characterize RC over a large region of the Al-Ge-Ni ternary using high-320 

throughput methods [28]. 321 

 322 

 323 

Figure 6. Predictions in 1% composition increments of the Au-B-Pr system. 324 

A second search was performed to explore more widely for potential BMG systems. In the first 325 

test above potential systems and compositions were obtained only from known melt-spinning glasses.  326 

In this second test we considered every possible quaternary system composed of elements that meet 327 

the criterion of more than 250 overlap instances with the training set. There are 10 elements that 328 

meet this criterion in the training set: Al, Cu, Ni, Fe, B, Zr, Si, Co, Mg, and Ti. Making every single 329 

potential quaternary gave 286 potential quaternary systems. In each system a 10% composition grid 330 

was generated for the initial set of predictions. Due to the large number of predictions made multiple 331 

steps were taken to filter the predictions to a more manageable number. First all three of the 332 

previously discussed criteria proposed by Inoue were filtered against and systems which did not meet 333 

the criteria were removed. Notably this means all ternary and binary systems were removed at this 334 

stage. Predicted systems were also filtered against known BMG systems in the training data. Predicted 335 

compositions were also individually compared to BMG training compositions and removed if they 336 
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were within 10% elemental composition of any BMG training point. There are 44 systems which meet 337 

these criteria, and they are summarized in Table 2. 338 

Table 2. Predictions of GFA for systems constructed from elements with >250 overlap instances 339 
in training data. Systems are color coded by potential to be novel BMG (see discussion in text for color 340 
coding). 341 

Idx Alloy System Size Mismatch 
Minimum Mixing 
Enthalpy (Kj/mol) 

Minimum RC 
Prediction log(K/s) 

1 CuFeSiZr 0.24 -85.88 1.53 

2 CoCuMgZr 0.25 -27.64 1.58 

3 CuMgSiZr 0.24 -80.12 1.63 

4 CuFeMgZr 0.24 -14.8 1.65 

5 CuNiSiZr 0.26 -90.88 1.66 

6 CoCuSiZr 0.25 -89.2 1.72 

7 BCuFeZr 0.81 -53.88 1.86 

8 BFeMgZr 0.81 -49.68 1.88 

9 BCuSiZr 0.81 -91.48 1.89 

10 BCuMgZr 0.81 -46.04 1.89 

11 BCuTiZr 0.81 -60.92 1.95 

12 BCuNiZr 0.81 -58.52 1.98 

13 CuMgTiZr 0.23 -11.32 2.00 

14 BCoCuZr 0.81 -56.4 2.04 

15 CuMgNiZr 0.26 -34.2 2.13 

16 BCoFeZr 0.81 -61.16 2.20 

17 FeMgSiZr 0.24 -82.16 2.22 

18 BFeTiZr 0.81 -66.84 2.34 

19 BCuNiTi 0.65 -62.24 2.36 

20 CoFeSiZr 0.25 -92.36 2.40 

21 CuFeTiZr 0.24 -19 2.40 

22 BCuSiTi 0.65 -81.2 2.43 

23 BCuMgSi 0.70 -47.64 2.56 

24 CoCuTiZr 0.25 -28.48 2.57 

25 BCuFeTi 0.65 -50.04 2.58 

26 BFeMgSi 0.70 -56.28 2.60 

27 BCuMgTi 0.70 -51.16 2.62 
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28 CoFeMgZr 0.25 -28.24 2.62 

29 BFeMgTi 0.70 -55.76 2.67 

30 BCoCuTi 0.65 -57.24 2.67 

31 CoMgNiZr 0.26 -37.48 2.68 

32 BFeSiTi 0.65 -80.76 2.70 

33 CoMgSiZr 0.25 -85.8 2.70 

34 BCoCuMg 0.70 -29.24 2.73 

35 FeMgNiZr 0.26 -34.64 2.74 

36 AlCoTiZr 0.25 -33.6 2.75 

37 CoCuMgTi 0.17 -11.52 2.80 

38 BCuFeMg 0.70 -27.8 2.81 

39 FeNiSiZr 0.26 -63.04 2.82 

40 BCoFeTi 0.65 -62.92 2.83 

41 CoSiTiZr 0.25 -94.24 2.91 

42 BCoFeMg 0.70 -34.28 2.93 

43 MgNiTiZr 0.26 -30.16 2.97 

44 CuFeMgSi 0.16 -38.68 3.00 

 342 

As with the previous set of predictions we have grouped systems based on relative novelty. We 343 

will not discuss all systems in detail but will highlight several trends within the predicted systems as 344 

well as commenting on specific systems which may be the most novel. The 16 yellow systems are 345 

identified as containing the well-known Cu-Zr binary. Investigating their predictions further showed 346 

all predictions had increasing Rc moving away from the Cu-Zr binary suggesting that these alloys are 347 

mainly being predicted due to adjacency to the binary. However, they still may be somewhat 348 

interesting due to changes in other materials properties while having similar Rc. Another trend in 349 

predictions is systems that suggest replacements or additions to known ternary or quaternary 350 

systems. System 19, B-Cu-Ni-Ti, is somewhat similar to the known Cu-Ni-Ti ternary and Zr-Cu-Ni-Ti 351 

quaternary BMGs systems [29,39]. One potential limitation with these systems however is with the 352 

combination of B and Ti which, as pointed out by Lin et al. may reduce GFA due to precipitation of 353 

very stable borides. They claim reduced GFA in the Zr-Cu-Ni-Ti-B quinary compared to the quaternary 354 

without Boron. System 36, Al-Co-Ti-Zr, is somewhat similar to the known Al-Co-Zr system [40], but 355 

may provide some different properties. Furthermore, there is a septenary BMG system including all 356 

of Al-Co-Ti-Zr elements, further suggesting that these elements may have good glass forming ability 357 
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[41]. Because Al-Co-Ti-Zr is both a suballoy of a BMG and has suballoys that are BMGs it is a particularly 358 

promising system to consider. System 41, Co-Si-Ti-Zr, is one of the more distinct combinations, with 359 

no known BMGs in ternaries or quaternaries with simple replacements/additions of single elements. 360 

The most similar BMG forming alloy we could identify is reported by Ramasamy et al. in which they 361 

replace Nb with Zr In the Fe-Co-B-Si-Nb system to create Fe-Co-B-Si-Zr and report a decrease in GFA 362 

due to the replacement [42]. Finally, we identify several systems including Fe-Zr. The Fe-Zr alloy is a 363 

well-studied metallic glass though not a BMG [43]. And similar to previous systems there is a known 364 

higher component BMG system in the Fe-Co-Ni-Zr-Mo-B system[44]. Systems 19, 36, 41, and the Fe-365 

Zr containing alloys make up all the 7 green systems in Table 2. By predicting across such a wide 366 

composition space we identified systems that build off of binary BMGs, proposed substitutions to 367 

ternary and quaternary glasses, and also predict entirely knew alloys with no nearby known glass 368 

formers. Making predictions with such variety can hopefully inspire new synthesis and discovery of 369 

BMG alloys. 370 

With these searches complete we take a step back to analyze in more detail our confidence in the 371 

predictions of new BMG compositions. Although our model is formally regression fit to Rc, in 372 

predicting new BMGs we have effectively used it as a classifier which predicts either BMG or not BMG 373 

if the predicted Rc is > 103 K/s or < 103 K/s, respectively. We can therefore ask the classification model 374 

question, what is the probability of an alloy actually being a BMG given that the model has predicted 375 

it to be a BMG (i.e., what is our precision)? The precision (and recall) can be estimated for our 376 

particular data by finding the true positive rate (TPR) and false positive rate (FPR) from the left-out 377 

data in the 5-fold CV tests performed in Figure 3. This yields very encouraging results, with TPR = 0.963 378 

and FPR = 0.013. In addition to this single set of statistics for a single cutoff, we report the full ROC 379 

curve in Figure 8 of the supplementary information which has an area under the curve of 0.998. In 380 

other words, for alloys left out in a fold, the criteria Rc is < 103 K/s for being a BMG correctly identifies 381 

an alloy with a known Rc < 103 K/s 0.963 fraction of the time and finds an alloy with Rc > 103 K/s 0.013 382 

fraction of the time. However, the database used here is quite different from the composition space 383 

we explore when we looked at all quaternaries made from 10 elements in the second search above. 384 

In particular, the database we are using has far more BMGs than likely in the random search, which 385 

changes the probability of correctly identifying a BMG. It is therefore necessary to correct the 386 

probability of finding a BMG derived for our database for the fact that BMGs are quite rare in our new 387 

search space. We therefore used Bayes Theorem to estimate a more accurate probability of correctly 388 
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predicting a BMG from the space of relevant systems in our 10 element search. Equation 2 below 389 

shows the details of Bayes theorem applied to the present calculation 390 

 Pr(𝐵𝑀𝐺|𝐵𝑀𝐺𝑝𝑟𝑒𝑑) =
𝑇𝑃𝑅∗Pr⁡(𝐵𝑀𝐺)

𝑇𝑃𝑅∗Pr(𝐵𝑀𝐺)+𝐹𝑃𝑅∗(1−Pr(𝐵𝑀𝐺))
. 2 391 

Here Pr(𝐵𝑀𝐺|𝐵𝑀𝐺𝑝𝑟𝑒𝑑) is the probability of finding a BMG given that we predict a BMG, which is 392 

what we seek, and Pr(𝐵𝑀𝐺) is the probability of finding a BMG from a random alloy. TPR and FPR 393 

are estimated above. Pr(𝐵𝑀𝐺) is more difficult to obtain so we propose here a few methods. The 394 

first 3 methods build from DS5 and count all the BMG datapoints within the dataset. We then identify 395 

all elements which compose these BMG alloys, 41 elements total, and define a total composition 396 

space of every elemental combination up to quinary alloys in 1% composition increments. Doing this 397 

gives 838 BMG alloys in DS5 out of a total compositional space of 3.45×1012 potential alloys, for a 398 

probability of finding a BMG at random of 2.43×10-10. This first method assumes that the 828 BMG 399 

alloys in the dataset account for all the actual BMG alloys in this entire compositional space, which is 400 

a very pessimistic assumption, and therefore serves as a lower bound on this estimate. Methods 2 401 

and 3 modify this initial estimate as a probability ten times and one-hundred times this to represent 402 

possibilities that the current 838 known BMG alloys only comprise 10% or 1% of the actual number 403 

due to currently undiscovered alloys which could still be found in a random search. To give an upper 404 

bound on this type of analysis we also propose a fourth method taken from an estimation performed 405 

by Li et al. in which they performed a theoretical search for bulk glass formers using a number of 406 

previously established rules of thumb for identifying BMGs [45]. In their study they estimated about 407 

1% of syntheses of potential glassy alloys results in discovery of a BMG. This 1% estimate therefore 408 

represents the probability of randomly discovering a new BMG given that you are an expert 409 

researcher using knowledge to pick initially promising materials. Values and results for these four 410 

methods are shown in Table 3. 411 

 412 

Table 3. Probability estimates and results for a Bayesian analysis of probabilities of finding BMGs. 413 

Method 
Number 

Probability of 
Randomly 

Finding BMG 
ML True Positive 
Rate on Database 

ML False Positive 
Rate on Database 

Probability of ML 
Prediction being 

BMG 

1 2.43e-10 0.963 0.013 1.77e-8 

2 2.43e-9 0.963 0.013 1.77e-7 
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3 2.43e-8 0.963 0.013 1.77e-6 

4 0.01  0.963 0.013 0.42 

 414 

As noted above, the model has a TPR of 0.963 and a FPR of 0.013 on the database we have used 415 

for cross validation, which suggests that the trained ML model should be quite good at identifying 416 

BMG alloys from data like that used in the cross validation. However, when factoring in the overall 417 

very small population of BMG alloys within a likely search space using Eq. (2) above, the probability 418 

that any predicted BMG alloy will actually be a BMG when synthesized becomes very low for methods 419 

1, 2, and 3. These probabilities range from an approximate 10-8 to 10-6 depending on which the 420 

assumption for how many BMGs within the elemental set from DS5 have been found. This result 421 

highlights that even with fairly good cross-validated performance statistics, machine learning models 422 

are not sufficient for the discovery of new materials if the material is rare in the search space and no 423 

human guidance is given. If now we consider method 4, in which we replace our estimate of finding a 424 

BMG with that estimated for a search space selected by domain experts, we calculate the probability 425 

that our model correctly identifies a new BMG when it predicts one to be 42%. What this result implies 426 

is that the machine learning model is likely almost useless for finding BMGs when used on random 427 

alloys, but potentially quite useful when used on a set of alloys prescreened by human experts using 428 

qualitative rules of thumb. In general, this result suggests that a hybrid approach in which machine 429 

learning models are not blindly trusted, but merged with existing domain knowledge and human 430 

selection, can massively improve the likelihood of materials discovery. 431 

 432 

Conclusions: 433 

A machine learning model predicting critical cooling rates directly from compositional information 434 

was trained and evaluated. The training data for the model was acquired from experiments of varying 435 

leveling of fidelity with various approximations being used to combine the data in a single dataset of 436 

critical cooling rates. The model shows promising predictive ability in alloys with significant elemental 437 

representation in the training data. However, predictive ability where this overlap is low drops off 438 

considerably and the likelihood for large errors in predictions increases. Furthermore, predictions of 439 

specific composition regions within an alloy system are usually within the uncertainty of predictions 440 

which suggests that the model is likely best used for identifying potential BMG systems as opposed to 441 
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searching within new systems for optimal BMG regions. Viewing the results through the lens of 442 

Bayesian statistics demonstrates that although results seem promising the ability for these types of 443 

models to reliably predict new BMG models is significantly limited by the overall low likelihood of 444 

finding BMGs. Therefore, there is still need for improvements and tight integration with human 445 

guidance before machine learning models can be used to rapidly discover new BMGs. 446 

 447 

Data Availability 448 

All datasets and machine learning results which includes data for all figures and tables can be 449 

found on FigShare at (10.6084/m9.figshare.15160197). The assembled dataset is also available 450 

through the materials data facility (10.18126/nc04-ibut).  451 
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The Supplementary Information is contained in a single file consisting of five sections:  454 

• Complete Cross Validation Analysis  455 

• Error Bar Analysis 456 

• Comparison of Omega Parameter with Additional Data Points  457 

• Complete ROC Curves for Classification of BMG Predictions  458 

• Analysis of Melt-Spun RC Value Assignment  459 
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