

Machine Learning Prediction of Critical Cooling Rate for Metallic Glasses From Expanded Datasets and Elemental Features

Benjamin T. Afflerbach^{a*}, Carter Francis^a, Lane E. Schultz^a, Janine Spethson^a, Vanessa Meschke^a, Elliot Strand^a, Logan Ward^b, John H. Perepezko^a, Dan Thoma^a, Paul M. Voyles^a, Izabela Szlufarska^a, Dane Morgan^{a*}

^aUniversity of Wisconsin-Madison, ^bArgonne National Laboratory

*Corresponding Authors (bafflerbach@wisc.edu, ddmorgan@wisc.edu)

Abstract

We use a random forest model to predict the critical cooling rate (R_c) for glass formation of various alloys from features of their constituent elements. The random forest model was trained on a database that integrates multiple sources of direct and indirect R_c data for metallic glasses to expand the directly measured R_c database of less than 100 values to a training set of over 2,000 values. The model error on 5-fold cross validation is 0.66 orders of magnitude in K/s. The error on leave out one group cross validation on alloy system groups is 0.59 log units in K/s when the target alloy constituents appear more than 500 times in training data. Using this model, we make predictions for the set of compositions with melt-spun glasses in the database, and for the full set of quaternary alloys that have constituents which appear more than 500 times in training data. These predictions identify a number of potential new bulk metallic glass (BMG) systems for future study, but the model is most useful for identification of alloy systems likely to contain good glass formers, rather than detailed discovery of bulk glass composition regions within known glassy systems.

Introduction and motivation

Bulk metallic glasses (BMGs) are a class of materials with exceptional properties that support a wide range of application spaces including biomaterials, magnetic devices, and in surface coatings [1,2]. A key challenge in BMG materials discovery is identification of BMG forming compositions in existing glassy alloys and discovery of entirely new BMG alloys. Methods for discovery of BMGs have generally fallen into two broad categories. The first category is qualitative predictions of good glass forming ability (GFA) alloys and regions through identification of various qualitative and semi-quantitative physics-based criteria (e.g., deep eutectics) such as those outlined by Inoue et al [3]. This

31 methodology has had many successes and is responsible for the discovery of many of the BMG alloys
32 known today. The second category is models that quantitatively predict a metric of GFA such as the
33 critical cooling rate (R_c) or the critical casting diameter (D_c). As our understanding of glassy alloys, and
34 the amount of available data increases, these quantitative models are becoming more appealing as
35 they can potentially reveal much more detailed information about the GFA across alloys.

36 Quantitative GFA predictions take many forms but can be organized by their choices of features,
37 models, and target predictions. Features typically range from approximately instantly accessible (e.g.,
38 elemental properties [4]) to moderately accessible properties needing some calculation (e.g.,
39 thermodynamic properties determined from CALPHAD [5], or liquid properties determined by
40 molecular dynamics [6]) to properties requiring extensive synthesis and characterization (e.g., glass
41 transition temperature [7–9] or fragility [10]). Models range from simple linear functions (e.g., the R_c
42 vs. ω correlations [7]) to fully non-linear machine learning models (e.g., D_c vs features fit with boosted
43 trees [9]). Target values range from qualitative categorical predictions (e.g., is a glass under melt
44 spinning [11–13]) to quantitative models of R_c [7] and D_c [9,14–16]. A comprehensive review is not
45 practical here, so we focus on the present status of efforts most similar to ours, where the focus is on
46 instantly accessible elemental property features and quantitative prediction of R_c or D_c . We are not
47 presently aware of any study that has successfully built a demonstrably effective predictive model for
48 new BMG systems from simple elemental features. A few notable successes have been the work of
49 Ren et al. and Ward et al., demonstrating a significant ability to predict categorical results of glass
50 forming under melt-spinning, and optimizing GFA of existing known glass formers [17,18]. They fit to
51 over 6,000 melt spinning experiments and achieved a AUC of 0.80 in their ROC curve [17]. Zhang et
52 al. propose a combination of these ideas, using a two-step approach to layer classification predictions
53 with subsequent D_c predictions from a similarly accessible feature set [19]. These works show the
54 power of elemental property features but do not provide an approach to predict new BMG systems.
55 In terms of predicting R_c and D_c there have been striking successes for R_c predictions from
56 characteristic temperatures (liquidus, glass transition, and crystallization temperatures), with Long, et
57 al. reporting an R^2 of 0.93 vs. the ω parameter, which is a simple function of characteristic
58 temperatures [7]. D_c has generally been harder to predict quantitatively [7] although Johnson et al.
59 [10] showed an outstanding result R^2 value of 0.98 in their predictions for D_c as a linear function of
60 reduced glass transition temperature and fragility. These results suggest R_c is easier to model than D_c .
61 These results also suggest that quantitative models of R_c and D_c are possible, although they have only
62 been achieved by using very expensive features that require extensive synthesis and characterization

63 for every new system. However, the above work also suggests that elemental properties can capture
64 physics of GFA, particularly when combined with the ability of modern machine learning methods to
65 model nonlinear relationships and automatically select features. Taken together these observations
66 raise the tantalizing possibility that an accurate model of R_c as a function of elemental features might
67 be achievable.

68 The absence of a model relating R_c to elemental properties is easily understood as a result of the
69 lack of adequate training data. There are approximately 10^2 R_c values from direct experimental
70 measurements available. In addition, researcher interest in BMGs and limitations on measuring R_c
71 (typically below 10^4 K/s) means most data is focused on alloys with known BMGs compositions, and
72 often within composition ranges associated with the BMG formation. A machine learning model that
73 is trained solely on this data will be heavily biased towards predicting that everything is a BMG,
74 limiting the model's utility in identifying new BMG alloys. Limited and biased data are two critical
75 issues holding back machine learning predictions of R_c from simple features like elemental properties.
76 Similar arguments hold for D_c , although there are closer to 1,000 data points available [20].

77 Here we try to develop the first model for R_c as function of elemental features, with a focus on
78 expanding the database of R_c from its directly measured values, as this database is too small to
79 support robust machine learning models. This expansion is accomplished in three steps. First,
80 available D_c data is converted to approximate R_c values using curve fitting to a functional form inspired
81 by simple assumptions about heat transfer during cooling and average thermodynamic properties of
82 metals. Second, available characteristic temperature data is used in combination with previously
83 developed models to estimate R_c for a range of alloys. And third, available melt spinning data is
84 assigned approximate values for R_c . The goals of adding these different set of data are to provide
85 more varied compositional space, increase the amount of training data, and expand the range of R_c
86 values available for training. These methods expanded the amount of training data available by over
87 an order of magnitude compared to direct measurements of R_c . Using this new dataset, a random
88 forest (RF) model has been trained and evaluated for accuracy in predicting R_c and has also been used
89 to predict the GFA in new BMG systems.

91

92 **Database details and Computational methods**93 **Source Database**

94 The starting R_c database was obtained primarily from Long et al. who gathered 53 experimental
 95 measurements of critical cooling rate [7]. One data point (pure nickel) was removed from this
 96 database due to being approximated by different methods. 25 more R_c measurements not in Long et
 97 al.'s database were found from eight more papers for a total of 77 experimental R_c measurements
 98 [21–28]. R_c values are converted to a log scale for easier representation across the wide range of
 99 orders of magnitude. Values range from 10^{-2} to $10^{7.7}$ K/s with an average of $10^{1.96}$ K/s. We will call this
 100 data set 1 (DS1).

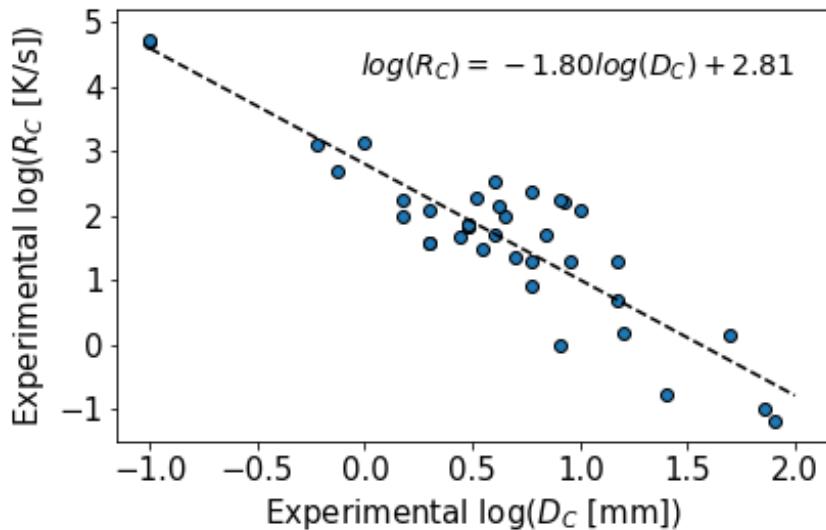
101 **Generated R_c Database**

102 DS1 was expanded three ways. First, we estimated R_c from experimental measurements of critical
 103 sizes from casting. We have used measurements of both critical casting diameter D_c and critical
 104 casting thickness Z_c , and we denote both as D_c . Both of these values are converted to R_c values using
 105 a generalization of the formalism outlined by Lin and Johnson [29] which suggests the relationship

$$106 \quad R_c = \frac{A}{D_c^B} \quad 1$$

107 Lin and Johnson's proposed equation sets A=10 and B=2 based on assumptions about average
 108 thermodynamic properties across all metals and an idealized interface between the alloy and mold.
 109 Specifically, they assume a difference between melting temperature and glass transition temperature
 110 of 400 K, Thermal conductivity of the melt being $0.1 \text{ W/cm s}^{-1} \text{ K}^{-1}$, and heat capacity per unit volume
 111 of $4 \text{ J/cm}^3 \text{ K}^{-1}$. B is set to 2 based on an ideal A fit of $\log(R_c)$ vs. $\log(D_c)$ (Figure 1) for alloys in DS1 which
 112 have both measurements gives A=631 ($\log(A)=2.81$), B=1.8. This fit was then used to approximate R_c
 113 values from all D_c and Z_c values without a R_c in DS1. The A and B values shift quite significantly from
 114 the values estimated by Lin and Johnson. This difference is likely due to the previous assumptions
 115 ignoring surface interactions between the melt and the mold during casting. The application of Eq.1
 116 in this first method added 342 approximate R_c values (which we call Data Set 2 (DS2)) and brings the
 117 number of training values up from 77 experimental R_c values to a total of 419 training values.

118



119

120 Figure 1. Comparison of a subset of training data with both experimentally measured R_C and D_C
 121 values. The line of best fit and its equation are shown. The fit has R^2 of 0.80, RMSE of 0.55 K/s, and
 122 MAE of 0.44 K/s.

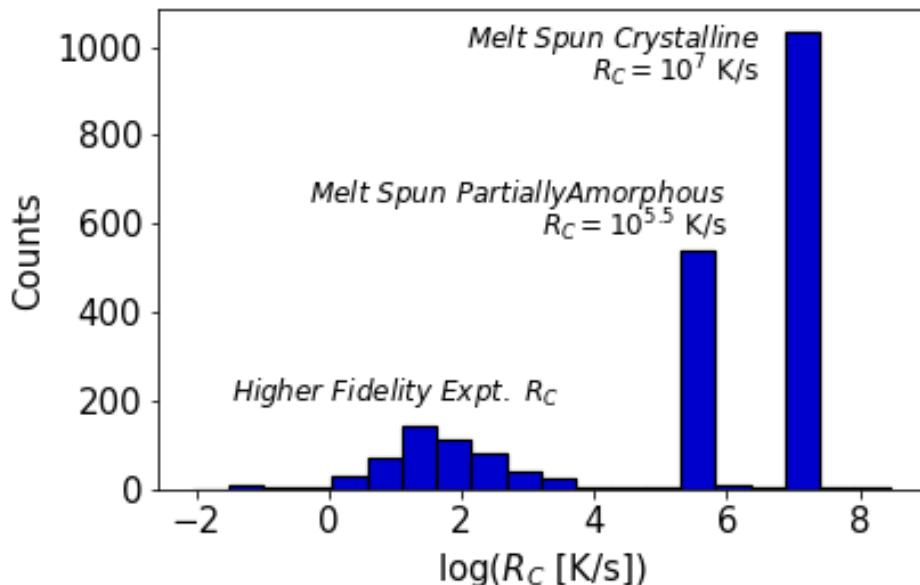
123 Second, we used the ω parameter initially proposed by Long et al to make approximations for R_C
 124 for all datapoint for which we have measured T_g , T_x , and T_l [7]. Specifically, we take all T_g , T_x , and T_l
 125 data we have available, determine ω , and then use the linear relationship between ω and R_C to from
 126 Long et al to predict R_C . As an additional verification of the ω parameter, for the 25 additional points
 127 added to Long et al.'s original data, their ω values were calculated and are shown in the
 128 supplementary information as a test set specifically for the ω relationship. All the new values fell
 129 within the spread of the previous data, further demonstrating the ability of this parameter to
 130 effectively transform characteristic temperatures into estimated critical cooling rate values. Refitting
 131 the ω relationship proposed by Long, et al. only resulted in minor changes so to avoid a proliferation
 132 of almost identical models we simply used the fitting parameters established by Long et al.. This
 133 second method added 141 approximate R_C values (which we call Data Set 3 (DS3)) for compositions
 134 that do not overlap with previous datapoints, bringing the total to 560 compositions with approximate
 135 R_C values.

136 Finally, we leveraged melt spinning experiments, which categorize compositions as amorphous,
 137 partially amorphous, and crystalline under high-rate cooling. Based on what is known about typical
 138 cooling rates during melt spinning, these categories correspond to approximate constraints on R_C . Due
 139 to the overlap of the expected R_C values for amorphous melt spinning data (such alloys likely have R_C
 140 $<\sim 10^5$ K/s) with significantly higher quality measurements and approximations of R_C from the previous

141 methods, the amorphous category data was excluded from the final dataset. This exclusion is done
142 because introducing such a large amount of very approximate R_c data in the same range where we
143 have access to much higher quality data would likely drown out any signal that would allow the model
144 to differentiate BMGs ($R_c < 10^3$ K/s) from moderate glass formers and non-glass formers. We therefore
145 assigned approximate R_c values only to the partially amorphous and crystalline categories and
146 included them in our fitting. Specifically, we assigned the partially amorphous and crystalline cases R_c
147 values of $10^{5.5}$ and 10^7 K/s, respectively. When a cooled system comes out partially amorphous it is
148 likely that the actual cooling rate was a little slower than R_c , since some of the system had time to
149 crystallize. Furthermore, the cooling rate for melt spinning is known to be in the range 10^4 and 10^6
150 K/s, or based on averaging the logs, about 10^5 K/s [30]. Therefore, for systems that are partially
151 amorphous it is likely that the true R_c range is somewhat shifted toward higher values than the range
152 10^4 and 10^6 K/s, say $10^{4.5}$ and $10^{6.5}$ K/s. We represent this range by averaging the logs to give $10^{5.5}$ K/s.
153 The value of 10^7 K/s for the fully crystalline was chosen to be about one order of magnitude above
154 the fastest cooling rate likely obtained in melt-spinning data to represent the fact none of these alloys
155 formed amorphous structures. The exact R_c value chosen for the crystal forming alloys did not have a
156 significant effect on machine learning performance as we have an extremely small amount of direct
157 experimentally measured R_c values in this range that would be affected by the specific number
158 assigned to this data. Therefore, the main effect of including it and assigning a value is to allow the
159 model to differentiate between the better glass formers found elsewhere in the dataset, and these
160 poor glass formers.

161 The melt-spinning data is obtained from a review paper which provides over 8,000 melt-spun
162 compositions[31]. From this dataset we used 1248 compositions which formed crystalline metals after
163 melt-spinning, and 720 compositions which were categorized as partially amorphous. Although the R_c
164 values from this data are highly approximate, they are quite distinct from the bulk of the higher-
165 fidelity training data developed above and are therefore expected to constrain the fits without
166 polluting fitting to higher fidelity data. *Figure 2* shows that the crystalline and partially amorphous
167 data do not overlap significantly with the rest of the training data. This process added 1,565
168 approximate R_c values (which we call Data Set 4 (DS4)) for compositions that do not overlap with
169 previous datapoints, bringing the total to 2,125 compositions with approximate R_c values. This is an
170 increase of almost 30 times greater than the initial set of measured R_c values. We call this final
171 integrated Data Set 5 (DS5).

172



173

174 Figure 2. Distribution of R_c values in final training dataset (DS5)175 **Machine Learning Models**

176 Using the complete DS5 of R_c data a random forest model was built and trained to predict R_c . The
 177 random forest model is trained using the MAST-ML machine learning software package which builds
 178 machine learning workflows using the underlying scikit-learn python package [32,33]. Inputs to the
 179 model are obtained from compositional information and elemental features using the MAGPIE
 180 approach proposed by Ward et al. [4,18]. Elemental features for each composition are generated as
 181 composition averages, maximum, minimum, and difference. This feature set is chosen to be maximally
 182 accessible as all the features can be generated almost instantaneously directly from available
 183 elemental databases. Several other model types were also investigated along with the random forest
 184 model but showed worse performance. Specifically, gradient boosted trees and Kernel Ridge
 185 Regression models showed reduced performance under cross validation testing with a 5-fold cross
 186 validated RMSE of 0.732 and 0.803, respectively (compared to 0.36 for random forest, discussed
 187 below). We assessed the predictive ability of the model through random and leave-one-group-out
 188 cross validation (CV). The random cross validation was done by repeating 5-fold cross validation 10
 189 times (for a total of 50 left folds of data) and the predicted values for each excluded point were
 190 averaged.

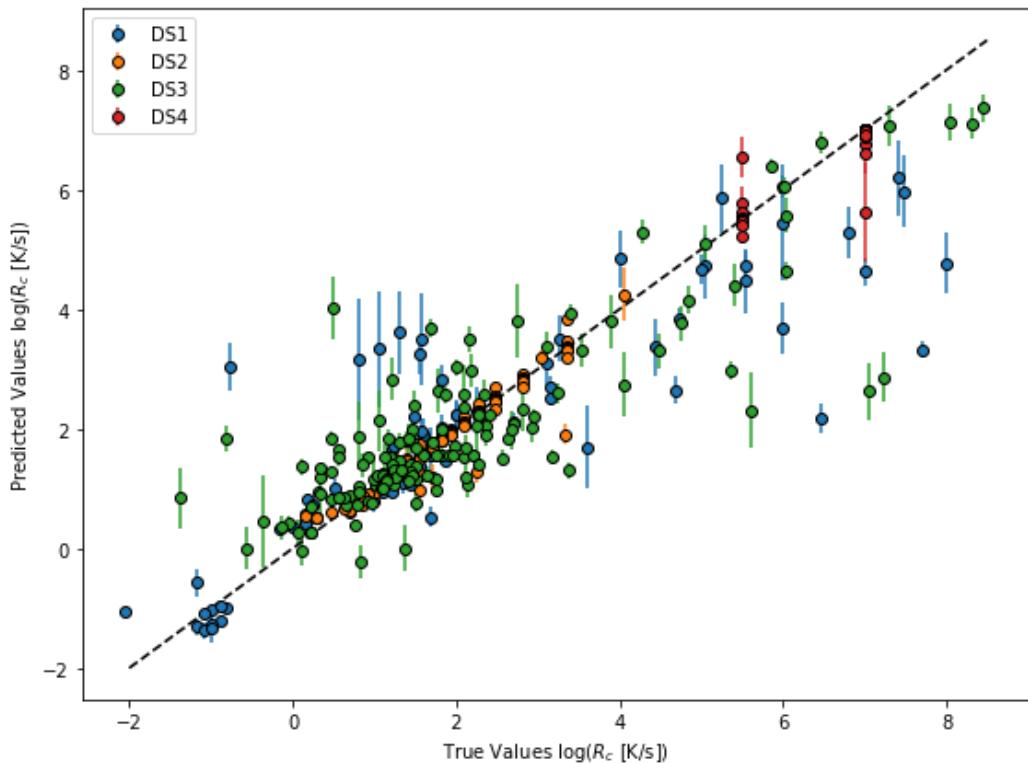
191

Results and Discussion

192

The average predicted vs. true values are shown in the parity plot in *Figure 3*. We calculated the following statistics from the 5-fold CV test: $R^2 = 0.97 \pm 0.01$, root mean squared error (RMSE) = 0.36 ± 0.09 , mean absolute error (MAE) = 0.08 ± 0.02 , RMSE normalized by the standard deviation of all the $\log(R_c)$ values (RMSE/ σ_y where $\sigma_y = 2.22$) = 0.16 ± 0.04 respectively. The error bars represent the standard error in the mean of each statistic when averaged over all 50 CV folds. Although our model uses only elemental features, the errors are comparable to or better than the best previous models for R_c using characteristic temperatures. Specifically, the ω model for predicting R_c from characteristic temperatures given in Long, et al. showed $R^2 = 0.90$ and RMSE = 0.67 log units [7]. These statistics are influenced by the large amount of melt spinning data which is somewhat unusual due to it being assigned the same R_c value. If the melt spinning data is excluded from the statistics RMSE value increases to 0.70 which is still essentially equivalent to the best previous characteristic temperature based models.

204



205

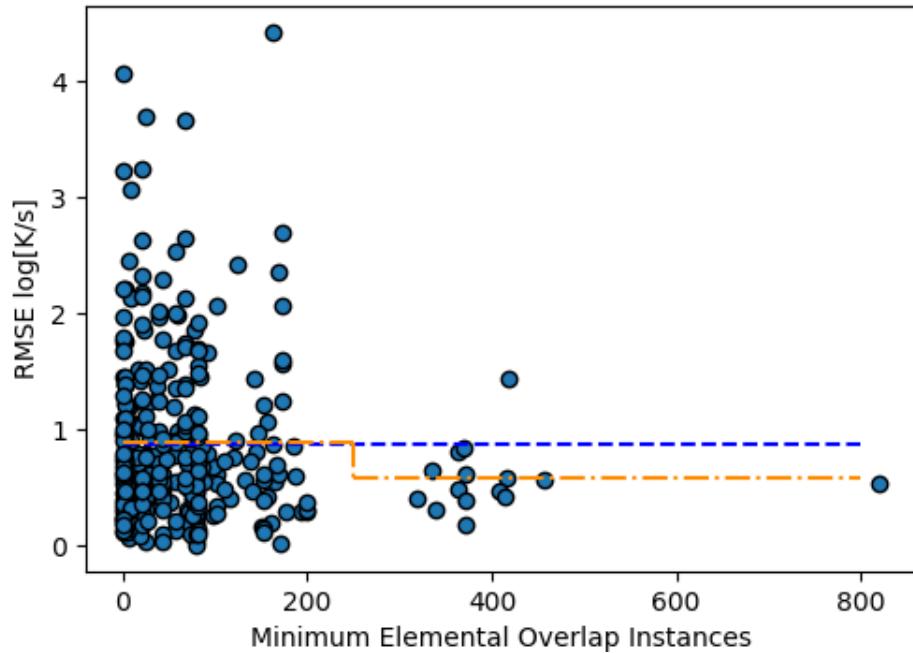
206

Figure 3. 5-fold cross validation performance of random forest model

207 While the random CV is a useful standard test of model accuracy it is not a good test of the ability
208 of the model to predict new chemistries [34]. This limitation of the random CV score arises because
209 the data set often has multiple entries on closely related compositions due to the nature of
210 experimental research on GFA, so excluded points in the validation data are likely to have nearby
211 compositions in the training data that contain all the same elements with minor changes to the
212 composition. This allows the model to effectively serve as a “look-up” table for predicting all nearby
213 materials without learning the underlying physics causing good GFA. The random CV score therefore
214 likely overestimates how well the model will perform on new chemistries.

215 To assess errors on new chemistries we performed a leave-out-one-group CV, where we grouped
216 together similar compositions and left them out one by one, training on the remaining data. Groups
217 were defined by each unique alloy system (i.e., unique combinations of elements). For example, if the
218 dataset only contained three elements the total list of groups would be defined as El1-El2, El1-El3,
219 El2-El3, and El1-El2-El3. As each group was left out the training data the average RMSE were recorded
220 and are summarized in Figure 4. Groups are sorted by the minimum number of overlap instances with
221 the training data between all elements in the group. For example, the elemental overlaps for an
222 excluded Cu-Zr alloy would be the lower value between the number of Cu and Zr containing alloys
223 were left in the training set. The dashed-dotted lines show the average RMSE of all groups within each
224 bin from 0-250, and 250-821 on the x-axis. The dashed line shows the average across all points.

225



226

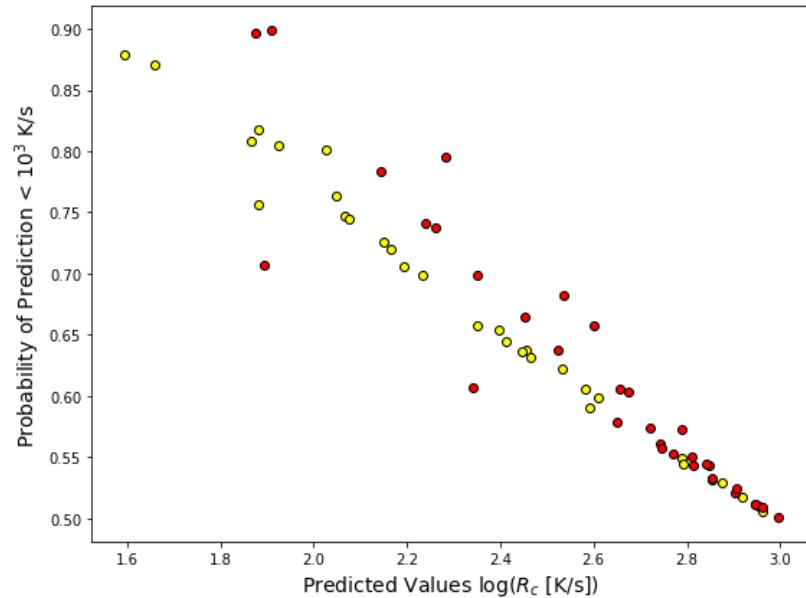
227 Figure 4. Leave out group cross validation sorted by amount of overlap with training data. The
 228 blue dashed line shows the average RMSE of 0.88 log units. The orange dashed-dotted line shows
 229 averages for each bin of data from 0-250 (0.89) and 250-821 (0.58).

230 Figure 4 shows how the model is performing on average and how it performs when there are
 231 many or few representatives of the elements being predicted. The average RMSE (MAE) of 0.88 (0.82)
 232 log units is noticeably larger than the random CV RMSE (MAE) of 0.36 (0.08) log units. This increase is
 233 due to the larger amount of compositionally similar data being left out when an entire alloy system is
 234 removed. Due to the nature of experimental data generation many systems have measurements
 235 taken single digit atomic percents away from each other, which may cause the random CV method to
 236 overestimate performance. RMSE (MAE) errors still stay below an order of magnitude (one log unit)
 237 suggesting that in an average way the model is at least moderately robust to leaving out significant
 238 chemical information. One might expect that the model will perform best when there is the most
 239 training data. This effect is not particularly apparent from Figure 4 but the data does seem to cluster
 240 into two groups, below about 250 and above, and the RMSE goes from 0.89 to 0.58 in going from the
 241 low to high group. This result suggests that establishing a cutoff of around 250 elemental overlap
 242 instances for elements in any predicted alloy systems may help improve the reliability of predictions.

243 Using the cutoff of 250 instances of overlap we can propose two searches for making predictions
 244 with the random forest model to identify new BMG systems. The first search is to use the model to

245 predict likely BMGs from known glass formers from melt-spinning data. As discussed during the
246 database generation section there is a set of melt-spinning data that was left out of model training
247 due to overlap with the higher fidelity experimental data. We will look for BMGs within this group of
248 alloys. We define a BMG as $R_c < 10^3$ K/s. This data has 3,755 compositions that were classified as glass
249 formers under melt-spinning conditions. Of those points there were 63 compositions predicted as R_c
250 $< 10^3$ K/s by our model and therefore predicted to be good BMG candidates. These predictions are
251 shown in *Figure 5*. Predicted critical cooling rates of melt-spun glasses. Points are color coded by
252 interest of the alloy composition. Red points being the least interesting, and yellow points being the
253 more promising as new BMG systems. with more details on the specific alloy systems given in Table
254 1. The probability of the prediction being a BMG is estimated directly from the random forest
255 confidence interval of each prediction using a one-sided Z-test. An analysis of these estimated
256 confidence intervals is included in the supplementary information in the section Error Bar Analysis.

257



258

259 Figure 5. Predicted critical cooling rates of melt-spun glasses. Points are color coded by interest
260 of the alloy composition. Red points being the least interesting, and yellow points being the more
261 promising as new BMG systems.

262 While the machine learning model can potentially provide helpful guidance in discovering new
263 BMGs, its predictions must be considered by human researchers to assess their value to the
264 community. With this in mind, each prediction in Figure 5 is color coded based on our personal
265 assessment of the novelty of the alloy system for the BMG community. The color scheme is used in

266 Table 1 as well. Red systems are likely the least interesting due to being a known BMG system in our
267 training data. These predictions only demonstrate that the model will predict nearby compositions to
268 training data. Yellow systems are not directly known BMG systems; however they have nearby BMG
269 quaternaries or ternaries with one additional minor alloying element. This limits the novelty of these
270 predictions since we would expect the higher component systems to have better glass forming ability
271 than the predicted lower component alloys. One of these systems, Al-Ca-Ga, is slightly different in
272 that its nearby system is the binary Al-Ca system that is also included in Table 1 which has less
273 components. Of the yellow systems, Al-Ca-Ga is therefore the most potentially interesting as following
274 the same logic this higher number of components in general may increase GFA compared to the
275 known Al-Ca BMG system. Finally, there are several green systems that are potentially the most
276 interesting due to not having any nearby known ternary or quaternary BMG systems. They can all be
277 broadly grouped into the category of Au-B-rare earth. Predictions for these systems fell slightly above
278 the previously established 10^3 K/s cutoff and are identified with an asterisk. This extension to higher
279 R_c values was considered because previous established estimated errors in predictions still place these
280 systems in the range of being potential glass formers. Based on our literature review this combination
281 of elements appears to be new, with some of the closest systems being the Au-Si-X BMG systems
282 introduced by Schroers et al.[35]. Our predicted alloys essentially replace the Si in the Au-Si-X BMG
283 with another nearby metalloid, B. However, while rare earth elements have been used in BMGs there
284 is not any previous literature combining gold and boron with rare earth elements of which we are
285 aware. Therefore, these types of systems are suspected to be novel and worth additional
286 consideration. As an additional check for potential interest in these systems we consider to what
287 extent they are consistent with previously established empirical rules for finding metallic alloys with
288 high glass forming ability. While these criteria have many forms the following properties of systems
289 proposed by Inoue et al. [36] are generally desirable: (1) multicomponent alloy consisting of more
290 than 3 elements, (2) significantly different size mismatch exceeding 12% among the main 3
291 constituent elements, (3) negative heats of mixing among their main elements. We also add to this a
292 fourth criteria, which is generally harder to assess without detailed thermodynamics models, which is
293 that the system shows deep eutectics. All alloys are ternaries so do not quite satisfy the first criteria,
294 but we know that BMG ternaries can be formed. All three systems easily satisfy the second criterion
295 due to the large size difference between Boron and the Rare-earth elements. All three systems also
296 satisfy the third criteria. Heats of mixing are calculated for each predicted composition from an
297 extended regular solution model following the methodology and binary interactions from Takeuchi

298 and Inoue [37]. Mismatch percentage along with the estimated heats of mixing, are shown in in Table
 299 1 for the average of predicted compositions in each system. With respect to the fourth criteria,
 300 available binary phase diagrams from the ASM Alloy Phase Diagrams Database were analyzed which
 301 reveal eutectics in all of the binary subcomponents of the Au-B-X ternary alloys [38]. Specifically,
 302 eutectics occur near $\text{Au}_{20}\text{B}_{80}$, near the edges of the B-X binaries as well as $\text{B}_{70}\text{Gd}_{30}$, and at many
 303 compositions in the Au-X binaries. While we do not have access to full ternary phase diagrams to
 304 investigate in more detail, agreement with many previously established criteria for discovery of BMG
 305 alloys makes these three systems interesting candidates for further study.

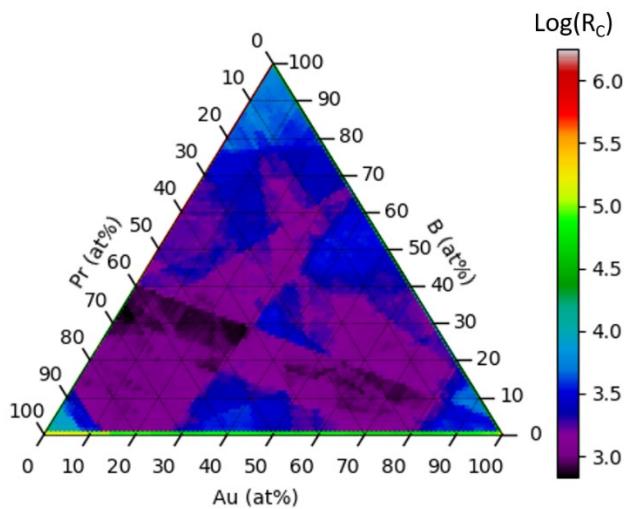
306 Table 1. List of alloy systems predicted as BMGs. Systems are color coded by potential to be novel
 307 BMG (see discussion in text for color coding).

Alloy System	Known BMG	Size Mismatch	Mixing Enthalpy (Kj/mol)
Cu Hf Nb	No	22%	-10.1
Cu Nb Zr	No	23%	-14.3
Cu Ti Zr	Yes	23%	-16.6
Ni Zr	Yes	26%	-44.8
Al Ca	Yes	39%	-18.0
Au B Pr*	No	131%	-63.2
Cu Hf	No	22%	-15.9
Al Ca Mg	Yes	39%	-14.0
Al Co Zr	Yes	25%	-46.0
Au B Er*	No	119%	-64.6
Au B Gd*	No	125%	-64.0
Cu P Zr	No	32%	-27.4
Al Ca Ga	No	39%	-22.9

308
 309 To give more insight into the model's predictions, the R_C for systems in Table 1 were predicted
 310 over the alloy's full binary and ternary composition ranges and the full predictions for the Au-B-Pr
 311 system are shown as an example in Figure 6. We can see from this example that a large portion of the
 312 ternary system is predicted near or below the 10^3 K/s cutoff for predicted bulk formation. This result,
 313 combined with the small dynamic range of predictions, with the majority of the ternary predicted
 314 within one order of magnitude, suggests we cannot claim to make a prediction of any specific region
 315 within the ternary being the most promising. This trend holds across most new predictions, suggesting

316 that for new systems the model predictions can at best identify candidate BMG systems, rather than
317 pinpoint promising BMG regions within systems. This limitation is unfortunate but may be less
318 problematic in the future as the community is developing new combinatorial approaches to
319 experimentally investigate large composition ranges of a system. For example, researchers were
320 recently able to synthesis and characterize R_c over a large region of the Al-Ge-Ni ternary using high-
321 throughput methods [28].

322



323

324 Figure 6. Predictions in 1% composition increments of the Au-B-Pr system.

325 A second search was performed to explore more widely for potential BMG systems. In the first
326 test above potential systems and compositions were obtained only from known melt-spinning glasses.
327 In this second test we considered every possible quaternary system composed of elements that meet
328 the criterion of more than 250 overlap instances with the training set. There are 10 elements that
329 meet this criterion in the training set: Al, Cu, Ni, Fe, B, Zr, Si, Co, Mg, and Ti. Making every single
330 potential quaternary gave 286 potential quaternary systems. In each system a 10% composition grid
331 was generated for the initial set of predictions. Due to the large number of predictions made multiple
332 steps were taken to filter the predictions to a more manageable number. First all three of the
333 previously discussed criteria proposed by Inoue were filtered against and systems which did not meet
334 the criteria were removed. Notably this means all ternary and binary systems were removed at this
335 stage. Predicted systems were also filtered against known BMG systems in the training data. Predicted
336 compositions were also individually compared to BMG training compositions and removed if they

337 were within 10% elemental composition of any BMG training point. There are 44 systems which meet
 338 these criteria, and they are summarized in Table 2.

339 Table 2. Predictions of GFA for systems constructed from elements with >250 overlap instances
 340 in training data. Systems are color coded by potential to be novel BMG (see discussion in text for color
 341 coding).

Idx	Alloy System	Size Mismatch	Minimum Mixing Enthalpy (Kj/mol)	Minimum R_c Prediction log(K/s)
1	CuFeSiZr	0.24	-85.88	1.53
2	CoCuMgZr	0.25	-27.64	1.58
3	CuMgSiZr	0.24	-80.12	1.63
4	CuFeMgZr	0.24	-14.8	1.65
5	CuNiSiZr	0.26	-90.88	1.66
6	CoCuSiZr	0.25	-89.2	1.72
7	BCuFeZr	0.81	-53.88	1.86
8	BFeMgZr	0.81	-49.68	1.88
9	BCuSiZr	0.81	-91.48	1.89
10	BCuMgZr	0.81	-46.04	1.89
11	BCuTiZr	0.81	-60.92	1.95
12	BCuNiZr	0.81	-58.52	1.98
13	CuMgTiZr	0.23	-11.32	2.00
14	BCoCuZr	0.81	-56.4	2.04
15	CuMgNiZr	0.26	-34.2	2.13
16	BCoFeZr	0.81	-61.16	2.20
17	FeMgSiZr	0.24	-82.16	2.22
18	BFeTiZr	0.81	-66.84	2.34
19	BCuNiTi	0.65	-62.24	2.36
20	CoFeSiZr	0.25	-92.36	2.40
21	CuFeTiZr	0.24	-19	2.40
22	BCuSiTi	0.65	-81.2	2.43
23	BCuMgSi	0.70	-47.64	2.56
24	CoCuTiZr	0.25	-28.48	2.57
25	BCuFeTi	0.65	-50.04	2.58
26	BFeMgSi	0.70	-56.28	2.60
27	BCuMgTi	0.70	-51.16	2.62

28	CoFeMgZr	0.25	-28.24	2.62
29	BFeMgTi	0.70	-55.76	2.67
30	BCoCuTi	0.65	-57.24	2.67
31	CoMgNiZr	0.26	-37.48	2.68
32	BFeSiTi	0.65	-80.76	2.70
33	CoMgSiZr	0.25	-85.8	2.70
34	BCoCuMg	0.70	-29.24	2.73
35	FeMgNiZr	0.26	-34.64	2.74
36	AlCoTiZr	0.25	-33.6	2.75
37	CoCuMgTi	0.17	-11.52	2.80
38	BCuFeMg	0.70	-27.8	2.81
39	FeNiSiZr	0.26	-63.04	2.82
40	BCoFeTi	0.65	-62.92	2.83
41	CoSiTiZr	0.25	-94.24	2.91
42	BCoFeMg	0.70	-34.28	2.93
43	MgNiTiZr	0.26	-30.16	2.97
44	CuFeMgSi	0.16	-38.68	3.00

342

343 As with the previous set of predictions we have grouped systems based on relative novelty. We
 344 will not discuss all systems in detail but will highlight several trends within the predicted systems as
 345 well as commenting on specific systems which may be the most novel. The 16 yellow systems are
 346 identified as containing the well-known Cu-Zr binary. Investigating their predictions further showed
 347 all predictions had increasing R_c moving away from the Cu-Zr binary suggesting that these alloys are
 348 mainly being predicted due to adjacency to the binary. However, they still may be somewhat
 349 interesting due to changes in other materials properties while having similar R_c . Another trend in
 350 predictions is systems that suggest replacements or additions to known ternary or quaternary
 351 systems. System 19, B-Cu-Ni-Ti, is somewhat similar to the known Cu-Ni-Ti ternary and Zr-Cu-Ni-Ti
 352 quaternary BMGs systems [29,39]. One potential limitation with these systems however is with the
 353 combination of B and Ti which, as pointed out by Lin et al. may reduce GFA due to precipitation of
 354 very stable borides. They claim reduced GFA in the Zr-Cu-Ni-Ti-B quinary compared to the quaternary
 355 without Boron. System 36, Al-Co-Ti-Zr, is somewhat similar to the known Al-Co-Zr system [40], but
 356 may provide some different properties. Furthermore, there is a septenary BMG system including all
 357 of Al-Co-Ti-Zr elements, further suggesting that these elements may have good glass forming ability

358 [41]. Because Al-Co-Ti-Zr is both a suballoy of a BMG and has suballoys that are BMGs it is a particularly
359 promising system to consider. System 41, Co-Si-Ti-Zr, is one of the more distinct combinations, with
360 no known BMGs in ternaries or quaternaries with simple replacements/additions of single elements.
361 The most similar BMG forming alloy we could identify is reported by Ramasamy et al. in which they
362 replace Nb with Zr in the Fe-Co-B-Si-Nb system to create Fe-Co-B-Si-Zr and report a decrease in GFA
363 due to the replacement [42]. Finally, we identify several systems including Fe-Zr. The Fe-Zr alloy is a
364 well-studied metallic glass though not a BMG [43]. And similar to previous systems there is a known
365 higher component BMG system in the Fe-Co-Ni-Zr-Mo-B system[44]. Systems 19, 36, 41, and the Fe-
366 Zr containing alloys make up all the 7 green systems in Table 2. By predicting across such a wide
367 composition space we identified systems that build off of binary BMGs, proposed substitutions to
368 ternary and quaternary glasses, and also predict entirely knew alloys with no nearby known glass
369 formers. Making predictions with such variety can hopefully inspire new synthesis and discovery of
370 BMG alloys.

371 With these searches complete we take a step back to analyze in more detail our confidence in the
372 predictions of new BMG compositions. Although our model is formally regression fit to R_c , in
373 predicting new BMGs we have effectively used it as a classifier which predicts either BMG or not BMG
374 if the predicted R_c is $> 10^3$ K/s or $< 10^3$ K/s, respectively. We can therefore ask the classification model
375 question, what is the probability of an alloy actually being a BMG given that the model has predicted
376 it to be a BMG (i.e., what is our precision)? The precision (and recall) can be estimated for our
377 particular data by finding the true positive rate (*TPR*) and false positive rate (*FPR*) from the left-out
378 data in the 5-fold CV tests performed in Figure 3. This yields very encouraging results, with *TPR* = 0.963
379 and *FPR* = 0.013. In addition to this single set of statistics for a single cutoff, we report the full ROC
380 curve in Figure 8 of the supplementary information which has an area under the curve of 0.998. In
381 other words, for alloys left out in a fold, the criteria R_c is $< 10^3$ K/s for being a BMG correctly identifies
382 an alloy with a known $R_c < 10^3$ K/s 0.963 fraction of the time and finds an alloy with $R_c > 10^3$ K/s 0.013
383 fraction of the time. However, the database used here is quite different from the composition space
384 we explore when we looked at all quaternaries made from 10 elements in the second search above.
385 In particular, the database we are using has far more BMGs than likely in the random search, which
386 changes the probability of correctly identifying a BMG. It is therefore necessary to correct the
387 probability of finding a BMG derived for our database for the fact that BMGs are quite rare in our new
388 search space. We therefore used Bayes Theorem to estimate a more accurate probability of correctly

389 predicting a BMG from the space of relevant systems in our 10 element search. Equation 2 below
 390 shows the details of Bayes theorem applied to the present calculation

391
$$\Pr(BMG|BMG_{pred}) = \frac{TPR * \Pr(BMG)}{TPR * \Pr(BMG) + FPR * (1 - \Pr(BMG))}. \quad 2$$

392 Here $\Pr(BMG|BMG_{pred})$ is the probability of finding a BMG given that we predict a BMG, which is
 393 what we seek, and $\Pr(BMG)$ is the probability of finding a BMG from a random alloy. TPR and FPR
 394 are estimated above. $\Pr(BMG)$ is more difficult to obtain so we propose here a few methods. The
 395 first 3 methods build from DS5 and count all the BMG datapoints within the dataset. We then identify
 396 all elements which compose these BMG alloys, 41 elements total, and define a total composition
 397 space of every elemental combination up to quinary alloys in 1% composition increments. Doing this
 398 gives 838 BMG alloys in DS5 out of a total compositional space of 3.45×10^{12} potential alloys, for a
 399 probability of finding a BMG at random of 2.43×10^{-10} . This first method assumes that the 828 BMG
 400 alloys in the dataset account for all the actual BMG alloys in this entire compositional space, which is
 401 a very pessimistic assumption, and therefore serves as a lower bound on this estimate. Methods 2
 402 and 3 modify this initial estimate as a probability ten times and one-hundred times this to represent
 403 possibilities that the current 838 known BMG alloys only comprise 10% or 1% of the actual number
 404 due to currently undiscovered alloys which could still be found in a random search. To give an upper
 405 bound on this type of analysis we also propose a fourth method taken from an estimation performed
 406 by Li et al. in which they performed a theoretical search for bulk glass formers using a number of
 407 previously established rules of thumb for identifying BMGs [45]. In their study they estimated about
 408 1% of syntheses of potential glassy alloys results in discovery of a BMG. This 1% estimate therefore
 409 represents the probability of randomly discovering a new BMG given that you are an expert
 410 researcher using knowledge to pick initially promising materials. Values and results for these four
 411 methods are shown in Table 3.

412

413 Table 3. Probability estimates and results for a Bayesian analysis of probabilities of finding BMGs.

Method Number	Probability of Randomly Finding BMG	ML True Positive Rate on Database	ML False Positive Rate on Database	Probability of ML Prediction being BMG
1	2.43e-10	0.963	0.013	1.77e-8
2	2.43e-9	0.963	0.013	1.77e-7

3	2.43e-8	0.963	0.013	1.77e-6
4	0.01	0.963	0.013	0.42

414

415 As noted above, the model has a TPR of 0.963 and a *FPR* of 0.013 on the database we have used
 416 for cross validation, which suggests that the trained ML model should be quite good at identifying
 417 BMG alloys from data like that used in the cross validation. However, when factoring in the overall
 418 very small population of BMG alloys within a likely search space using Eq. (2) above, the probability
 419 that any predicted BMG alloy will actually be a BMG when synthesized becomes very low for methods
 420 1, 2, and 3. These probabilities range from an approximate 10^{-8} to 10^{-6} depending on which the
 421 assumption for how many BMGs within the elemental set from DS5 have been found. This result
 422 highlights that even with fairly good cross-validated performance statistics, machine learning models
 423 are not sufficient for the discovery of new materials if the material is rare in the search space and no
 424 human guidance is given. If now we consider method 4, in which we replace our estimate of finding a
 425 BMG with that estimated for a search space selected by domain experts, we calculate the probability
 426 that our model correctly identifies a new BMG when it predicts one to be 42%. What this result implies
 427 is that the machine learning model is likely almost useless for finding BMGs when used on random
 428 alloys, but potentially quite useful when used on a set of alloys prescreened by human experts using
 429 qualitative rules of thumb. In general, this result suggests that a hybrid approach in which machine
 430 learning models are not blindly trusted, but merged with existing domain knowledge and human
 431 selection, can massively improve the likelihood of materials discovery.

432

433

Conclusions:

434 A machine learning model predicting critical cooling rates directly from compositional information
 435 was trained and evaluated. The training data for the model was acquired from experiments of varying
 436 leveling of fidelity with various approximations being used to combine the data in a single dataset of
 437 critical cooling rates. The model shows promising predictive ability in alloys with significant elemental
 438 representation in the training data. However, predictive ability where this overlap is low drops off
 439 considerably and the likelihood for large errors in predictions increases. Furthermore, predictions of
 440 specific composition regions within an alloy system are usually within the uncertainty of predictions
 441 which suggests that the model is likely best used for identifying potential BMG systems as opposed to

442 searching within new systems for optimal BMG regions. Viewing the results through the lens of
443 Bayesian statistics demonstrates that although results seem promising the ability for these types of
444 models to reliably predict new BMG models is significantly limited by the overall low likelihood of
445 finding BMGs. Therefore, there is still need for improvements and tight integration with human
446 guidance before machine learning models can be used to rapidly discover new BMGs.

447

448 **Data Availability**

449 All datasets and machine learning results which includes data for all figures and tables can be
450 found on FigShare at ([10.6084/m9.figshare.15160197](https://doi.org/10.6084/m9.figshare.15160197)). The assembled dataset is also available
451 through the materials data facility (10.18126/nc04-ibut).

452

453 **Supporting Information**

454 The Supplementary Information is contained in a single file consisting of five sections:

455

- Complete Cross Validation Analysis
- Error Bar Analysis
- Comparison of Omega Parameter with Additional Data Points
- Complete ROC Curves for Classification of BMG Predictions
- Analysis of Melt-Spun R_c Value Assignment

460

461 **Acknowledgements**

462 The authors gratefully acknowledge support from NSF DMREF award number DMR-1728933.

463

References

464 [1] W.H. Wang, Bulk metallic glasses with functional physical properties, *Advanced Materials*. 21
465 (2009) 4524–4544. <https://doi.org/10.1002/adma.200901053>.

466 [2] A. Inoue, A. Takeuchi, *Bulk Metallic Glasses: Formation and Applications*, Encyclopedia of
467 Materials: Science and Technology. (2010) 1–6. <https://doi.org/10.1016/b978-008043152-9.02236-3>.

469 [3] A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, *Acta
470 Materialia*. 48 (2000) 279–306. [https://doi.org/10.1016/S1359-6454\(99\)00300-6](https://doi.org/10.1016/S1359-6454(99)00300-6).

471 [4] L. Ward, A. Agrawal, A. Choudhary, C. Wolverton, A General-Purpose Machine Learning
472 Framework for Predicting Properties of Inorganic Materials, *Nature Communications*. (2015)
473 1–7. <https://doi.org/10.1038/npjcompumats.2016.28>.

474 [5] R. Busch, J. Schroers, W.H. Wang, Thermodynamics and kinetics of bulk metallic glass, *MRS
475 Bulletin*. 32 (2007) 620–623. <https://doi.org/10.1557/mrs2007.122>.

476 [6] J. Wang, A. Agrawal, K. Flores, Are Hints about Glass Forming Ability Hidden in the Liquid
477 Structure?, *Acta Materialia*. (2019). <https://doi.org/10.1016/j.actamat.2019.04.001>.

478 [7] Z. Long, H. Wei, Y. Ding, P. Zhang, G. Xie, A. Inoue, A new criterion for predicting the glass-
479 forming ability of bulk metallic glasses, *Journal of Alloys and Compounds*. 475 (2009) 207–219.
480 <https://doi.org/10.1016/j.jallcom.2008.07.087>.

481 [8] J. Xiong, T.Y. Zhang, S.Q. Shi, Machine learning prediction of elastic properties and glass-
482 forming ability of bulk metallic glasses, *MRS Communications*. 9 (2019) 576–585.
483 <https://doi.org/10.1557/mrc.2019.44>.

484 [9] B. Deng, Y. Zhang, Critical feature space for predicting the glass forming ability of metallic alloys
485 revealed by machine learning, *Chemical Physics*. 538 (2020) 110898.
486 <https://doi.org/10.1016/j.chemphys.2020.110898>.

487 [10] W.L. Johnson, J.H. Na, M.D. Demetriou, Quantifying the origin of metallic glass formation,
488 *Nature Communications*. 7 (2016) 10313. <https://doi.org/10.1038/ncomms10313>.

489 [11] F. Ren, L. Ward, T. Williams, K.J. Laws, C. Wolverton, J. Hattrick-Simpers, A. Mehta, Accelerated
490 discovery of metallic glasses through iteration of machine learning and high-throughput
491 experiments, *Science Advances*. 4 (2018) eaaq1566. <https://doi.org/10.1126/sciadv.aaq1566>.

492 [12] Z. Li, Z. Long, S. Lei, T. Zhang, X. Liu, D. Kuang, Predicting the glass formation of metallic glasses
493 using machine learning approaches, *Computational Materials Science*. 197 (2021) 110656.
494 <https://doi.org/10.1016/j.commatsci.2021.110656>.

495 [13] X. Liu, X. Li, Q. He, D. Liang, Z. Zhou, J. Ma, Y. Yang, J. Shen, Machine learning-based glass
496 formation prediction in multicomponent alloys, *Acta Materialia*. 201 (2020) 182–190.
497 <https://doi.org/10.1016/j.actamat.2020.09.081>.

498 [14] L. Ward, S.C. O’Keeffe, J. Stevick, G.R. Jelbert, M. Aykol, C. Wolverton, A machine learning
499 approach for engineering bulk metallic glass alloys, *Acta Materialia*. 159 (2018) 102–111.
500 <https://doi.org/10.1016/j.actamat.2018.08.002>.

501 [15] J. Xiong, S.Q. Shi, T.Y. Zhang, A machine-learning approach to predicting and understanding
502 the properties of amorphous metallic alloys, *Materials and Design*. 187 (2020) 108378.
503 <https://doi.org/10.1016/j.matdes.2019.108378>.

504 [16] M.K. Tripathi, P.P. Chattopadhyay, S. Ganguly, A predictable glass forming ability expression by
505 statistical learning and evolutionary intelligence, *Intermetallics*. 90 (2017) 9–15.
506 <https://doi.org/10.1016/j.intermet.2017.06.008>.

507 [17] F. Ren, L. Ward, T. Williams, K.J. Laws, C. Wolverton, J. Hattrick-Simpers, A. Mehta, Accelerated
508 discovery of metallic glasses through iteration of machine learning and high-throughput
509 experiments, *Science Advances*. 4 (2018). <https://doi.org/10.1126/sciadv.aaq1566>.

510 [18] L. Ward, S.C. O’Keeffe, J. Stevick, G.R. Jelbert, M. Aykol, C. Wolverton, A machine learning
511 approach for engineering bulk metallic glass alloys, *Acta Materialia*. 159 (2018) 102–111.
512 <https://doi.org/10.1016/j.actamat.2018.08.002>.

513 [19] Y.X. Zhang, G.C. Xing, Z.D. Sha, L.H. Poh, A two-step fused machine learning approach for the
514 prediction of glass-forming ability of metallic glasses, *Journal of Alloys and Compounds*. 875
515 (2021) 160040. <https://doi.org/10.1016/j.jallcom.2021.160040>.

516 [20] P.M. Voyles, L.E. Schultz, D.D. Morgan, F. Carter, Metallic Glasses and their Properties,
517 Materials Data Facility. (2021). <https://doi.org/https://doi.org/10.18126/nc04-ibut>.

518 [21] Q.J. Chen, H.B. Fan, J. Shen, J.F. Sun, Z.P. Lu, Critical cooling rate and thermal stability of Fe-Co-
519 Zr-Y-Cr-Mo-B amorphous alloy, *Journal of Alloys and Compounds*. 407 (2006) 125–128.
520 <https://doi.org/10.1016/j.jallcom.2005.06.031>.

521 [22] Y. Huang, J. Shen, J.J.J. Chen, J. Sun, Critical cooling rate and thermal stability for a Ti-Zr-Ni-Cu-
522 Be metallic glass, *Journal of Alloys and Compounds*. 477 (2009) 920–924.
523 <https://doi.org/10.1016/j.jallcom.2008.11.017>.

524 [23] M. Hua, K. Won Tae, K. Do Hyang, Fabrication and mechanical properties of Mg₆₅Cu₁₅Ag₅Pd₅Gd₁₀ bulk metallic glass, *Materials Transactions*. 44 (2003) 2141–
525 2144.

526 [24] Q. Zheng, J. Xu, E. Ma, High glass-forming ability correlated with fragility of Mg–Cu(Ag)–Gd
527 alloys, *Journal of Applied Physics*. 102 (2007) 113519. <https://doi.org/10.1063/1.2821755>.

529 [25] J. Shen, Q. Chen, J. Sun, H. Fan, G. Wang, Exceptionally high glass-forming ability of an
530 FeCoCrMoCBY alloy, *Applied Physics Letters*. 86 (2005) 151907.
531 <https://doi.org/10.1063/1.1897426>.

532 [26] H. Davies, Rapid quenching techniques and formation of metallic glasses, *Rapidly Quenched
533 Metals III*. 1 (1978) 1–21.

534 [27] S. Mukherjee, H.-G. Kang, W.L. Johnson, W.-K. Rhim, Noncontact measurement of
535 crystallization behavior, specific volume, and viscosity of bulk glass-forming Zr-Al-Co-(Cu)
536 alloys, *Physical Review B*. 70 (2004) 174205. <https://doi.org/10.1103/PhysRevB.70.174205>.

537 [28] N. Liu, T. Ma, C. Liao, G. Liu, R. Miguel, O. Mota, J. Liu, S. Sohn, S. Kube, S. Zhao, J.P. Singer,
538 Combinatorial measurement of critical cooling rates in aluminum - base metallic glass forming
539 alloys, *Scientific Reports*. (2021) 1–9. <https://doi.org/10.1038/s41598-021-83384-w>.

540 [29] X.H. Lin, W.L. Johnson, Formation of Ti-Zr-Cu-Ni bulk metallic glasses, *Journal of Applied
541 Physics*. 78 (1995) 6514–6519. <https://doi.org/10.1063/1.360537>.

542 [30] V.I. Tkatch, A.I. Limanovskii, S.N. Denisenko, S.G. Rassolov, The effect of the melt-spinning
543 processing parameters on the rate of cooling, *Materials Science and Engineering: A*. 323 (2002)
544 91–96. [https://doi.org/10.1016/S0921-5093\(01\)01346-6](https://doi.org/10.1016/S0921-5093(01)01346-6).

545 [31] D.B. Miracle, D. V. Louzguine-Luzgin, L. V. Louzguina-Luzgina, A. Inoue, An assessment of binary
546 metallic glasses: Correlations between structure, glass forming ability and stability,
547 *International Materials Reviews*. 55 (2010) 218–256.
548 <https://doi.org/10.1179/095066010X12646898728200>.

549 [32] R. Jacobs, T. Mayeshiba, B. Afflerbach, L. Miles, M. Williams, M. Turner, R. Finkel, D. Morgan,
550 The Materials Simulation Toolkit for Machine learning (MAST-ML): An automated open source
551 toolkit to accelerate data-driven materials research, *Computational Materials Science*. 176
552 (2020). <https://doi.org/10.1016/j.commatsci.2020.109544>.

553 [33] P. Horvath, modAL: A modular active learning framework for Python, (n.d.) 1–5.

554 [34] B. Meredig, E. Antono, C. Church, M. Hutchinson, J. Ling, S. Paradiso, B. Blaiszik, I. Foster, B.
555 Gibbons, J. Hattrick-Simpers, A. Mehta, L. Ward, Can machine learning identify the next high-
556 temperature superconductor? Examining extrapolation performance for materials discovery,
557 *Molecular Systems Design & Engineering*. 3 (2018) 819–825.
558 <https://doi.org/10.1039/C8ME00012C>.

559 [35] J. Schroers, B. Lohwongwatana, W.L. Johnson, A. Peker, Gold based bulk metallic glass, *Applied
560 Physics Letters*. 87 (2005) 404–406. <https://doi.org/10.1063/1.2008374>.

561 [36] A. Inoue, A. Takeuchi, Recent progress in bulk glassy alloys, *Materials Transactions*. 43 (2002)
562 1892–1906. <https://doi.org/10.2320/matertrans.43.1892>.

563 [37] A. Takeuchi, A. Inoue, Calculations of mixing enthalpy and mismatch entropy for ternary
564 amorphous alloys, *Materials Transactions, JIM*. 41 (2000) 1372–1378.
565 <https://doi.org/10.2320/matertrans1989.41.1372>.

566 [38] P. Villars, H. Okamoto, K. Cenzual, *ASM Alloy Phase Diagrams Database*, (2016).

567 [39] P. Gargarella, S. Pauly, K.K. Song, J. Hu, N.S. Barekar, M. Samadi Khoshkhoo, A. Teresiak, H.
568 Wendrock, U. Kühn, C. Ruffing, E. Kerscher, J. Eckert, Ti-Cu-Ni shape memory bulk metallic glass

569 composites, Acta Materialia. 61 (2013) 151–162.
570 <https://doi.org/10.1016/j.actamat.2012.09.042>.

571 [40] X.F. Zhang, Y.M. Wang, J.B. Qiang, Q. Wang, D.H. Wang, D.J. Li, C.H. Shek, C. Dong, Optimum
572 Zr-Al-Co bulk metallic glass composition Zr53Al 23.5Co23.5, in: *Intermetallics*, Elsevier, 2004:
573 pp. 1275–1278. <https://doi.org/10.1016/j.intermet.2004.07.004>.

[41] T. Wada, J. Jiang, K. Yubuta, H. Kato, A. Takeuchi, Septenary Zr–Hf–Ti–Al–Co–Ni–Cu high-entropy bulk metallic glasses with centimeter-scale glass-forming ability, *Materialia*. 7 (2019) 100372. <https://doi.org/10.1016/j.mtla.2019.100372>.

[42] P. Ramasamy, M. Stoica, S. Bera, M. Calin, J. Eckert, Effect of replacing Nb with (Mo and Zr) on glass forming ability, magnetic and mechanical properties of FeCoBSiNb bulk metallic glass, Journal of Alloys and Compounds. 707 (2017) 78–81.
<https://doi.org/10.1016/j.jallcom.2016.11.408>.

[43] Z. Altounian, C.A. Volkert, J.O. Strom-Olsen, Crystallization characteristics of Fe-Zr metallic glasses from Fe 43Zr57 to Fe20Zr80, *Journal of Applied Physics*. 57 (1985) 1777–1782.
<https://doi.org/10.1063/1.334455>.

[44] D.Y. Liu, W.S. Sun, H.F. Zhang, Z.Q. Hu, Preparation, thermal stability and magnetic properties of Fe-Co-Ni-Zr-Mo-B bulk metallic glass, in: *Intermetallics*, Elsevier, 2004: pp. 1149–1152.
<https://doi.org/10.1016/j.intermet.2004.04.014>.

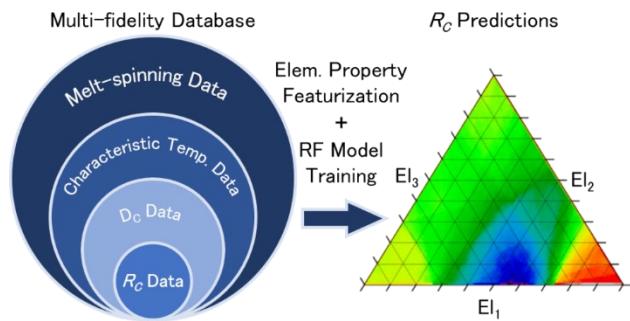
[45] Y. Li, S. Zhao, Y. Liu, P. Gong, J. Schroers, How Many Bulk Metallic Glasses Are There?, (2017) 687–693. <https://doi.org/10.1021/acscombsci.7b00048>.

589

590

591

For Table of Contents Only



592