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Abstract—A novel approach to sidelobe reduction in uniformly-

excited, equally-spaced linear arrays using the electronically 
displaced phase center antenna (E-DPCA) technique is presented 
for the first time. Antenna elements with the E-DPCA capability 
are employed in 9- and 21-element linear array antennas for the 
proof of concept. The element spacing of these physically periodic 
arrays is electronically tapered by displacing the phase center 
location, and thus the relative coordinates, of the base elements to 
reduce the sidelobe and minor lobe levels. Compared to the pre-
existing synthesis techniques, the proposed technique provides not 
only comparable sidelobe reductions but also an additional 
capability of adaptively changing the array configuration to 
generate desired patterns without any physical means, while 
maintaining the same overall array length. 
 

Index Terms—Phased arrays, sidelobe level (SLL), aperiodic 
array, electronically displaced phase center antenna (E-DPCA) 

I. INTRODUCTION 
 number of synthesis techniques have been developed in 
the past few decades to control and modify the radiation 

pattern characteristics of array antennas in radars, satellite 
communications, navigation, and remote sensing. Equally-
spaced arrays often employ amplitude [1-3] and phase [4,5] 
excitation techniques to generate radiation patterns with low 
sidelobe levels (SLLs). In aperiodic arrays, SLLs are reduced 
by varying the density of uniformly-excited elements or 
unequally distributing the position of the base elements [6-20] 
or by array thinning in large antennas [21-24]. A variety of 
evolutionary algorithms have been developed to determine the 
optimal position of the elements in aperiodic arrays to reduce 
sidelobe and minor lobe levels [12-20]. However, once the 
element position is fixed, the array configuration generates a 
modified pattern that satisfies only one requirement at a time. 
In order to further adapt the pattern for other requirements, the 
base elements need to be physically rearranged into different 
periodic or aperiodic configurations. This burdensome 
constraint on the element spacing increases the cost and 
complexity of the design. In addition, the array length typically 

needs to be notably enlarged to accommodate such physical 
space tapering in aperiodic arrays. To mitigate this, a new 
electronic space tapering method based on the E-DPCA 
technique is proposed for SLL reductions purposes.  

The antenna phase center location, also known as the source 
of radiation, determines its coordinates in space. The phase 
center location of most single-mode antennas coincides with 
their geometric centers. Interestingly enough, it can be 
electronically displaced in multi-mode antennas [25-30]. In 
radar systems with moving platforms, such as synthetic 
aperture radar (SAR) and moving target indicator (MTI) radar, 
the displaced phase center antenna (DPCA) processing 
technique [31] is used to reduce the platform motion noise and 
scanning modulation noise. Traditionally, multiple identical 
aperture antennas were utilized to displace the antenna phase 
center locations and maintain its radiation pattern stationary in 
space [31]. The concept of displacing the phase center location 
in a single aperture antenna was investigated in [32-34] to 
create virtual arrays using multimode feed antennas. Inspired 
by this idea, the authors utilized the phase center displacement 
property of the dual-circular patches in two- and three-element 
arrays to establish the underlying principles of adaptive 
element spacing in small arrays [30].  

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 1. Pictorial representation of the proposed N-element, equally-spaced, E-
DPCA array against its physically aperiodic array counterpart with reduced 
SLLs. The array length in the physically aperiodic array is notably larger.   
  
Herein, the E-DPCA technique is further investigated in N-
element, equally-spaced, linear arrays to reduce their SLLs by 
electronically transforming them into aperiodic arrays, without 
having to increase the array length. Typical configurations of 
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