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ABSTRACT: Controlling the nanoscale light—matter interaction

using superfocusing hybrid photonic—plasmonic devices has

attracted significant research interest in tackling existing challenges, oo
including converting efficiencies, working bandwidths, and
manufacturing complexities. With the growth in demand for
efficient photonic—plasmonic input—output interfaces to improve
plasmonic device performances, sophisticated designs with multiple
optimization parameters are required, which comes with an
unaffordable computation cost. Machine learning methods can
significantly reduce the cost of computations compared to 0
numerical simulations, but the input—output dimension mismatch

remains a challenging problem. Here, we introduce a physics-

guided two-stage machine learning network that uses the improved coupled-mode theory for optical waveguides to guide the
learning module and improve the accuracy of predictive engines to 98.5%. A near-unity coupling efficiency with symmetry-breaking
selectivity is predicted by the inverse design. By fabricating photonic—plasmonic couplers using the predicted profiles, we
demonstrate that the excitation efficiency of 83% on the radially polarized surface plasmon mode can be achieved, which paves the
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B INTRODUCTION

Plasmonic structures can manipulate electromagnetic fields at
the nanoscale and have inspired numerous applications,
including chemical analysis microscopy,' ™ signal process-
ing,4_6 and energy }1e1rvesting.7_9 Converting light from a
diffraction-limited photonic system to a subdiffraction-limited
plasmonic system and transferring electromagnetic energy
between different plasmonic structures to control light with
unprecedented capability is crucial for high-efficiency energy-
harvesting applications, sensitive detectors, and super-reso-
lution optical imaging. However, the significant mismatch in
optical momentum k between different optical components,
such as a photonic mode (k ~ 10°~10" m™') and a
superfocused plasmonic hot-spot (k ~ 10° m™), reduces the
coupling efficiency between the two systems, forming an
insurmountable gap that obstructs the development of high-
conversion-efficiency plasmonic applications. To tackle this
problem, various types of superfocusing plasmonic structures
have been invented to bridge the momentum mismatch that
has orders of magnitude in difference. Among these structures,
the adiabatic superfocusing on a conical metallic waveguide is
particularly interesting due to its straightforward fabrication
requirements and the potential for high spatial resolution
imaging and has been broadly used in applications such as tip-
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enhanced Raman scattering spectroscopy.'’ However, the
superfocusing of a conical metallic waveguide is only applicable
to the radially polarized fundamental transverse-magnetic
(TM,) surface plasmon polariton (SPP) mode, which is
difficult to excite by a photonic or free-space beam with high-
conversion efliciency due to the mismatch in mode profiles and
symmetry. The uncertainty of the weight of compressible TM,
mode in the SPP launched on a metallic waveguide casts a
shadow over superfocusing.'' Recently, devices that combine
the excitation ability of photonic structures and confining
ability of plasmonic structures have attracted much atten-
tion."””~"* For instance, a photonic—plasmonic coupler based
on Landau—Zener tunneling has been demonstrated for high-
external-efficiency superfocusing.'> The energy-transfer effi-
ciency in a Landau—Zener process is determined by the
coupling coefficients between the two participating modes and
the changing rate of the propagation constant along the
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Figure 1. Schematics of the photonic—plasmonic coupler and the neural-network structure. (a) Coupler, consisting a tapered optical fiber and a
silver nanowire, corresponds to a set of physics parameters based on the coupled-mode theory that determines the TM,-mode weight spectrum. (b)
Structures of the traditional network (yellow box) and the physics-guided network (purple box).

propagation direction at the tunneling region.'® Since a
plasmonic conical nanowire supports multiple SPP modes,
but only the fundamental TM, SPP mode is desired,"" careful
device designs are required to excite this TM, SPP mode and
diminish the rest selectively. Due to the dimension of the
coupler (~20 um in length), such optimizations are
impractical for conventional methods based on time-
consuming simulations.

The inverse design of plasmonic structures for different
applications is a challenging problem. Although data-driven
methods based on neural networks (NNs) have achieved
inverse design in different subjects,'’ " the input—output
dimension mismatch®” and inverse network degeneracy
problem®® pose major challenges. In plasmonic-related
machine learning designs, the design space usually has only a
few parameters for a plasmonic element geometry, which is
much less than the output responses, containing hundreds of
data points for the optical properties at each wavelength. This
mismatch has restrained the convergence of a neural network
and inspired various methods, including introducing binarized
input design parameters,'” inserting down- and up-sampling
layers,”” normalizing geometrical parameters with wave-
lengths,”" or adding random noise’”** to compensate for the
dimension mismatch. However, binary parameters sacrifice
spectral details and cannot satisfy complex demands. The
down- and up-sampling are equivalent to discarding functional
data points and performing interpolation, respectively, which
inevitably sacrifice some spectral details.”’ Parameter normal-
ization to operation wavelengths breaks down the output
vectors to single data points, demanding extra steps for inverse
design31 that increase random noise and make the model hard
to decipher.'” Recently, researchers interpreted the perform-
ance of NNs by using latent variables as a probabilistic
representation of the design'”** or explainable artificial
intelligence approach.”® However, they still require an extra
variational autoencoder or calculations of feature contribu-
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tions. As a consequence, a deep learning network design, which
can compensate for the input—output mismatch and can be
interpreted by physics theories, is in great demand. Researchers
have tried various methods to overcome this degeneracy
problem in inverse design, including using a tandem network’
or probability distributions to model design parameters,*
which make the NN more intricate and time consuming. Other
methods such as genetic algorithms,w_39 automatic differ-
entiations,"”*" level set methods,* and topology optimiza-
tions* have also been utilized to accelerate the optimization
approach, but usually, an extra algorithm structure is required
in these methods. Therefore, a simple inverse design method
that can solve the degeneracy problem has drawn much
interest.

In this paper, we design a physics-guided two-stage NN that
employs the mode-coupling coeflicients acquired through the
coupled-mode theory as an intermediate training target to
integrate the simplicity of mathematics, intuitiveness of the
physics theory, and the power of the data-driven machine
learning method. The proposed method also bridges the
input—output dimension mismatch and predicts electro-
magnetic responses of the plasmonic structures as accurately
as numerical simulations. In this NN, the design-performance
relation can be directly interpreted by relying on a physics
model describing underlying principles. Since the physics-
guided method needs fewer layers than the traditional direct
learning method for reasonable accuracy, this method can
further simplify the NN structure and reduce the computation
complexity. For the inverse design, we use a simple and general
approach based on backpropagation with an analytical
gradient.”* An extra layer with design parameters as weights
is attached to the fixed and trained forward prediction NN,
accomplishing the on-demand design with minimal changes in
the forward NN. Moreover, the backpropagation method can
avoid the degeneracy problem because the forward network
instead of the inverse network™” is trained. Our work indicates
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Figure 2. Evaluation of the deep-learning methods with and without the physics layer. (a) and (b) Example results with two sets of parameters: r =
75 nm, 6 = 8° and r = 90 nm, and € = 17°. The blue dotted lines are from the physics-guided method and the red dashed lines represent the results
of the traditional method without the physics layer. (c) MAE of different training methods, with different layer numbers and different activation
functions used. Blue and gray bars correspond to the physics-guided method and the traditional methods without the physics layer.

that the design of complicated photonic—plasmonic structures
can be realized by implementing compact network structures,
which simplifies photonic and plasmonic design problems and
accelerates related nanophotonics studies.

B RESULTS AND DISCUSSION

The hybrid photonic—plasmonic structure consists of a linearly
tapered optical fiber (OF) and a silver nanowire (AgNW)," as
shown in Figure la. The NN takes two critical design
parameters, namely, the fiber taper angle @ and AgNW radius r,
as the input. The intensity of the fundamental transverse-
magnetic (TM,) SPP mode at the AgNW tip over the
wavelength range of interest (450—770 nm with 2 nm interval)
serves as the desired output (details in the Supporting
information). This model has a tremendous mismatch between
the two-dimensional input and the 161-dimensional output.

To verify the role of the physics-guided layer in the model,
we first build, train, and test traditional NNs in a conventional
manner. The input parameters are normalized to a similar
magnitude to accelerate the training. Each fully connected
layer is followed by an activation function to introduce
nonlinearity. The performance of the networks is evaluated by
the mean absolute error (MAE), defined as z,-|pi — tl, where ,;
is the predicted TM, intensity and ¢, is the ground truth of the
TM, intensity. We also compared the performance of different
activation functions, including the hyperbolic tangent (tanh),
the sigmoid, the rectified linear unit (ReLU), and the leaky
rectified linear unit (LReLU). As shown in Figure 2c, the MAE
of NNs with the tanh activation function gives the best
performance among activation functions with the same
number of layers.

To incorporate the physics theory in machine learning, we
construct a two-stage NN as an analog to the physics-based
calculations, as shown in Figure 1b. The coupled-mode theory
utilizes overlapping integrals of the electromagnetic fields to
acquire different mode-coupling coefficients between the
AgNW and OF with different diameters, which are used to
evaluate the intensity evolution of each mode along the
propagation direction. The two-stage NN first maps the two
design parameters to 11 coupling coeflicients between the two
lowest-order SPP modes in AQNW (TM, and HE,) and the
linearly polarized photonic mode in the optical fiber (LPy,).
The coupling coefficients constitute the physics layer in our
model. In the second step, the NN maps the coupling
coefficients to the TM, weight spectra. As shown in Figure 2c,
the proposed physics-guided NN with four layers (including
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the physics layer) exceeds the maximum accuracy level
achieved by the direct NNs. The number of layers for the
two stages can be adjusted depending on the complexity of the
problem. The advantages of the physics layer with 11 coupling
coefficients can be attributed to two aspects: First, the coupling
coeflicients are in a larger quantity than the design parameters,
bridging the vast input—output dimension gap. Second, the
output TM, weight can be regarded as a composite function

I<Pq, Cpq,}(P =_fn(d1, ) dm) (1)

wrn, = 8Ky Cogr )(p) (2)

Here, K, = a)//(s - SH)E;"-Eq dxdy is the mode-coupling
coefficient from mode p to mode q, C,q = /ffez~(El’," X Hy + Eg
X Hjdxdy) is the butt coupling coefficient from mode p to
mode g, and y, is the change in the propagation constant of
mode p due to the existence of the neighboring waveguide. E
and H are normalized electric and magnetic fields, respectively.
d,, is the design parameter (details are in the Supporting
information). Therefore, inserting coupling coefficients as
intermediate variables can guide the orientation to modeling
the complex expression of the composite function with
physics-based knowledge and relieve the burden for the NN
of learning the weights, enabling the use of fewer layers to
simplify the NN. It is also worth noting that it is necessary to
compute coupling coefficients in simulations to get final TM,
weight spectra, which means no extra efforts are required to
obtain these data.

B ON-DEMAND INVERSE DESIGN OF
PLASMONIC—-PHOTONIC COUPLERS

In the previous works, basic cone shapes with straight side lines
in the conic profile are used for convenience, and only the cone
angle can be optimized due to the limitations of numerical
simulations.***> There is a clear trade-off in choosing the
proper cone angle range, as a small cone angle can reduce the
variation rate in phase constant at the vicinity of a coupling
region and thus increase the total coupling efficiency,'® but
leads to a long propagation distance toward the tip and
consequently a large plasmonic loss. Selectively decreasing the
phase constant changing rate at coupling regions can increase
the coupling efficiency and lead to new applications such as a
bandpass filter. Such designs require more flexibility in
designing the waveguide profiles.
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Figure 4. Schematics of the inverse design. (a) Structure of the inverse design NN. (b) TMj-weight spectra from an optimized arbitrary-shaped
coupler (red line) and an optimized cone-shaped coupler (black line). (c) Inverse design for a bandpass filter between 500 and 650 nm. (d) Inverse
design for a dual-bandpass filter. Black and red lines represent the desired target and the result obtained by inverse design.

To expand the capability of the NN for the prediction of
axisymmetric waveguides with arbitrary profiles, we include OF
profiles as a design parameter in training. By varying the edges
based on 3rd-order Bezier curves, we generate 300 smooth and
monotonic OF profiles, which are included as part of the input
in the second layer of the physics-guided network to model the
design parameters to the TM, intensity spectra, as shown in
Figure 3b. We confirm that the performance of the physics-
guided network is much better than the traditional network,
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including equal or even more layers without the physics layer,
as shown in the inner panel of Figure 3d. To predict the
optimized OF profile, we perform the inverse design using
backpropagation.** In this method, a new layer with a constant
number as the input and design parameters as the weights to
be optimized is attached to the trained and fixed forward
prediction NN. Since the AgNW radius and the OF profile
parameters lie in different layers, they are divided into two
separate paths, and the OF profiles are concatenated with

https://doi.org/10.1021/acsami.2c05083
ACS Appl. Mater. Interfaces 2022, 14, 27397—-27404


https://pubs.acs.org/doi/10.1021/acsami.2c05083?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.2c05083?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.2c05083?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.2c05083?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.2c05083?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.2c05083?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.2c05083?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.2c05083?fig=fig4&ref=pdf
www.acsami.org?ref=pdf
https://doi.org/10.1021/acsami.2c05083?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Applied Materials & Interfaces

Research Article

www.acsami.org

(@)

Objective lens lens 1

OF-AgNW coupler 100x
= “U[fooNA

1 um

——

Focal
lens 2

Focal

Iris aperture CCD

cone 63.9% TM,
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coupling coeflicients and merged into the second stage of the
NN, as shown in Figure 4a. With a target TM, spectrum as the
output, OF profile parameters are tuned through the
backpropagation. In this process, the figure of merit (FoM)
is the mean absolute error (MAE) of the total TM, SPP mode

. 1 -
weight: ﬁzﬂ |Wpredict(’1) - wtarget(ﬂ)l, as the extra penalization

for high errors is not desired. And its gradient is analytically
obtained by gradient descent algorithms in backpropagation.
After certain iterations, the error reaches the minimum,
indicating that the available design parameters are the solution
to the target response, and the inverse design is accomplished.
Although additional training is required for each target
spectrum, the whole optimization progress is very fast because
the new training set contains only one set of design parameters.
Moreover, the backpropagation requires minimal adjustment
to the forward NN compared to the tandem network, and no
extra algorithm such as the genetic algorithm is needed. By
setting unity over all wavelengths as the target for training, we
find that an improved coupling efficiency of close to 90% can
be achieved. This backpropagation method can also be used to
design special couplers that incorporate the single-bandpass or
dual-bandpass features by maximizing the target intensity of
the TM, mode within a specific wavelength range and
minimizing them at rest. The results of the inverse design of
maximized TM,, bandpass TM, spectra from 500 to 650 nm,
and two Gaussian peaks at around 530—610 nm are shown in
Figure 4. Interestingly, we notice that in the optimized shape
for maximum TM,, weight, the OF radius shrinks rapidly to the
LPy,—TM, coupling radius, slows down to obtain a long
coupling distance, and then shrinks to the tip apex quickly to
make the coupling region of LPy,—HE,; short, which
maximized the weight of TM, mode at the exit.
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B EXPERIMENTAL DEMONSTRATION

The predicted coupler profile can be prepared by varying the etching
time of each section by programming the pulling rate of an OF from
the hydrofluoric acid solution (HF, 48%). Figure Sb compares the
predicted optimized OF profile and its corresponding outcome
fabricated through controlled etching. A 200 nm-in-diameter AGNW
is attached to the OF sidewall by a micromanipulator, leaving one end
(~S pm) protruding outside the OF tip. As shown in Figure Sa, the
Fourier-transformed space (k-space) measurement is conducted to
confirm the intensity of TM, mode in the AgNW waveguide. The
radiation pattern of the AgNW forms rings in both the real space
(Figure Sc) and the k-space (Figure Sd), indicating that the
dominating component is the TM, mode. The k-space image is
examined by a linear polarizer to identify the boundary between the
TM, and HE, modes (details in the Supporting information), which is
labeled by the white-dashed circles in Figure Sd,e. The weight of TM,
mode in the far-field radiation is defined as the ratio of the TM,
intensity to the total intensity that contains TM,, HE,, and junction
scatterings. The same AgNW is used on different OF couplers
throughout the measurement to avoid the variation in the far-field
radiation efficiency of the TM, mode, stemming from the momentum
mismatch between the superfocused mode and the free-space
scattered light and is thus sensitive to the tip radius. We find that
the TM, mode weight in k-space increases from 45% on the best
conical coupler to 70% on the optimized coupler. Since the
protruding length of AgNW outside of the OF is ~18 um in this
measurement (which can be reduced to ~2 ym in real applications),
the propagation loss of the TM, mode SPP is not ignorable and can
be compensated by including the coupling loss (propagation length L,
~ 19 um for the TM, mode and L, ~ 103 um for the HE, mode™).
The TM, mode weight near the tip can be acquired through equation:

L
WTM()(")EX/ 0

w = . After considering the collection
™,
0 WTMO(x)eX/LO + WHEl(x)ex/LO &

efficiency of the optical microscope and the propagation loss in the
protruding region, we estimate that the coupling efficiency for TM,
mode is improved from 63.9% from the conical coupler to 83.5% from
the optimized coupler.
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B CONCLUSIONS

In summary, we propose a two-stage physics-guided NN to
bridge the input—output mismatch and accelerate the network
structure for plasmonic application designs. The proposed
physics-guided network combines the advantages of the high-
efficiency data-driven machine learning method and the
informative physics-based analytical model. Moreover, we
utilize backpropagation and gradient descent algorithms to
optimize the design parameters by training the modified
forward prediction network with a certain target as the output,
providing a simple and fast approach for inverse designs. The
high-efficiency high-accuracy physics-guided NN allows us to
model the complex electromagnetic responses with a simple
architecture and can be applied to other research fields of
materials science, in which physics models serve as
intermediate parameters.

B METHODS

COMSOL Multiphysics is employed to complete the numerical
simulations to obtain the electromagnetic field distributions, and the
TM, SPP mode intensity spectra are calculated by solving the partial
differential equations of the coupled-mode theory. The complex
permittivity values of silver are obtained from Johnson and Christy.*’
The spectra cover the visible-light region from 450 to 770 nm at 161
isometric wavelengths. In the cone-shaped fiber situation, the AgNW
radius sampling ranges from 75 to 145 nm with a step of S nm and the
fiber tip angle sampling ranges from 4 to 20° with a step of 1°. This
combination generates 255 samples, 204 of which are randomly
selected for training, and the remaining 51 of them are used for
testing. In the customized-shape optimization, the selections of
AgNW radius remain the same. Three hundred pieces of smooth and
monotonic OF profiles are constructed using 3rd-order Bezier curves
with two control points. The expression of the Bezier curve is B(t) =
(1 =8Py + 3(1 — )P, + 3(1 — t)£P, + £P;. Here, P, and P; are
the two ends of the curve, P;, P, are the control points, and ¢ is a
variable between 0 and 1. Four thousand and five hundred samples
are collected in the simulations, 3600 of them are randomly selected
for training, and the remaining 900 of them are used for testing. The
NN models are constructed by the deep learning module of MATLAB
MathWorks.

For the experimental demonstrations, the AgNWs are synthesized
by the polyol reduction method**~>° and attached to the OF by a
tungsten tip. In the k-space measurement, a 633 nm laser was coupled
to the AgNW from the OF. An optical microscope (Nikon Eclipse Ni-
U) with a 100X microscope objective having a numerical aperture of
0.9 was used to collect the light at the AGNW tip apex. A lens with a
focal length of 10 cm is added behind the microscope to operate
Fourier transform to k-space. And a colored CCD camera (AmScope
MU1803) was used to collect and capture the k-space images.
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