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Mendelian randomization (MR) has become a popular approach
to study the effect of a modifiable exposure on an outcome by using
genetic variants as instrumental variables. A challenge in MR is that
each genetic variant explains a relatively small proportion of variance
in the exposure and there are many such variants, a setting known as
many weak instruments. To this end, we provide a theoretical char-
acterization of the statistical properties of two popular estimators in
MR, the inverse-variance weighted (IVW) estimator and the IVW
estimator with screened instruments using an independent selection
dataset, under many weak instruments. We then propose a debiased
IVW estimator, a simple modification of the IVW estimator, that is
robust to many weak instruments and doesn’t require screening. Ad-
ditionally, we present two instrument selection methods to improve
the efficiency of the new estimator when a selection dataset is avail-
able. An extension of the debiased IVW estimator to handle balanced
horizontal pleiotropy is also discussed. We conclude by demonstrating
our results in simulated and real datasets.

1. Introduction.

1.1. Motivation: Many Weak Instruments in MR. Instrumental variable
(IV) is a well-known method to estimate the effect of a treatment, policy, or
an exposure on an outcome in observational studies with unmeasured con-
founding [5, 24, 4]. Mendelian randomization (MR), a type of IV method,
utilizes genetic variants as instruments to study the effect of a modifiable
exposure or potential risk factor on an outcome in the presence of unmea-
sured confounding [18, 31, 26, 25, 11, 17, 42, 28]. A distinct feature of MR
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is that there can be a large number of genetic variants, specifically single
nucleotide polymorphisms (SNPs) from pre-existing large genome-wide as-
sociation studies (GWASs), and many or possibly all SNPs are weak IVs;
the setting is also referred to as many weak instruments in econometrics
[15]. In particular, these genetic instruments/SNPs can be weak for the fol-
lowing three reasons. First, many SNPs may have zero/null effects on the
exposure. Second, when SNPs are common genetic variants, i.e., their minor
allele frequencies (MAF) are greater than 0.05 [20, 16], they may have small
effects on the exposure. Third, when SNPs are rare variants, i.e., their MAF
are less than 0.05, they may have small or modest effects on the exposure,
but their genetic variances are small so that their total contribution to the
variation of the exposure is small.

In this article, we focus on a popular setup in MR known as two-sample
summary-data MR, where two sets of summary statistics are obtained from
two GWASs [27]. The first set from one GWAS consists of 4;, the esti-
mated marginal association between the jth SNP and the exposure, and its
standard error (SE) 6x;, j = 1,...,p. The second set from another GWAS
consists of f‘j, the estimated marginal association between the jth SNP and
the outcome, and its SE 6y, j = 1,...,p. In MR, the main parameter of
interest is the exposure effect on the outcome, denoted as Sy, which can be
estimated by ﬂj = Fj /4; for each j. However, 5; may be seriously biased
and unstable when SNP j is weak because 4; is close to zero [30]. This leads
to several modern MR methods that aggregate many possibly unstable es-
timators Bjs using a meta-analysis strategy [10, 6, 7, 21]. The most popular
among them is the inverse-variance weighted (IVW) estimator considered in
[10}7
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A variant of the typical IVW estimator (1.1) is to only include SNPs that
pass the genome-wide significance threshold in a third independent GWAS,
known as the selection dataset, inside the IVW estimator (1.1); we call this
the IVW estimator with screening and we formally define it in equation (2.3).
Despite their popularity and widespread usage, very little is known about
the theoretical properties of the IVW estimator, with or without screen-
ing. Specifically, in common MR, setups where there are many weak IVs,
it’s unknown whether the IVW estimator BIVW in (1.1) or the screening
counterpart are consistent or asymptotically normal.
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1.2. Prior Work and Our Contributions. Prior work on weak I'Vs in MR
is vast, but mostly limited to numerical studies [12, 13, 14, 27, 10]. In econo-
metrics, the issue of weak IVs has been studied, but the results are limited
to one-sample individual-data settings; see Stock, Wright and Yogo [34] and
Andrews and Stock [3] for surveys. Recent papers by Zhao et al. [40, 41] and
Bowden et al. [9] proposed new two-sample summary-data MR estimators
that are robust to many weak IVs. Also, Wang and Kang [38] proposed new
tests for two-sample summary-data MR when the number of instruments is
fixed, but the instruments are arbitrarily weak. To the best of our knowl-
edge, however, no work has addressed the theoretical properties of the IVW
estimator in (1.1) or the IVW estimator with screening in (2.3), arguably
the most popular estimators in MR, under a typical MR setting with many
weak IVs.

Our overarching goal is to characterize the properties of the IVW estima-
tors and to propose some improvements over them. The main contributions
can be divided into four parts.

1. We provide an asymptotic phase transition analysis of the IVW es-
timator (1.1) in terms of IVs’ average strength defined in (2.4). We
conduct a similar exercise for the IVW estimator (2.3) with screening.

2. We propose a simple way to improve the IVW estimator (1.1) under
many weak IVs, which we call the debiased IVW (dIVW) estimator.
It is explicitly formulated as the IVW estimator multiplied by a bias
correction factor; see equation (4.1). Unlike the IVW estimator, the
dIVW estimator is robust to many weak IVs. In fact, even without
screening for strong IVs, the dAIVW estimator is generally consistent
and asymptotically normal. As such, the dIVW estimator does not
need a third independent GWAS to select instruments to mitigate the
“winner’s curse” bias [41, 10]. Finally, our dAIVW estimators stand in
contrast to recent optimization-based estimators (e.g., [40, 41]) that
are robust to many weak I'Vs, but are arguably more complex than the
dIVW estimators. As an example, the optimization-based estimator in
[41] may not have unique estimates in every data generating scenario.

3. We depart from past theoretical studies in MR by considering the
case where 6gfj and 6520- are estimates, not respectively equal to O%(j

and 032,]-, the true but unknown variances of 4; and f’j. We assess the
impact of using estimated variances in the properties of the dIVW and
the IVW estimators.

4. To improve the efficiency of the dIVW estimator, we propose two meth-
ods to select “efficiency-increasing” SNPs for the dIVW estimator,
when a third GWAS dataset is available for screening. The first one is
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straightforward and capable of eliminating IVs with no association to
the exposure. The second one is data-driven and iteratively selects a
threshold, leading to the most efficient estimator in a given class.

The rest of this paper is organized as follows. Section 2 introduces no-
tation, setup, and assumptions. Section 3 characterizes the consistency and
asymptotic normality of the IVW estimator and the IVW estimator with
screening. Section 4 proposes the dIVW estimator and dIVW estimator with
screening for improving efficiency, and establishes their asymptotic proper-
ties. Also included in Section 4 are two methods for selecting a threshold
for screening, and an extension of the dAIVW estimator to balanced horizon-
tal pleiotropy [32, 36, 22]. Results from simulation studies and a real data
analysis are presented in Sections 5 and 6, respectively. We conclude with a
summary and discussion. Technical proofs and some additional results are
in the Supplementary Material.

2. Notation, Setup, and Assumption. As part of a common data
cleaning and pre-processing step in MR studies, millions of SNPs are de-
correlated through linkage disequilibrium pruning or clumping via software
[23]. We assume that this initial step produces p independent SNPs, repre-
sented by bounded and mutually independent random variables Z1, ..., Z,.

Let X be the exposure and Y be the continuous outcome. Following the
two-sample summary-data MR literature [27, 8, 40], we assume models

p
(2.1) X = vjZj +nxU + Ex,
j=1
(2.2) Y =50 X +nyU + Ey,

where nx, ny, Bo, 71,-..-,7p are unknown parameters, U is an unmeasured
confounder independent of Z1, ..., Z,, Ex and Ey are mutually independent
random noises that are also independent of (Z1,...,Z,,U), and U, Ex and
FEy have finite 4th order moments.

The goal in an MR analysis is to estimate the effect of the exposure X
on the outcome Y, which is represented by Sg. Since the unobserved U
is related with X, estimating p using only model (2.2) with ordinary least
squares leads to biased estimates. Instead, an MR approach to estimating S
typically assumes a model for X like (2.1) and makes three core assumptions
[18, 31, 26]. The first assumption is that instruments are associated with
the exposure X, which amounts to 7;’s in model (2.1) not simultaneously
being zero. We call an instrument with v; # 0 to be a relevant or non-
null IV and an instrument with «; = 0 to be an irrelevant or null IV. The
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second assumption is that instruments are independent of the unmeasured
confounder U’ this is encoded by assuming U is independent of 71, ..., Z, in
(2.1)-(2.2). The third and last core assumption is that instruments affect the
outcome Y only through the exposure X; this is true under (2.1)-(2.2) since
(2.2) does not involve Z;’s. However, this last assumption may be violated in
some studies; see Section 4.4 for one example based on balanced horizontal
pleiotropy. For more detailed discussions on the core assumptions, models,
and their implication in MR, see [19] and [8].

In classic IV settings, estimation of 3 is based on n independent and iden-
tically distributed (i.i.d.) observations of (Z1,...,Z,, X,Y). In two-sample
MR, estimation is based on nx i.i.d. observations of (X, Z,...,Z,) from
the exposure dataset and ny i.i.d. observations of (Y, Z1,...,Z,) from the
outcome dataset. The two datasets are assumed to be independent of each
other and we never jointly observe Y and X.

In two-sample summary-data MR, which is the most popular data setting
in MR and the setting considered in this paper, only summary statistics
from the exposure and outcome datasets are available for analysis, not the
individual-level data. Specifically, from the exposure dataset, we have %;,
the ordinary least square estimate from a linear regression of X on Zj,
and its SE 6x;, 7 = 1,...,p. From the outcome dataset, we obtain fj, the
ordinary least square estimate from a linear regression of ¥ on Z;, and its
SE 6yj, j = 1,...,p. Note that models (2.1)-(2.2) and the independence
of instruments imply that 4; consistently estimates 7, and f‘j consistently
estimates [3pvy; for each j.

Many of the p SNPs in (2.1), produced by the de-correlation step, could
be potentially weak IVs with zero or small values of V?Var(Zj). It is there-
fore common in MR studies to screen IVs and include only selected IVs in
the IVW estimator. To avoid selection bias or the “winner’s curse”, it is
usually recommended to use a third independent dataset of size nx+ under
model (2.1), called the selection dataset, solely for screening IVs [10, 41].
Typically, because only summary statistics are available from the selection
dataset, thresholding is applied to screen out SNPs in (2.1) with the small-
est marginal z-scores calculated from the summary statistics in the selection
dataset. Future research will analyze a more sophisticated IV selection that
simultaneously incorporates de-correlation and IV strength and its effects
on estimation.

Formally, the IVW estimator with screening is a hard-thresholding esti-



6 YE, SHAO, AND KANG

mator with a z-score threshold A > 0,

- Sies WiBi  Ljes, Lifioy el s
(2.3) Baivw = i = I AQA,zjj Sx={j:1%;| > Aox,}
> jes, Wi 2ojes, Y%y

where 47 and c}}k(j are counterparts of 4; and 6x; computed from the selec-
tion dataset. If A = 0, then B/\,IVW reduces to the original IVW estimator
BIVW in (1.1). If A > 0, only instruments with absolute value of z-scores
higher than \ are selected into the IVW estimator. A value for A that is used
widely in MR is the genome-wide significance threshold A ~ 5.45, which cor-
responds to screening out IVs whose p-values associated with 4;’s are above
the genome-wide significance level 5 x 1078, More discussions about this
genome-wide significance level are given in later sections.
We make the following two assumptions for our asymptotic analysis.

ASSUMPTION 1.  The sample sizes nx and ny (and nx~ of the selection
dataset if it exists) diverge to infinity with the same order. The number of
SNPs, p, diverges to infinity.

The conditions on sample sizes and p are reasonable in our setup as many
modern GWASs involve 10 to 100 thousands of participants and a few thou-
sands of SNPs are typically found to be independent after the de-correlation
pre-processing step.

The next assumption about summary statistics is also assumed in [40].

ASSUMPTION 2. {’ij,fj,’?]’-‘,j = 1,...,p} are mutually independent and,
for every j, 4 ~ N('yj,agfj), L'~ N(Bofyj,a}%j), and 4} ~ N(fyj,ajgj). The
variance ratios O'g(j/O'%/j and Ug(j/o*ﬁgj for all j are bounded away from 0
and infinity.

We briefly assess the plausibility of Assumption 2. With large sample
sizes under Assumption 1, the normality of I';, 4;, and 9; is plausible. The

two-sample MR data structure guarantees the independence of 4;’s and f‘j’s
(and 47’s if they exist). Also, two-sample MR prunes/clumps SNPs to be far
apart in genetic distance and each SNP only explains a very small propor-
tion of the total variance in the exposure and outcome variables, making the
independence within 4;s, fj’s (and ;s if they exist) as well as the bound-
edness of variance ratios likely. Furthermore, if Y is binary, Assumption 2
is a first-order local approximation of a logistic outcome model [40, 41].
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We define the average strength of p IVs as

p

>

1
(2.4) -
p 7=1 UXJ

where 7;/0x; is a normalized effect of SNP j on X. If  is small, SNPs are,
on average, weakly associated with the exposure. If k is large, SNPs are, on
average, strongly associated with the exposure. We also define the average
strength of IVs for IVW estimators with screening,

(25) e Ly,
: A= A
s T

where g j = P(|3]| > Aok;) and px = 3F_; ;. Clearly, if A = 0 so that
all the IVs are included in the IVW estimator, ¢ ;, k), and p) become 1,
k, and p, respectively. As we will see in Sections 3-4, the limiting values of
k and k) play a key role in characterizing the asymptotic properties of the
IVW estimators.

The parameters k), k, and py can be estimated by &), &, and py, respec-
tively, where

1 22
(26)  An=-— S 21 A=ho  pPx=the size of Sy.
PA jes, X

We later show how to use these estimators in practice to check the theoretical
conditions underlying the properties of the IVW estimator with or without
screening.

3. Properties of the IVW Estimators. We study the consistency
and asymptotic normality of the IVW estimators described in Sections 1-2
under different limiting values of x and x) defined in (2.4) and (2.5).

In the MR literature, it is common to assume that the standard deviations
(SDs) oxj, oyj, and ox; (in Assumption 2) are known (e.g., [10, 6, 40, 41,
29]) so that 6y; = oy; and 6%, = o, are used in (1.1) and (2.3). This is
motivated by the fact that the sample sizes nx, ny, and n’; are usually very
large in modern GWASs and the aforementioned references show empirically
that such approximation works well in practice. In this section, we confine
ourselves to the situation where the SDs are known and oy; = oy; and
0%; = 0. The study of more general and realistic case where oy; # oy;
and 0 ; # 0 is deferred to Section 4.

In what follows, Ly denotes convergence in probability and L, denotes
convergence in distribution.



8 YE, SHAO, AND KANG

THEOREM 3.1.  Assume models (2.1)-(2.2) and Assumptions 1-2. Also,
assume that 6y; = oy; and 6%; = ok, in (1.1) and (2.3). When By # 0,
we have the following conclusions for either A =0 or A > 0.

(a) If kKx/pr — o0, man(:yjza)_(?q,\,j)/(/ﬂpA) — 0, and when \ # 0,

Kayv/Da/A2 — oo, then Bavw s consistent and asymptotically nor-

mal, i.e.,
— 5 D
(3.1) Vi (Bavw = Bo) 2 N(0, 1),
where
SE 1 [(wj +v5)an; + Bivi(wi + 3vj)an; — Bivids ]
Vaivw = :

28y (wj +vj)ax 41 ’

w; = ’Y?/szq: and v; = Og(j/J%/j, ji=1,..,p.
(b) If kx — oo and when A # 0, RA\/zT,\/)\Q — 00, then ﬁA)\,IVW i Bo.
(c) If Ky — ¢ >0 and \/py/ max(1,\?) — oo, then

. Y wid;  p
Barvw — Bo=p
j:l(wj +v5)qn,

(d) If kx — 0 and \/py/ max(1, A\2) — oo, then BA,IVW 0.
When By = 0, we have the following conclusion for either A =0 or A > 0.

(e) If max;(viox7qn;)/(kapa + pa) = 0 and when X # 0, (kxy/Dx +

,/p)\)/max(l, )\2) — 00, then B/\,IVW £> 0 and VAj[l\;\QNB)\,IVW 2) N(O, 1),
where Vy rvw s the same as that in (5.1) with By = 0.

We now elaborate the results in Theorem 3.1.

First, consider the case of A = 0, i.e., the IVW estimator BIVW in (1.1)
without screening. Part (a) of Theorem 3.1 is the only regime where Brvw
is consistent and asymptotically normal when 5y # 0. The main condition
in Theorem 3.1(a) under A = 0, K/p — oo, means that the average IV
strength k diverges to infinity at a rate faster than p, which is unlikely
in MR studies. In fact, it is shown in the Supplementary Material that,
approximately, x/p < nx/p* and thus, x/p — oo implies nx /p* — oo. This
rate is unrealistic in a typical MR study where the number of de-correlated
SNPs p is one thousand and, even when nx is as large as one million, we

still have nx/p? = 1. To explain why x/p — oo is needed for ﬁlvw to be
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asymptotically normal with mean Sy, consider

D 2 A2\ _—2

Brvw — Bo = 2=l = Bonj)oy;
P 12 —2
j=17;%

whose numerator and denominator have expectations —/fy Z§:1 v; and
Z§:1(wj +vj), respectively, as E(I';9;) = E(I';)E(3;) = B(WJQ- and E(%Q) =
’yjz + Jg(]-. Thus, as noticed by [40], the asymptotic bias of Sryw is

—Bo Z?:l Uj

abias(Brvw) = .
§:1(wj + vj)

It is shown in the Supplementary Material that
-1/2 [ 5 . A D
Vorvw{Bivw — Bo — abias(Brvw)} — N(0,1),

where Vj rvw is the asymptotic variance of Bryw given in (3.1) with A = 0.
When By # 0, this means that V()_Ii//\%v(ﬁAIVW — Bo) LN (0,1) cannot hold

unless

abias(Brvw) —Bo 3E_y v
3.2 = 0
( ) V01,I/\2/'W [Z?:l{(wj + Uj) + 687)]' (wj + 27)]-)}]1/2 —

i.e., the asymptotic bias of BIVW tends to 0 faster than the standard deviation
of BIVW. Since the numerator of the right side of (3.2) has order p and
the denominator of the right side has order {max(p, xp)}'/?, (3.2) holds if
k/p — 0o. We can easily construct an example in which (3.2) does not hold
when k/p /4 oo; in fact, the quantity in (3.2) diverges to infinity when & is
bounded.

In short, our theory explains the numerical observations in the literature
concerning poor normal approximation to BIVW — Bo in the presence of weak
IVs.

Second, consider the case where A > 0 in part (a) of Theorem 3.1. Screen-
ing with A > 0 is a way to relax the condition required for the asymptotic
normality of IVW estimator. Specifically, if A > 0, K/p — oo in part (a) is
replaced by k) /py — 0o and rx\/px/ A2 — o0o. The Supplementary Material
shows that k) is approximately increasing in A and thus ky)/py — oo is
weaker than x/p — co. A similar analysis (Supplementary Material) shows
that the counterpart of the asymptotic bias and standard deviation ratio

in (3.2) for BAMVW is of the order p}\/2/(1 + Ii)\)l/Q, which tends to 0 as
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Kx/px — oo. In short, screening reduces the bias but increases the stan-
dard deviation of the IVW estimator (1.1), which is how BA,\,IVW becomes
consistent and asymptotically normal.

Third, if we forgo asymptotic normality, part (b) of Theorem 3.1 shows
that the IVW estimator, with or without screening, is consistent for non-zero
Bo if the average IV strength k) diverges to infinity. Although this condition
is weaker than k) /py — oo in part (a) of Theorem 3.1, it is still unlikely to
be satisfied in typical MR studies, not to mention that the consistency of
IVW estimators is not enough for assessing variability or making statistical
inference on (y. To complement part (b), parts (¢) and (d) of Theorem
3.1 show that if the average IV strength k) does not diverge to infinity, a
common scenario in MR studies with many weak and null IVs, the IVW
estimators are inconsistent and biased towards 0.

Finally, the last part (e) of Theorem 3.1 is for the special case of Gy = 0, in
which the weak IV bias of BIVW is not an issue because the asymptotic bias
in (3.2) equals zero when 5y = 0 and Bryw is consistent and asymptotically
normal under reasonable conditions.

Result (3.1) still holds if we replace V) ryw by a plug-in consistent esti-
mator

> jesy W + B3 ryw 0 (W5 + 95)]

(Xjes, @) ’

where w; = ’}]2/632/3-, 0j = &g(j/(}%/j, and Sy = {j : |¥7| > Aok, }-

Comparing the IVW estimator (1.1) with the IVW estimator (2.3) with
screening, the former requires far more stringent conditions on IV strength
to guarantee its consistency or asymptotic normality, whereas the latter
requires finding a threshold A and checking whether A\ satisfies conditions
in Theorem 3.1(a), which is cumbersome and not always successful. We
highlight some examples below.

(3.3) Varvw =

1. Consider the common practice of selecting IVs that pass the p-value
threshold of 5x 1078, which as mentioned earlier is equivalent to setting
A & 5.45. This A may or may not satisfy the conditions for consistency
or asymptotic normality of BAMVW in Theorem 3.1(a)-(b).

2. If all IVs are very weak, for example 7]2 < cagg for all j and some
positive constant ¢, then x) is bounded regardless of the choice of A.

3. If every IV strength equals A, then ¢\; ~ 1/2 and k) =~ 2. But,
ka/Px =~ 202 /p may be small, implying that the asymptotic normality
in Theorem 3.1(a) may not hold.
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4. Debiased IVW Estimators.

4.1. Debiased IVW Estimator. Motivated by the stringent assumptions
underlying the asymptotic normality of the IVW estimator without screen-
ing and the need of a third dataset and a carefully chosen threshold A in
the IVW estimator with screening, we propose a simple estimator of By that
relies on neither. We name the new estimator as the debiased IVW (dIVW)
estimator. It is the original IVW estimator multiplied by an explicit bias
correction factor, i.e.,

. . P b, P TA652
(4.1) Barvw = Brvw - pzjil = pzjjlg ]TJQ L
j:l(wj — 05) Zj:1(7j - UXj)JYj

where w; = %2 / 6’52/j and 0; = 6'3(]- / 632@. The bias correction factor amplifies
the IVW estimator that is biased towards 0 according to Theorem 3.1(c)-(d).

Surprisingly, this simple correction makes the resulting estimator dra-
matically more robust to many weak IVs. To explain why, recall that the
asymptotic normality of Brvw requires that its asymptotic bias tend to 0
fast enough, i.e., (3.2) or the stringent condition x/p — oo holds. For the
dIVW estimator,

A . A2 A2
5 gy = S E_ 1 (Ty5 — BoY; + Bod%;)0v;

dIVW 0 — P (A2_A2 )A72
j=1\T5 ~ 9x;/)%v;

9

the numerator has mean zero under Assumption 2. This indicates that,
Bdww has a negligible asymptotic bias, and hence its asymptotic normality
does not need a stringent condition such as x/p — oo to ensure (3.2).

As we show in the next section, the dIVW estimator (4.1) is consistent
and asymptotically normal if x\/p — oo and man(fy]?a)_(z) /(kp +p) — 0.
The condition k,/p — oo is considerably weaker than x/p — oo required
by the original IVW estimator (1.1). For example, x\/p — oo holds even
when x — 0 but at a slower rate than 1/,/p; in contrast, x/p — oo requires
k — 00. Also, when IVs are common variants, but are weak in the sense
of Staiger and Stock [33] (i.e., 7; and ox; are both of the order n)_(lm),
the dIVW estimator still remains consistent and asymptotically normal if
the number of such weak IVs is large. Finally, the condition xk\/p — oo
is also related to conditions imposed by the limited information maximum
likelihood (LIML) estimator in the one-sample individual-level data setting
[15] and the robust adjusted profile score (MR-raps) estimator [40].

The quantity x,/p can be interpreted as an effective sample size for the
dIVW estimator and can be estimated by &./p with A defined in (2.6). In
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our simulation studies (i.e., Figure 1), we provide some guidelines on what
would be considered a large value of #,/p for the asymptotics promised to
kick in. This is akin to qualitative guidelines on what would be a large
enough sample size for a normal approximation of an estimator to hold.

4.2. Improving Efficiency With Screening. While the dAIVW estimator
Bdww (4.1) without screening is consistent and asymptotically normal even
if many IVs are weak, its asymptotic variance, Vp qryw defined in (4.3) with
A = 0, is larger than Vj rvw, the asymptotic variance of the IVW estimator
BIVW (1.1) with A = 0; we remark that both Vj rvw and Vp qryw have order
(kp)~! when Barvw and Bryw are asymptotically normal. The increase in
variance of the dAIVW estimator is due to a bias-variance trade off between
the IVW estimator and the dIVW estimator and the bias due to weak IVs
in MR studies tends to dominate the SD of the estimator.

When summary statistics from an independent selection dataset are avail-
able, we explore how to make the dIVW estimator more efficient by screen-
ing. We remark here that screening in the dIVW estimator is solely for
efficiency improvement since BdIVW without screening remains asymptoti-
cally normal under weak conditions. In contrast, the IVW estimator uses
screening to reduce bias and to achieve asymptotic normality.

Formally, consider the the dIVW estimator using only IVs selected from
the selection dataset,

o TiR652
e LT 5= {51 > M%)

(4.2) Brdivw = N RN
ZjeSA (’YJQ‘ - Ug(j)UYj

Theorem 4.1 establishes the asymptotic normality of B \divw in (4.2). The
Theorem includes Bqryw in (4.1) as a special case of 8y qrvw when A = 0.

THEOREM 4.1.  Assume models (2.1)-(2.2), Assumptions 1-2, and that

Kar/Px/ max(1,A%) — oo and maxj(7?0§§qA7j)/(ﬁ>\p>\ + py) — 0. Assume
further that either 6x; = oxj, 6y; = oy; and 6 ; = o, in (4.1)-(4.2) or

p/nx — 0. Then, BAA7dIVW s consistent and asymptotically normal, i.e.,
—1/2 5 D
VA,dI/vw(ﬁ,\,dva —Bo) = N(0,1)
where

8 [(wj +v5) + Bavj(wj + 20;)ax 5
(Z?:l wjqx;)?

forA=0o0rA>0,w; = 7]2/052/j; and vj = ag(j/a%j, ji=1,..,p.

(4.3) Vidivw =
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For consistency and asymptotic normality, the stringent condition k) /py
— o0 required in Theorem 3.1(a) for IVW estimators is not needed in The-
orem 4.1.

Theorem 4.1 shows that, if p/nx — 0, then using the estimates SEs leads
to the same asymptotic result as using the true SDs in (4.1)-(4.2). A parallel
result can also be established for the IVW estimators but is omitted here.
Thus, our result provides a theoretical justification for safely treating SEs
as SDs, a commonly adopted approach in MR studies.

The condition p/nx — 0 typically holds since after de-correlation, the
number of independent SNP is usually around a few thousands and the
sample size is around 10 to 100 thousands. Our simulation results in Section
5 shows that the approximation is still very good even when p/nx is 20%,
indicating that p/nx — 0 is only sufficient rather than necessary.

The quantity xx,/px/ max(1, A?) acts like an effective sample size for the
dIVW estimator with screening and can be estimated by #y+v/py/ max(1, \?)
with &) and py given by (2.6). In our simulation studies, specifically Figure
1, we provide some guidelines on what would be considered a large effective
sample size for the asymptotic result to kick in.

The results in Theorem 4.1 still hold if we replace the asymptotic variance
V) drvw with a consistent estimator

Djes, Wy + B,Q\,dlvw@j(wj + 05)]
[ jes, (0 — 95)]? ’

(4.4) Vadivw =
where w; = ’7]2/&52@-, U = &ﬁj/&%j, and Sy = {j : [¥;] > )‘&}j}-

4.3. Choice of A in Screening. We consider the choice of A in the dAIVW
estimator (4.2) with screening. In general, the threshold A should satisfy
kay/Pr/ max(1, A?) — oo, as well as increase the efficiency of the dIVW
estimator.

One choice is A = y/2logp that diverges to infinity at a very slow rate.
This A guarantees that the probability of selecting any null IV is very small,
because under Assumptions 1-2 and p — oo,

—0

2(p — _
P(at least one null IV is selected) < ip23>6_>\2/2 R
T

pv7logp

ﬁ

where s is the number of non-null IVs.

Another choice of A is motivated by directly studying the asymptotic
variance V) qrvw in (4.3), which has order (kxpx)~' when sy 4 0 and
(k3pa)~! when k) — 0. To illustrate the idea, we focus on the situation
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where xk /4 0 so that the asymptotic variances of Bdlvw and B A drvw have
orders (kp)~! and (kapy)~!, respectively. Since kypy < kp for any A > 0,
to screen for efficiency rather for relevant IV selection, we should not screen
out too many non-null IVs (even if they are weak) to result in kK py/kp — 0.
From this point of view, A\ = y/2logp is an improvement over the genome-
wide significance p-value threshold 5 x 1078 (X ~ 5.45) because /2logp <
5.45 if p < 10°, and using A = /2logp eliminates null IVs with probability
close to 1 as the previous discussion indicated. But, if there are many weak
IVs, Bdlvw may be asymptotically more efficient than BA)\’dIVW with any
A > 0 (see Case 3 of the simulation study in Section 5.1). In short, it is
better if we can select A adaptively.

This leads to our approach of choosing A that directly minimizes an
estimated asymptotic variance of BA,dIVVW which we call the Mendelian
Randomization Estimation-Optimization (MR-EO) algorithm. In a nutshell,
MR-EO considers f3 \divwy with A that varies in the interval [0,+/2logp]; it
assumes that x,/px/ max(1, \?) = oo holds for every \ in the range. It then
tries to find the A in this range that minimizes the asymptotic variance. Since
we cannot directly use estimated variance in (4.4) because B/\,dlvw is not
available prior to the selection of A\, MR-EO alternates between estimating
the exposure effect by j3 (i.e., the E-Step) and finding the optimal A given
the previous estimate 3y (i.e., the O-Step); see Algorithm 1 for details.

Initialize t = 0, tmax, Ao = vV2logp, V = oo;
while t < tax do
E-Step: for a given \;, estimate By with the dAIVW estimator Bkt,dIVWQ
if V <Vi,avw(Bxr,,aivw) then
‘ exit the while loop;
else

‘ V= VA,,,dIVW(BM,dIVW);
end

O-Step: Plug /3 \¢,divw into the variance estimator and find

Aty1 = arg min Vi, divw (Bag,divw)

AE[0,4/2log p]

Set t =t + 1;
end
Output A¢—1.

Algorithm 1: MR-EO algorithm to determine the optimal A

We make some comments regarding the implementation of MR-EO and its
final output. First, we initialize MR-EO to Ag = v/2log p and force the algo-
rithm to stop at t = tyax With a reasonably large tax, mainly for computa-



DEBIASED IVW ESTIMATOR 15

tional efficiency. Second, the algorithm assumes that y./px/ max(1, A2) —
oo holds for every A in [0,v/2Togp]| so that B,\t,dww is consistent for f.
To verify this, we can empirically evaluate &y+v/py/max(1,A?) and check
whether this quantity is reasonably large for all A in the range. In our sim-
ulation study in Section 5, we find that the range [0, /21og p] works well.
Third, with fixed tpnax and range of A, MR-EO produces a unique dIVW
estimator. Finally, the estimated variance for the dIVW estimator based on
MR~EO may be too optimistic due to the “winner’s curse”; however, when
both p and nx are large and the ratio p/nx is bounded, ideally small, this
issue will be largely moot. In our simulation studies in Section 5, we find
that the estimator chosen by MR-EO performs well and the resulting confi-
dence interval maintains nominal coverage, although Theorem 4.1 does not
directly guarantee that the estimator chosen by MR-EO is asymptotically
normal.

4.4. Extension to Balanced Horizontal Pleiotropy. We extend the dAIVW
estimator to situations under one type of pleiotropy in MR, balanced hor-
izontal pleiotropy [22, 40, 8]. Briefly, under balanced horizontal pleiotropy,
the third core IV assumption described in Section 2 is violated and the model
(2.2) is extended to

p
(4.5) Y =BoX +> o;jZj+nyU+ Ey,
j=1

where the pleiotropic effects of p SNPs on Y, aq, ..., ap, o ~ N(0,73), are
independent random effects and independent of X, Z;’s, U, Ey and Ex. To
incorporate balanced pleiotropy, we replace Assumption 2 with the following
assumption [22, 40, 41].

AssuMPTION 2", Suppose Assumption 2 holds except conditional on a;,
I'y ~ N(aj + 50’yj,032/j) for every j. In addition, for some constant c4,
70 < cyoy; for all j.

Under the same conditions in Theorem 4.1 with (2.2) and Assumption 2
replaced by (4.5) and Assumption 2, respectively, the Supplementary Ma-
terial shows that the dIVW estimators in (4.1) and (4.2) are still consistent
and asymptotically normal. However, the variance of the dIVW estimators
is larger due to the random effects o;’s and an estimator of it under balanced
pleiotropy is

Yiesy [5(1+72635) + B3 aryw i (@5 + ;)]

(4.6) Sres, (@5 — 05)P ’
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where

D r 2 2 \2 _ A2 52 A2 1aA—2

2 _ > il = Barvws)* — 6y — Barvwox10y;

= — .
j=19Y;

We remark that the estimator of 72 relies on BdIVW- Also, if maxy a;i is
bounded by a constant times the average p~—* ?:1 0;]2., as K,/p — 0o, the
variance estimator in (4.6) is consistent. We can use the aforementioned
methods (e.g., MR-EO) to choose A\ and improve efficiency.

Finally, when balanced horizontal pleiotropy does not hold, the dIVW
estimator, like other MR estimators built upon this assumption, will be
biased. In Section 2 of the Supplementary Material, we show that the dIVW
estimator is biased but still asymptotically normal, and we investigate the

magnitude of this bias.
5. Simulation Studies.

5.1. A Simulation with the BMI-CAD Dataset as Population. We con-
duct a simulation study to compare the finite sample properties of several
estimators under different screening thresholds. To closely mirror what is
done in practice, we adopt a real two-sample summary-level MR dataset,
the BMI-CAD dataset in the mr.raps R package (version 0.3.1) of Zhao
et al. [41], as the simulation population. The BMI-CAD dataset is used to
make inference about the effect of X, the body mass index (BMI), on Y,
the risk of coronary artery disease (CAD). It contains three independent
datasets:

1. Exposure dataset: A GWAS for BMI in round 2 of the UK BioBank
(sample size: 336,107) [1];

2. Outcome dataset: A GWAS for CAD from the CARDIoGRAMplusC4D
consortium (sample size: ~185,000), with genotype imputation using
the 1000 Genome Project [35];

3. Selection dataset: A GWAS for BMI in the Japanese population (sam-
ple size: 173,430) [2].

The three datasets have been cleaned so that (i) SNPs appear in all three

datasets and (ii) SNPs are far apart in genetic distance; see [41] for details.

The initial data cleaning leads to p = 1119 SNPs available for analysis. Each

GWAS contains publicly available summary statistics that are the estimated

coefficients from marginal linear regression and their SEs. We use them as

population parameters in our simulation; in Section 6, we use them as data.
To begin, we construct three plausible sets of 7; as follows.
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Case 1 (Some strong IVs, many null IVs): There are s = 20 non-null IVs whose
7j-values are the 20 marginal regression coefficients with the smallest
p-values in the BMI-CAD exposure dataset. The rest p — s = 1099
SNPs are null IVs with zero «;’s. Combined, we have a “population”
with k = 2.90 and k,/p = 97.00.

Case 2 (Many weak IVs, many null IVs): This setting is identical to Case
1, except we use the first s = 100 marginal regression coeflicients
in the BMI-CAD exposure dataset as non-null SNPs and set the rest
p—s = 1019 SNPs as null IVs. This leads to x = 1.05 and x./p = 35.12.

Case 3 (Many weak IVs, no null IVs): This setting is identical to Case 1,
except we use all p = s = 1119 marginal regression coefficients in the
BMI-CAD exposure dataset as non-null SNPs and there are no null
SNPs. This leads to x = 7.78 and x,/p = 260.25.

Based on the «;’s, we set I'; = Boy; with 8y = 0.4.

Next, for each simulation run we generate summary statistics {f‘j, ITRIE
j=1,...,p} based on Assumption 2 with v;’s as described for each of Cases
1-3 and the SEs in the BMI-CAD dataset as ox;, oy;, and oy, j =1,...,p.
Since we cannot generate SEs (part of summary statistics) from this real-
data setting for simulation, in each simulation run we set SEs to be the same
as oxj, oyj, and ajfj, j=1,...,p. This corresponds to treating SDs as SEs
as described in the start of Section 3, i.e., assuming that we know SD values.

We compare seven MR methods: the IVW estimator introduced in Sec-
tion 3, the dIVW estimator proposed in Section 4, and five other meth-
ods in the literature, MR-Egger regression [6], weighted median estimator
(MR-median) [7], weighted mode estimator (MR-mode) [21], profile score
estimator (MR-raps) [40], and profile score with empirical partially Bayes
shrinkage weights (MR-raps-shrink) [41]. MR-Egger, MR-median and MR-
mode are implemented in the MendelianRandomization R package (version
0.4.1) [39]. To make the comparisons fair, we use the Iy loss for MR-raps
as implemented in the mr.raps package. For every method except MR-raps,
we also use different screening procedures, including A = 0 (no screening,
all SNPs are included), A = 5.45 (p-value cutoff based on the threshold of
5x 107%), and A = /2Togp (=~ 3.75 when p = 1119). We also include the
dIVW estimator with A determined by the MR-EO algorithm with the max-
imum number of iterations set to tmax = 5 and used the optimize function
from R in the O-step. The MR-raps does not have any screening. The default
MR-raps-shrink always applies a type of screening through Bayes shrinkage
with the independent selection dataset.

Table 1 shows (i) the simulation mean and SD of each estimator, (ii)
average of SEs, which are calculated according to (3.3) or (4.4) for IVW
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TABLE 1
Simulation results for Cases 1-8 based on 10,000 repetitions with 8o = 0.4; X for MR-EO
is the simulation average; SD is the simulation standard deviation; SE is the average of
standard errors; CP is the simulation coverage probability of the 95% confidence interval
based on normal approximation.

Case Method A mean SD SE CP

1 VW 0 0.260 0.069 0.069 46.9
s =20 IVW 5.45 0.398 0.094 0.093 94.8
p=1119 IVW V2logp =3.75 0.398 0.087 0.087 95.1
dIVW 0 0.402 0.107 0.107 95.2

dIVW 5.45 0.401 0.095 0.094 94.9

dIVW v2logp =3.75 0.401 0.087 0.088 95.1

dIVW MR-EO = 2.80 0.400 0.086 0.086 95.1

MR-Egger 0 0.335 0.082 0.082 87.5

MR-Egger 5.45 0.390 0.240 0.256 96.0

MR-Egger V2logp =3.75 0.389 0.205 0.214 95.6
MR-median 0 0.371  0.110 0.122 96.3
MR-median 5.45 0.398 0.118 0.128 96.5
MR-median v2logp =3.75 0.397 0.113 0.124 96.7

MR-mode 0 0.033 74 75586 100

MR-mode 5.45 0.395 0.139 0.151 97.1

MR-mode V2logp =3.75 0.395 0.142 0.157 97.2

MR-raps 0 0.401 0.105 0.105 95.2
MR-raps-shrink  Bayes shrinkage  0.400 0.086 0.086 95.1

2 IVW 0 0.159 0.091 0.090 23.9
s =100 IVW 5.45 0.397 0.206 0.206 95.1
p=1119 IVW v2logp = 3.75 0.394 0.183 0.183 94.9
dIVW 0 0.404 0.233 0.233 954

dIVW 5.45 0.400 0.207 0.207 95.1

dIVW V2logp =3.75 0.400 0.186 0.186 94.9

dIVW MR-EO =~ 2.21 0.396 0.167 0.167 95.0

MR-Egger 0 0.231 0.122 0.123 723

MR-Egger 5.45 0.388 0.948 0.966 96.2

MR-Egger v2logp = 3.75 0.385 0.359 0.385 95.8
MR-median 0 0.276 0.152 0.170 91.3
MR-median 5.45 0.396 0.228 0.245 96.6
MR-median V2logp =3.75 0.394 0.216 0.236 96.9

MR-mode 0 -1.062 130 78125 100

MR-mode 5.45 0.387 0.267 0.291 97.0

MR-mode v2logp = 3.75 0.390 0.237 0.286 97.1

MR-raps 0 0.398 0.224 0.226 94.9

MR-raps-shrink  Bayes shrinkage  0.399 0.160 0.159 95.2
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3 IVw 0 0.352 0.047  0.047 82.6
s=1119 IVW 5.45 0.395 0.086 0.087 95.4
p=1119 IVW V2logp=3.75 0.392 0.068 0.069 95.0
dIVW 0 0.400 0.054 0.054 94.7
dIVW 5.45 0.399 0.087 0.088 95.4
dIVW Vv2logp=3.75 0.399 0.070 0.070 95.4
dIVW MR-EO ~ 0.03 0.400 0.054 0.054 94.8
MR-Egger 0 0.372 0.066 0.067 93.1
MR-Egger 5.45 0.383 0.189 0.198 954
MR-Egger V2logp=3.75 0.372 0.132 0.136 95.0
MR-median 0 0.375 0.079  0.090 96.6
MR-median 5.45 0.394 0.114 0.125 96.8
MR-median Vv2logp=3.75 0.391 0.100 0.111 96.9
MR-mode 0 0.750 84 23253 100
MR-mode 5.45 0.391 0.125 0.141 96.8
MR-mode V2logp =375 0.385 0.260 0.504 97.6
MR-raps 0 0.400 0.054 0.054 94.9

MR-raps-shrink  Bayes shrinkage 0.400 0.053  0.0563 94.7

or dIVW estimators, and (iii) simulation coverage probability (CP) of 95%
confidence intervals from normal approximation. The simulation average A
determined by the MR-EO algorithm is also included. Under all scenarios,
the IVW estimator without screening (i.e., A = 0) is biased towards zero,
which agrees with our theoretical result since the average IV strength x’s
are relatively small. The coverage probabilities based on IVW estimators
are far from 95% due to the downward bias and the inaccurate normal
approximation. The IVW estimator with screening under the threshold A =
5.45 or v/21og p does substantially better, which again agrees with our theory
that the IVW estimator with screening requires less stringent assumptions
for consistency and asymptotic normality.

The dIVW estimators with and without screening show negligible bias
and nominal coverage across all simulation scenarios. This observation agrees
with our theoretical assessment that the dIVW estimator requires far less
stringent conditions for consistency and asymptotic normality than the IVW
estimator. Also, the dIVW estimator with screening improves the dIVW es-
timator by having a smaller SD in Cases 1-2 where many IVs are null. How-
ever, in Case 3 where all IVs are non-null but many are weak, screening in
dIVW does not lead to any improvement. In all cases, our MR-EO algorithm
adapts to the underlying data and produces the most efficient estimate of
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Bo among dIVW estimators, all without losing coverage or large gains in
bias. Finally, all SEs based on (3.3) and (4.4) are close to the simulated SDs
of IVW and dIVW estimators, even for the biased IVW estimator without
screening.

The MR-Egger, MR-median and MR-mode estimators without screening
are biased when the average IV strength is small. In particular, the MR-
mode without screening can be severely biased with unrealistically large
SE. MR-Egger, MR-median and MR-mode with screening thresholds at 5.45
or /2logp generally have larger SDs compared to the dIVW estimators
thresholded at the same level. Also, even with thresholding, these three
methods (MR-Egger, MR-median and MR-mode) have larger biases than the
QIVW estimator because they inherently rely on using the ratio estimator
Bj-

The performance of MR-raps is comparable to that of dIVW estimator
(4.1). Both methods do not require the independent selection dataset for
screening, but the dAIVW estimator without screening has a simple explicit
form. The MR-raps-shrink uses an independent selection dataset to improve
performance and it is comparable to the dAIVW estimator with screening
and A chosen by MR-EQO. However, MR-raps-shrink is computationally more
complicated than dIVW with MR-EO and may not have a unique (or well-
defined) solution as mentioned in [41].

Table 2 presents the total number of IVs selected during screening as well
as the number of non-null IVs selected. In Case 1 where non-null IVs are
strong and a good IV selection procedure should perform well, we see that
the number of non-null IVs selected based on genome-wide significance (p-
value < 5 x 107 or A\ ~ 5.45) is much too small compared with s = 20,
the true number of non-null IVs. On the other hand, both A = v/2logp and
MR-EO select close to s = 20 non-null IVs. MR-EO selects more null 1Vs
because it aims for efficiency instead of consistent IV selection. In Cases
2-3, there are many weak non-null IVs and all IV selection procedures via
thresholding are not adequate (Table 2). However, this is not surprising as
screening is used in MR to ultimately improve estimation of 5y, rather than
to consistently select non-null IVs. Finally, comparing the results in Tables
1 and 2 indicates that for the dAIVW estimator, removing too many weak
IVs may lead to an inefficient estimator of Sy.

In the Supplementary Material, we conduct a similar simulation study
with balanced horizontal pleiotropy added to Case 3. The results are nearly
identical to Case 3 without pleiotropy. Also in the Supplementary Material,
we conduct a simulation study where balanced horizontal pleiotropy is vio-
lated in Case 3 and we assess the bias of our estimator. We generally find
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TABLE 2

Average number of total IVs and non-null IVs selected from the selection dataset of
p = 1119 1Vs under different thresholds.

A =545 A =+2logp=3.75 MR-EO
Case total non-null total non-null total  non-null
1,s=20 12.8 12.8 18.4 18.2 27.0 19.8
2, s =100 3.9 3.9 9.2 9.0 63.2 27.8
3,s=1119 23.8 23.8 84.4 84.4 1019.6 1019.6

that the dAIVW estimator is biased, but the magnitude of the bias is often
mild. This is because the bias term is a weighted average of «;/v;’s with
weights wjqy ;’s, where large a;/7; tends to be downweighted by wjqy ;.

Overall, there are four takeaways from this simulation study. First, the
dIVW estimator with or without screening always outperforms the IVW
estimator. Second, without a selection dataset, the dIVW estimator and
MR-raps have comparable performances and both are far better than other
MR methods under consideration. Third, with a selection dataset, the dIVW
with screening and MR-raps-shrink have comparable performances and out-
perform other methods. Finally, if a selection dataset is available and used to
improve efficiency, we suggest the threshold to be A = /21log p or A produced
by the MR-EO algorithm, instead of the usual cutoff \ =~ 5.45.

5.2. Empirical Guidelines for Asymptotics. In practice, it is important
to have some sense of what is “a large enough” sample size for the asymptotic
results in the paper to serve as good approximations. Many researchers in
MR have conducted such analysis for the IVW estimator, most notably [10].
We conduct a similar simulation-based analysis for the dIVW estimator
where we examine what would be a “large” effective sample size, as measured
by kxy/Px/ max(1, A?), for the asymptotics promised by Theorem 4.1 to be
plausible.

The setting is identical to Case 3 in Section 5.1. We choose a grid of 100
equally spaced A’s between 0 and 10. For each X\, we generate 1,000 sim-
ulation datasets and calculate the corresponding BA,\dIVW for each dataset.
Figure 1 plots these /Jé’xdww values against #y+/py/ max(1, A?) as well as two
standard error bands centered at 5y (shaded area). Note that the sample size
nx and the number of IVs p are fixed and, therefore, as #yv/py/ max(1, \?)
grows, the confidence band first shrinks and then becomes relatively stable.

We find that for any A, the coverage probability for the dAIVW estimator
with screening ranges from 93.5% to 96.0%. However, as &xv/py/ max(1, \?)
grows larger, we see fewer estimates far from fj, an indication that asymp-
totics have “kicked in”. This appears to occur when &yv/py/max(1,\?) is
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greater than 20. Based on this, we recommend that users of dAIVW check to
make sure that &yv/py/ max(1,)?) is at least greater than 20 as part of a
diagnostic check for the dIVW estimator.
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=
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Fic 1. Evaluation of the consistency and asymptotic normality condition for the dIVW
estimator in Theorem 4.1 under Case 8. The z-axis plots the condition that governs the
asymptotic rate of the dIVW estimator. The y-azis plots values of the dIVW estimator in
1000 simulations. The shaded area represents two-standard error bands centered at [ .

5.3. Empirical Evaluation of the Effect of Using SEs not SDs. In this
section, we evaluate the finite sample performance of the proposed dIVW
estimators when we don’t assume that the SDs of summary statistics are
known and instead, we use the estimated SEs, 6x;,0yj, 0% j’s. We construct
a population with parameters v; = goj\/ZhQ/s for j =1,...,5,and 75 = 0
for j = s+ 1,...,p, where s is the number of non-null SNPs, h? is the total
heritability, i.e., the proportion of variance in X that is attributable to the
s non-null SNPs [37], and ¢;’s are constants that are generated once from
a standard normal distribution.

To simulate individual-level data, we first generate p independent SNPs,
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Z1, ..., Zyp, from a multinomial distribution with P(Z; = 0) = 0.25, P(Z; =
1) = 0.5, P(Z; = 2) = 0.25, and then generate the exposure variable X and
outcome variable Y according to models (2.1)-(2.2) with nx =ny =1, By =
0.4, U ~ N(0,0.6(1—h?)), and Ex, Ey ~ N(0,0.4(1—h?)). For each simula-
tion repetition, we generate three independent datasets of size n that repre-
sent the selection, exposure, and outcome datasets. The summary statistics
{¥j,0x5,7 = 1,...,p}, {I'j,6v4,5 = 1,...,p}, and {A;‘,&}j,j =1,..,p} are
obtained from the three datasets through marginal linear regression.

We consider the following combinations of n, p, s, and h? that reflect what

may be found in practice.

Case 4 n = 10,000, p = 2,000, s = 200, k> = 0.1, x = 0.50, Ky/D = 21.41.
Case 5 n = 10,000,p = 2,000, s = 1,000, k> = 0.2, k = 0.93, Ky/D = 41.77.
Case 6 n = 50,000, p = 2,000, s = 1,000, > = 0.2, k = 4.67, Ky/D = 208.84.
Case 7 n = 10,000,p = 2,000, s = 2,000, h? = 0.2, k = 0.96, ky/D = 43.10.

We consider n = 10,000 to be a conservative sample size in modern MR
studies and is much smaller than the sample sizes in the BMI-CAD dataset
in Section 5.1. Also, s/p takes on values 10%, 50% and 100%.

Table 3 presents the mean, SD, SE, and CP of IVW, dIVW, MR-raps,
and MR-raps-shrink estimators, based on 10,000 replications. We omit MR-
Egger, MR-median, and MR-mode for conciseness. Overall, a similar trend
appears in relation to Table 1 for the case of assuming SDs o, oy, 0}"(]-
are known: the IVW estimator without screening (A = 0) is inconsistent
and biased towards 0; the dIVW estimator maintains nominal coverage and
outperforms the IVW estimator; and the dIVW estimator with screening by
MR-EO performs similarly with the dIVW without screening when s/p is
not small. The SEs are generally close to the simulated SDs of point esti-
mators, including the case where the MR-EQO is applied. The only exception
is in Case 7 when A = 3.90. We believe this is because the consistency and
asymptotic normality condition, specifically the “effective sample size” value
kay/Pr/ max(1,A?) is 1.11 when A = 3.90 and as Figure 1 illustrates, this
value is too small for our asymptotic theory to kick in. Also, upon closer in-
spection of the numerical results in this case, there are two outlier estimates
above 40 or below -20 (out of 10,000 simulation runs). Removing these two
simulation runs leads to SD= 0.304 and SE=0.293, which agree more closely
with each other. Overall, this observation indicates the importance of per-
forming diagnostic check for the dIVW estimator using #x+v/py/ max(1, \?)
and using the MR-EO algorithm to adaptively select A when needed.

We also notice the following observations that were not in Table 1. First,
the performance of all estimators tend to improve when n increases (Cases
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5-6) even though s/p = 50%. Second, the use of genome-wide significance
threshold A &~ 5.45 often selects no SNPs in many simulation runs when
s = 1,000 or 2,000, another indication that this threshold is too large in
MR studies with many weak IVs.

In the Supplementary Material, we also run the same simulations using
0xj = 0xj,0yj = Jyj,?f}}j = U}j and obtain almost identical results as
Table 3; see Table S3 of the Supplementary Material. This indicates that
the effect of assuming known SDs and using them as SEs is negligible, which
agrees with many empirical results in the literature as well as our theoretical
results in Theorem 4.1.

6. Real Data Example. We apply our methods to the BMI-CAD
example described in Section 5.1. Table 4 summarizes the results, where
dIVW,, denotes the dAIVW estimator developed under balanced horizontal
pleiotropy, MR-raps, and MR-raps-shrink, are MR-raps estimators that
account for balanced horizontal pleiotropy by setting the over.dispersion
parameter in the mr.raps R package to be TRUE.

We make the following comments. First, we see that the MR-mode es-
timator with or without screening is very unstable. Second, in light of our
simulation result under Case 3, we suspect that the IVW estimate 0.315
without screening (A = 0) is slightly biased towards zero, compared with
the dIVW estimate 0.365, although the difference is not statistically signif-
icant. Third, except for MR-Egger and MR-mode, selecting IVs based on
genome-wide significance (i.e., A = 5.45) produces point estimates between
0.278 and 0.287 and larger SEs across all methods, most likely because too
many I[Vs are screened out. Fourth, except for the IVW estimator with-
out screening, the dAIVW estimator with MR-EO achieves the smallest SE
among all estimates. But, since the dIVW estimate based on MR-EO has
the same SE as the dIVW estimate without screening, screening is probably
not necessary for this dataset with many weak I'Vs; this is also supported by
the fact that there is not much difference between MR-raps and MR-raps-
shrink. Fifth, the estimators accounting for balanced horizontal pleiotropy
are similar to those without it, except for an expected increase in SEs due
to the random effect terms.

Following [40], we run a diagnostic to assess the plausibility of Assumption
2 by constructing a Quantile-Quantile plot of the standardized residuals,
(fj - Bdlvw’?j)/@%/j +B(2HVW6§(]')1/27 j=1,...,p. Figure 2 shows the result.
Since the residuals line up close to the 45-degree line, Assumption 2 is likely
to hold for this example. In the Supplementary Material, a similar figure is
obtained for assessing the plausibility of Assumption 2’.
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Simulation results for Cases 4-7 based on 10,000 repetitions with 8o = 0.4; X for MR-EO
is the simulation average; SD is the simulation standard deviation; SE is the average of
standard errors; CP is the simulation coverage probability of the 95% confidence interval
based on normal approximation.

Case Method A mean SD SE CP

4 IVW 0 0.129 0.027 0.027 0

s =200 IVW 5.45 0.393 0.125 0.122 94.6

p = 2000 IVW v2logp=390 0.382 0.075 0.074 93.8
n = 10000

dIVW 0 0.402 0.090 0.089 95.0

dIVW 5.45 0.406 0.131 0.127  95.0

dIVW v2logp =390 0.402 0.079 0.078 95.0

dIVW MR-EO ~2.17 0.396 0.061 0.060 94.9

MR-raps 0 0.401 0.085 0.085 94.8

MR-raps-shrink  Bayes shrinkage 0.399 0.062 0.062  95.2

5 IVW 0 0.193 0.024 0.023 0

s = 1000 IVW 5.45 select no IV over 25% of runs

p = 2000 IVW v2logp=390 0.364 0.099 0.099 928
n = 10000

dIVW 0 0.401 0.051 0.051 94.7

dIVW 5.45 select no IV over 25% of runs

dIVW v2logp =390 0.405 0.112 0.111 95.3

dIVW MR-EO ~ 1.10 0.394 0.048 0.048 94.6

MR-raps 0 0.400 0.049 0.049 94.5

MR-raps-shrink  Bayes shrinkage 0.399 0.047 0.047 94.8

6 IVW 0 0.330 0.014 0.014 0.1

s = 1000 IVW 5.45 0.390 0.024 0.024 93.0

p = 2000 IVW v2logp=3.90 0.386 0.019 0.018 88.1
n = 50000

dIVW 0 0.400 0.017 0.017 948

dIVW 5.45 0.400 0.024 0.024 94.8

dIVW v2logp =390 0.400 0.019 0.019 94.5

dIVW MR-EO ~ 1.31 0.399 0.017 0.017 949

MR-raps 0 0.400 0.017 0.017 94.8

MR-raps-shrink  Bayes shrinkage 0.400 0.017 0.017 94.8

7 IVW 0 0.196 0.023 0.023 0

s = 2000 IVW 5.45 select no IV over 81% of runs

p = 2000 IVW v2logp =390 0.343 0.197 0.195 93.5
n = 10000

dIVW 0 0.400 0.050 0.049 94.5

dIVW 5.45 select no IV over 81% of runs

dIVW v2logp =390 0.423 0.622 0.428  96.5

dIVW MR-EO ~ 0.44 0.395 0.051 0.050 94.4

MR-raps 0 0.400 0.048 0.047 94.8

MR-raps-shrink  Bayes shrinkage 0.399 0.048 0.047 94.8
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TABLE 4
Point estimates of exposure effect and their SEs (in parentheses) from different MR
methods in the BMI-CAD example.

MR-EO MR-EO,

A 0 5.45 V2logp=3.75 ~ 0.57 0.59
# of IVs selected 1119 44 165 1029 1023
Fiav/Ba/max(1,\2) 226.8 16.3 25.7 2324 233.1
IVW 0.315 (0.050)  0.282 (0.084)  0.319 (0.068)

dIVW 0.365 (0.058)  0.287 (0.085)  0.331 (0.071)  0.345 (0.058)
dIVW, 0.365 (0.067)  0.287 (0.100)  0.331 (0.082) 0.345 (0.067)
MR-Egger 0.386 (0.077)  0.513 (0.184)  0.390 (0.129)

MR-median 0.322 (0.097)  0.278 (0.124)  0.304 (0.116)

MR-mode 0.739 (402.9)  0.499 (0.402)  0.488 (4.241)

MR-raps 0.382 (0.061)

MR-raps,, 0.367 (0.067)

MR-raps-shrink (Bayes shrinkage)  0.388 (0.060)
MR-raps-shrink , (Bayes shrinkage) 0.374 (0.067)

The subscript « indicates application under balanced horizontal pleiotropy

7. Summary and Discussion. Intwo-sample summary-data MR stud-
ies, we show that the IVW estimator requires stringent conditions on the
average strength of IVs for consistency and asymptotic normality. The IVW
estimator with screening relaxes these conditions somewhat, but requires
carefully choosing a threshold A and a third independent dataset. We then
propose a simple modification of the IVW estimator, called the debiased
IVW (dIVW) estimator. The dIVW estimator, with or without screening,
is shown to be consistent and asymptotically normal under conditions that
are much weaker than those required by the IVW estimator, with or with-
out screening. Finally, we provide some theoretical and numerical results on
assuming the commonly invoked known-variance condition.

While our work primarily focuses on the “standard” IVW estimator com-
monly used in practice, as suggested by the anonymous referees and the ed-
itor, the standard IVW estimator, with or without screening, can be viewed
as instances of the generalized IVW estimator

Z§:1 ij(wj)
Z?:l f(ﬁ’j) 7

where Bj = fj /4j,and f is a general weighting function. This general weight-
ing function can encompass soft thresholding and other IV selection proce-
dures. However, this class of estimators does not include the proposed dIVW
estimator since the weights from the dIVW estimator will not sum to 1. Nev-
ertheless, extending the current theory to better understand this broader
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class of IVW estimators under many weak I'Vs is an important direction for
future research.

Finally, based on our theoretical and simulation work, we make three rec-
ommendations for practice. First, we argue that the dIVW estimator without
screening should be the default baseline estimator for two-sample summary-
data MR studies instead of the IVW estimator. It is as simple as the IVW
estimator, and has provable robustness against many weak instruments and
balanced horizontal pleiotropy, lending itself as the baseline estimator for
investigating more complex pleiotropy. Second, if there are many irrelevant
IVs and summary statistics from a third independent selection dataset are
available, we may improve the efficiency of the dIVW estimator by screen-
ing with threshold A produced by the MR-EO algorithm; we discourage the
use of the genome-wide significance p-value threshold A ~ 5.45 as it tends
to screen out too many IVs. Third, for the promised theoretical properties
of the proposed dIVW estimator to hold, it is important to perform diag-
nostics by constructing Quantile-Quantile plot of the standardized residuals
and also checking that #yv/py/max(1,\?) is at least greater than 20.
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Software and Reproducibility. R code for the methods proposed in
this paper can be found in the R package mr.divw, which is posed at https:
//github.com/tye27/mr.divw. Numerical examples in this article can be
reproduced by running examples in the R package.

SUPPLEMENTARY MATERIAL

Supplementary Material: Debiased Inverse-Variance Weighted
Estimator in Two-Sample Summary-Data Mendelian Randomiza-
tion
(doi: COMPLETED BY THE TYPESETTER; .pdf). We provide additional
numerical results and theoretical proofs for the theorems in the paper.
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