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Abstract

We present a comprehensive R software ivmodel for analyzing instrumental variables with
one endogenous variable. The package implements a general class of estimators called k-
class estimators and two confidence intervals that are fully robust to weak instruments. The
package also provides power formulas for various test statistics in instrumental variables.
Finally, the package contains methods for sensitivity analysis to examine the sensitivity of
the inference to instrumental variables assumptions. We demonstrate the software on the
data set from Card (1995), looking at the causal effect of levels of education on log earnings
where the instrument is based on proximity to college.

Keywords: FEconometrics, Instrumental Variables, Power, Sensitivity Analysis, Weak
Instruments

1. Introduction

The instrumental variables (IV) method is a popular method to estimate the casual effect
of a treatment, exposure, or policy on an outcome when there is concern about unmeasured
confounding (Angrist and Krueger, 2001; Hernédn and Robins, 2006; Baiocchi et al., 2014).
IV methods have been widely used in statistics (Angrist et al., 1996), economics (Angrist and
Krueger, 2001), genomics and epidemiology (Davey Smith and Ebrahim, 2003), sociology
Bollen (2012), psychology (Gennetian et al., 2008), political science (Sovey and Green,
2011), and countless other fields. We also note that instrumental variables have been used
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to correct for measurement errors; see Fuller (2006) for a comprehensive exposition on using
IVs for measurement errors.

Informally speaking, IV methods rely on having variables called instruments which are
related to the exposure and are exogenous. An instrument is exogenous if it only affects
the outcome through the pathway of affecting the exposure (i.e. the instrument has no
direct effect on the outcome) and is independent of unmeasured confounders; see Section
2.3 for details. Typically, instruments either come from (i) natural experiments whereby
the instruments are naturally assigned to individuals at random or (ii) randomized exper-
iments whereby the treatment randomization is used as an instrument. For example, in
Mendelian randomization, natural genetic variations that occur at conception have been
used as instruments to answer causal questions in epidemiology; usually the instruments
are single nucleotide polymorphisms (SNPs) at a specific location in the human genome
(Davey Smith and Ebrahim, 2003, 2004; Lawlor et al., 2008). In Sexton and Hebel (1984)
and Permutt and Hebel (1989), the authors studied the effect of maternal smoking on birth
weight by randomly assigning healthcare providers of pregnant mothers into two different
group. Providers in the first group were asked by the investigators to encourage mothers
to stop smoking. On the other hand, providers in the second group did not receive this
request from the investigators. Table 1 illustrates other examples of instrumental variables;
for more examples, see Angrist and Krueger (2001) and Baiocchi et al. (2014).

Software for running instrumental variables methods varies widely depending on the
programming language. For example, in STATA, there are comprehensive and unified pro-
grams to handle the most popular instrumental variables methods, most notably ivreg2
(Baum et al., 2003, 2007) and ivregress. In R, different types of instrumental variables
methods are implemented in different packages, for instance AER by Kleiber and Zeileis
(2008), sem by Fox et al. (2014), and 1fe by Gaure (2013). Unfortunately, these packages
do not include (i) modern instrumental variables methods, especially confidence interval
procedures that are robust to weak instruments, (ii) power calculations for IV analysis, and
(iii) sensitivity analysis that examines sensitivity of different testing methods to violations
of IV assumptions.

The goal of the paper is to present an R package ivmodel that conducts a comprehensive
instrumental variables analysis when there is one exposure/endogenous variable. These
functions include a general class of estimators known as k-class estimators; see Section
3 for details. The functions also include two methods for confidence intervals that are
fully robust to weak instruments, the Anderson and Rubin confidence interval (Anderson
and Rubin, 1949) and the conditional likelihood ratio confidence interval (Moreira, 2003).
The package includes functions to calculate power of tests. Finally, the package includes
methods to conduct sensitivity analysis in order to examine the sensitivity of the IV analysis
to violations of IV assumptions.

2. Instrumental variables model for one endogenous variable
2.1 Notation

Let there be n individuals indexed by ¢« = 1,...,n. For each individual i, we observe
outcome Y; € R, exposure D; € R, L instruments Z;. € RE, and p covariates X;. € RP.
Let Y = (Y1,...,Y,) € R™ denote the vector of outcomes, D = (D1,...,D,) € R" denote
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Outcome Exposure Instruments Reference

Natural experiments / Mendelian randomization

Earnings Years of schooling Proximity to college Card (1995)
when growing up
Earnings Years of schooling Quarter of birth Angrist and Krueger
(1991)
Metabolic phe- C-reactive protein SNPs rs1800947, Timpson et al. (2005)
notypes (CRP) rs1130864, rs1205
Blood pressure  Alcohol intake Alcohol dehydrogenase Chen et al. (2008)

(ALDH2) genotype

Randomized experiments / Encouragement designs
Birth weight Mother’s smoking Randomized encourage- Sexton and Hebel
ment to stop smoking (1984) and Permutt
and Hebel (1989)

Test, scores Class size Randomized assign- Krueger (1999)
ment to different class
sizes

Table 1: Application of instrumental variables methods based on source of instruments.
Natural experiments/Mendelian randomization refer to instrumental variables
studies where the instruments come from natural sources, such as genes or cal-
endar years. Randomized experiments/encouragement designs refer to instrumen-
tal variables studies where the instruments are based on actual randomization
mechanisms.

the vector of exposures, Z € R denote the matrix of instruments where the ith row
corresponds to Z;., and X € R"™ P denote the matrix of covariates where the ith row
corresponds to X;.. Let W = [Z : X] where W is an n by L + p matrix that concatenates
the matrices Z and X.

For any matrix M, denote its transpose as MT. Also, for any matrix M, let Py =
M(MTM)~'MT be the orthogonal projection matrix onto the column space of M and Ry,
be the residual projection matrix so that Ry + Py = I and [ is an n by n identity matrix.
We assume that (M7 M)~! is well-defined and has a proper inverse. Finally, for any vector
v € R" let diag(v) be the n by n diagonal matrix whose diagonal elements consist of
Viy.-.yUn.

2.2 Model

We assume the following linear structural model between the observed quantities, Y;, D;, Z;.,
and Xj.

Y;=Dif+ X k+e, E(e]Zi,Xi)=0,VAR(|Z:, Xi) = o> (1)
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This is the standard, single equation homoskedastic linear structural model in econometrics
(Wooldridge, 2010); Section 3.3 discusses the heteroskedastic and clustered variance models
where 02 may vary for each individual. Model (1) is not a usual regression model because D;
is potentially correlated with ¢;. The parameter of interest is 3, which can be interpreted as
the causal effect of the exposure D; on the outcome Y;; see next paragraph for more details.
The parameter x relates the p covariates to the outcome. We remark that X;. can contain
a value of 1 to represent the intercept.

The parameters in model (1) can be given a causal interpretation by using the potential
outcomes notation (Rubin, 1974) and the additive, linear constant effects (ALICE) model

(Holland, 1988). Let v,

a scalar value, and L instruments z. Let DZ(Z

be the potential outcome if individual ¢ were to have exposure d,

)

be the potential exposure if individual ¢ had
L instruments z. For each individual, only one realization of Yi(d’z) and DZ(Z) is observed,
denoted as Y; and D;, respectively, based on individual i’s observed instruments Z;. and
exposure D;. Then, for two possible values of the exposure d’,d and instruments 2/, z, we
assume the following potential outcomes model

Wy = (@~ s, BV 2, Xi) = X]w (2)

)

Y.

7

In model (2), § represents the causal effect (divided by d’ — d) of changing the exposure
from d’ to d on the outcome. The parameter s represents the impact of covariates on the
baseline potential outcome Yi(o’o). If we further define ¢; = YZ-(O’O) - E(Yi(o’o) | Zi., Xi.), we
obtain the observed data model in (1), thus providing the parameters in the observed model
in (1) a causal interpretation.

We’'ll also introduce a model for the relationship between the endogenous variable D,
the instruments Z;., and the covariates Xj.

Di=ZF v+ X+ ni, E(mi|Zi., X)) = 0,VAR(ni| Zi., Xi.) = w? (3)

This “first stage” model in (3) is not necessary for every method in the ivmodel package. In
particular, the k-class estimators in Section 3 and the confidence interval for the Anderson
and Rubin test in Section 4 are valid without the first stage modeling assumption in (3).
However, other methods presented in the paper require this model, notably the conditional
likelihood ratio test. Also, it’s common in econometrics to assume a linear relationship
between D, Z and X (Wooldridge, 2010).

We conclude by simplifying the models in equations (1) and (3) by projecting out the
covariates X using the Frisch-Waugh-Lovell Theorem (Davidson and MacKinnon, 1993).
Specifically, models (1) and (3) are equivalent to

Y =DiB+e, E(efZi,X.)=0 (4)
D =Zv+ni, EMm|Zi,Xi)=0 (5)

where
Y*=RxY, D*=RxD, Z"=RxZ, ¢ =Rxe, 1" =Rxn

The superscripts Y*, D*, Z* represent the outcome, the exposure, and the instruments
after controlling for the covariates X using the residual orthogonal projection Rx defined
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in Section 2.1. The conditional moment conditions remain the same as before because the
transformations were only based on X;.. Additionally, the Frisch-Waugh-Lovell Theorem
states that the estimated residuals of € and 7n; are the same as those for ¢; and 7;. In
short, the equivalent models (4) and (5) allow us to concentrate on the target parameter of
interest, 3, and simplify the expressions of the instrumental variables methods presented in
the paper.

2.3 Assumption of instrumental variables

We make the standard assumptions in the instrumental variables literature below (Wooldridge,
2010).

(A1) E(WTW) is full rank.

(A2) Conditional on the covariates X, the instruments Z are associated with the exposure

D,E(ZTRxD) #0
(A3) W is exogenous, E(WTe) =0

Assumption (Al) is a standard moment condition on the matrix of exogenous variables
that include the covariates and the instruments. Assumption (A2) states that conditional
on the covariates, the instruments are associated with the exposure. There are many ways
to test this assumption in practice, the most popular being the F statistic. Specifically, we
would test whether the regression coefficients associated with Z is zero in the regression
of D on X and Z. Instruments with F statistics greater than 10 are considered to be
strong instruments while instruments with F statistics below 10 are considered to be weak
instruments (Stock et al., 2002). Assumption (A3) is satisfied in the ALICE model if Z has
no direct effect on Y and Z is independent of unmeasured confounders. Assumption (A3) is
generally untestable in that it’s impossible to check whether the exogenous variables Z and
X are uncorrelated with the structural error €;, which is never observed. However, if there
are more than one instruments, methods exist to partially test this assumption, the most
popular being the Sargan’s test (Sargan, 1958). Under all three assumptions (A1)-(A3),
standard econometric arguments show that the the model parameters are identified; see
Section 5.2 of Wooldridge (2010).

Typically, investigators assume that instruments satisfy (A1)-(A3) and proceed with
estimating the target parameter 8 (Angrist and Krueger, 2001). However, violations of these
assumptions do occur, especially (A2) and (A3). For example, if (A2) is weakly satisfied
such that instruments E(Z7 Rx D) =~ 0, also known as the weak instrument problem, the
most commonly used instrumental variables estimation method, two stage least squares
(TSLS), produces biased estimates of 5 (Nelson and Startz, 1990; Staiger and Stock, 1997;
Stock et al., 2002). Thankfully, many robust methods exist with weak instruments and
we discuss them in Section 4. Violation of (A3), known as the invalid instrument problem
(Murray, 2006), has received far less attention than the weak instrument problem, but some
progress has been made in this area (Kolesédr et al., 2015; Kang et al., 2016; Wang et al.,
2018). This paper presents one way to deal with violations of (A3) via a sensitivity analysis
in Section 5.2.
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3. k-class estimation and inference

3.1 Definitions and general properties

A class of estimators for 3, called the k-class estimators and denoted as Ek, is defined as
follows. R
By = (D*"(I — kRz-)D*)'D*T(I — kRz-)Y* (6)

Table 2 lists some estimators that are k-class estimators, including ordinary least squares
(OLS), two-stage least squares (TSLS), limited information maximum likelihood (LIML),
and Fuller’s estimator (FULL). For example, the LIML estimator uses k = krarr, which is
the minimum value of k£ that satisfies the following equation

«*T (1 . * «T 1 . *
det<Y (I — kRz)Y* Y*T(I kRZ)D>:O

D*"(I — kRz+)Y* D*"(I — kRz+)D* @)

k Name

k=0 Ordinary least squares (OLS)

k=1 Two-stage least squares (TSLS)

k=krimr Limited information maximum likelihood (LIML)
k=krimr — ﬁ;_p, b>0 Fuller’s estimator (FULL)

Table 2: Different types of k-class estimator

Each k yields an estimator with unique finite-sample properties, which will be discussed
in detail in Section 3.2. But, asymptotically, all k-class estimators are consistent for 5 when
k — 1 as n — oo(Davidson and MacKinnon, 1993). In addition, when /n(k — 1) — 0 as
n — 00, k-class estimators have an asymptotic normal distribution (Amemiya, 1985)

E/’fé s N(0,1) (8)
VAR(Bk)

where

Y* D*//B\k)T(Y* . D*Bk)

\m/\ :AQD*TI—kR*D*_l /\2:(
(Be) = 7D (I = kRz)D) !, P

(9)
The asymptotic distribution in (8) allows us to test hypotheses
Ho:B=po, Ha:B#bo (10)

by comparing the standardized deviate in (8) to a standard normal distribution, or a ¢
distribution with degrees of freedom n — L — p. We can also create a 1 — « confidence
interval for 8 with (y, i.e.

(B\k - zl—a/Qma Bk + Zl—a/? V V/A\R(//B\k))

where z1_, /o is the 1 —« /2 quantile of a standard normal distribution. We can alternatively
use the 1 — a/2 quantile of the ¢ distribution with n — L — p degrees of freedom.
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3.2 Some Examples of k-class Estimators

The most well-known k-class estimator in instrumental variables is the two-stage least
squares (TSLS) estimator where k =1, i.e.

Bl _ (D*TPZ*D*)—lD*TPZ*Y*

In addition to being consistent and having an asymptotic Normal distribution, TSLS is
efficient among all IV estimators using linear combination of instruments Z (Theorem 5.3
in Wooldridge (2010)). In fact, under the asymptotics rates of /n(k — 1) — 0 discussed
in the prior section, all k-class estimators have the same asymptotic normal distribution as
TSLS. Also, when L = 1, TSLS and LIML produce identical estimates of g (Davidson and
MacKinnon, 1993).

Despite having the same asymptotic distribution, each k-class estimators behave dif-
ferently in finite-samples. With weak instruments, TSLS tends to be biased towards OLS
in finite sample and the bias may persist even in large samples (Bound et al., 1995). In
contrast, LIML and FULL are more robust to weak instruments than TSLS (Stock et al.,
2002). However, LIML has no finite moments while TSLS has up to L — 1 moments. FULL
corrects LIML’s lack of moments by having moments if the sample size is large enough
(Davidson and MacKinnon, 1993).

Other types of k-class estimators exist beyond those listed in Table 2 and no single
k-class estimator uniformly dominates another in all settings (Davidson and MacKinnon,
1993). In practice, the most popular estimators are TSLS and LIML, with LIML being
more robust to weak instruments (Stock et al., 2002; Mariano, 2003; Chao and Swanson,
2005)

3.3 Heteroskedasticity and Clustering when k£ =1

When model (1) has heteroskedastic variance or cluster-level variance, a k-class estimator
with k£ = 1 can be modified to obtain correct standard errors for the estimate 5;. Specifically,
under heteroskedasticity where VAR(¢; | Z;., X;.) = o2, we would replace the estimator of

\7A\R(Bk) in equation (9) with the heteroskedastic-consistent variance estimator proposed in
White (1980).

\ch(@) = D*TRy-diag(Y* — D*B1)Rz- D*(D*T Ry D*) 2 (11)

Under clustering where we have C clusters, VAR(¢; | Z;., X;.) = ajz for each cluster j €
{1,...,C}, and COV(e, ey | Z;, X;.) = 0, we can use the same variance estimator in
equation (11) (Cameron and Miller, 2015).

4. Dealing with weak instruments: Robust confidence intervals

In this section, we discuss the case when the instruments may be very weak and nearly
violate (A2) along with two inferential procedures that are fully robust to violations of
(A2).

Let M be an n by 2 matrix where the first column contains Y* and the second column
contains D*. Let ap = (fo,1) and by = (1,—05p) to be two-dimensional vectors and ¥ =
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MTRz.M/(n — L —p). Let § and T be two-dimensional vectors defined as follows.
(Z*TZ*)71/2Z*TMI)O f_ (Z*Tz*)fl/Qz*TMiflaO
\/bOTZA)bo \/agﬁ—lao

We also define the following scalar values, @1, @2, and @3.

S =

Q1=S87S, Qy=5TT, Q3=T'T

Based on @1, @2, and @3, we define two tests for testing Hyg : § = [o that are fully
robust to violations of (A2), the Anderson-Rubin test (Anderson and Rubin, 1949), and the
conditional likelihood test (Moreira, 2003).

AR(f) = L (12)
CLR(By) = = 5(Q1—Qs) + ! \/(@1 +Q3)? — 4(Q1Qs — Q3) (13)

Many works have shown that these two tests are fully robust to weak instruments in that
even if the instrument strength is near zero, the two tests still maintain Type I error
control (Staiger and Stock, 1997; Stock et al., 2002; Moreira, 2003; Dufour, 2003; Andrews
et al., 2006). Between the two tests, there is no uniformly most powerful test under weak
instruments. But, Andrews et al. (2006) and Mikusheva (2010) suggest using (13) due to
its generally favorable power compared to (12) in most scenarios. However, the Anderson-
Rubin test is the simplest of the two tests in that under a Normal error assumption, it
can be written as a standard F-test in regression where the outcome is Rz« (Y — Dfp), the
regressors are Z*, and we are testing whether the coefficients associated with the regressors
Z* are zero or not using an F-test. Also, the Anderson-Rubin test in (12) does not require
the first stage model in (3) (Dufour, 2003) whereas the conditional likelihood ratio test does.

We can invert both tests in equation (12) and (13) to obtain 1 — « confidence intervals
that are fully robust to weak instruments, ie. {8 : AR(8) < Frn—r1—pi—-a} for the
Anderson-Rubin confidence interval and {8 : CLR(3) < q1—q} for the conditional likelihood
ratio test. Here, the term Fy, ,_1—p 1—q is the 1 —a quantile of the F distribution with L and
n— L —p degrees of freedom. The term ¢;_ is the 1 —« quantile of the the null distribution
of the conditional likelihood ratio test. The F distribution for the Anderson-Rubin test is
based on the aforementioned assumption about Normal errors in model (1) and our package
ivmodel currently uses the F distribution. However, one can also use the x? distribution as
an asymptotic approximation if Normal errors are grossly unreasonable in data. As for the
null distribution for the conditional likelihood ratio test and the associated quantile value
¢1—a, See Andrews et al. (2007).

5. Dealing with invalid instruments
5.1 IV diagnostic

Morgan and Winship (2007) showed that assumption (A3) cannot be completely verified.
However, there is often concern that a putative IV is invalid in applications. To assess the
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potential bias due to non-exogeneity of the instruments, our ivmodel package implements
a graphical diagnosis of IV analysis proposed in Zhao and Small (2018) by assuming a
single binary instrument and a control potential outcome that depends linearly on only one
covariate X;j,

E(Y;’(O’O) ’ ZzaXz) = Kinj, (14)

Brookhart and Schneeweiss (2007) derived the following bias formulas for TSLS and OLS
that do not adjust for any covariate.

. E[Xii | Zi=1—E[X;; | Zi=0
bias(frsts) = ;- E[[D]Z- ; Z; = 1} - E{D;! ’ZZ- = 0]}’ (15)
bias(Bors) = ;- (E[Xij | Di = 1] — E[X,; | D; = 0]). (16)

Jackson and Swanson (2015) proposed to report a table of the ratios between (15) and
(16) to assess the potential advantage of an IV analysis over a standard regression analysis.
Zhao and Small (2018) further pointed out that a large bias ratio might be misleading
when the covariate is irrelevant (k; ~ 0) and suggested to use a diagnostic barplot to
compare (15) with (16). Broadly speaking, if the bias from an IV analysis is smaller than
the bias from a standard regression analysis (i.e. the ratio of biases is between —1 and
1 or the difference between the two biases is large) and the aforementioned assumptions
underlying the bias calculations are plausible, it suggests that an IV analysis is more helpful
in reducing confounding bias than a standard regression analysis. In contrast, if the bias
from an IV analysis is larger than the bias from a standard regression analysis (i.e. the
ratio of biases is larger than 1 or smaller than —1), a standard regression analysis may
reduce more confounding than an IV analysis; see our data example in Section 7.3 for an
example interpretation of confounding and bias reduction. When Z or D is not binary, we
may replace the difference in conditional expectations in (15) and (16) by the corresponding
OLS slope coefficients.

We remark that the graphical diagnosis does not give a test of assumption (A3), as
the simplifying assumption (14) is different from (2) that is used to define the residual ;.
Furthermore, the bias formulas (15) and (16) only apply to the vanilla TSLS and OLS
estimators that do not adjust for any covariate. Thus, they do not equal the true bias of
the TSLS and OLS estimators that adjust for the covariates X;. (due to not controlling for
other unmeasured confounders). Nevertheless, the diagnostic plot provides a way to check if
the IV is independent of any measured covariate and if not, how much bias that dependence
might incur. Alternatively, by leveraging additional assumptions, some statistical tests have
been developed to falsify the validity of an instrument (that is, to test assumption (A3));
see Glymour et al. (2012), Yang et al. (2014) and Keele et al. (2019).

5.2 Sensitivity analysis

Another way to deal with invalid instruments is through a sensitivity analysis which exam-
ines the sensitivity of statistical tests for Hp : 8 = By to violations of (A3); see DiPrete and
Gangl (2004), Small (2007), Koleséar et al. (2015) and Conley et al. (2012) for some exam-
ples. These papers all use test statistics which are based on the TSLS estimator having an
approximately normal distribution, which breaks down in the presence of weak instruments
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(Nelson and Startz, 1990). In this section, we explore a sensitivity analysis based on the
Anderson-Rubin test which is robust to weak instruments and focus on the case where there
is only one instrument.
Formally, we revise the model in Section 2.2 to allow for an invalid instrument by adding
another term do (2’ — z) to equation (2).
Y v — (@ —d)p +do(z - 2), EYOV | 2, Xi) = Xk (17)

Here o is the standard deviation of ¢; = Yi(o,o) - E(Yi(o’o) | Zi., X;.) and serves as a scaling

parameter. § measures how much the instrument violates (A3) and lies within a range
d € (4,0) specified by the investigator. Then, the observed model for sensitivity analysis
becomes:

Y, = Dzﬁ—FXZTK—F(SO'Zl—FQ, E(€Z|Zz,XZ) =0, VAR(€Z|Z,L,XZ) = 0‘2, d € (é, (S) (18)

If the error term has a normal distribution ¢; ~ N(0,0?), then hypothesis (10) can be
tested by using the AR test statistic AR(fy) in equation (12). Under Hy, AR(5p) has a
non-central F' distribution :

AR<50) ~ Fl,n—p—1,62Z*TZ* (19)

Although ¢ is unknown and consequently we don’t known exact null distribution of AR(S)
under Hy, we can look at the worst-case null distribution by setting § to A = max(|d], |d])
and constructing a 1 — « sensitivity interval

Clhi—o ={B:AR(Bo) < F\,_p 10227 7410} (20)

More details about the above sensitivity analysis can be found in Wang et al. (2018).

6. Power

A power analysis concerns the probability of rejecting the null hypothesis Hy : 8 = 5y when
the true exposure effect is under the alternative § — By = A # 0. Often, power analysis
is used to decide the number of samples to detect an effect size with certain probability.
Freeman et al. (2013) presents a power formula for the TSLS estimator when used as a
hypothesis test. Wang et al. (2018) provides a power formula for the Anderson-Rubin test
as well as a power formula for the sensitivity interval in Section 5.2. In this section, we
discuss these power formulas and the underlying assumptions that each make.

Freeman et al. (2013)’s power formula assumes only a single IV(L = 1) without any
covariates X (p = 0). Under this setup, the TSLS estimator asymptotically follows a Normal
distribution:

~ 0'2
Brsps ~ N (5, T VAR(D) pZD> (21)

If the true exposure effect is § — Sy = A, the power of testing hypothesis (10) is:

v/n-VAR(D v/n - VAR(D
Power — 1+ (_zla/2 B ApzDA/ T ( )) _ <21a/2 _ Apzpy\/1 ( )) (22)

g g

10
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where « is the significance level (usually 0.05), ® is the cumulative distribution function
of a standard normal distribution, z;_,/9 is the 1 — /2 quantile of a standard Normal
distribution, and pzp is the correlation between Z and D.

The power formula for the Anderson-Rubin test is based on the original model (1), the
first-stage model (3), and bivariate normality of the errors (e;,7;), which we summarize
below.

Y* :D*IB+6*
Y*=RxY, D*=RxD, Z*=RxZ, ¢ =Rxe, n°=Rxn (23)
0'2 oW
(6777) 1 Za (Eiani)T ~ N(07 2)7 Y= (paw pw2 ) ) rank(X) =D

If the true exposure effect is 8 — By = A, the power of testing hypothesis (10) using the
Anderson-Rubin test is:

Power = 1 — \Ijl n—p—L (7T z*T zx4)\2 (Fl,n—P—L;l—a) (24)

' o2 2p0wrtwIAZ
where Fj, 3.1 is the 1 — o quantile of the F distribution with degrees of freedom a and b.
The term W, ;(-) is the cumulative distribution function of the non-central F distribution
with degrees of freedom a, b and non-central parameter k.
Finally, the power of the sensitivity analysis introduced in Section 5.2 relies on model
(18), the first stage model in (3) and the bivariate Normality assumption of the errors
(€i,7mi), which we summarize below

Y*=D*B+6cZ* +€*

Y*=RxY, D*=RxD, Z*=RxZ, ¢ = Rxe, n°=Rxn (25)
0’2 agw
@)L (@) ~N9), 2= (7 P k) =

Suppose we are in the alternative where the true exposure effect is § — Sy = A and the
instrument is valid (6 = 0). But, under the null hypothesis, we want to allow for the
possibility that the instrument is invalid in the range § € (—A, A); this is referred to as the
favorable situation in Rosenbaum (2010). Then, the power of being able to reject the null
hypothesis in favor of this favorable alternative for all 6 € (—A, A) is:

Power =1 — qjl,n—p—l,gaQiiZii:if;)\Q (Fl,n—p—l,AQZ*TZ*;l—a) (26)
where Fj,j1-q is the 1 — a quantile of the non-central F distribution with degrees of
freedom a, b and non-central parameter c. Generally speaking, when the instrument is weak
and/or the sample size is small to moderate, the power formula for the TSLS test statistic
may be biased and Wang et al. (2018) recommended using the AR test and its associated
power formula (24). Also, Wang et al. (2018) showed that the AR test may have no power
if A is large.

All three power formulas are implemented in ivimodel. ivmodel also provides functions
to compute the minimum sample size needed to achieve a specific power at a specific 3.
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7. Application

In this section, we illustrate an application of ivimodel with the data set from Card (1995).
The data is from the National Longitudinal Survey of Young Men (NLSYM), which has
n = 3010 individuals. Like Card (1995), we want to estimate the causal effect of education
on log earnings by using a binary instrumental variable indicating whether the individual
grew up in a place with a nearby 4-year college. The study also collected some exogenous
variables for each study unit.

7.1 Basic usage

As discussed above, the outcome Y is log earnings (1lwage), the exposure D is (educ), and
the instrument Z is (nearc4). Other exogenous variables X include subject’s years of labor
force experience (exper) and its square (expersq), whether the subject is black (black),
whether the subject lived in the South (south), and whether the subject is in a metropolitan
area (smsa). While we are concerned that exper and expsq are endogeneous due them being
derived variables from educ and age, surprisingly, Card (1995)’s analysis treated exper as
an exogenous variable (page 13 of Card (1995)). He also found that treating exper as either
endogenous or exogenous led to the same conclusions about education’s return on earnings
(Table 3 of Card (1995)). More generally, treating experience as exogenous is common in
labor economics; see Heckman et al. (2006) for a review. Overall, to focus on the software
aspect of the paper, we recreate Card (1995), but alert the readers about this caveat.

We use the function ivmodelFormula, which takes in formulas of the style from Zeileis
and Croissant (2010) and is also used in the package AER, and generate an ivmodel class
object

R> cardfit = ivmodelFormula(lwage ~ educ + exper + expersq + black + south + smsa |
R+ nearc4 + exper + expersq + black + south + smsa, data=card.data)

ivmmodel can also take non-formula environments as inputs by using the function ivmodel.

R> Y = card.datal,"lwage"]

R> D = card.datal[,"educ"]

R> Z = card.data[, "nearc4"]

R> Xname = c("exper", "expersq", "black", "south",'"smsa")
R> X = card.data[, Xname]

R> cardfit = ivmodel (Y=Y, D=D, Z=Z, X=X)

After an ivmodel class object is generated, we can call summary on the object to display
all the relevant estimators and tests discussed above.

R> summary(cardfit)

Call:
ivmodel(Y =Y, D=D, Z =12, X = X)
sample size: 3010

12
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First Stage Regression Result:

F=16.71759, dfi=1, df2=3003, p-value is 4.4515e-05
R-squared=0.005536144, Adjusted R-squared=0.005204987
Residual standard error: 1.942531 on 3004 degrees of freedom

Coefficients of k-Class Estimators:

k Estimate Std. Error t value Pr(>|t|)
0LS 0.000000 0.074009 0.003505 21.113 < 2e-16 **x
Fuller 0.999667 0.128981 0.047601 2.710 0.00677 *x*
TSLS 1.000000 0.132289 0.049233 2.687 0.00725 *x
LIML 1.000000 0.132289 0.049233 2.687 0.00725 *x*

Signif. codes: O ‘%%’ 0.001 ‘*x*’ 0.01 ‘x> 0.056 ‘.’ 0.1 ¢ ’ 1

o O O

Alternative tests for the treatment effect under H_O: beta=0.

Anderson-Rubin test (under F distribution):

F=6.881108, dfl=1, df2=3003, p-value is 0.0087552

95 percent confidence interval:
[0.0383986007667666, 0.261183653633852]

Conditional Likelihood Ratio test (under Normal approximation):
Test Stat=6.881108, p-value is 0.0087552
95 percent confidence interval:

[0.0383985832976054, 0.261183686557055]

There are three main sections in the summary. The first section summarizes the first
stage regression between the IV and the exposure. For example, in this data, the F statistic
is 16.71759, which is greater than 10, indicating that the IV is not weak and the TSLS
estimator should be reasonable. The second section lists the results for several k-class
estimators. The default k’s are k = 0 (OLS), £ = 1 (TSLS), and k’s associated with LIML
and Fuller. Here we only have one IV, so TSLS and LIML are the same. The estimated
causal effect using the TSLS estimator is 0.132289, with a p-value around 7.25 - 1073, This
means that when increasing education by 1 year, ceteris paribus, log earnings will, on
average, increase by 0.132289. The last section provides AR and CLR confidence intervals,
which are robust when weak instruments are present.

The function confint calculates the confidence interval for various IV methods introduced
above. Similarly, we also provide common functions such as coef, fitted, residuals, vcov, and
model.matriz. coef extracts the coefficient of ; we also included coefOther that extracts
the estimated coefficients representing the exogenous covariates’ effects on the outcome.
fitted provides fitted values of Y in the data, or equivalently E[Y; | D;, X;| based on
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different estimates of 5. This prediction marginalizes over the unmeasured confounder U;
and estimates the mean outcome among all individuals with measured confounders X;. if
they were to be assigned treatment value D;. For example, in the Card study, if U; represents
the income of individual 4’s parents which were not measured, the value of fitted for E[Y; |
D; =16, X; = (4,16,1,1,1)] is what the average log income among black individuals who
had 4 years of experience and are living in the a metropolitan area in the South would be if
they were assigned 16 years of education. residuals and resid generate residuals Y* — D* 3.
For fitted, residuals, and resid, we caution that if the estimates of 8 are inconsistent, the
predictions or the residuals may be misleading. vcov computes the standard errors for each
Ek. model.matriz extracts the design matrix used to fit the instrumental variables model.

R> confint(cardfit)

2.5% 97.5%
0LS 0.06713570 0.08088229
Fuller 0.03564754 0.22231476
TSLS  0.03575456 0.22882312
LIML 0.03575456 0.22882312
AR 0.03839860 0.26118365
CLR 0.03839858 0.26118369

7.2 Power and sample size

Suppose the true causal effect of earnings is § = 0.1 and we want to compute the power
to reject the null hypothesis of no effect in favor of this alternative. ivimodel contains the
function IVpower, which computes powers for the TSLS test statistic, the AR test, and
the sensitivity analysis test, with the default being the TSLS test statistic. In the example
below, the power of the TSLS test statistic is 0.5287 and the power of the AR test is 0.5461.

R> IVpower(cardfit,beta=0.1); IVpower(cardfit, type="AR",beta=0.1)

[1] 0.5286761
[1] 0.5461072

When there is only one instrument and the errors are Normally distributed with a known
covariance matrix, the AR test is the uniformly most powerful test (Andrews et al., 2006)
and hence, has the larger power above. We can also compare the power under different
sample sizes by plotting a figure of power as a function of sample size. Figure 1 is a graphical
output of power functions for the TSLS test statistic and the AR test as a function of sample
size.

R> ngrid = (1:100)%*20

R> plot(IVpower(cardfit, beta=0.1,n=ngrid) "ngrid,
type="1", 1lty=1, ylab="power",xlab="sample size")

R> points(IVpower(cardfit, beta = 0.1,n=ngrid, type="AR") ngrid,
type="1", 1lty=2)

R> legend("bottomright", legend=c("TSLS", "AR"), lty=c(1, 2))
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Figure 1: Power curves for the TSLS test statistic and the AR test under different sample
sizes (x-axis). The alternative is fixed to be g = 0.1.

Finally, IVsize calculates the minimum sample size needed for achieving a certain power
threshold. In the example below, we need a sample size of 5723 for the TSLS test statistic
and 5482 for the AR test in order to reject the null in favor of the alternative § = 0.1 with
80% probability.

R> IVsize(cardfit, beta=0.1,power=0.8)
R> IVsize(cardfit, beta=0.1,power=0.8, type="AR")

[1] 5723
[1] 5482

7.3 Diagnostic

Often in an IV analysis, there is concern that the instrument may be invalid. For example,
in our dataset, there may be concern that geographic or social features affecting both the
existence of a nearby 4-year college and earnings of an individual, but not through education.
This issue can be seen from the diagnostic plot generated by iv.diagnosis.

R> output <- iv.diagnosis(Y =Y, D =D, Z =12, X = X)
R> iv.diagnosis.plot (output)

The results are shown in Figure 2. The red and blue bars in Figure 2 are estimated biases
using (15) and (16) and the numbers on the right are the ratios between the two biases. The
most striking observation from Figure 2 is that the vanilla TSLS estimator would have more
than 13 times larger bias than the vanilla OLS estimator if the control potential outcome
depends linearly according to (14) on smsa, and the absolute bias would be as large as 0.07.
The bias ratios with respect to south and black are also larger than 1. We note that these
interpretations of Figure 2 depend on the assumptions made in Section 5.1. Specifically, the
simplifying assumption (14) that the control potential outcome depends linearly on only

15



KANG ET AL.

black

method

7.64 ols
2sls

south

smsa

13.07

0.000 0025 0.050 0.075
bias

Figure 2: Diagnostic plot for the IV analysis. Each bar in each row represents the magnitude
of the bias from not adjusting for a covariate. The number to the right represents
the ratio of the biases.

one covariate is rather strong, so the diagnostic plot should be interpreted with caveat in
mind.

Nevertheless, the diagnostic plot indicates that, without controlling for any covariates,
the instrument—proximity to college—is correlated with geographic features such as south
and smsa that may also affect the earnings. In particular, if we examine the correlation
matrix of the variables below, we see that the geographic features (south and smsa) have
much stronger correlation with both the instrument and the outcome than labor force
experience (exper and expersq).

R> round(cor(cbind(Z, D, X, Y)), 2)

YA D exper expersq black south smsa Y
Z 1.00 0.14 -0.06 -0.06 -0.08 -0.22 0.35 0.16
D 0.14 1.00 -0.65 -0.63 -0.27 -0.20 0.19 0.31
exper -0.06 -0.65 1.00 0.97 0.14 0.11 -0.14 0.01

expersq -0.06 -0.63 0.97 1.00 0.13 0.12 -0.14 -0.02
black -0.08 -0.27 0.14 0.13 .00 0.34 -0.04 -0.30
south -0.22 -0.20 0.11 0.12 0.34 1.00 -0.18 -0.28
smsa 0.35 0.19 -0.14 -0.14 -0.04 -0.18 1.00 0.23
Y 0.16 0.31 0.01 -0.02 -0.30 -0.28 0.23 1.00

[

Overall, although we can use a TSLS estimator to adjust for these observed covariates
like south and smsa, there may well be residual confounding that positively biases the IV
analysis. This means the true causal effect of education on earning might not be as large
as the estimate from TSLS.
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To further illustrate this point, Table 3 compares the OLS and TSLS estimates obtained
using ‘wmodel when different covariates are adjusted for. When only adjusting for exper,
expersq, black but not any geographic features, the TSLS estimate is 0.255. This estimate
becomes closer to the OLS estimate as the geographic features are included, eventually
dropping to 0.132. Both south and smsa are coarse measurements of the geography of
survey participants. Had we obtained finer geographic features, the TSLS estimate might
be even smaller.

Table 3: A comparison of OLS and TSLS estimates adjusted for different sets of covariates.

OLS TSLS
Adjusted covariates Estimate Std. error | Estimate Std. error
None 0.052 0.003 0.188 0.026
exper, expersq, black 0.082 0.004 0.255 0.038
exper, expersq, black, south 0.078 0.004 0.221 0.041
exper, expersq, black, smsa 0.076 0.004 0.177 0.046
exper, expersq, black, south, smsa 0.074 0.004 0.132 0.049

7.4 Sensitivity analysis

We can also perform a sensitivity analysis to assess the sensitivity of our analysis to an
invalid IV. The user needs to specify the likely range of departure from assumption (A3),
captured by the parameter § in (18). Roughly speaking, the parameter do captures how
much a unit change in the invalid instrument near4c will change the outcome lwage the
regression model (18), either through a direct causal effect of near4c on lwage or through
correlation of near4c with unincluded determinants of lwage like south.

One way to gauge how large § might be is to first fit a standard regression model for
the outcome conditional on the education and exogenous covariates.

R> summary(lm(lwage ~ educ + exper + expersq + black + south + smsa,
data = card.data))

Call:
lm(formula = lwage ~ educ + exper + expersq + black + south +
smsa, data = card.data)

Residuals:
Min 1Q Median 3Q Max
-1.59297 -0.22315 0.01893 0.24223 1.33190

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 4.7336643 0.0676026 70.022 < 2e-16 *x**
educ 0.0740090 0.0035054 21.113 < 2e-16 **x
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exper 0.0835958 0.0066478 12.575 < 2e-16 *xxx*
expersq -0.0022409 0.0003178 -7.050 2.21e-12 xxx
black -0.1896315 0.0176266 -10.758 < 2e-16 *x*x*
south -0.1248615 0.0151182 -8.259 < 2e-16 xxx*
smsa 0.1614230 0.0155733 10.365 < 2e-16 *x*x*
Signif. codes: 0O “*%x’ 0.001 ‘**’ 0.01 ‘x> 0.05 ¢.” 0.1 ¢ ’ 1

Residual standard error: 0.3742 on 3003 degrees of freedom
Multiple R-squared: 0.2905, Adjusted R-squared: 0.2891
F-statistic: 204.9 on 6 and 3003 DF, p-value: < 2.2e-16

Imagine a unmeasured confounder U similar to south, in the sense that U has the same
effect on the instrument and the outcome as south. Further, suppose U is independent of the
other measured covariates; this is slightly different from south which is weakly correlated
with the other covariates. Then, we expect the ¢ corresponding to such U is about 0.22
(correlation of south with nearc4) x 0.12 (coefficient of south in the regression for lwage)
/ 0.3742 (estimated o in the regression for lwage) ~ 0.07. Thus, we might assume the range
for the sensitivity parameter is 6 € (—0.07,0.07) to reflect having a covariate like south.

To perform a sensitivity analysis, we can call the function ivmodel specifying the range
of the sensitivity parameter.

R> cardfit.sens =ivmodel (Y=Y, D=D, Z=Z, X=X, deltarange=c(-0.07, 0.07))
R> summary(cardfit.sens)

Anderson-Rubin test:
Sensitivity analysis with deltarange [ -0.07 , 0.07 ]:
non-central F=6.881108, dfil=1, df2=3003, ncp=2.71656, p-value is 0.16499
95 percent confidence interval:
[ -0.0538384077784691 , 0.53548242970625 ]

We see that if there is an unmeasured confounder U that exhibits similar behavior as the
variable south, we would retain the null hypothesis of no effect when we use the Anderson-
Rubin test statistic. The p-value from the sensitivity analysis is about 0.16, suggesting that
education does not have as significant positive effect towards earnings if the instrument is
invalid due to an unmeasured confounder U with A around 0.07.

We also performed a “synthetic” sensitivity analysis where we intentionally drop the
variable south and see if the sensitivity interval in the IV model without south matches
the confidence interval in the IV model with south.

R> XwoSouth = X[,c("exper", "expersq", "black",'"smsa")]

R> cardfit2=ivmodel (Y=Y, D=D, Z=Z, X=XwoSouth, deltarange=c(-0.07, 0.07))
R> summary(cardfit2)
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Anderson-Rubin test:
Sensitivity analysis with deltarange [ -0.07 , 0.07 ]:
non-central F=16.05672, dfl=1, df2=3004, ncp=2.785717, p-value is 0.0097825
95 percent confidence interval:
[ 0.0379720391935471 , 0.513984691572249 ]

Notice that the lower end of this sensitivity interval is nearly identical to the confidence
interval for the Anderson-Rubin test that used all the covariates in Section 7.1.

Finally, we can compute the power to detect the favorable alternative under the null
hypothesis of no effect, but with a potentially invalid IV. For example, suppose the true
effect is §* = 0.25. Then, the power to reject the null of no effect in favor of this alternative
with a 6 € (—0.07,0.07) is 22.7% and we need at least 23,230 samples to increase this power
to 80%.

R> IVpower(cardfit.sens, beta=0.25, type="ARsens")
R> IVsize(cardfit3, beta=0.25, power=0.8, type="ARsens")

[1] 0.2265288
[1] 23230

8. Summary

The package ivimodel provides a unified implementation of instrumental variables methods
in the case of one endogenous variable. The package contains a general class of estimators,
k-class estimators, to estimate the parameter 3. The package also contains methods that
can deal with violations of instrumental variables assumptions, (A2) and (A3). First, for
violations of (A2), the package contains two confidence intervals that are fully robust to weak
instruments. For (A3), the package contains methods for sensitivity analysis for the range of
hypothesized violations. Additionally, the package contains power formulas to guide designs
of future instrumental variables studies. As our data example in Section 7 demonstrated,
our package provides an easy and unified way of conducting a comprehensive instrumental
variables analysis with a given data by providing many ways to estimate the parameter of
interests, to assess the sensitivity of our estimates to violations of IV assumptions, and to
plan for future IV studies in the form of a power analysis.
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