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There is an increasing interest in estimating heterogeneity in causal ef-
fects in randomized and observational studies. However, little research has
been conducted to understand effect heterogeneity in an instrumental vari-
ables study. In this work we present a method to estimate heterogeneous
causal effects using an instrumental variable with matching. The method
has two parts. The first part uses subject-matter knowledge and interpretable
machine-learning techniques, such as classification and regression trees, to
discover potential effect modifiers. The second part uses closed testing to
test for statistical significance of each effect modifier while strongly control-
ling the familywise error rate. We apply this method on the Oregon Health
Insurance Experiment, estimating the effect of Medicaid on the number of
days an individual’s health does not impede their usual activities by using
a randomized lottery as an instrument. Our method revealed Medicaid’s ef-
fect was most impactful among older, English-speaking, non-Asian males and
younger, English-speaking individuals with, at most, a high school diploma
or General Educational Development.

1. Introduction.

1.1. Motivation: Utilization of Medicaid in Oregon and the complier average causal effect.
In January of 2008, Oregon reopened its Medicaid-based health insurance plan for its eligible
residents and, for a brief period, allowed a limited number of individuals to enroll in the
program. Specifically, a household in Oregon was randomly selected by a lottery system
run by the state, and any eligible individual in the household could choose to enroll in the
new health insurance plan; households that were not selected by the lottery could not enroll
whatsoever.

For policymakers, Oregon’s randomized lottery system was a unique opportunity, specif-
ically, a natural experiment to study Medicaid’s causal effect on a variety of health and eco-
nomic outcomes, as directly randomizing Medicaid (or withholding it) to individuals would
be infeasible and unethical. In this natural experiment, commonly referred to as the Oregon
Health Insurance Experiment (OHIE), Finkelstein et al. (2012) used the randomized lottery
as an instrumental variable (see Section 2.2 for details) to study the complier average causal
effect (CACE) or the effect of Medicaid among individuals who enrolled in Medicaid after
winning the lottery (Angrist, Imbens and Rubin (1996)). The CACE reflects Medicaid’s im-
pact among a subgroup of individuals and differs from the average treatment effect for the
entire population (ATE) or the intent-to-treat (ITT) effect of the lottery itself on the outcome.
In this paper we focus on studying the CACE; see Imbens (2010), Swanson and Hernán
(2013, 2014) for additional discussions on the CACE.
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Often, in studying the CACE the population of compliers is assumed to be homogeneous,
whereby two compliers are alike and have the same treatment effect. But no two individuals
are the same, and it is plausible that some compliers may benefit more from the treatment
than other compliers. For example, sick individuals who enroll in Medicaid after winning the
lottery may benefit more from Medicaid than healthy individuals. Also, the perceived benefit
of enrolling in Medicaid among sick vs. healthy individuals may create heterogeneity in the
compliance rate, that is, the number of people who sign up when they win the lottery, with sick
people, presumably, signing up more than healthy people. Alternatively, if people are equally
likely to enroll in Medicaid when they win the lottery, those who are unemployed may benefit
more from Medicaid in terms of reducing out-of-pocket healthcare spending and medical debt
than those who are employed. The theme of this paper is to explore these issues, specifically,
the heterogeneity of CACE and how to discover them in an honest manner by using well-
known matching methods and recent tree-based methods in heterogeneous treatment effect
estimation.

1.2. Prior work and our contributions. Traditional approaches to study heterogeneous
effects required subgroups to be specified a priori rather than allowing for unknown sub-
groups to be discovered by the data (Rothwell (2005), Stallones (1987), Yusuf et al. (1991)).
In recent years there have been many works in causal inference using tree-based methods
to estimate effect heterogeneity or to identify data-driven subgroups when there is full com-
pliance; see Athey and Imbens (2016), Athey, Tibshirani and Wager (2019), Chernozhukov
et al. (2018), Hahn, Murray and Carvalho (2020), Hill (2011), Lee, Bargagli-Stoffi and Do-
minici (2021), Su et al. (2009), Wager and Athey (2018), Wang and Rudin (2021) and ref-
erences therein. Notably, Wang and Rudin (2021), Lee, Small and Dominici (2021), and
Lee, Bargagli-Stoffi and Dominici (2021) used data to suggest novel effect modifiers, aiding
domain experts to identify new subgroups when there are too many possible subgroups to
consider. The majority of the aforementioned work utilizes sample splitting or subsampling
to obtain honest inference. Here, honest inference refers to a procedure that controls the type
I error rate (or the familywise error rate) of testing a null hypothesis about a treatment ef-
fect at a desired level α; see Section 2.4 for additional discussions. However, Hsu, Small
and Rosenbaum (2013) used pair matching and classification and regression trees (CART)
(Breiman et al. (1984)) to conduct honest inference, all without sample splitting. A follow-up
work by Hsu et al. (2015) formally showed that the procedure strongly controls the fami-
lywise error rate for testing heterogeneous treatment effects, again without sample splitting.
Subsequent works by Lee et al. (2018), Lee, Small and Rosenbaum (2018), and Lee, Small
and Dominici (2021) extended this idea to increase statistical power of detecting such effects.

There is also work on nonparametrically estimating treatment effects using instrumental
variables (IV), mostly using likelihood, series, sieve, minimum distance, and/or moment-
based methods; see Abadie (2003), Ai and Chen (2003), Athey, Tibshirani and Wager (2019),
Blundell, Chen and Kristensen (2007), Blundell and Powell (2003), Chen and Pouzo (2012),
Darolles et al. (2011), Hall and Horowitz (2005), Newey and Powell (2003), Su, Murtaza-
shvili and Ullah (2013) and references therein. Recently, Bargagli-Stoffi and Gnecco (2018)
and Bargagli-Stoffi, De-Witte and Gnecco (2019) explored effect heterogeneity in the CACE
by using causal trees (Athey and Imbens (2015)) and Bayesian causal forests (Hahn, Murray
and Carvalho (2020)), specifically by estimating heterogeneity in the ITT effect and dividing
it by the compliance rate. However, to the best of our knowledge, none have used matching, a
popular, intuitive, and easy-to-understand method in causal inference, as a device to nonpara-
metrically estimate treatment heterogeneity in the CACE and to guarantee strong familywise
type I error control. Works on using matching with an instrument by Baiocchi et al. (2010)
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and Kang et al. (2013, 2016) only focused on the population CACE; they do not explore het-
erogeneity in the CACE. Also, aforementioned works by Hsu, Small and Rosenbaum (2013)
and Hsu et al. (2015), using matching and CART, did not consider instruments.

The goal of this paper is to propose a matching-based method to study effect heterogeneity
and to identify novel, data-driven subgroups in instrumental variables settings. Specifically,
the target estimand of interest is what we call the heterogeneous complier average causal
effect (H-CACE). A heterogeneous complier average causal effect (H-CACE) is the usual
complier average causal effect, but for a subgroup of individuals defined by their preinstru-
ment covariates. At a high level, H-CACE explores treatment heterogeneity in the complier
population, where we suspect that not all compliers in the data react to the treatment in the
same way. Some subgroup of compliers may respond to the treatment differently than another
subgroup of compliers, who may not respond to the treatment at all; some may even be more
likely to be compliers if they believe the treatment would benefit them, and they may actually
benefit from the treatment. The usual CACE obscures the underlying heterogeneity among
compliers by averaging across different types of compliers, whereas H-CACE attempts to
expose it. Also, in the case where the four compliance types in Angrist, Imbens and Rubin
(1996), specifically, compliers, never-takers, always-takers, and defiers have identical effects;
the H-CACE can identify the heterogeneous treatment effect for the entire population using
an instrument. Section 2.3 formalizes H-CACE and provides additional discussions.

Methodologically, to study H-CACE we combine existing ideas of heterogeneous treat-
ment effect estimation in non-IV matching contexts by Hsu et al. (2015) and matching with
IVs by Baiocchi et al. (2010) and Kang et al. (2016). Specifically, we first follow Baiocchi
et al. (2010) and Kang et al. (2016) and conduct pair matching on a set of preinstrument
covariates. Second, we follow Hsu et al. (2015), where we obscure the difference in the out-
comes between treated and controls by using absolute differences, and use CART to discover
novel subgroups of study units without contaminating downstream inference. Specifically, we
use closed testing to test the H-CACE in different subgroups while strongly controlling for
familywise error rate (Marcus, Peritz and Gabriel (1976)). Simulation studies are conducted
to evaluate the performance of our proposed method under varying levels of compliance and
effect heterogeneity. The simulation study also compares our method to the recent aforemen-
tioned method by Bargagli-Stoffi, De-Witte and Gnecco (2019). We then use our method to
analyze heterogeneity in the effect of Medicaid on increasing the number of days a complying
individual’s health does not hamper their usual activities.

2. Method.

2.1. Notation. Let i = 1, . . . , I index the I matched pairs and j = 1,2 index the units
within each matched pair i. Let Zij be a binary instrument for unit j in matched pair
i where one unit in the pair receives the instrument value Zij = 1 and the other re-
ceives the value Zij = 0. In the OHIE data, Zij = 1 and Zij = 0 denotes an individual
winning or losing the Medicaid lottery, respectively. Let Z be the vector of instruments,
Z= (Z11,Z12, . . . ,ZI1,ZI2) and Z denote an event of instrument assignments for all units.

For unit j in matched pair i, let d1ij and d0ij denote the binary potential treat-
ment/exposure, given the instrument value of Zij = 1 and Zij = 0, respectively. Further,

define the potential response r
(d1ij )

1ij for unit j in matched set i with exposure d1ij receiv-

ing instrument value Zij = 1; we define r
(d0ij )

0ij similarly but with instrument value Zij = 0.

For the OHIE data, d1ij denotes whether an individual enrolled in Medicaid and r
(d1ij )

1ij de-
notes the potential outcome when the individual wins the lottery Zij = 1. For unit j in

matched set i, the observed response is defined as Rij = r
(d1ij )

1ij Zij + r
(d0ij )

0ij (1 − Zij ) and
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the observed treatment is defined as Dij = d1ijZij + d0ij (1 − Zij ). The notation assumes
that the Stable Unit Treatment Value Assumption (SUTVA) holds (Rubin (1980)). Define

F = {(r(d1ij )

1ij , r
(d0ij )

0ij , d1ij , d0ij ,Xij , uij ), i = 1, . . . , I, j = 1,2} to be the set of potential out-
comes, treatments, and covariates, both observed, Xij , and unobserved, uij .

When partitioning the matched sets into subgroups for discovering effect heterogeneity, the
following notation is used. We define a “set of sets” or grouping G, which contains mutually
exclusive and exhaustive subsets of the pairs sg ⊆ {1, . . . , I }, so that G = {s1, . . . , sG}. The
subscript g in sg is used to denote a unit partitioned into the gth subset sg . To avoid overload-
ing the notation, s and sg will be used interchangeably when it is not necessary to specify
a subgroup g. The set of potential outcomes, treatments, and covariates for subset sg are

defined as Fsg = {(r(d1sij )

1sij , r
(d0sij)

0sij , d1sij , d0sij ,Xsij , usij ) : sg ⊆ {1, . . . , I }, i ∈ sg, j = 1,2},
where F = ⋃

s Fs . For example, consider a grouping of two subgroups, G = {s1, s2}, for
I = 10 matched pairs. Suppose the first few pairs and the last pair make up the first sub-
group and the rest are in the second subgroup, say s1 = {1,2,3,10} and s2 = {4,5,6,7,8,9}.
The set of potential responses, treatments, and covariates for the first group is then Fs1 =
{(r(d1s1ij )

1s1ij
, r

(d0s1ij)

0s1ij
, d1s1ij , d0s1ij ,Xs1ij , us1ij ) : s1 = {1,2,3,10}, i ∈ s1, j = 1,2}. The ob-

served response, binary instrument, and exposure for a given unit in subset sg is denoted
as Zsgij , Rsgij , and Dsgij , respectively.

2.2. Review: Matching, instrumental variables, and the CACE. Matching is a popular
nonparametric technique in observational studies to balance the distribution of the observed
covariates between treated and control units by grouping units based on the similarity of their
covariates; see Stuart (2010), Chapters 3 and 8 of Rosenbaum (2010, 2020) for overviews
of matching. Pair matching is a specific type of matching where each treated unit is only
matched to one control unit. In the context of instrumental variables and pair matching, the
instrument serves as the treatment/control variable, and the matching algorithm creates I

matched pairs, where the two units in a matched pair are similar in their observed covariates
xij , but one receives the instrument value Zij = 1 and the other receives the instrument value
Zij = 0.

Instrumental variables (IV) is a popular approach to analyze causal effects when unmea-
sured confounding is present and is based on using a variable called an instrument (Angrist,
Imbens and Rubin (1996), Baiocchi, Cheng and Small (2014), Hernán and Robins (2006)).
The instrument must satisfy three core assumptions: (A1) the instrument is related to the
exposure or treatment, or

∑I
i=1

∑2
j=1(d1ij − d0ij ) �= 0 (commonly referred to as instrument

relevance); (A2) the instrument is not related to the outcome in any way, except through
the treatment, or r

(d)
0ij = r

(d)
1ij ≡ r

(d)
ij for a fixed d (commonly referred to as the exclusion

restriction), and (A3) the instrument is not related to any unmeasured confounders that af-
fect the treatment and the outcome, or P(Zij = 1|F,Z) = 1

2 within each pair i (commonly
referred to as instrument ignorability or exchangeability). If these core assumptions are satis-
fied, it is possible to obtain bounds on the average treatment effect (Balke and Pearl (1997)).
To point identify a treatment effect, one needs to make additional assumptions. Here, we
assume (A4) monotonicity where the potential treatment is a monotonic function of the in-
strument values, or d0ij ≤ d1ij . Assumption (A4) can be interpreted in terms of four sub-
populations: compliers, always-takers, never-takers, and defiers (Angrist, Imbens and Rubin
(1996)). Compliers are units which their treatment values follow their instrument values, or
d0ij = 0, d1ij = 1. Always-takers always take the treatment regardless of their instrument val-
ues, or d0ij = d1ij = 1. Never-takers never take the treatment regardless of their instrument
values, or d0ij = d1ij = 0. Defiers act against their instrument values, or d0ij = 1, d1ij = 0.
Assumption (A4) then states that no defiers exist.
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Let NCO be the total number of compliers in the population. Under the IV assumptions
(A1)–(A4), the CACE, formally defined as

λ =
∑I

i=1
(
r
(1)
1ij − r

(0)
0ij

)
I (d1ij = 1, d0ij = 0)

∑I
i=1

∑2
j=1 d1ij − d0ij

= 1

NCO

I∑

i=1

(
r
(1)
1ij − r

(0)
0ij

)
I (ij is a complier),

can be identified from data by taking the ratio of the estimated ITT effect over the estimated
compliance rate. In the context of matching and instrumental variables, Baiocchi et al. (2010)
and Kang et al. (2016) proposed a test statistic to test the null H0 : λ = λ0 by using differences
in the adjusted outcomes,

T (λ0) = 2

I

I∑

i=1

2∑

j=1

Zij (Rij − λ0Dij ) − (1 − Zij )(Rij − λ0Dij ),(1)

along with an estimator for the variance of T (λ0),

(2) S2(λ0) = 1

I (I − 1)

I∑

i=1

2∑

j=1

(
Zij (Rij − λ0Dij ) − (1 − Zij )(Rij − λ0Dij ) − T (λ0)

)2
.

Under the null, Baiocchi et al. (2010) and Kang et al. (2016) showed that T (λ0)
S(λ0)

asymptot-
ically follows a standard Normal distribution. For point estimation the same set of authors
proposed a Hodges–Lehmann type estimator (Hodges and Lehmann (1963)) which involves
solving λ in the equation T (λ)/S(λ) = 0. For a 1 − α % confidence interval, the equation
T (λ)/S(λ) ≤ z1−α/2 is solved for λ, where z1−α/2 is the 1 − α/2 quantile of the standard
Normal distribution; see Kang et al. (2016) and Kang, Peck and Keele (2018) for details.

2.3. Heterogeneous complier average causal effect (H-CACE). We formally define the
target estimand of interest in the paper, the heterogeneous treatment effect among compliers,
or H-CACE. Formally, the H-CACE is defined as the CACE for a subgroup of compliers with
a specific value of covariates,

λ(x) =
∑I

i=1
∑2

j=1
(
r
(1)
1ij − r

(0)
0ij

)
I (d1ij = 1, d0ij = 0,Xij = x)

∑I
i=1

∑2
j=1(d1ij − d0ij )I (Xij = x)

.(3)

Because two units are assumed to have identical covariate values within each matched pair,
λ(x) can be rewritten as taking a subset of I matched pairs with identical covariates x, say
s ⊆ {1, . . . , I },

λs =
∑

i∈s

∑2
j=1 r

(d1sij )

1sij − r
(d0sij )

0sij
∑

i∈s

∑2
j=1 d1sij − d0sij

.

Since each H-CACE λs has the same form as the original CACE, we can apply the test statis-
tic in Section 2.2. Formally, consider the subset-specific hypothesis H0s : λs = λ0 against
H1s : λs �= λ0. We can use the test statistic (1) with variance (2) among the pairs specific to
subset s.

Also, under assumptions (A1)–(A4), for a mutually exclusive and exhaustive grouping
G = {s1, . . . , sG} of a set of pairs sg ⊆ {1, . . . , I } with at least one complier within each
subgroup sg , the original CACE is equal to a weighted version of H-CACE,

λ =
G∑

g=1

wsgλsg , wsg =
∑

i∈sg

∑2
j=1 d1sij − d0sij

NCO
.
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An implication of this expression is that typical analysis of the CACE hides underlying effect
heterogeneity. For example, suppose there are two subgroups defined by a binary covariate,
say male or female, and consider two scenarios. In the first scenario, among compliers, 80%
are male, and 20% are female. Also, the H-CACE of male is 1.25, and the H-CACE of female
is 0. In the second scenario the male/female complier proportions remain the same, but the
H-CACE of male is now 1.5, and the H-CACE of female is −1. In both scenarios the CACE
is 1. But in the second scenario, females have a negative treatment effect. By only studying
the CACE, as is typical in practice, variations in the treatment effects, defined by H-CACEs,
would have been masked. The next section presents a way to unwrap the CACE and discover
novel H-CACEs.

2.4. Discovering and testing novel H-CACE. A naive approach to finding and testing
novel H-CACE would be to exhaustively test every H-CACE for every subset of matched
pairs and gradually aggregate them, based on their covariate similarities with appropriate
statistical tests. However, this procedure will not only lead to false discoveries, but it will
also be grossly underpowered.

Instead, based on the work by Hsu et al. (2015), we propose to use exploratory machine
learning methods, such as CART, to discover and aggregate matched pairs into subgroups
with similar treatment effects, formulating grouping G. We will then use closed testing to test
effect heterogeneity, defined by these groups, while strongly controlling the familywise error
rate; see Algorithm 1 for details.

We explain in some detail the key steps in Algorithm 1. First, the specification of the

null value λ0 is for testing the sharp null of the form H0 : r
(d1ij )

1ij − r
(d0ij )

0ij = λ0(d1ij − d0ij );
this sharp null implies the “weak” or composite null H0 : λ = λ0 (Baiocchi et al. (2010)).
Setting λ0 = 0 would test whether the H-CACE is zero or not and is the typical choice in
most applications, unless other null values are of scientific interest. Second, under the sharp
null the absolute value of the difference in adjusted outcomes between pairs, |Yi | = |(Zi1 −
Zi2)(Ri1 −λ0Di1 − (Ri2 −λ0Di2))|, obscures the instrument assignment vector making |Yi |
a function of F only, a fixed (and unknown) quantity. In contrast, Yi is a function of both F
and Z. Consequently, conditional on F , building a CART tree based on |Yi | as the response
and Xi as the explanatory variables, does not affect the distribution of Z. The distribution
of Z within each pair remains 1/2, as stated in assumption (A3), and is a key ingredient to
achieve familywise error rate control for downstream inference; see our discussion on honest
inference below.

Third, Algorithm 1 applies closed testing, a multiple inference procedure by Marcus, Peritz
and Gabriel (1976), to test for multiple hypotheses about H-CACEs generated by CART’s
grouping G = {s1, . . . , sG}. Broadly speaking, closed testing will test sharp null hypotheses,
defined by every parent and child node of the estimated tree from CART, and reject/accept
these hypotheses while controlling for multiple testing issues; see Section 4.4 and Figure 5
for visualizations. A bit more formally, closed testing will test the global sharp null hy-

pothesis H0 : r
(d1ij )

1ij − r
(d0ij )

0ij = λ0(d1ij − d0ij ) and subsequent subset-specific hypotheses

H0L : r(d1sgij )

1sgij −r
(d0sgij )

0sgij = λ0(d1sgij −d0sgij ) for all g ∈ L, where L is a subset of the G groups
formed by CART. We note that the difference between the global null and the subset-specific
nulls is only in the pairs under consideration; all the nulls use the test statistics introduced
in Section 2.2. Also, the subset-specific hypotheses imply H0L : λs = λ0 for s = ⋃

g∈L sg .
Closed testing would only reject the subset-specific hypotheses H0L if all of the p-values
from superset hypotheses H0L′ , L ⊆ L′, are less than α.

As mentioned earlier, the key step of using |Yi | in CART allows for both discovery and
downstream honest testing of H-CACEs via closed testing; again, honesty refers to control
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Given : Observed outcome R, binary instrument Z, exposure D, covariates X, null
value λ0 for testing, and desired familywise error rate α

1 Pair match on observed covariates.
2 Calculate absolute value of pairwise differences for each matched pair

|Yi | =
∣∣(Zi1 − Zi2)

(
Ri1 − λ0Di1 − (Ri2 − λ0Di2)

)∣∣

3 Construct mutually exclusive and exhaustive grouping using CART. Here, CART takes
|Yi | as the outcome and Xi from each matched pair as the predictors. CART outputs a
partition of covariates, which we use to define G = {s1, . . . , sG} and, consequently,
H-CACEs.

4 Run closed testing (Marcus, Peritz and Gabriel (1976)) to test statistical significance of
H-CACEs for every subset L ⊆ {1, . . . ,G} of G groups where each subset defines the

null hypothesis of the form H0L : r(d1ij )

1ij − r
(d0ij )

0ij = λ0(d1ij − d0ij ) for all g ∈ L.
Formally, run

for L ⊆ {1, . . . ,G} do
if H0L has not been accepted then

Calculate Ts(λ0) and Ss(λ0) for s = ⋃
g∈L sg

if |Ts(λ0)
Ss(λ0)

| ≤ z1−α/2 then
Accept the null hypothesis H0K : λK = λ0 for all K ⊆ L ⊆ {1, . . . ,G}

end
else

Reject H0L
end

end
end

Output: Estimated and inferential quantities for H-CACEs (e.g., effect size, confidence
interval, p-value) and novel H-CACEs from closed testing.

Algorithm 1: Proposed method to discover and test effect heterogeneity in IV with
matching

of the familywise error rate at level α when testing multiple hypotheses about H-CACEs that
were discovered by data. Because |Yi | is not a function of Z, the original distribution of Z is
preserved, and we can use the standard randomization inference null distribution to honestly
test each H-CACE discovered by CART. In fact, as noted in Hsu et al. (2015), this honesty
property is preserved for any supervised machine-learning algorithm that forms groups based
on X and |Y | as well as subsequent visual heuristics to check the algorithms’ performance.
Also, in recent work on estimating heterogeneous causal effects (Athey, Tibshirani and Wager
(2019), Chernozhukov et al. (2018), Park and Kang (2020)), the notion of “honest” inference
is often tied to sample splitting, where one subsample is used to discover different subgroups
or to estimate nuisance parameters and the other subgroup is used to test the causal effect. Our
approach does not have to use sample splitting to obtain honest inference, and Proposition 1
shows this principle formally; Web Appendix A (Johnson, Cao and Kang (2022)) shows this
principle numerically.
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PROPOSITION 1 (Familywise error rate control of Algorithm 1). Under the sharp null
hypotheses H0L in Algorithm 1, the conditional probability, given (F,Z,G), that the algo-
rithm makes at least one false rejection of the set of hypotheses is, at most, α.

We now discuss some important limitations of Proposition 1 and the proposed algorithm.
First, our algorithm’s guarantee on controlling the familywise error rate is only for testing
sharp nulls. As noted in Section 2, page 289 of Rosenbaum (2002a), testing for sharp nulls
does not necessarily imply that the true data generating process always follows the sharp
null, and, as such, the proposition makes no claims about how the true data generating pro-
cess actually looks like. Having said that, the limitation of testing a sharp null vs. a weak null
has been discussed extensively; see Sections 3 and 4 of Rosenbaum (2002b), Ding (2017),
Fogarty (2018, 2020). But a recent work by Fogarty et al. (2021) has shown that testing the
sharp null, based on our test, is an asymptotically valid test for the weak null; see Remark 1
of their Proposition 1. This suggests that the guarantees from Proposition 1 will likely hold,
even if we are testing weaker nulls with our algorithm. Second, a price we pay for using |Yi |
to achieve honest inference is that we collapse the sign of the effect, and, therefore, CART
treats subgroups with positive or negative effects equally. This is potentially problematic in
settings where two different covariate values lead to identical effects (in magnitude) but dif-
ferent in signs; see Hsu, Small and Rosenbaum (2013) for additional discussions and Web
Appendix D (Johnson, Cao and Kang (2022)) for a numerical illustration. For our Medicaid
example, if there is a partition of the covariates that leads to two identical H-CACEs in mag-
nitude, but different in signs, our algorithm may not be able to detect the two subgroups. But,
since using Medicaid is unlikely to be harmful, we do not believe this will be a significant
concern in our example, especially compared to the alternatives of not obtaining honest infer-
ence. Third, Proposition 1 does not describe the algorithm’s statistical power to detect effect
heterogeneity. The next section uses a simulation study to address power and other factors
influencing discovery of H-CACEs.

3. Simulations. We conduct a simulation study to measure the performance of the pro-
posed algorithm in two ways: (1) statistical power to test H-CACEs and (2) recovering effect
modifiers. Throughout the simulation study we vary the the compliance rate because prior
works have shown that performance of IV methods depends heavily on the compliance rate
or, more generally, on the instrument’s association to the treatment (i.e., instrument strength).
In particular, problems can arise when the compliance rate is low; see Staiger and Stock
(1997), Stock, Wright and Yogo (2002), and references therein for more details.

Following Hsu et al. (2015), each simulation setting fixes the potential outcomes r
(d0ij )

0ij

and r
(d1ij )

1ij , potential treatments d0ij and d1ij , and covariates Xij of each unit j within each of
the I = 2000 pairs. There are six preinstrument covariates, each generated from independent
Bernoulli trials with 0.5 probability of success. At most, two covariates, x1 and x2, modify
the treatment effect. That is, H-CACEs, defined by λ(x1, . . . , x6) in equation (3), depend on,
at most, two covariates, x1 and x2. Also, because both x1 and x2 are binary, there are, at most,
four different H-CACEs, defined by different combinations of binary variables λ00, λ01, λ10,
and λ11; for notational simplicity we use λx1x2 to represent equation (3). Similar to the design
of the OHIE, the data is generated under the assumption of one-sided compliance. This means
that, for every unit, the potential treatment having not received the instrument is 0, d0ij = 0.
The potential treatment, having received the instrument, d1ij , is then a Bernoulli trial with
success rate π ; π is also the compliance rate. In Web Appendix C (Johnson, Cao and Kang
(2022)) we consider the setting in which the compliance rate may depend on x1 and x2, say

via πx1x2 . Finally, the potential outcomes, having not received the instrument r
(d0ij )

0ij , are from
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a standard normal distribution r
(d0ij )

0ij ∼ N(0,1), and the potential outcomes, having received

the instrument r
(d1ij )

1ij , are a function of the H-CACE r
(d1ij )

1ij = r
(d0ij )

0ij + d1ij λx1x2 . Once all
the potential treatment and outcomes are generated, the observed treatment and outcome are
determined, based on the value of the instrument and SUTVA. Finally, the regression tree in
Algorithm 1 is estimated in R using the package rpart, version 4.1-15 (Therneau, Atkinson
and Ripley (2015)). Unless specified otherwise, we use a complexity parameter of 0.005 (half
of the default setting) and use defaults for the rest of rpart’s parameters. Our proposed method
is referred to as “H-CACE” in the results below.

For comparison, we also apply a recent method by Bargagli-Stoffi, De-Witte and Gnecco
(2019) to discover and test H-CACEs. Briefly, their method, which we refer to as “BCF-
IV” in the results below, utilizes modern tree-based methods (Athey and Imbens (2015),
Hahn, Murray and Carvalho (2020)) to estimate heterogeneous intent-to-treat (ITT) effects
and suggests different subpopulations of interest; we remark that, unlike our proposal, their
method does not use matching and uses the original, untransformed Rij inside the tree fitting
step. Then, for each subpopulation the method estimates and tests its H-CACE, using the
two-stage least square estimator. We use the bcf_iv function available on the authors’ Github
repository and use the default parameters of rpart and bcf (Hahn, Murray and Carvalho
(2020)).

3.1. Statistical power. To measure a method’s statistical power when the subgroup-
specific null hypotheses are not specified a priori, we divide the number of false null hy-
potheses rejected by the total number of false null hypotheses suggested by the method. We
refer to this rate as the true discovery rate; note that, if the number of false nulls being sug-
gested is fixed, the true discovery rate is one minus the proportion of false null hypotheses
retained.

We compute the true discovery rate at varying levels of instrument strength and four het-
erogeneous treatment settings: (a) No Heterogeneity, (b) Slight Heterogeneity, (c) Strong
Heterogeneity, and (d) Complex Heterogeneity. In setting (a) there are no effect modifiers,
resulting in one subgroup with equal treatment effects, λ00 = λ01 = λ10 = λ11 = 0.5. In set-
ting (b) there is one effect modifier x1, resulting in two subgroups with similar but different
treatment effects, λ00 = λ01 = 0.7 and λ10 = λ11 = 0.3. In setting (c) there is one effect mod-
ifier x1, resulting in two subgroups with dissimilar treatment effects, λ00 = λ01 = 0.9 and
λ10 = λ11 = 0.1. And in setting (d) there are two effect modifiers x1 and x2, resulting in three
subgroups, one with a strong effect, two with no effects, and the last group with the aver-
age effect, λ00 = 1.5, λ01 = λ10 = 0 and λ11 = 0.5. In all four settings the overall complier
average causal effect is λ = 0.5.

We repeat the simulation 1000 times for each treatment heterogeneity and instrument
strength combination. We remark that the null hypothesis is that of no treatment effect (i.e.,
λ0 = 0), and only the hypotheses consisting of pairs with λx1x2 = 0 are true null hypotheses.

Figure 1 shows the true discovery rate under four treatment heterogeneity settings. We see
that as the compliance rate (i.e., instrument strength) increases, the true discovery rate of our
method grows across all settings. In particular, our approach has the best power in the region
where the compliance rate is low, roughly under 40%. Even when the compliance rate is high,
we see that BCF-IV generally has lower power than our method across different heterogeneity
settings, especially in the No Heterogeneity, Slight Heterogeneity, and Strong Heterogeneity
settings. In the Complex Heterogeneity setting we see the true discovery rate is rather similar
between the two methods. This is because this setting has the largest discrepancies in H-
CACEs between subgroups, and, thus, it is easy for CART to correctly split on the covariates
x1 and x2. Further, with the large magnitudes of H-CACEs in this setting, the null hypothesis
tests are more easily rejected in favor of the alternative.
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FIG. 1. True discovery rate as a function of the compliance rate and heterogeneity settings. The dashed and
solid lines denote the BCF-IV procedure and our proposed algorithm, respectively.

We also take a moment to explain a counter-intuitive dip in our method’s true discovery
rate under the Strong and Complex Heterogeneity settings in Figure 1. Briefly, this drop in
the true discovery rate is due to the formation of leaves with smaller treatment effects. As
the compliance rate becomes large, these small effects begin to be get suggested by CART.
But the power to reject the null in favor of these small effects are small, and the overall
true discovery rate dips briefly. However, as the compliance rate reaches one, we see the true
discovery rate of our method begin to climb again; Web Appendix E (Johnson, Cao and Kang
(2022)) contains additional details surrounding this phenomena.

Another interpretation of this dip reflects a limitation of the true discovery rate as a metric
for statistical power in certain settings of multiple testing with hypotheses adaptively gen-
erated by tree-based algorithms. Specifically, because the true discovery rate only considers
hypotheses generated by the tree, if a tree were to not split (or rarely split) and the overall
effect is strong, there would only be one hypothesis in the denominator of the true discov-
ery rate, and the lone hypothesis would likely be rejected, leading to a true discovery rate
of one. The Strong and Complex Heterogeneity settings under low compliance rates, espe-
cially before the dip, is a reflection of this phenomena where our tree fails to split, resulting
in one single hypothesis that is eventually rejected; see Web Appendix E (Johnson, Cao and
Kang (2022)) for additional discussions. Nevertheless, as Figure 1 shows, our method con-
sistently shows a higher true discovery rate, compared to BCF-IV, across many settings, and
our method is more likely to discover true nonzero effects than BCF-IV.

3.2. False positive rate and F-score. We also assess our algorithm’s ability to predict
effect modifiers from Xij . Specifically, we say that a method predicts a variable to be an effect
modifier when the tree splits on the variable and rejects one of the hypotheses of the split’s
children. In contrast, if either: (a) the tree splits on a variable, but none of the hypotheses
defined by the split is rejected, or (b) the tree does not split on the variable, the variable is not
predicted to be an effect modifier. For example, for a given tree that splits only on covariate
x1, if at least one of the subgroup-specific null hypotheses is rejected, x1 is predicted to be an
effect modifier. Instead, if none of the subgroup-specific null hypotheses are rejected, then x1
as well as other variables not selected by the tree are not predicted to be effect modifiers. We
then use the F-score and the false positive rate (FPR) common in the classification literature to
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TABLE 1
Binary classification table for effect modifiers

True condition

Method’s prediction Variable is an effect modifier Variable is not an effect modifier

Predicted as effect modifier True Positive (TP) False Positive (FP)
Not predicted as effect modifier False Negative (FN) True Negative (TN)

measure a method’s ability to correctly predict effect modifiers. The F-score is the harmonic
mean of recall and precision, or, alternatively,

F = TP

TP + 0.5(FP + FN)
,

where TP stands for true positives, FP stands for false positives and FN stands for false
negatives; see Table 1 for details. The F-score ranges from zero to one with a value closer to
one implying greater accuracy. The FPR is defined as FPR = FP/(FP + TN) and ranges from
zero to one, with a value close to zero being preferred.

We use the same four heterogeneity settings of: (a) No Heterogeneity, (b) Slight Hetero-
geneity, (c) Strong Heterogeneity, and (d) Complex Heterogeneity. Figure 2 shows the results
of the F-score and FPR from our proposed algorithm and BCF-IV. Across the four settings
our proposal has a false positive rate of nearly zero, never falsely declaring a variable to be an
effect modifier. In contrast, BCF-IV has a larger false positive rate, declaring variables to be
effect modifiers when they do not actually modify the compliers’ effect. For example, in set-
ting (a), without any effect modifiers, BCF-IV has a false positive rate hovering above 50%,
whereas our method has a false positive rate of 0%. In other words, BCF-IV falsely declared
at least one of the six covariates as an effect modifier roughly 50% of the time, whereas our
method never declared any of the six covariates as effect modifiers.

However, our algorithm’s F-score is generally smaller than that from BCF-IV, unless the
compliance rate is high and the effect heterogeneity is strong. In particular, when the compli-

FIG. 2. F-score and false positive rate as a function of compliance rate and heterogeneity settings. The solid
lines with circles denote our proposed algorithm, and the dashed lines with triangles denote BCF-IV.
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ance rate is roughly under 50% or if two subgroups have similar effect sizes, our method
cannot predict the effect modifiers as well as BCF-IV. But, when the compliance rate is
above 50% and the effect heterogeneity is strong, our algorithm has a similar F-score as
BCF-IV. Overall, the low F-score is a price that our algorithm pays for making sure that
the FPR is small. In contrast, BCF-IV has a higher F-score but pays a price with a high
FPR.

In the Supplementary Material Web Appendix C, D, and F (Johnson, Cao and Kang
(2022)), we conduct additional simulation studies where we: (i) vary the compliance rate by
covariates, (ii) allow H-CACEs to be equal in magnitude but opposite in direction to measure
the effect of using |Yi | in our algorithm, and (iii) demonstrate the two methods in a simu-
lation that closely resembles the data from the OHIE, where there are more than two effect
modifiers. To summarize the results, for (i) and (iii) the story is very similar to what’s pre-
sented here, where our method has high true discovery rate, low FPR, and F-score, compared
to those from BCF-IV. For (ii), as expected, we find that our method has a low true discovery
rate, FPR, and F-score. But, as soon as the magnitudes of the H-CACEs are dissimilar, our
method returns to the case presented here.

3.3. Takeaways from the simulation study. Overall, the simulation study shows that our
algorithm has large statistical power and low false positive rates across all settings. In con-
trast, the BCF-IV algorithm has low power and produces large FPRs, especially when no
effect heterogeneity exists in the data; in other words, BCF-IV often falsely declares a vari-
able to be an effect modifier. But our algorithm generally has a low F-score, compared to that
from BCF-IV, except in regimes where the effect heterogeneity is strong and the compliance
rate is high.

We remark that the simulations studies do not encapsulate every type of effect heterogene-
ity, and it is possible that our method may suffer in certain settings. In particular, as discussed
above, because our method tends to be conservative in predicting effect modifiers in order
to guard against discovering spurious heterogeneity, we suspect that if there are many effect
modifiers compared to spurious effect modifiers, our method may not be able to detect all
of the effect modifiers. This suspected degradation in performance was not observed when
we had five effect modifiers among 15 potential effect modifiers in our simulation study that
mimicked the data from the OHIE. But further investigation is warranted, especially if the
number of effect modifiers and/or the number of covariates is high dimensional.

We also remark that the simulation results in Sections 3.1 and 3.2 do not necessarily con-
tradict each other. Roughly speaking, the result in Section 3.1 concerns the ability for algo-
rithms to have high statistical power, whereas the result in Section 3.2 concerns the ability
for algorithms to predict variables. An algorithm like BCF-IV could liberally predict many
effect modifiers, generally leading to a high F-score, but a high FPR. Also, the power to test
the nulls, suggested by the predicted effect modifiers, could be low since the selected vari-
ables will define many (likely small) subgroups. In contrast, an algorithm like ours could
conservatively predict effect modifiers, leading to a small F-score but a low FPR. Also, the
power to test the nulls suggested by the predicted variables could be high since most of the
selected variables will be effect modifiers. In short, our method is somewhat cautious but
certain, whereas BCF-IV is optimistic but somewhat error-prone.

4. Analysis of the Oregon health insurance experiment.

4.1. Data description. We use our method to analyze the heterogeneous effects of Med-
icaid on the number of days an individual’s physical or mental health prevented their usual
activities in the past month. In brief, the OHIE collected administrative data on hospital dis-
charges, credit reports and mortality, survey data on health care utilization, financial strain,
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FIG. 3. Covariate balance as measured by difference in means of the covariates between the treated and control
groups, before and after matching.

overall health, and prerandomization demographic data. There were 11,808 lottery winners
and 11,933 lottery losers in the publicly available survey data for a total sample size of 23,741
individuals; see Finkelstein et al. (2012) for details.

We matched on the following demographic, prerandomization variables recorded by
Finkelstein et al. (2012): sex, age, whether they preferred English materials when signing
up for the lottery, whether they lived in a metropolitan statistical area (MSA), their educa-
tion level (less than high school, high school diploma or General Educational Development
(GED), vocational or two-year degree, four-year college degree or more), and self-identified
race (as the individual reported in the survey). Since some of the covariates had missing data,
namely, selfidentifying as Hispanic or Black and their level of education, we also matched
on indicators of their missingness; see Section 9.4 of Rosenbaum (2010) for details. We used
the R package bigmatch, version 0.6.1 (Yu (2019)) with an optimal caliper and a robust rank-
based Mahalanobis distance to generate our optimal pair match. Figure 3 shows covariate
balance before and after matching.

For the majority of covariates, the matching algorithm did little to change the absolute
standard differences between lottery winners and losers. This is not surprising, given that the
lottery was randomized. However, the indicator for missingness in education, self-identified
American Indian, and Black were made to be more similar after matching. An absolute stan-
dardized difference of 0.25 is deemed acceptable (Rubin (2001), Stuart (2010)), which our
covariates satisfied after matching.

4.2. Instrument validity. Before we present the results of our analysis using the proposed
method, we discuss the plausibility of the lottery as an instrument. The lottery is randomized
which ensures that the instrument is unrelated to unmeasured confounders and satisfying
(A3). Winning the lottery, on average, increased enrollment of Medicaid by 30% (Finkelstein
et al. (2012)), satisfying (A1). Assumption (A4), in the context of the OHIE, states that there
are no individuals who defy the lottery assignment to take (or not take) Medicaid if they lost
(or won) the lottery. This is guaranteed by the design of the lottery, since an individual who
lost the lottery cannot have access to Medicaid. However, we remark that Finkelstein et al.
(2012) measured the treatment as whether or not an individual has ever had Medicaid during
the study, and a few individuals were already enrolled in Medicaid before the lottery winners
were announced. Finally, assumption (A2) is the only assumption that could potentially be
violated since individuals were not blind to their lottery results. Theoretically, this allowed
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FIG. 4. Results of our proposed method on the effect of enrolling in Medicaid on the number of days physical
or mental health did not prevent usual activities. Here, less educated refers to pairs with, at most, a high school
diploma or GED and more educated refers to pairs with a higher education. Also, positive effects are beneficial to
individuals. Solid lined boxes denote hypothesis tests that were rejected, and dashed lined boxes denote hypothe-
ses that were retained by closed testing. Within each box the subgroup-specific estimated H-CACE λ̂s , its 95%
confidence interval, sample size of pairs Is , and the estimated compliance rate π̂s are provided.

lottery losers to seek other health insurance or lottery winners to make less healthy decisions
since they’re now able to be insured. These changes in an individual’s behavior could affect
his/her outcome regardless of his/her treatment and thus may violate (A2).

4.3. Analysis and results. We run Algorithm 1 and present the results in Figure 4. We
remark that we used rpart in R with a complexity parameter of 0 and maximum depth of 4.
The depth of the tree was chosen by forming trees of larger depth and then pruning back until
a more interpretable tree was obtained. For each node of the CART, we tested whether or not
there is an effect of enrolling in Medicaid H0s : λs = 0. In Figure 4 a solid lined box denotes
a null hypothesis that was rejected, and a dashed lined box denotes a null hypothesis that was
retained, both by the closed testing procedure. Each node contains its estimated H-CACE λ̂s ,
95% confidence interval, the number of pairs Is , and the estimated compliance rate π̂s . Here,
a positive H-CACE implies a decrease in the number of days where the individual’s physical
and mental health prevented them from their usual activities, and a negative value implies
an increase; in short, positive effects are beneficial to individuals. Also, some nodes imply a
significant effect of Medicaid at level 0.05 but are enclosed in a dashed lined box. This is due
to the closed testing procedure; an intersection of hypotheses containing the node in question
was not rejected, and so any hypotheses in this intersection could not be rejected.

From Figure 4 we can see evidence of heterogeneous treatment effects among the complier
population. Specifically, Medicaid had a strong effect: (1) among complying non-Asian men
over the age of 36, who prefer English, as well as (2) complying individuals younger than
36, who prefer English, and do not have more than a high school diploma or GED. Interest-
ingly, among non-Asians over the age of 36 and who prefer English, females did not benefit
from Medicaid as much as males, even though the female subgroup was larger than the male
subgroup and the compliance rates between the two subgroups were similar.

More generally, while there is some variation in the compliance rates between groups, most
of them are minor and hover between 25% to 30%. The minor variation suggests that, while
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FIG. 5. Illustration of closed testing to test the null hypothesis H0s4 for all j = 1,2 and i ∈ s4. Each subplot
highlights subsets required to be tested and rejected as part of closed testing.

some subgroups are more likely to be compliers than others, most of the effect heterogeneity
is likely driven by the variation in how the treatment differentially changes the response
across subgroups; a bit more formally, most of the effect heterogeneity is likely arising from
the numerator of the H-CACE rather than the denominator of the H-CACE.

4.4. An example of closed testing. To better illustrate the closed testing portion of Algo-
rithm 1, we walk through an example of the testing procedure, based on the OHIE. As seen
in Figure 4, CART produced a tree with G = 8 leaves. Now, consider testing whether there
is evidence of a heterogeneous effect of Medicaid for young individuals who prefer English
and have at most a high school diploma or GED, that is, node s4 in Figure 5 and L = {4}
using Algorithm 1’s notation. The null hypothesis of interest would be H0s4 , for all j = 1,2
and i ∈ s4. We then test and reject all of the hypothesis tests containing group s4. For ex-
ample, we need to test the null hypothesis concerning the ancestor of s4, say the subgroup
of individuals who are younger than 36 and have, at most, a high school diploma or GED,
denoted as L′ = {3,4}; see part (a) of Figure 5. Additionally, we need to test and reject all
of the supersets containing L′ which include but are not limited to the overall set {1, . . . ,8},
{1, . . . ,4}, and {3,4,6}. If every superset hypothesis and H0s4 are rejected at level α, we can
declare the effect in node s4 to be significant, and by Proposition 1 the familywise error rate
is controlled at α. Repeating this process for every node in the tree will give the results in
Figure 4.

5. Discussion. In this paper we propose a method, based on matching, to detect effect
heterogeneity using an instrument. Under the usual IV assumptions our method discovers
and tests heterogeneity in the complier average treatment effect by combining matching,
CART, and closed testing, all without the need to do sample splitting. The latter is achieved
by taking the absolute value of the adjusted pairwise differences to conceal the instrument
assignment, and this allows our proposed method to control the familywise error rate. We
also conducted a simulation study to examine the performance of our method and compared
it to a recent method referred to as BCF-IV. Our method was then used to study the effect of
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Medicaid on the number of days an individual’s physical or mental health did not prevent their
usual activities where we used the lottery selection as an instrument. We found that Medicaid
benefited complying, older, non-Asian men who selected English materials at lottery sign-
up and for complying, younger, less educated individuals who selected English materials at
lottery sign-up.

We conclude by making some recommendations about how to properly use our algorithm
in practice, especially in light of existing approaches. First, as explained in the Introduction,
when there is noncompliance, exploring heterogeneity in the ITT alone with existing meth-
ods may provide an incomplete picture of the nature of the treatment effect. Relatedly, in
settings where unmeasured confounding is unavoidable, our method based on an instrument
is a promising way to discover and test effect heterogeneity.

Second, as alluded to in Section 3.3, the simulation results suggest that our algorithm
tends to be conservative in discovering novel effect modifiers, reporting effect modifiers only
if there is strong evidence for heterogeneity, and minimizing prediction of spurious effect
modifiers. In other words, investigators can be reasonably confident that effect heterogeneity
exists among the variables declared by our algorithm as “real” effect modifiers. But those
variables that are not predicted by our algorithm may also be true effect modifiers, and in
such cases, investigators may need additional samples to detect them using our method. In
contrast, BCF-IV tends to be anticonservative, reporting more effect modifiers, some of which
may be spurious effect modifiers. While this may be advantageous in situations where there
is slight effect heterogeneity or where exploration for effect heterogeneity is encouraged,
investigators may not feel as confident about whether the detected effect heterogeneity truly
exists.

Third, how our method performs in settings with potentially high dimensional effect mod-
ifiers is not fully understood. In particular, while our method performed well when the struc-
ture of effect heterogeneity grew more complex or when the number of effect modifiers were
five out of 15 potential effect modifiers, the simulations did not consider the setting of mod-
erate to high dimensional effect modifiers, and future research is warranted.

Fourth, most recent approaches on effect heterogeneity, notably Chernozhukov et al.
(2018), utilize sample splitting to achieve honest inference (i.e., type I error rate control),
whereas our method uses absolute value of matched pairs to achieve it; note that both meth-
ods theoretically allow for a large class of machine learning methods to detect heterogeneous
treatment effects, even though ours focused on CART for its simplicity and interpretability.
While our method uses the full sample for both discovery and honest testing, compared to
those based on sample splitting, one of the caveats of our method is that our method may not
be able to detect subgroups with identical effect sizes but in opposite signs. Overall, every
algorithm for effect heterogeneity carries some trade-offs, and we urge investigators to un-
derstand their strengths and limitations to solidify and strengthen causal conclusions about
effect heterogeneity in IV studies.
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SUPPLEMENTARY MATERIAL

Supplement to “Detecting heterogeneous treatment effects with instrumental vari-
ables and application to the Oregon health insurance experiment” (DOI: 10.1214/21-
AOAS1535SUPPA; .pdf). The supplementary materials contain additional simulation studies
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and the proof of Proposition 1. Web Appendix A numerically demonstrates the honest si-
multaneous discovery and inference of Algorithm 1. Web Appendix B details the proof of
Proposition 1. Web Appendix C is a simulation study demonstrating the performance of our
algorithm when heterogeneity exists in both the treatment effect and compliance rate. Web
Appendix D is a simulation study demonstrating the performance of the algorithm when ef-
fects are equal in magnitude but opposite in direction. Web Appendix E provides additional
details surrounding the counter-intuitive dip in the true discovery rate observed in the sim-
ulations and drawbacks of the true discovery rate as a measure of statistical power. Web
Appendix F is a simulation study based off the OHIE to demonstrate the performance of the
algorithm under varying treatment effect magnitudes.

R code (DOI: 10.1214/21-AOAS1535SUPPB; .zip). R code used to conduct simulation
studies and carry out analyses on the publicly available OHIE data.
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