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Abstract

It is well known that deep neural networks (DNNs) pro-
duce poorly calibrated estimates of class-posterior prob-
abilities. We hypothesize that this is due to the limited
calibration supervision provided by the cross-entropy loss,
which places all emphasis on the probability of the true
class and mostly ignores the remaining. We consider how
each example can supervise all classes and show that the
calibration of a C-way classification problem is equivalent
to the calibration of C(C —1)/2 pairwise binary classifi-
cation problems that can be derived from it. This suggests
the hypothesis that DNN calibration can be improved by
providing calibration supervision to all such binary prob-
lems. An implementation of this calibration by pairwise
constraints (CPC) is then proposed, based on two types of
binary calibration constraints. This is finally shown to be
implementable with a very minimal increase in the complex-
ity of cross-entropy training. Empirical evaluations of the
proposed CPC method across multiple datasets and DNN
architectures demonstrate state-of-the-art calibration per-
formance.

1. Introduction

Deep neural networks (DNNs), especially deep convo-
lutional neural networks, have enabled significant advances
in computer vision [17,23]. While achieving state-of-the-art
accuracy in various tasks such as image recognition [8,43]
and segmentation [25,41], DNNs do not excel at estimat-
ing the confidence of their predictions. Although they out-
put class-posterior probabilities via softmax regression, it
is well known that these predictive probabilities are usually
poorly calibrated. Frequently, DNNs tend be overconfident,
assigning high confidence to incorrect predictions [5,6,34].

For many real-world applications (e.g. weather forecast-
ing [3,29,30], medical diagnosis [13]), it is important that
a classifier output not only accurate predictions but also
sound estimates of confidence in these predictions. This
is known as calibration. For a calibrated classifier, a poste-
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Figure 1. Efficiency of CPC supervision for calibration. Left: Un-
der classic cross-entropy training, each training example only pro-
vides significant supervision to the posterior probability of its class
label. Right: Under CPC, each training example provides signifi-
cant supervision to the probabilities of all classes.

rior probability of p for a given class, implies that selecting
the class will result in the correct classification p x 100%
of the time. Consider, for example, a medical diagnosis
setting where a diagnostic accuracy above 95% is required
for any system to be considered “human equivalent”. A di-
agnostic classifier with accuracy of 80% fails to meet this
criterion. However, if the classifier can accurately predict
the posterior probabilities associated with its predictions,
it can still be useful: Predictions with posterior probabili-
ties above 95% can be accepted automatically, and only the
examples of predictions with lower confidence need to be
routed to human doctors. Since all the “easy” cases tend
to be in the first class, this can reduce the need for human
inspection to a relatively small batch of “hard” examples,
saving significant time and expense. For these reasons, the
probability calibration of DNNGs is attracting increasing at-
tention in the computer vision and machine learning com-
munities [18,19,21,27,35,48,52,56].

Various methods have been proposed to calibrate DNN
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Figure 2. Histograms of the binary posterior probabilities [3;;(x)
produced by a ResNet-101 on CIFAR-100. Top: Examples that
belong to the class j and are assigned to the class i. Bottom: Ex-
amples whose labels are neither class ¢ nor j.

probability estimates in the literature, including but not
limited to post-processing [6, 38], Bayesian approxima-
tion [2, 5], regularization [28,47], and deep ensemble [22].
These methods have different trade-offs between calibra-
tion performance, memory, and computation complexity,
with no clear winner when all factors are considered. Their
performances also tend to degrade drastically under data
shifts [35], i.e. when test examples are corrupted or per-
turbed [9], a common occurrence for practical applications.
Hence, there is a need for robust calibration strategies of
low memory footprint and computational complexity.

In this work, we consider this problem, aiming to derive
methods that regularize the training of a DNN to encour-
age better calibration. We address the multiclass classifica-
tion problem of label set )V = {1,2,---,C} and hypoth-
esize that poor calibration is due to the inefficient super-
vision provided by the cross-entropy loss during network
training. By establishing as the learning target for each ex-
ample the one-hot code of the associated class label, this
loss encourages myopic training algorithms, which place all
emphasis on the posterior probability of the true class and
mostly ignore the posterior probabilities of the remaining
classes. This is illustrated in Figure 1 where, under classic
cross-entropy training, each training example only provides
explicit supervision to the posterior probability of the class
of the example. While very effective in terms of classifi-
cation accuracy, this is very inefficient supervision for the
purposes of calibration.

To increase the amount of calibration supervision pro-
vided per training example, we consider how an exam-
ple can supervise the classes other than that of its true la-
bel. We note that cross-entropy training does this through
the constraint that class-posterior probabilities must sum

to 1. Hence, a high probability for the true class implies
low probabilities for all the alternative classes. This con-
straint is quite strong for binary classification problems
(C = 2), where there is only one alternative class, but de-
grades as C' increases, since it is diffused by C'—1 alter-
native classes. This suggests the hypothesis that calibration
can be strengthened by providing calibration supervision to
all class pairs, namely the C'(C — 1)/2 binary classification
problems that can be derived from ). We denote this as
calibration by pairwise constraints (CPC). In this way, as
illustrated in Figure 1, each training example can provide
supervision to the posterior probabilities of all classes, sig-
nificantly increasing the degree of supervision over that of
cross-entropy training.

In this paper, we start by showing that the proposed
CPC has strong theoretical grounding, in that the multiclass
posterior probability estimators {m,},cy are calibrated if
and only if all the derived binary posterior probability es-

. .
timators {ﬂij = i iijey
vides a simple explanation as to why vanilla DNNs are
poorly-calibrated, which is illustrated in Figure 2. The fig-
ure shows that the binary posterior estimators {f;;};; of
a cross-entropy DNN are poorly calibrated in two aspects.
First, as shown at the top, when binary estimators that in-
volve the true class y make incorrect predictions, these pre-
dictions tend to have high confidence. Second, for binary
problems that do not involve the true class, estimators 3;;
(y # 1, j) mostly assign examples to either class 4 or j with
high confidence, instead of producing uncertain predictions.

We then argue that the calibration efficiency of cross-
entropy training of a multiclass DNN can be increased by
calibrating the binary posterior estimations {/3;; }i;, using
losses of two types. For class pairs that include the true
class y, i.e. {(¢,7)|y € {i,j}}, the binary cross-entropy loss
is used to encourage f3;; to assign high probability to class
y and low probability to the opposite class. For the remain-
ing pairs {(¢,7)|y ¢ {¢,7}}, an alternative loss is used to
encourage ;; to give uncertain predictions, outputting the
same posterior probability for classes i, j.

We finally show that this approach of CPC can be imple-
mented with high computational simplicity. This follows
from the fact that the bulk of the computations required
by the proposed binary losses are already performed dur-
ing the standard cross-entropy training of a multiclass net-
work. In fact, we show that the additional losses can be
computed by a simple addition of C'(C' — 1)/2 sigmoid
functions at the top of the network. Hence, CPC allows
improved calibration with no increase of memory or time
complexity during test and a minor increase in training com-
plexity. Empirical evaluations show that, despite this, CPC
calibration achieves state-of-the-art calibration performance
across multiple datasets and DNN architectures. The cali-
bration gains of CPC are also shown to increase with the

are calibrated. This pro-
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number of classes and example scarcity, i.e. they are larger
for smaller training sets. These observations confirm that
CPC increases the rate of calibration supervision provided
by each example.

Overall, this work makes five contributions. The first
is the hypothesis, illustrated in Figures 1 and 2, that the
limited supervision provided by the cross-entropy loss for
calibration is an important reason for the poor calibration
performance of DNNs. The second is the hypothesis that
the problem can be addressed through the proposed CPC.
The third is theoretical evidence in support of this hypoth-
esis, by showing that the multiclass problem can only be
calibrated if all derived binary classifiers are. The fourth
is showing that, for DNNs, CPC can be implemented with
minimal complexity. Finally, it is shown that training with
CPC indeed enables significant improvements in calibration
performance, is complementary to existing approaches such
as deep ensembles, and enables state-of-the-art calibration
performance for several network architectures and datasets.

2. Related Works
2.1. Probability Calibration of DNNs

Several works have observed that standard training does
not produce calibrated DNNs [5,6,34]. Various approaches
have been proposed to address this problem.

Post-processing approaches: The calibration of binary
classifiers has been long studied. Methods such as his-
togram binning [53], isotonic regression [54], Bayesian bin-
ning into quantiles [31], and Platt scaling [38] have been
proposed prior to the introduction of deep learning. Most
of these methods fix the classifier and learn a calibration
map by hold-out validation, a posteriori. Most can be ex-
tended to the multiclass setting and combined with DNNss.
Among them, temperature scaling, the simplest extension
of Platt scaling, has been shown the most effective in eval-
uations [0].

Regularization: A few DNN regularization techniques
can also improve confidence calibration, although this was
not their original goals. Two examples are label smooth-
ing [28] and mixup [47] which are originally proposed
to improve generalization [37, 46] and adversarial robust-
ness [55], respectively. In addition, several regularization
losses specifically designed for calibration have been pro-
posed [15,52].

Bayesian DNNs: Bayesian neural networks are known
for their ability to express uncertainty about their predic-
tions [26, 32]. While exact Bayesian learning and infer-
ence are intractable for DNNs, many approximation meth-
ods, e.g. Monte Carlo dropout [5] or Bayes by backprop
[2], have been proposed [14,45]. [5] has shown that DNN

dropout [44] can be cast as approximate Bayesian infer-
ence. [42] generalized this framework to other stochastic
inference techniques such as skipping layers [11]. [2] pro-
posed to use stochastic variational inference as an approxi-
mate Bayes approach.

Ensemble: Deep ensembles [22] average the probability
predictions of multiple independently trained DNNs. This
was shown to outperform many single-DNN methods dis-
cussed above, in terms of both classification and calibration
performance [35]. Its major shortcoming is that the mem-
ory and time complexity linearly scale with the ensemble
size. Several efficient ensemble methods have been pro-
posed [49,50]. [24] proposed to train a single DNN knowl-
edge distillation [ 10] from a deep ensemble.

2.2. Reducing Multiclass to Binary

In machine learning, a classical approach to multi-class
classification is reducing the problem to C(C' —1)/2 bi-
nary problems, since the binary problems are usually much
easier to solve [1,7]. The binary predictions can be com-
bined by simply voting [4] or other pairwise coupling al-
gorithms [40, 51]. This strategy has been successfully em-
ployed for multiclass classification using support vector ma-
chines [51], AdaBoost [1], and shallow neural networks
[39]. However, this strategy has rarely been employed for
complicated models like DNNs, partly because its complex-
ity quadratic in C can be prohibitive for DNNs.

3. Calibration by Pairwise Constraints

In this section, we first discuss the relationships between
the probability calibration of multiclass and pairwise binary
classification. We then introduce the approach of CPC.

3.1. Multiclass DNNs

A multiclass DNN is a mapping from the feature space
X into a set of labels Y = {1,...,C}. The DNN performs
classification in three stages. The first is a feature extractor
or embedding v : X — V C R? which is parameterized by
6 and maps an observation x € X’ into a d-dimensional fea-
ture space V. This is typically achieved through a sequence
of layers combining linear and non-linear transformations.
The second is estimating the class-posterior probability dis-

tribution by a softmax regression
6<wy vv(x)>+b?/

SO efwrv )+

my (x) = P(ylx; 0) =

6]

where w,/b, is the classification weight/bias for class y,
0 = {0} U{wy, by }5_,. and (-, -) denotes the dot product.
In what follows, we will omit the dependence of 77? (x) on
O or x, for the sake of simplicity, whenever convenient. The
third is the Bayes decision rule

y(x) = arg max ﬁ? (x). 2)
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A DNN is said to be calibrated if it produces accu-
rate estimates of the class-posterior probability distributions
m = (71,...,7c). More precisely, the class-posterior for a
given observation x is said to be calibrated if

mi(x) =7 (x) Vi, 3)
where 7 is the optimal estimator such that
:[Exvy []ly=1‘ﬂ-;((x) = p] =D, vp S (Oa l]a (4)

where 1. is an indicator function that is 1 if its argument is
true, and O otherwise. The DNN is perfectly calibrated if
(3) holds for all x € X.

3.2. Multiclass and Pairwise Binary Calibration

The set of classes ) also defines many one-versus-one
(1v1) classification problems. These are binary classifica-
tion problems opposing class i to class j for all 7+ # j. Let
B;; be the classification problem opposing class i to class j
and B(Y) = {B,; }:; be the set of all such problems derived
from the set ). The class-posterior probabilities of the 1v1
problem B;; are then given by

Bij = P(y =ily =iory = j,x)

__ Ply=ix)
Ply=iory = jx)
Uy
= =1- B 5
. B (5)

The 1v1 problem is calibrated if

*

Bij = Bi; = A (6)

* *
m; +7rj

The following result shows that the binary calibration
problems provide alternative constraints for the calibration
of the multiclass problem.

Lemma 1. The calibration of all binary problems
{Bi;(Y)}ij derived from the class set ) is a necessary
and sufficient condition for the calibration of the multiclass
problem defined by ).

Proof. Proof of necessity: Assume that there exists one bi-
nary problem B;; which is not calibrated. Using 5;; =
1—Bi;, we have B;; # f3;; and 3;; # B3};. It follows that

By # B
() (%]
*
Yr 7& T,
T + 75 m + 7rj*
* * * *
LT S T S I (O
* *
T #F T
*
i T}
— # L
j iy

from which it cannot be true that both m; = 7} and 7; = 77
hold. Hence the multiclass posterior distribution 7 cannot
be calibrated. It follows that 7 is calibrated only if all binary
problems are calibrated.

Proof of sufficiency: Assume that all binary problems

are calibrated. Then 3;; = 3]}, V1, j and it follows that

Bij i .
— = —= Vi,j
Bji B
from which
L Y
7Tj 7Tj
T _ Ty
iz iz
Lm0y
7Tj 7Tj
m o= m; Vj
and the multiclass problem is calibrated.
O
3.3. Supervision Rate for Calibration
Given a training set D™ = {(x1,41), ..., (Xn,Yn)}»

the DNN parameters O are learned by minimizing the em-
pirical risk

R(L) = L(xi,y:30), (7)
=1

where L is a loss function, usually the cross-entropy loss
L(x,y;0) = —log ) (x). ®)

We hypothesize that the poor calibration of DNNs trained
in this manner is partially due to the fact that cross-entropy
training is a very inefficient form of supervision in terms of
calibration constraints. Note that (8) only provides explicit
supervision to the probability , of the class y to which x
belongs. While some supervision is implicitly provided to
the other classes through the constraint that the posterior
probabilities must sum to one, this is very diffuse, not tar-
geting any probability in particular.

Overall, as illustrated in Figure 1, the supervision rate of
cross-entropy training for calibration is, roughly speaking,
of one class per example, for a total of O(n) for the entire
dataset. Since the dilution of supervision for the posterior
probabilities of the classes other than the label y increases
with the number of classes C, our hypothesis suggests that
calibration will degrade as C' increases. Experimentally, we
have confirmed that the calibration performance of DNNs
trained under the cross-entropy loss usually degrades dras-
tically as the number of classes C increases and the number
of training examples n decreases. This is discussed in more
detail in Section 5 and Figure 4.
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4. Calibration with Pairwise Constraints

In this section, we consider how to increase the calibra-
tion supervision rate of DNN training.

4.1. Binary Discrimination Constraints

Since, from Lemma 1, calibration of the multiclass clas-
sifier is equivalent to calibration of all binary classification
problems derived from ), we propose to use these prob-
lems to increase the supervision rate for calibration of the
training process. We start by considering the problems B;;
involving the true class, i.e. y € {¢,j}. To calibrate these
problems, we resort to the binary cross-entropy loss

E};’l(x y;©) = —1,—; log f;;(x) — Ly=; log 5;:(x). (9)

Note that, for a given y, this is identical to

—log B,; = —log =~ +Tr , ify=r,
E%fl(x,y; 0) = —log Byi = —log —— ﬂ'y+7’l' , ify =7,
0, otherwise.

The entire pool of binary classifiers can be calibrated by
the addition of the 1v1 loss

1 v
:mzﬁgjl(xvy; 0)

ij

£ (x,y;0)

1 v v
=geD | 2L T 2Ll

J#y i#y

1 s
== — log Y
(C-1) j;/ Ty + 7j

(10)

14+

This loss provides explicit supervision to the probabilities
of all (C'—1) class pairs that involve 7,. We denote these
pairs as binary discrimination class pairs, and £!"! as the
binary discrimination constraints (BDC) loss. The addition
of £1*1 to the cross-entropy loss £ increases the rate of su-
pervision for calibration to O(nC).

4.2. Binary Exclusion Constraints

It remains to consider the binary problems {/5;;},; that
do not include the true label y, i.e. y ¢ {i,7}. For such
problems, the observation does not belong to any of these
two classes and the true binary posterior is unknown. In
the absence of other information, it is natural to adopt a
noninformative prior, i.e. a uniform prior

i (x) = Bj(x) = 1/2. (11)

Constraint can be included in the training by adding to the
previous losses the Kullback-Leibler divergence [20] to this

uniform prior distribution
1
LY (x,y;0) = — 5 Ly (log Bij (x) + log B (x)).
(12)

This is denoted as a binary exclusion constraint (BEC) be-
cause it identifies the two classes as not being responsible
for the example x. The BEC loss is then defined as the av-
erage of all such constraints,

1 be .
-2 %: L5 (x,y;0)
 Ligy,jty 108 Bij +108 B

2(C—1)(C—2)
D iy iy 108 T +log 5
2(0-1)(0-2)
Z#y J#yl e+ log 1+ s

= 2(C— 1)(0 2) - (13

b (x,y;0) =

This loss provides explicit supervision to the class-posterior
probabilities of all (C'—1)(C'—2) class pairs that do not in-
clude y and increases the rate of supervision for calibration
to O(nC?).

4.3. Implementation
The binary loss functions above are all composed of

terms of the form T +lh . For the softmax classifier of (1),

j

1 1
T RCTRICIETS
I+ I+ S
1
1+ 6<Wi_wj1v(x)>+bi_bg
o({wj —w;, v(x)) + b — bi)
o((wj, V(X)) + bj — (Wi, v(x)) — i)
= o(lj(x) = li(x)),

where o(u) = (1 + e *)~! is the sigmoid function and
l;(x) = (w;,v(x)) + b; is the logit computed at the input
of the softmax function at the top of the network.

Hence, the loss functions £ and £°¢ can be written as

(14)

ﬁlvl(x,y;@) =— % Zlog o(ly(x) —1;(x)), (15)
J#y
logo(l;(x
£ (x,1;0) = Zl#ua#g og )(( Cf >2) j(x))
_Z#y#zlogﬂ)((l( )) i(x)) 16

Finally, the binary calibration constraints can be enforced
by combining the two pairwise binary constraints, BDC of
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Figure 3. Training time per iteration of processing 256 224x224
images versus C' (averaged over 1000 runs on an NVIDIA A40
GPU).

(15) and BEC of (16), with the cross-entropy loss of (8) into
an overall objective

L= XL+ ML + AL (17)

where A;, A2 and A3 are nonnegative multipliers. Training
with this loss is denoted as Calibration by Pazrwzse Con-
straints (CPC). Note that, because the logits {I;(x)}_, are
already required for the computation of £, the computa-
tion of the terms {log o(l;(x) — I;(x))},; in (15, 16) has
very minimal additional complexity. This is empirically
demonstrated in Figure 3, which compares the time cost
of training DNNs with and without CPC. For C' < 512,
the additional time cost brought by CPC is less than 10%
and almost negligible. In summary, CPC enables a signifi-
cant increase in the rate of supervision for calibration, from
O(n) to O(nC?), at the cost of a very minimal increase in
training complexity.

5. Experiments
5.1. Experimental Setup
5.1.1 Datasets and Networks

CPC was evaluated on two natural image datasets, CIFAR-
10 and CIFAR-100 [16], commonly used in the calibra-
tion literature. For evaluation under dataset shift, we used
CIFAR-10-C and CIFAR-100-C [9] consisting of images
which are first extracted from the test sets of CIFAR-10
and CIFAR-100 and then corrupted by 16 different types of
distortions (with 5 levels of intensity each), such as Gaus-
sian blur and JPEG compression. To study the compatibil-
ity of CPC with different types of DNNSs, evaluations were
made with multiple DNN architectures: VGG-13, VGG-
19 [43], ResNet-34, and ResNet-101 [8]. A modern tech-
nique batch normalization [12] was added for VGG-13 and
VGG-19. Since images of CIFAR-10/100 have a low res-
olution (32x32), we set the stride of the first convolutional
layer of ResNet-34 and ResNet-101 to 1.

5.1.2 Evaluation Metrics

For any class ¢ € ), the corresponding class-posterior prob-
ability estimator 7; is perfectly calibrated if

Ey y [Ly=|mi(x) =p] —p =0,Vp € (0,1]. (18)
In practice, it is infeasible to verify if (18) holds, since
p is a continuous variable and the expectation in LHS of
(18) cannot be estimated for all values of p using a fi-
nite sample D' = {(x;,¥;)};. A popular approximate
estimation of the calibration error is to quantize the in-

terval (0,1] into M bins {I,, = (%%, ]”Vﬂ}m |» define
B, = {i|max, my(x;) € I, } as the index set of the ex-
amples assigned to I,,,, and obtain the accuracy and average

confidence of each bin as

acc(Bm ‘B,m| ZEEB: yi=arg max, my (x;)» (19)
conf(B,,) = \B | Z max my (xi), (20)

1€Bpm,

where | - | denotes the cardinality of a set. Expected calibra-
tion error (ECE) [31] and average calibration error (ACE)
[33] are then defined as

ECE = Z ID;’;'l lacc(B,,) — conf(B,,)| 1)
Mol

ACE = ) 7 18ce(Bnm) — conf(By)| (22)
m=1

and employed to evaluate calibration quality in this work.

5.1.3 Implementation Details

We implemented CPC using PyTorch [36]. All models were
trained by stochastic gradient descent (SGD), with momen-
tum of 0.9 and weight decay of 0.0005, for 200 epochs.
SGD batch size was set to be 256. Learning rate was ini-
tialized as 0.1 and decayed by 0.2 at epochs 80, 140, 180.
For each combination of dataset and network, \;, A2, and
Az in (17) were chosen by a holdout validation on the train-
ing set. For the evaluation metrics ECE and ACE, M was
set to be 20. See the supplementary material for more im-
plementation details.

5.2. Empirical Results
5.2.1 Effects of C' and n on Calibration

In the discussion above, we hypothesized that CPC in-
creases the rate of supervision for calibration. Roughly
speaking, this states that CPC increases the number of
calibration constraints per training example. This implies
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Figure 4. Expected calibration error (ECE) versus the number of classes C' and the number of training examples n. Evaluations are

averaged over 5 runs with a VGG-19 network.
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Figure 5. Histograms of the binary posterior probabilities 3;; (x)
produced on CIFAR-100, by a ResNet-101 trained with CPC. Top:
Examples that belong to the class j and are assigned to the class .
Bottom: Examples whose labels are neither class ¢ nor j.

that introducing CPC should be equivalent to using vanilla
cross-entropy training with a training set of a larger size n.
In general, it is expected that ECE will be a decreasing func-
tion of n. The addition of CPC should thus push the curve
of ECE vs n to the left. We have also hypothesized that
the weak calibration performance of vanilla cross-entropy is
due to the fact that each example mostly contributes super-
vision for the calibration of the true class probability. The
remaining probabilities only receive supervision through
the constraint that all posterior probabilities must sum to
one. Since this constraint is increasingly more diffuse as
the number of classes C' grows, ECE should increase with
C for a given n. Because CPC provides supervision to all
class-posterior probabilities, its impact should be larger as
C increases.

To validate these hypotheses, we evaluated the calibra-
tion error of DNNs as a function of C' and n. This was done
by randomly sampling C training classes and n training ex-
amples from the original training set. The resulting ECE
curves are shown in Figure 4 and confirm both hypotheses.

‘ airplane ‘ cat ‘ deer automobile

3 - |
= - |
Vanilla | bird (0.95) | dog(0.64) | horse (0.96) | truck (0.95)
CPC | bird (0.71) | dog (042) | horse (0.58) | truck (0.81)

Figure 6. Sample images and their class predictions by different
classifiers. Posterior estimations are shown in parenthesis.

First, the calibration performance of vanilla cross-entropy
training degrades drastically with the increase of C' and the
decrease of n. Second, for a fixed number of classes C,
CPC shifts the curve of ECE vs n to the left. The gains
of CPC can be drastic. For example, on CIFAR-100, CPC
training with a dataset of 10,000 images achieves better cal-
ibration than vanilla training with 50,000 images. Third, for
a given dataset of size n, CPC shifts the curve of ECE vs C'
to the right.

5.2.2 Qualitative Results

Figure 5 plots the histograms of the binary probabilities
Bij(x) of Figure 2, when the ResNet-101 is trained with
CPC. The problematic behavior of the vanilla DNN in Fig-
ure 2 has been largely alleviated. The network assigns much
much lower confidences to its mistakes and more uniform
probabilities to the classes other than the true label. This is
a typical plot for CPC trained networks across all architec-
tures and datasets considered in this work. A few misclassi-
fied images sampled from CIFAR-10 are shown in Figure 6.
With CPC, varying degrees of decrease in estimated class-
posterior probabilities associated with the incorrect predic-
tions are observed.

5.2.3 Comparison to the State-of-the-art

CPC was compared to several popular single-model calibra-
tion baselines: vanilla DNN, temperature scaling [6], MC
dropout [44], label smoothing [28,46], and mixup [47,55].
For evaluation of MC dropout on ResNet-34 and ResNet-
101 which do not use dropout, we inserted a dropout layer
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Figure 7. Calibration and classification performance of different methods on VGG-13 and CIFAR-10 under different levels of data shift.
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Figure 8. Comparison of the performance of deep ensembles with and without CPC on VGG-19 and CIFAR-10.

between the feature extractor and the classifier.

Figure 7 summarizes the calibration and classification
performance of the different methods for VGG-19 on the
CIFAR-10 dataset. In this figure, the comparison is lim-
ited to single-model approaches, which require a single net-
work during inference. Due to space limitations, the results
of other combinations of network architecture and dataset
are provided in the supplementary material. Some conclu-
sions can be drawn from the figures. First, CPC always
achieves accuracy comparable with the other methods. Sec-
ond, CPC has the best calibration performance among all
single-model methods on both datasets, for almost all net-
work architectures. For many architectures and metrics, the
gains can be sizeable.

5.2.4 Deep Ensemble with CPC

It is well known that calibration performance can be boosted
by using a deep ensemble, i.e. an ensemble of independently
trained DNNs. This tends to improve both classification
accuracy and calibration performance at the cost of more
expensive inference in terms of both memory and computa-
tion. CPC is complementary to deep ensembles, since it can
be used to calibrate each of the networks in the ensemble.
To investigate the benefits of CPC for deep ensembles, we
considered ensembles of size 3 and compared an ensemble
of vanilla DNNs to an ensemble of DNNs trained with CPC.

The results of these experiments are summarized in Figure
8. It is shown that deep ensembles with CPC achieve com-
parable accuracy and better calibration than vanilla deep en-
sembles.

6. Conclusion

We considered the problem of probability calibration of
DNNSs. We first showed that the calibration of a C-way clas-
sifier is equivalent to the calibration of C'(C'—1)/2 pairwise
binary classifiers. In light of this, we proposed two pairwise
calibration constraints that increase the calibration supervi-
sion rate. This was shown to enable state-of-the-art proba-
bility calibration performance. In the future, we will investi-
gate the possible limitations of our method, such as whether
the complexity of proposed constrains O (nC?) will become
an issue for super large C.
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