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ABSTRACT

We construct a physically-parameterized probabilistic autoencoder (PAE) to learn the intrinsic di-
versity of type Ia supernovae (SNe Ia) from a sparse set of spectral time series. The PAE is a two-stage
generative model, composed of an Auto-Encoder (AE) which is interpreted probabilistically after train-
ing using a Normalizing Flow (NF). We demonstrate that the PAE learns a low-dimensional latent
space that captures the nonlinear range of features that exists within the population, and can ac-
curately model the spectral evolution of SNe Ia across the full range of wavelength and observation
times directly from the data. By introducing a correlation penalty term and multi-stage training
setup alongside our physically-parameterized network we show that intrinsic and extrinsic modes of
variability can be separated during training, removing the need for the additional models to perform
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magnitude standardization. We then use our PAE in a number of downstream tasks on SNe Ia for
increasingly precise cosmological analyses, including automatic detection of SN outliers, the generation
of samples consistent with the data distribution, and solving the inverse problem in the presence of
noisy and incomplete data to constrain cosmological distance measurements. We find that the optimal
number of intrinsic model parameters appears to be three, in line with previous studies, and show that
we can standardize our test sample of SNe Ia with an RMS of 0.091 ± 0.010 mag, which corresponds
to 0.074 ± 0.010 mag if peculiar velocity contributions are removed. Trained models and codes are
released at github.com/georgestein/suPAErnova.

1. INTRODUCTION

Type Ia supernovae (SNe Ia) are excellent probes of
cosmic history, leading to the discovery of the accelerat-
ing expansion of the universe (Riess et al. 1998; Perlmut-
ter et al. 1999). Their cosmological utility emerges from
the high degree of similarity between each SN Ia, and dif-
ferences in their luminosity have been shown to strongly
correlate with observed spectro-temporal features. As
such, they can be used as “standardizable candles” to
infer the relative distances to them through a measure-
ment of their fluxes, which alongside a measurement of
their redshift allows for the expansion history of the uni-
verse to be inferred (Riess et al. 1998; Perlmutter et al.
1999; Betoule et al. 2014; Scolnic et al. 2018).
The limiting factor in using SNe Ia for increasingly

precise cosmological analyses is a detailed understanding
of their spectral diversity and evolution, which cannot
be modelled from first principles to high enough accu-
racy. Thus the field relies on data-driven models, which
have uncovered a number of well-known relations be-
tween SNe Ia features and luminosity, including the cor-
relation between the peak luminosity of a SN Ia and the
light curve decrease time (brighter-slower e↵ect; Phillips
1993), and the dependence of the peak luminosity on
color (the brighter-bluer e↵ect Riess et al. 1996; Tripp
1998). These behaviors are captured in conventional
light curve fitting routines such as SALT2 (Guy et al.
2007), MLCS2k2 (Jha et al. 2007), and SNooPy (Burns
et al. 2011), and their associated standardization param-
eters.
While these e↵ects correlate with a high degree of

spectral variation, they are insu�cient to fully account
for the detailed di↵erences between spectral and tempo-
ral features of di↵erent SNe Ia. To try to understand
spectral behavior in more detail, collections of SN Ia
spectra (e.g., Matheson et al. 2008; Bailey et al. 2009;
Silverman et al. 2012b; Folatelli et al. 2013; Stahl et al.
2020b) have been used to examine the strengths, ratios,
and velocities of specific spectral features (e.g., Nugent
et al. 1995; Folatelli 2004; Branch et al. 2006; Arsenije-
vic et al. 2008; Bailey et al. 2009; Folatelli et al. 2010;
Foley et al. 2011; Blondin et al. 2012; Silverman et al.
2012a; Folatelli et al. 2013; Wang et al. 2013) and cor-

relate these with SNe Ia brightness, color, and decline
rate.
With the advent of full SN Ia spectral time series

(Aldering et al. 2020) or their virtually-constructed
analogs (Siebert et al. 2019; Stahl et al. 2020b), it has
become possible to study the full spectro-temporal be-
havior of SNe Ia. Examples include the first construc-
tion of a spectral metric space (Sasdelli et al. 2015),
Gaussian Process twinning (Fakhouri et al. 2015), ex-
pectation maximization factor analysis (Saunders et al.
2018), spectral feature factor analysis (Léget et al.
2020), a SN Ia autoencoder (Sasdelli et al. 2016) hi-
erarchical Bayesian spectro-temporal modeling (Mandel
et al. 2020), deep learning (Stahl et al. 2020a), and
the non-linear Twins Embedding space of Boone et al.
(2021a,b).
Such models must be able to account for both extrin-

sic and intrinsic modes of spectral diversity. Intrinsic
e↵ects result from object-to-object di↵erences between
supernovae explosions, while extrinsic e↵ects are di↵er-
ences caused by physical processes external to the su-
pernovae system. Examples of extrinsic e↵ects include
the amount of Galactic and extra-galactic dust along
the sightline to the object (and hence extinction), and
the peculiar velocity of the supernovae with respect to
our observational rest frame, which should therefore be
uncorrelated with the intrinsic properties of the SN Ia.
Depending on the specific empirical model, they can be
used for applications including magnitude standardiza-
tion, anomaly detection, and uncertainty estimates.

1.1. Empirical modelling of SNe Ia

After the initial explosion a supernovae continues to
brighten until it reaches a peak and begins to fade, with
the observable life-cycle (for the purpose of this work)
taking on the order of ⇠50 days. Accurately modelling
this supernovae luminosity as a function of time is chal-
lenging due to both the small number of spectroscop-
ically observed SNe Ia and the highly irregular time
sampling of spectra from each object, where for most
supernovae we observe only ⇠10 spectra spread over the
range. This sparse time sampling can prove di�cult for
numerical techniques that require more uniform obser-

https://github.com/georgestein/suPAErnova
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vations, so fitting an empirical model of supernova flux
as a function of time and wavelength often has two steps.
The first is to interpolate the observations from each su-
pernova onto a more regularly spaced time grid, gener-
ally achieved through spline interpolations or Gaussian
Processes. The second is to then model the spectrum
at each temporal location and wavelength bin on this
time grid. The most commonly used models are based
on variations of a principal component analysis (PCA),
and schematically take a form that separates intrinsic
and extrinsic physical e↵ects into unique terms:

FluxSN (p,�) = AmplitudeSN
⇥ [F0(p,�) + x1,SN ⇤ F1(p,�) + ...]

⇥ cSN ⇤ Extinction(�),
(1)

where p is the time from peak brightness and � is the
rest-frame wavelength. The average spectral sequence is
described by F0(t,�), the components that describe ad-
ditional PCA variability are Fn(t,�), where n > 0, and
the color term representing both extinction and intrin-
sic color variations are properties of the global model.
The parameters indicated with a SN subscript are fit to
to each supernova and correspond to PCA amplitudes
x1,SN and the extinction cSN. The terms of the model
are split this way for a few key reasons:
Amplitude: For each supernova the observed redshift

zobs is generally well known, such that the wavelength
and time scales can be accurately de-redshifted. The ob-
served redshift has contributions from the peculiar ve-
locity of the supernovae which are extrinsic to the super-
nova explosion. A leading amplitude term then ensures
that the peculiar velocity component is not correlated
with the model parameters, and that it is the only coef-
ficient dependent on the flux normalization. This ampli-
tude can interchangeably be written as 10�0.4�M when
working in magnitudes.
Color law: The color law attempts to account for dust

along the line-of-sight to the supernovae. The optical
depth to each supernova involves a number of factors,
including corrections from the local environment of the
supernovae and its host galaxy, and line-of-sight vari-
ations along the inter-galactic medium and within our
own galaxy. The Milky Way extinction can be deter-
mined independently and removed from the observed
spectrum. Any optical depth variations along the line
of sight should be slowly varying with respect to the
⇠50 day observation window of a supernovae (Huang
et al. 2017), and therefore should be dependent only on
the wavelength of observation. This color law is gener-
ally an input to the model (Guy et al. 2007; Saunders
et al. 2018; Mandel et al. 2020; Boone et al. 2021a), and

any time-dependent color variation should be captured
by the variations to the global model.
To use such an empirical model for magnitude stan-

dardization then requires an additional third step, in
which the (possible) correlations between model param-
eters and intrinsic luminosity are uncovered. This re-
quires an additional model to be fit to “explain” the
magnitude residual as a function of the model parame-
ters from previous steps.
In this work we propose an alternative to this three

step workflow – a probabilistic autoencoder (PAE) to
model supernovae spectra as a function of observation
time. As introduced by Böhm & Seljak (2020), a PAE
combines the advantages of an Auto-Encoder (i.e. it is
fast and easy to train) with the desired properties of a
generative model, which makes a PAE a powerful tool
for probabilistic data reconstruction and outlier detec-
tion of SNe Ia. We physically parameterize our PAE
and introduce a multi-stage training setup and correla-
tion penalty term in order to separate and decorrelate
intrinsic and extrinsic e↵ects during training, which re-
moves the need for an additional model to perform mag-
nitude standardization.
Our method has a number of advantages over PCA-

based models. First, the autoencoder has the ability to
learn complicated non-linear mappings between the best
fit latent representations (parameters), while a PCA
analysis is limited to linear transformations. This al-
lows for increased spectral diversity to be expressed over
linear models for a given latent dimensionality. Sec-
ond, the probabilistic nature of the PAE allows for a
straight-forward determination of outlying spectra and
calculation of the errors on the best-fit model parameters
within the observational errors. A conditional autoen-
coder (AE) can account for time-evolution by simply
feeding in the observation times as a conditional param-
eter, and does not need to first pre-process the data to
interpolate it onto a regular grid, which allows the model
to work directly on the data. Finally, a PAE model can
be used to generate artificial SNe Ia samples consistent
with the data distribution, and to create a faithful sim-
ulation of SNe Ia spectro-temporal series.
The outline of this paper is as follows. We first de-

scribe the dataset and reference baselines in Section 2,
followed by a detailed description of probabilistic au-
toencoders in Section 3. We then outline our architec-
ture and training setup in Section 4. Section 5 showcases
the PAE results, where we demonstrate that the PAE
provides better fits to the observations than the most
commonly used model in the literature, it automatically
detects outliers, and provides an accurate fit on super-
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novae parameters and their errors. A discussion follows
in Section 6.

2. DATASET & REFERENCE BASELINES

Our dataset consists of spectral time series data of 228
unique SNe Ia, obtained by the Nearby Supernova Fac-
tory (SNfactory; Aldering et al. 2002, 2020) using the
SuperNova Integral Field Spectrograph (SNIFS; Lantz
et al. 2004). The original spectra span the range 3200–
10000 Å simultaneously. The spectra from SNIFS were
reduced using the SNfactory data reduction pipeline
(Bacon et al. 2001; Aldering et al. 2006; Scalzo et al.
2010), flux calibrated following Buton et al. (2013); Ru-
bin et al. (2022), and host-galaxy subtracted as in Bon-
gard et al. (2011). The spectra were corrected for dust
in our Galaxy using the dust map from Schlegel et al.
(1998) and the extinction-color relation from Cardelli
et al. (1989).
Following our past procedure for similar analyses

(Fakhouri et al. 2015; Saunders et al. 2018; Léget et al.
2020; Aldering et al. 2020; Boone et al. 2021a,b), the
wavelength and phases have been transformed to the
restframe, and the fluxes have been transformed to a
reference redshift of z = 0.05 using the appropriate fac-
tors of z and 1 + z using redshifts from Childress et al.
(2013) and Rigault et al. (2020). Because SN Ia spec-
tral features are broad, the spectra are rebinned to a
common restframe wavelength binning of 1000 km/s be-
tween 3300 – 8600 Å, resulting in N� = 288 restframe
wavelength bins. Each spectrum is accompanied by an
uncertainty spectrum, �SN (�). A small number of spec-
tra do not cover all wavelength bins, therefore for each
spectrum we construct a mask array MSN (�) to flag
any missing wavelength bins.
Each supernova has between 5 to 64 observations at

di↵erent times, for a total of 3034 spectra. The time
gaps between each observation are typically in the range
of 2-3 days at early phases and longer at later phases,
but with exceptions due to, e.g., bad weather. The given
observation time p is the phase relative to the peak lumi-
nosity of the supernovae in B-band as fit by the SALT2
model (Guy et al. 2007), in days. The SALT2 fits also
report an uncertainty on the time on peak luminosity.
We cut data outside of (�10 days, +40 days), resulting
in 2696 final spectra for a minimum of 4 observations of
a supernovae, to a maximum of 32. The amplitudes of
the spectra, initially in the z = 0.05 reference frame, are
multiplied by a constant to scale the range of values to
⇠(0,1).
At a given observation time, spectra from di↵erent

supernovae have a high degree of similarity, and it is
easy to imagine each unique spectra being described by

a set of modifications to some mean spectral envelope
as a function of time. It has been shown before that the
leading few components in a PCA analysis capture a sig-
nificant amount of the supernovae-to-supernovae varia-
tion (Guy et al. 2007; Saunders et al. 2018), so we expect
the data to be able to be represented by an autoencoder
with some small set of latent variables.

2.1. Reference Baselines

Throughout this work we compare our spectral re-
constructions to the SALT2 model (Guy et al. 2007),
and compare our cosmological distance measurements
to both the SALT2 model and the Twins Embedding
(Boone et al. 2021a,b).

2.1.1. SALT2

SALT2 (Guy et al. 2007) models the time-evolving
spectral energy distribution as

FSN (p,�) = x0,SN [M0(p,�) + x1,SNM1(p,�) + ...]

⇥ exp[cSN CL(�)],
(2)

where p is the rest-frame time since the date of maxi-
mum luminosity in B-band and � is the rest-frame wave-
length. The M0 component is the average spectral se-
quence, Mi for i > 0 are additional components that
describe further object-to-object variability, and CL(�)
is a generic color term that mixes dust extinction and
intrinsic color variations left over after decorrelating x1

and c. Each individual supernovae is then parameter-
ized by a combination of these components multiplied
by leading amplitude terms describing the strength of
each: xi,SN , and cSN . x0,SN is the flux normalization
and is a function of both the intrinsic luminosity and
the luminosity distance of the supernovae. The best-fit
SALT2 parameters x0,SN , x1,SN , and cSN were fit for
each light curve in the dataset, and we used sncosmo

(Barbary et al. 2016) to generate the best fit restframe
SALT2 spectra for each supernova at each observation
time.
The SALT2 light curve fits are used to determine the

peak brightness of each SN Ia, and then a linear cor-
rection for the light curve width and color is applied
to “explain” the magnitude residual to each object as a
function of the other model parameters:

Mres,SN = MB,SN �Mref + ↵x1,SN � �cSN. (3)

The arbitrary reference magnitude Mref and stan-
dardization parameters ↵ and � are fit in order to min-
imize the magnitude residual Mres,i ⌘ �MSALT2.

2.1.2. Twins Embedding
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The Twins Embedding (Boone et al. 2021a,b) does not
model temporal evolution, and instead aims to explain
the spectral variability of SNe Ia at maximum light.
There are four separate components to the model:

1. A di↵erential time evolution model to estimate a
spectrum at maximum light for each SN Ia.

2. A second “Reading Between the Lines” (RBTL)
model to fit for a mean spectrum at maximum
light, fmean(�), and explain the supernovae-to-
supernovae variability at maximum light as a func-
tion of two parameters �Mi and �AV,i,

fmodel,i(�) = fmean(�)⇥ 10�0.4(�Mi+�AV,iCL(�)).
(4)

�Mi is the di↵erence in intrinsic brightness com-
pared to the mean spectrum in magnitudes, and
�AV,i represents the coe�cient of the extinction-
color relation that best matches the supernova’s
spectrum to the mean function. The RBTL model
is used to deredden each spectrum at maximum
light to remove extrinsic contributions from dis-
tance uncertainties and interstellar dust.

3. A third non-linear “Twins Embedding” model
is trained on the dereddenned spectra from the
RBTL model in order to further explain any
variability of SN Ia spectra at maximum light.
The Twins Embedding uses the Isomap algorithm
(Tenenbaum et al. 2000) to embed the spectral
distance

�i,j =

vuutX

k

✓
fdered,i(�k)� fdered,j(�k)

fmean(�k)

◆2

(5)

between two SNe Ia labeled i and j into a low-
dimensional (3D) space ⇠ while preserving the
distances between nearby points in the high-
dimensional space.

4. Gaussian Process (GP) regression is then used to
infer the magnitude residuals (�Mi from step 2)
of SNe Ia over the 3D Twins Embedding space
⇠, and to reconstruct spectra from a given em-
bedding vector. The inferred value of the mag-
nitude residual can be subtracted from the mea-
sured value, and the remainder represents the “un-
explained residual”

Dixon et al. (in prep) extends this Twins Embedding
to the full time series using a neural network.

3. PHYSICALLY PARAMETERIZED
PROBABILISTIC AUTOENCODER

Our probabilistic autoencoder is constructed in two
separate stages. First, we train a conditional autoen-
coder to learn a low-dimensional latent representation
of each supernova that is independent of the observation
time(s). After the autoencoder is trained we construct
a normalizing flow to map from the unconstrained au-
toencoder latent space to a Gaussian latent space. For
clarity, our data notation is as follows, where for each
supernova, SN , arrays are filled sequentially using the
observed spectra:

• xNSN⇥Nobs⇥N� : Observed SNe Ia spectral time se-
ries.

• x̂NSN⇥Nobs⇥N� : Reconstructed SNe Ia spectral
time series.

• �NSN⇥Nobs⇥N� : Observational uncertainty.

• MNSN⇥Nobs⇥N� : Observational mask, equal to 1
where spectra are valid.

• pNSN⇥Nobs : Observation time of each spectrum rel-
ative to the peak brightness of the supernovae.

• zNSN⇥Nlatent : Autoencoder latent space
(�p,�M,�AV , z1, ..., zn).

– �p: Di↵erence in time of peak brightness rel-
ative to the SALT2 fits (any float value).

– �M : Magnitude residual.

– �AV : Relative extrinsic extinction.

• uNSN⇥Nlatent�2 : Normalizing flow latent space.
Nlatent�2 results from the removal of �p and �M .

For purely practical purposes when the number of obser-
vations of a supernova is less than the maximum in the
data set, Nobs=32, the end of the data arrays are zero-
padded and masked appropriately to fill any remaining
empty observation vectors. This has no e↵ect on the
model beyond simplifying the training procedure.

3.1. Conditional Autoencoder

An autoencoder consists of an encoder that maps the
input data to a lower dimensional latent representation,
and a decoder that reconstructs the data from the latent
representation. Both of these components are commonly
parameterized as deep neural networks, with weights
and biases trained through backpropagation to minimize
a loss function. Autoencoders are commonly used for
dimensionality reduction or feature learning from an ar-
bitrary dimensional data space, but here we introduce a
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Figure 1. Probabilistic autoencoder architecture. The encoder receives as input the observed spectra x and corresponding
observation times p, and extracts a set of time-independent latent parameters z for each supernova. The decoder combines
the latent parameters with the desired observation times to reconstruct the data. Both are fully connected neural networks,
consisting of a chain of linear layers each followed by a ReLU activation. By separating out the flow of certain latent parameters
through the decoder, along with the addition of a correlation penalty during training, we explicitly inform the model to learn
physically motivated latent parameters expressing extrinsic (�p, �AV ) and intrinsic (z1, ..., zn) modes of variability. After the
encoder-decoder is trained, a normalizing flow learns a bijective mapping between the unconstrained z space and a Gaussian
latent space u, which allows for the determination of the supernovae density in comparison to others in the dataset.

number of modifications from a general architecture to
describe the physical nature of the dataset and separate
external and internal information of the supernovae.
The encoder f maps the spectral time series to a la-

tent space (�p,�M,�AV , z) = f(x,p) through a series
of fully connected layers of a neural network. Operations
are performed along the wavelength axis only, and each
spectrum from a supernova is treated independently un-
til the final network layer. The final layer reduces to
the mean latent representation of a supernova along the
time axis for all observations of the SN Ia, such that the
latent space coordinates of each supernova are forced to
represent a compression of the supernova as an object
and not a compression of each individual spectra. In
this way the entire spectral time series of a supernova
is reduced to a few latent variables that together repre-
sent a non-linear combination of components describing
object-to-object variability, such as the luminosity, spec-
tral tilt, or absorption lines.
Given a latent representation and observation times

the decoder g learns to reconstruct the spectral time se-
ries x̂ = g(f(x,p),p). The decoder first duplicates and
concatenates the latent representation z with the ob-
servation phases p, then passes this through a number
of fully connected layers. Again, the latent and time
variable concatenation operations are performed along
the wavelength axis only, and each spectrum from a su-
pernova is treated independently. We parameterize the
decoder similar to equation 2 by not passing some la-
tent parameters through the fully connected layers of
the decoder, and instead separating them out to repre-
sent an overall amplitude and a phase-independent color
law term which are multiplied with the output of the
final layer. The encoder and decoder are both fully con-

nected deep neural networks, trained to maximize the
agreement of the reconstruction with the data, deter-
mined through a loss function LAE(x, x̂).
While separating out certain latent parameters to rep-

resent physical variables is uncommon in autoencoder
literature, it is desirable here due to the physical na-
ture of the problem we are attempting to solve. The
time-independent color law term is separated out as we
expect that a portion of the color is from the redden-
ning of the spectrum as it propagates through dust in
the intra-galactic medium. This e↵ect is independent of
the intrinsic SN Ia explosion, and so should not prop-
agate through to all the latent variables of the model.
The amplitude is separated out as a number of phys-
ical e↵ects unrelated to the true cosmological distance
can shift the spectra in a way uncorrelated with any
spectral features. Peculiar velocity contributions to the
redshifts result in an amplitude shift of less than ⇠10%
for higher redshift SN (z>0.02). Additionally the spec-
tra have instrumental “gray” o↵sets of a few percent
(e.g., Rubin et al. 2022) that also look like an amplitude.
These are unique to each spectrum individually, and are
typically around ⇠2%, but the distribution is very non-
Gaussian. Without allowing for an explicit amplitude
term in the model any amplitude that is by definition
uncorrelated with the spectral features will propagate
through to uncertainty in the inferred cosmological dis-
tance. Our model thus takes the form of

FSN (p,�) = g([z1, ..., zn�2],p)

⇥ 10�0.4[CL(�)�AV +�M ],
(6)

where CL(�) can be fit during training by using a single
dense layer or can be adopted from physical measure-
ments (e.g., (Fitzpatrick 1999); we set RV = 2.8). We
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refer to both the 10�0.4�M component and the �M pa-
rameter as the extrinsic amplitude of the model through-
out this work, but we note that an extrinsic interpreta-
tion of �M is degenerate with an intrinsic component
that does not vary with wavelength or phase.
We have found that separating out the amplitude and

color law, achieved by physically parameterized decoder
architecture shown in Figure 1, does not decrease re-
construction quality compared to a non-physically pa-
rameterized autoencoder. In order to match common
convention in the literature we rewrite the first three la-
tent parameters as �p,�M,�AV , respectively, and will
refer to them as their physical parameter counterparts
henceforth. �p represents the di↵erence of the time of
peak brightness relative to the SALT2 fits, and while we
use the SALT2 time values as an initial guess at the true
time of peak brightness, the encoder is free to learn any
corrections. As we explain further in the training sec-
tion, we normalize the average �p over the supernovae
to be zero.
This physical parameterization works to isolate color-

like e↵ects into the relative extinction parameter �AV ,
but there still remains a degeneracy between the relative
extinction and output of the decoder determined by the
intrinsic latent parameters z1, ..., zn. While it is possible
that a change in �AV can be counteracted by changing
the latent parameters, and thus �AV is not a direct
measurement of the extinction, but rather a measure of
the relative extinction between any two supernovae with
the same intrinsic latent coordinates.
We chose to use a conditional autoencoder architec-

ture over other time sequence embedding methods due
to non-uniformity of the time-step between each obser-
vation for each supernova. Long short-term memory
networks (LSTMs) (Hochreiter & Schmidhuber 1997)
are common for sequence-to-sequence predictions, and
LSTM Autoencoders are a class used to encode se-
quence data for a number of applications (Srivastava
et al. 2015; Malhotra et al. 2016), but rely on either
time-independent sequential inputs (such as words in
a sentence, where one word follows the next with no
specified time in between) or on constant time steps be-
tween each item of the sequence (such as frames in a
video or daily stock prices), and also do not account
for missing data. For the purpose of supernovae spec-
tral time series embeddings we have both missing data,
such as some supernovae missing observations near peak
brightness, and non-uniform time sampling. Some su-
pernovae have a large number of observations span-
ning the entire (�10, +40) day time period each sep-
arated by ⇠1-2 days, while others have a small number
of observations at more irregular times. For example,

our data set has one SN with only 4 observations at
(�5.25,�5.24,+4.65,+14.69) days. A number of exten-
sions to recurrent models have attempted to deal with
missing timesteps through masking (Che et al. 2018),
by incorporating the passing of time in between obser-
vations in a “time-aware LSTM” through weighting the
short term memory by the elapsed time (Baytas et al.
2017), or a “Phased LSTM” (Neil et al. 2016) that adds
a new oscillating time gate which only updates the net-
works weights during a small percentage of the cycle.
While these have potential to work for our application,
the small amount of training data available (relative to
standard machine learning benchmark data sets) and
non-uniform sampling, coupled with the desire for a
physically parameterized interpretable network for pos-
terior analysis, led us to stick with a more standard au-
toencoder setup, although initial investigations using a
LSTM autoencoder did not perform poorly.

3.1.1. Normalizing Flow

Once the autoencoder is trained its parameters are
fixed and we determine the latent space prior P (z) prob-
abilistically by constructing a bijective mapping b from
the latent space z to a Gaussian latent space u = b(z).
A forward pass of the bijective mapping (z ! u) allows
for rapid density estimation of a point in the z space,
while an inverse pass (u ! z) allows for sampling of the
z space. We determine this mapping through a normal-
izing flow (NF), popularized by Dinh et al. (2016); Pa-
pamakarios et al. (2017) and comprehensively reviewed
in Kobyzev et al. (2019). The NF is parameterized by a
fully connected deep neural network and trained to min-
imize the negative log likelihood of the encoded samples,
where the NF prior is a unit Gaussian, p(u) = N (0, 1).
To ensure the model is not dependent on cosmological

parameters, peculiar velocities, or gray o↵sets, we do

not include the amplitude term �M in the normalizing

flow . In this fashion we do not impose any prior for the
amplitude.
With both a trained autoencoder and normalizing flow

we have a fully probabilistic and generative model ca-
pable of generating new samples x0 from the data dis-
tribution p(x) as follows (illustrated in Figure 1):

1. Draw a sample u from N (0,1)

2. Pass the sample through the normalizing flow to
get zu = b�1(u)

3. Concatenate zu with the desired amplitude o↵set
�M to get z.

4. Pass z and the desired observation times p through
the decoder, x0 = g(z,p). Empty observation
timeslots are automatically masked appropriately.
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3.2. Posterior Analysis for uncertainty quantification

After training is completed, the PAE can be used to
provide uncertainty quantification on the best-fit latent
parameters of the model of equation 6 (�p, �M , �AV ,
z1, ..., zn). The log posterior of a data point under the
PAE is (Böhm et al. 2019)

ln P (u|x,p) = ln P (x|u,p,�noise)/Nspectra,SN

+ ln P (u)

+ const,

(7)

where the prior is P (u) = N (0, 1), and the
implicit likelihood is given by P (x|u,p,�noise) =
N (g(b�1(u),p),�2+�recon(p)2). Note that we replace
the data x by its generative process g(b�1(u),p), which
brings the inference problem to the low dimensional la-
tent space of the PAE, making the posterior analysis
much more computationally tractable.
The covariance of the Gaussian likelihood has two

terms: the PAE reconstruction error �recon(p), and the
noise level in the data �. We measure the PAE re-
construction error as a function of observation time by
binning the test data in 5 day intervals and linearly in-
terpolating when performing the posterior analysis. The
model uncertainty is calculated as a fraction of the ob-
served flux rather than the standard deviation.
For each supernova we perform latent space posterior

analysis in order to find the best-fit data reconstruc-
tion under the PAE model. In addition to the intrinsic
latent parameters included in the normalizing flow, we
have a free time shift parameter �p to allow for a di↵er-
ent time-origin p = 0 than the SALT2 fits used for ini-
tial model training, and the extrinsic magnitude residual
�M . Therefore, the posterior analysis takes the form of

x̂recon = g([�M,b�1(u0)],p +�p), (8)

where we simultaneously fit for the �M , u0, and �p
values which best reconstruct the spectral time series
for each supernova. A Gaussian prior on the time shift
can be added, as the uncertainty on the time of the peak
luminosity is generally half a day (Saunders et al. 2018),
but we found that unnecessary here.
To find the maximum of the posterior (MAP) we begin

optimization from the best fit encoded value of the data,
as well as 24 additional initialized points in the (�M , u,
�p) parameter space. Optimization is performed using
the Limited-memory BFGS (LBFGS) algorithm. To en-
sure that we converge to the global minimum, and not
some local minimum near �M = 0, we sample these 24
initialization points from a much larger region than the
prior distribution u and thus the variations of any pa-
rameter are not artificially small due to any limitations

of the encoder. We initialize 10 points with a magnitude
residual linearly spaced between �M = (�1.0, 1.0), and
10 points linearly spaced between �Av = (�0.5, 3.0).
Sampling these large magnitude residual and extinction
values ensures that supernovae with high velocities or
levels of dust will still have an initialization value nearby,
and that we will probe the true minimum of the poste-
rior. We find minimal spread of the minima found from
the 25 initialization points for the majority of super-
novae, except for the most nearby SNe Ia, whose pecu-
liar velocities can be a large fraction of the total redshift,
for which the large spread in initializations is required
to converge to the best fit value.
We denote the MAP latent variables as the best fit

parameters that maximize the posterior from these 25
minima. From the MAP value we then run Hamilto-
nian Monte Carlo (HMC) (Neal 2011) - a Markov chain
Monte Carlo (MCMC) algorithm that takes a series of
gradient-informed steps to produce a Metropolis pro-
posal - to marginalize over (�M , u, �p) to obtain the
final best fit model parameters and their uncertainty.
While this procedure provides best fit parameters nearly
equivalent to the MAP values, it provides a more robust
estimation of their uncertainty. HMC is run for 25,000
iterations following a 10,000 step burn-in in which the
step size is allowed to vary to target an acceptance rate
of 0.651 (Beskos et al. 2010).

4. ARCHITECTURE & TRAINING

The unique PAE architecture coupled with the phys-
ical nature of the data required a number of modifica-
tions compared to the training of a standard autoen-
coder, including a multi-stage training setup and signif-
icant data augmentations. Models are trained in Tensor-
flow (Abadi et al. 2015), utilizing Tensorflow Probability
(Dillon et al. 2017).

4.1. Limited Dataset

A severe limitation to training deep neural network
architectures on a SN Ia dataset, compared to typical
machine learning datasets, is the very limited number
of data samples (only 228 supernovae in this work).
Therefore to prevent overfitting we implemented a num-
ber of techniques throughout training, including early-
stopping, dropout, data augmentation, and weight reg-
ularization.

• Dropout: As each supernova provides a time se-
ries, we experimented with two types of dropout.
The first is as usual, dropping out neurons in the
encoder with dropout rate=0.2, ensuring that the
dropout mask is the same for all timesteps. The
second is dropping out a random sample of 10%



A Probabilistic Autoencoder for Type Ia Supernovae 9

of the spectra for each supernova at each train-
ing epoch. This was chosen to negate the small
number of spectra that seem to have higher mea-
surement error, and/or do not follow as consistent
of time-series evolution with neighbouring obser-
vations. This spectral dropout helped training the
most, while standard dropout had limited success,
likely due to the small size of the training data
available.

• L2 regularization: we implemented L2 regulariza-
tion. L1 kernel regularization was not appropriate
for this problem, as we do not want to encourage
sparsity in our model.

• Data Augmentation: At each epoch a random
Gaussian noise draw consistent with the observa-
tional error was added to each spectrum, xepoch =
x + N (0,�noise). At each epoch we also vary the
SALT2 phase given for each SN by a random Gaus-
sian draw from N (0,�t,SN), where �t,SN is the
measured value from the SALT2 light curve fits
and is unique for each supernova.

• Early stopping: We experimented evaluating
model performance on a validation set every 100
epochs, and during early trials experimented with
keeping the model that achieved the lowest recon-
struction loss. We found this had a negligible ef-
fect over keeping the final epoch, as the amount of
regularization employed and the small latent space
was su�cient to prevent the model from overfit-
ting. Therefore we do not employ early stopping,
do not use a validation set in addition to the train-
ing set, and the test data is unseen until model
evaluation.

4.2. Loss function

The loss function we used has two terms. The first
is a standard reconstruction error, while the second is
a latent space correlation penalty term to discourage
correlations between any desired terms of the model.
For the reconstruction error term we investigated a

number of loss functions. Unlike many machine learning
datasets that only include data samples, we also have
the measurement uncertainty for each wavelength bin
of each sample. A bad reconstruction of a sample with
small measurement errors should be discouraged more
than on a sample with large measurement errors, which
a standard e.g., mean squared error, loss term does not
account for. We investigated a number of loss functions
including mean absolute error, mean square error, Huber
loss, and the error-weighted counterparts of these, the

negative Gaussian log likelihood, and the square root of
each of the previous. We found the best reconstructions
when using a weighted Huber loss for the reconstruction
error term with � = 25:

Lrecon(SN) =
X

Nobs,N�
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(9)
where � is the measurement uncertainty of the observed
spectra and M is the mask specifying valid wavelength
bins. The Huber loss scales as the mean squared error
when the noise-weighted error is smaller than �, and as
the mean absolute error when the noise-weighted error
is greater than �. This loss helps with the few mea-
surements that are very large outliers to the expected
spectral envelope.
Each supernova has a di↵erent number of observations

and thus the arrays were zero padded. Therefore we
only compute the loss over the existing number of ob-
servations for each, NSN

obs . This results in supernovae
with more observations being given a larger weight in
the training process, and is equivalent to weighting the
loss by the number of observations per supernovae.
A key use of the PAE will be to constrain the most

likely latent parameters and their uncertainty for each
SN Ia. Specifically, the amplitude 10�0.4�M is key to
constrain the intrinsic luminosity of the SN, and there-
fore can be used to estimate the distance and distance
uncertainty to the object. When unconstrained during
training, this parameter will learn both the intrinsic di-
versity that a↵ects the spectrum in a similar manner to
a brightness di↵erence, and the extrinsic diversity from
peculiar velocities and gray o↵sets. We expect that the
intrinsic diversity, although similar to an amplitude o↵-
set, is correlated with features of the spectra, while the
extrinsic diversity is by definition uncorrelated. Both
the SALT2 and Twins Embedding models let the am-
plitude contain both intrinsic and extrinsic luminosity
components, and then implement an additional step to
“standardize” the magnitude residuals in an attempt to
explain the intrinsic luminosity contribution as a linear
or non-linear function of the remaining model parame-
ters.
During training, instead of letting the amplitude freely

vary to explain both the intrinsic and extrinsic luminos-
ity and then fitting additional models to explain the two
terms, we encourage the latent space to learn latent fea-
tures that are uncorrelated with the amplitude. This en-
sures that the amplitude term of the PAE directly models

only the extrinsic amplitude component , and the intrin-
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Figure 2. Generative sampling of SN Ia spectra as a function of phase, individually varying each latent dimension of a
PAE model with two extrinsic (�M,�AV ) and three intrinsic non-linear (z1, z2, z3) parameters, while keeping the other latent
variables fixed at their mean values. The top panels of each set show the spectra with a constant o↵set in luminosity, while the
bottom show the ratio from the mean. For the non-linear parameters we also display the resulting synthetic photometry. Blue
lines are values lower than the mean, transitioning through red for values higher than the mean.
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sic luminosity is described by a non-linear combination
of the remaining latent parameters.
To achieve this we added a loss term proportional to

the correlation between the amplitude and the other la-
tent parameters. This is a similar idea to Pham et al.
(2020), who additionally went further to learn an or-
ganized latent space with their “PCA Autoencoder”,
which learns each latent dimension using a separate au-
toencoder in a series of encoder-decoder pairs. Here we
include a latent space correlation coe�cient penalty,

Lcorr =
X

zi,zj

 
Cov(zi, zj)p
var(zi)var(zj)

!2

⇥Mask, (10)

where the mask can allow for correlations between in-
trinsic latent parameters (= 0 on the diagonal and block
of z1, ..., zn terms, and = 1 otherwise), or can discour-
age correlations between any parameters (= 0 on the
diagonal and = 1 otherwise).
The total loss function that the autoencoder is trained

on then becomes

LAE = Lrecon + �corrLcorr, (11)

where �corr is a free parameter whose value we chose to
return similar values from the reconstruction and corre-
lation loss terms in the early stages of model training.
We found that this correlation penalty helped to uncor-
relate the latent parameters with nearly no reduction of
reconstruction accuracy.

4.3. Training

A number of architectures and training methods have
been investigated for the autoencoder. We found that
a fully connected architecture performed better than a
convolutional one, and found the lowest reconstruction
error when using 3 encoding and decoding hidden layers
with (256, 128, 32) and (32, 128, 256) neurons in each
layer, respectively. We found best performance when us-
ing rectified linear activations (ReLU) (Fukushima 2004;
Nair & Hinton 2010) for each hidden layer, and no ac-
tivation on the final output of the encoder or decoder.
This results in a large amount of trainable parameters –
nearly 112,000 in each of the encoder and decoder mod-
els. Compared to the number of spectra used (2696)
with 288 spectral bins each (for a total of 776,448 degrees
of freedom), the number of model parameters is sizeable,
but in practice it has been shown that heavily parame-
terized neural networks empirically improve both opti-
mization and generalization Zhang et al. (2016); Allen-
Zhu et al. (2018), while allowing the model to represent
much more complicated functions than ones with fewer

parameters. During model training we employ a num-
ber of regularization methods (discussed in Section 4.1),
and find no evidence for overfitting.
We trained the autoencoder in four separate stages,

using ADAMW learning rate optimization (Loshchilov
& Hutter 2017). In the first stage, we set the extrin-
sic magnitude dispersion �M , the time di↵erence rel-
ative to the SALT2 fits �p, and the non-physical la-
tent parameters zi, to zero while letting the relative
extinction �AV vary over 1000 training epochs. In
the second stage, we initialize the encoder and decoder
weights and biases with the values learned from the
first stage, randomly reinitialize the weights of the final
layer corresponding to the non-�AV parameters (using
TensorFlow’s GlorotUniform initializer, and scaling the
weights down by a factor of 100), and again train both
the encoder and decoder while now also allowing the
non-physical latent parameters to freely vary, for 1000
epochs. The third step is analogous, now also allowing
�M to vary, and we train for 5000 epochs. The final
stage lowers the learning rate from the 0.005 used in the
previous steps to 0.001, and also allows�p to vary. Each
training stage employs weight decay regularization with
an initial value of 0.0001, and both the learning rate and
weight decay factor follow an exponential decay sched-
uler with a decay rate of 0.95 over 300 steps.
We found that this multi-stage learning procedure

helped to utilize the physical parameters of the model,
specifically the relative extinction �Av, which otherwise
often got stuck in local minima near its initialized value.
Separating the first two training stages significantly de-
creased the level of intrinsic amplitude that remained in
�M , even when utilizing the correlation penalty. We
also found that learning �p in a separate final stage im-
proved reconstruction accuracy over introducing at the
beginning of model training, as by this point the PAE
had already learned an accurate description of SNe Ia
evolution and the introduction of �p simply decouples
from the initial estimate of the SALT2 model. During
training we enforce �p = 0, �M = 0 (i.e. mean ampli-
tude = 1), and �AV = 0, by a custom layer similar to
a batch normalization, but only standardizing the mean
to zero and not the variance. This is achieved by sub-
tracting the mean (�p,�M,�Av) of each batch during
training from the output of the encoder before feeding
the latent parameters to the decoder. When training is
complete we calculate the mean over the entire training
set, and hardcode the encoder to subtract this mean.
These modifications have no e↵ect on the data recon-
struction quality, but ensure that the parameters repre-
sents the di↵erence from the average supernova. Ensur-
ing �p = 0 produces a phase that is in sync with the
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SALT2 fit (on average), but for individual supernova can
decouple the PAE phase from the maximum luminosity
in B-band.
We use 75% of the supernovae for training, and re-

serve 25% for testing, for totals of 171 training and 57
testing samples. The latent space correlation penalty
motivates a large batch size in order to properly evalu-
ate the correlations between supernovae, so we utilize a
batch size of 57. As we do not employ early stopping,
our model has not learned using any information from
the test set, although when examining the test at a later
time we do not find evidence of overfitting – the recon-
struction error on the test set continues to decrease, or
flattens, throughout training and does not then begin to
increase. While training we impose a minimum redshift
cut of z > 0.02 to negate the significant peculiar velocity
contribution to the low redshift samples, such that only
145 of the 171 training samples are used for learning.
Spectra amplitudes as given in reference frame units are
already scaled to ⇠ (0�1) so we do not further scale the
spectra. We minmax scale the times of observation to
range between (0, 1) instead of (�10, +40) days. Spec-
tra with any masked wavelength bins are not used in
the encoder as spurious values will propagate through
to the latent variables, but the non-masked portions of
the reconstructed spectra are used in the calculation of
the loss.
Our normalizing flow to transform from latent vari-

ables z to latent Gaussian variables u is implemented
as a Masked Autoregressive Flow (MAF) (Papamakar-
ios et al. 2017). As stated previously we do not include
the �M parameter in the normalizing flow in order to
ensure that there is no prior on the extrinsic amplitude.
The normalizing flow is not conditional, as the z vari-
ables do not depend on the observation time. We use 12
layers with 8 units per layer, and train for 500 epochs on
the training data using the ADAM optimizer (Kingma
& Ba 2014), splitting 33% o↵ as a validation sample,
and stopping when the log probability on the validation
sample does not decrease for 30 epochs. This early stop-
ping was required for the flow, as we found it has the
potential to overfit. The small size of the flow relative
to the decoder means that its computational cost is a
negligible fraction of the posterior analysis. As such we
did not perform an architecture search to minimize the
size of the flow.

5. RESULTS

First, in Sections 5.1 and 5.2 we look at the spec-
tral features captured by the PAE parameters and the
reconstruction accuracy of our PAE model in compar-
ison to the SALT2 model. In Section 5.3 we discuss

the straightforward generation of simulated supernovae
observations consistent with the data distribution. Fol-
lowed by a search for any outlying supernovae in Sec-
tion 5.4, and the determination of cosmological distance
accuracy in Section 5.5.

5.1. Latent parameters to spectral variations

The supernovae spectral time series we are attempt-
ing to reconstruct have an overall consistent shape at a
given rest frame time, with small variations from object-
to-object. Therefore the observation time fed to the
decoder will determine the time evolution of the super-
novae, and variations in each latent parameter describe
the object-to-object spectral variability encoded by a
combination of those dimensions.
In Figure 2 we demonstrate how separately varying

each latent parameter from their mean values in a three
non-linear latent dimensional model a↵ects the recon-
structed spectra. We find that the latent parameters
have each encoded unique spectral information. The
first and second dimensions by design were restricted
to learn physical components of the model, where the
former dimension encodes the extrinsic amplitude �M ,
and the latter is the time-independent color-law relative
extinction coe�cient �AV . The remaining dimensions
are free to learn any spectral variations that exist in
the SNe Ia population used for training. For the spe-
cific model shown here we find that the z1 dimension
seemingly resembles a combination of an amplitude mul-
tiplication correlated with certain absorption/emission
features and a brighter-slower e↵ect. The z2 and z3 in-
trinsic latent dimensions focus more on details of the
absorption/emission features and spectral tilt. We note
that unlike a PCA decomposition where components are
ranked by the variance they explain, our autoencoder
has no such constraint, and the intrinsic latent param-
eters are free to learn any modes of spectral diversity.
The fact that the first intrinsic latent parameter hap-
pened to result in the most apparent modifications to
the reconstructed spectra is a coincidence.
The key di↵erence between our non-linear PAE

model and a linear PCA analysis is that the latent-
dimensions of the PAE are both non-independent and
non-symmetric around the mean. We can see clearly
from Figure 2 that the e↵ects of a latent value smaller
than the mean (blue) are not simply the inverse of a
latent value larger than the mean (red), but describes
independent information. This allows for more informa-
tion to be encoded within a single dimension in compari-
son to PCA, where each dimension is simply a multiplier
in front of a tempo-spectral component (i.e. x1M1(t,�)
in the SALT2 model). Additionally, as the latent param-
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Figure 3. Top: PAE reconstruction (red) and best fit SALT2 model (blue) of two supernovae from the test set (black). For
visualization purposes the spectra in the top panels have been shifted vertically by a constant factor of the observation time.
Bottom: Corresponding best fit PAE model parameters and their errors determined from Hamiltonian Monte Carlo.
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eters are passed through a number of non-linear layers
of the decoder, their e↵ects on the reconstructed spectra
are not limited to the spectral variations of the indepen-
dent z1 and z2 dimensions, but can interact in highly
non-linear ways to produce more complex spectral fea-
tures than those shown here. We show a model with
three non-linear parameters for visualization purposes,
but the method can be increased to any dimensionality.

5.2. Accuracy of PAE data reconstructions

While we demonstrated that varying latent parame-
ters of the PAE captures a number of complex spec-
tral and temporal features, the key for using the model
is its accuracy of modelling the SN Ia observations in
the training and test sets. In Figure 3 we compare the
SALT2 and PAE reconstructions of the data for two
supernovae from the test set. We chose to display a
supernova with many observed spectra and a low level
of observational noise (left), and a supernova with only
a few observations, with none before peak brightness,
and an increased observational noise level (right). These
two examples demonstrate the diversity of objects in the
dataset, and are a representative display of the perfor-
mance of both the SALT2 and PAE models.
We find that the PAE reconstructions are highly accu-

rate over the entire observation range from �10 to +40
days, even for samples that have highly non-uniform
time sampling. In comparison to the SALT2 best fit
spectra, we see a better fit overall, both on the am-
plitude o↵set, and on the matching of absorption and
emission features on the spectra, particularly the CaII
H&K, Si II, and OI features at ⇠3950 Å, ⇠6150 Å, and
⇠7800 Å, respectively. For SNe Ia with abnormally large
luminosity at early times (e.g., Nordin et al. (2018)) we
find that the PAE reconstruction still matches the ob-
servations to high accuracy, while the SALT2 model fails
to capture the spectral diversity of these types.
The accuracy of the reconstructions of the PAE model

depends on the number of latent dimensions used. Too
few dimensions does not allow for the full spectral vari-
ability of the supernovae time series to be expressed,
while too many dimensions can allow the model to im-
prove the fit on the training data, to no improvement of
the test data. By training multiple autoencoders, each
with a di↵erent number of intrinsic non-linear latent
parameters, we studied the optimal latent dimension-
ality for reconstruction quality. Using the same AE ar-
chitecture and multi-stage training procedure described
in Section 4 we varied the dimensionality of the latent
space from two to eight. When referring to the dimen-
sionality of the latent space we count only the model
parameters that capture intrinsic and extrinsic e↵ects,

and do not include the time shift relative to the SALT2
fits, �p.
To quantify the quality of the model reconstructions

we report the level of unmodeled dispersion – the addi-
tional dispersion beyond the observational uncertainty
required to explain the variance of the reconstructions
and the data. This is determined by modelling the ob-
served flux fobs as

fobs = N (fmodel,�
2
obs + �2

i ), (12)

and fitting for the maximum likelihood of the unmodeled
dispersion �i. We report this value in magnitudes for
each wavelength, binned in 5 day intervals, and show
the results as a function of latent space dimensionality
in Figure 4.
We find that our PAE outperforms the standard

SALT2 model at all wavelengths and observation times,
and that increasing the latent dimensionality continues
to decrease the unmodeled dispersion across the time
and wavelength range up until three non-linear latent
parameters (z1, z2, z3), after which it flattens to show
no additional improvement on the test set. The dis-
persion near the CaII H&K and Si II lines (⇠3950 Å,
⇠6150 Å), and near the Ca NIR triplet at ⇠8100 Å,
shows the most significant improvement when increas-
ing the non-linear latent dimensionality. This clearly
demonstrates that additional components describing the
intrinsic variations of the SN Ia population can learn in-
creasingly complex spectral and temporal features. The
dispersion between ⇠6500 to ⇠7750 Å remains at ⇠ 0.05
magnitudes, as this region has little to no spectral fea-
tures that vary between supernovae. We find that the
unmodeled magnitude dispersion near peak brightness
is on average the lowest, and increases at later times.
Between 30 and 40 days after peak brightness we find
that the dispersion is larger than near the peak. The
dispersion is higher even in spectral regions not associ-
ated with strong spectral features, suggesting that the
uncertainty is somewhat under-estimated for these very
faint spectra. Integrating the test set over a B-band
bandpass we find that the SALT unmodeled dispersion
near peak brightness is 0.128mag, compared to a PAE
value of 0.056mag – a factor of 2.28 larger.
We select the three non-linear latent dimension model

as optimal for modelling the data, and as we will show
below it also returns the lowest magnitude residuals. We
examine the best fit model parameters in Figure 5. We
note that the parameter values shown are those found by
finding the minimum of the log posterior through Hamil-
tonian Monte Carlo, and not simply the encoded values
of each supernova. This ensures that the full parameter
space has been explored, and thus the variations of any
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Figure 4. Unmodeled dispersion – the additional dispersion beyond the observational uncertainty required to explain the
variance of the reconstructions and the data (Equation 12) – of SALT2 and our PAE model with increasing latent space
dimensionality. The dispersion is measured in five day intervals for the training data (top) and on the unseen test data
(bottom). Beyond 3 non-linear dimensions (z1, z2, z3), plus extinction (�AV ) and a free amplitude scaling parameter (�M),
we found no improvement on the test sample, and thus do not display the additional panels here.

Figure 5. Best fit PAE parameters for all supernovae with a redshift greater than 0.02. The Pearson correlation coe�cient r
is shown in the top right of each panel.
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Figure 6. PAE parameters compared to SALT2 and the Twins Embedding/RBTL for overlapping supernovae with a redshift
greater than 0.02. The Pearson correlation coe�cient r is shown in the top right of each panel.
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parameter are not artificially small due to any limita-
tions of the encoder. From visual inspection we find that
the magnitude residual contains no noticeable correla-
tions with the other model parameters, confirming that
our multi-stage training setup and correlation penalty
has ensured that the intrinsic model parameters have
learned clear correlations between intrinsic luminosity
and spectral and/or temporal features of SNe Ia. Given
that the dimensionality of the non-�M parameters is
large, it is possible that small correlations between these
parameters and the magnitude residual remain. If so,
these correlations could be uncovered with an additional
non-linear model, which could be then be used to ex-
plain and reduce the extrinsic magnitude such as in the
SALT2 or the Twins Embedding analysis. Initial inves-
tigations with a fully connected neural network trained
on the latent parameters of the training set did not re-
duce the extrinsic magnitude dispersion when applied
to the test set. We also find that the average time shift
relative to the SALT2 fit, �p, is within approximately
half a day and is consistent with the uncertainty of the
SALT2 fits, and that the standard deviation of �Av is
0.132. A small number of supernovae have time shifts
of a few days relative to the SALT2 best fits. These are
mostly supernovae with no observations near or before
peak brightness.
Figure 6 compares the best fit PAE parameters to

the SALT2 and the Twins Embedding models de-
scribed in Section 2. As expected, we find a high
degree of correlation between the magnitude resid-
uals (�MSALT2,�MTwins,�MPAE) and the color
(cSALT2,�ARBTL

V ,�APAE
V ) between the three models,

although there is a non-zero scatter. We find that
the magnitude residuals cover a similar range of val-
ues, while the relative extinction inferred by the Twins
Embedding covers a larger range of values than that of
our PAE. This larger range is likely due to the mul-
tiple steps required to perform the Twins Embedding.
Rather than train all parameters simultaneously as for
the PAE, the Twins Embedding magnitude and extinc-
tion are fit first in the two-parameter RBTL step, and
thus �ARBTL

V is forced to simultaneously explain both
the extinction and any intrinsic color-like e↵ects. Alter-
natively, the PAE simultaneously learns all intrinsic and
extrinsic parameters, and the intrinsic latent parameters
(z1, z2, z3) can learn any color-like features that happen
to be correlated with spectral or temporal features. If
we instead allow the PAE to learn only a magnitude
and extinction, we find that the best-fit extinction val-
ues are nearly equivalent to those reported by the Twins
Embedding.

We find a clear correlation between our z1 parameter
and the x1 parameter of SALT2, and various correlations
between our latent space and the latent Twins Embed-
ding parameters (z1 ! ⇠2, z2 ! ⇠1, z3 ! ⇠3).

5.3. Simulating new SNe Ia

The generation of new supernova samples consistent
with the data is straightforward with a probabilistic au-
toencoder. We simply sample a random latent vector u
from a unit Gaussian, pass this through the normaliz-
ing flow to get the sample in autoencoder latent space
z, append the desired observation times and magnitude
o↵set �M , and pass this through the decoder to yield a
new spectral time series. By the probabilistic nature of
the normalizing flow Gaussian latent space u, the distri-
bution of generated samples corresponds to the density
of similar samples in the training dataset – significant
outliers will be rare, while “average” spectra will have a
higher probability of being generated.

5.4. Detecting Outlying Supernovae

The PAE framework allows for an e↵ortless determi-
nation of data density in both z and u space, which are
simply related through the Jacobian determinant of the
normalizing flow. Samples residing in low density re-
gions of the latent space are less similar to other super-
novae, while those in high density regions are more sim-
ilar to others. Therefore, by selecting supernovae by the
density of their latent representations, p(z), we can pull
out outliers or common samples for further inspection.
Low density does not mean that these supernovae are
more poorly fit by the PAE – we do not find that either
the reconstruction error or magnitude residual depends
on density – only that the latent parameters and hence
corresponding spectral characteristics are more unique.
Figure 7 shows the density as a function of redshift for

all supernovae (left), calculated from their best-fit latent
parameters. We find no distributional shifts between
supernovae in the training and test sets, so we include
all 228 supernovae here. It is clear that there are a
few supernovae residing in low density regions of the
latent space - i.e. with the smallest values of log p(z).
�AV is included, and because strongly reddened SNe Ia
can easily become isolated in that dimension, low values
for log p(z) can result. This explains all the cases with
log p(z) < 10�8. A number of these are at low redshifts,
but as we have excluded the amplitude parameter �M
from the density calculation as described in Section 3.2,
the density estimation should immune to the e↵ects of
peculiar velocities on amplitudes.
For a small number of supernovae in our dataset we

have external labels specifying peculiar sub-types, in-
cluding 91T-like, 91bg-like, and 09dc-like, which we
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Figure 7. Best fit PAE latent parameters with peculiar SNe Ia displayed as colored markers. The left panel shows the density of
each supernova as a function of the redshift, while the right panel displays where the supernova resides in each latent dimension.
We annotate the 14 lowest density examples in order to enable comparisons between the left and right panels.

highlight with di↵erent colored markers. We find that
the best fit PAE model parameters for these supernovae
are in regions of lower than average density, which is ex-
pected given that they belong to rare sub-populations.
As the number of supernova of a certain sub-type grows
their region of the latent space becomes well-populated,
and thus a low-likelihood is more e↵ective at finding in-
dividual rare SNe, such as the 91bg-like example, rather
than whole sub-populations such as the 91T-like. For
sub-populations it is better to examine clusters in vari-
ous regions of the latent space.
A closer inspection of individual dimensions of the la-

tent space (right panel) shows that the low density su-
pernovae are not necessarily peculiar among all dimen-
sions, rather their peculiar features are often isolated in
a specific dimension, such as large values of �AV , as
noted above, or low values of z2 or z3. We annotate the
14 lowest density examples in order to enable compar-
isons between the left and right panels. We find that five
of the six lowest density examples are supernovae with
high extinction, and are mostly at low redshifts. The
large extinction results in a relatively small transmitted
flux, so perhaps similar SNe Ia at high redshift are sim-
ply below the flux detection threshold. We also find a
clear cluster of 91T-like supernovae with low values of
both z2 and z3, demonstrating that the PAE is a valu-
able tool for population studies of supernovae. Beyond
the five low redshift supernovae with high extinction we
find no clear population shifts as a function of redshift.

5.5. Cosmological Distance Measurements

The application with perhaps the most scientific util-
ity is the determination of the magnitude residual for
each supernova, which is the key factor for determin-
ing the distance accuracy. As explained in Section 4
the three-stage training and correlation penalty term en-
couraged our PAE model to separate the extrinsic mag-
nitude component, which is uncorrelated with features
of the spectral time series, from any amplitude-like mod-
ification that is correlated with intrinsic spectral fea-
tures or temporal evolution. Thus the extrinsic magni-
tude residual �M is directly fit for during the posterior
analysis phase of our analysis, and we do not require any
additional steps to uncover correlations between model
parameters and magnitude residuals in order to per-
form magnitude standardization. This di↵ers from the
methodology employed in the SALT2 and Twins Em-
bedding models that we compare to, which employ an
additional linear (SALT2) or non-linear (Twins) model
to predict the magnitude given the model parameters,
and remove this predicted value to obtain a final magni-
tude residual. Although the PAE model parameters may
end up having some small remaining correlations with
�M which can be exploited to explain the magnitude
residuals, we do not perform any magnitude standard-
ization for the results shown here. Whether magnitude
standardization benefits from learning correlations dur-
ing model training, rather than determining them after
model training is completed, is not obvious a priori, but
is nevertheless an interesting topic for future investiga-
tion.
As outlined in Section 3.2 we marginalize over (�M ,

u, �p) for each SN Ia to obtain the final best fit model
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Figure 8. Magnitude residuals of supernovae from the training (top) and test (bottom) sets, including the component from
peculiar velocities. Both the SALT2 and Twins Embedding results are obtained from a linear (SALT2) or non-linear (Twins)
magnitude standardization procedure, while our probabilistic autoencoder has been trained to explicitly separate the extrinsic
magnitude from the intrinsic supernovae luminosity, and thus requires no standardization. Solid data points are those used in
the final Twins Embedding cosmological distance analysis, while data points with some transparency are the remaining overlap
between our data and the full Twins Embedding data set.

Data Sample Statistic SALT2 Twins Embedding PAE

NMAD 0.099± 0.013 0.083± 0.014 0.060± 0.010

Train RMS 0.126± 0.012 0.101± 0.009 0.074± 0.010

RMS w peculiar velocity removed 0.115± 0.012 0.087± 0.009 0.052± 0.010

NMAD 0.152± 0.039 0.087± 0.019 0.084± 0.023

Test RMS 0.166± 0.022 0.095± 0.012 0.091± 0.010

Peculiar velocity removed 0.157± 0.022 0.079± 0.012 0.074± 0.010

Table 1. Standardization performance for all methods presented in this work, showing the NMAD, RMS, and an estimate of the
RMS with the peculiar velocity removed (see text for details). The significant di↵erence between the train and test performance
of the SALT2 model stems from the random assortment of supernovae into each set, which combined with the small number of
total samples happened to place a higher fraction of large SALT2 magnitude residual SN into the test set. This is reflected in
the increase in uncertainty reported on the RMS and NMAD, determined by bootstrap resampling (Efron 1979).

parameters and their uncertainty through Hamiltonian
Monte Carlo starting from the best fit MAP parameter,
using the mean and percentiles of the posterior samples
as the mean and error on the best fit parameters. To en-
hance the predictive performance and error estimation
on the physical supernova parameters inferred by a sin-
gle PAE model we use the weighted mean and variance
calculated from the results of 10 separate models. Each
model is trained in an identical fashion on the train-
ing set with the procedure described above, but using
a di↵erent random seed to initialize network weights.
On the �M parameter for all models we include a pe-

culiar velocity error component, assuming a velocity of
vpec = 300 km/s1.
We first studied the magnitude residuals as a function

of the latent dimensionality of the model, finding a clear
decrease in the magnitude residual for both the train-
ing and test sets as we increase the latent dimensional-
ity from 0 to 3 non-linear intrinsic parameters. Similar
to the intrinsic dispersion results of Figure 4 we find
no statistically significant improvement when increasing

1
This is the prediction from linear perturbation theory (see, e.g.,

Hui & Greene 2006)
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beyond a model with three non-linear parameters (i.e.
(z1, z2, z3) plus extinction and an amplitude scaling).
This is in agreement with Boone et al. (2021a,b), who
find quickly diminishing returns when expanding beyond
three non-linear intrinsic model parameters. From this
investigation we determined that this model is optimal
for explaining the diversity of SNe Ia given our dataset,
and again restrict to this model for the following results.
In Figure 8 we compare the PAE magnitude residuals

to those derived by SALT2 and Twins Embedding anal-
yses for SNe Ia in common – 137 SNe in the training set
and 44 in the test set. Of this overlapping fraction 96
of the training and 32 of the test were part of the final
Twins cosmological distance analysis. We display both
the (unweighted) root mean squared (denoted �) and
the Normalized Median Absolute Deviation (NMAD)
of the magnitude residuals. While both statistics are
similar, the NMAD is less susceptible to large outliers.
We show the RMS and NMAD for SALT2, Twins, and
PAE over the subset of supernovae that overlap with
the ones used in the final Twins Embedding cosmologi-
cal distance analysis.
It is important to note that each analysis had some-

what di↵erent subsets of SNe Ia available for devel-
opment and training, especially given the small num-
ber of data samples available which theoretically could
cause a small number of outlying supernovae that ex-
ist in one dataset but not another to considerably alter
model training. Thus although this analysis facilitates
a comparison of the magnitude standardization capabil-
ities of the three models, the magnitude residuals we
report inevitably reflect a combination of the strength
of the method at explaining the diversity of SNe Ia cou-
pled with signatures of the specific data used for model
training – it is impossible to disentangle model imple-
mentations from subtle e↵ects introduced by the di↵er-
ent training data. However, by focusing only on the su-
pernovae that do overlap between the di↵erent analyses,
we attempt to mitigate any such di↵erences.
For individual SNe Ia we see consistent results across

all models, specifically the low redshift objects with large
magnitude residuals resulting from significant peculiar
velocities, which helps to validate the fitting procedure
employed in our analysis. Our model was trained us-
ing a minimum redshift cut of 0.02, and thus was was
not trained using any objects with significant redfhift
contribution due to peculiar velocity, but by excluding
the �M parameter from the normalizing flow we have
included no prior on the extrinsic amplitude and it is
allowed to freely vary to any value which best fits the
data.

We find that our PAE obtains significantly smaller
magnitude residuals than the SALT2 model, and shows
a magnitude residual similar to that of the Twins Em-
bedding analysis. None of the SNe in our dataset were
used for training the SALT2 model, such that the test
set illustrates an unseen sample and thus a true test
sample performance for both SALT2 and our PAE. The
samples we display for Twins will include both samples
used for training and those used for testing. For the PAE
we find a smaller magnitude residual for the training set
in comparison to the test set, which is commonly found
in the generalization of deep neural networks to unseen
samples, but the di↵erence is not statistically significant.
This does not equate to model overfitting, in which con-
tinuing to improve the fit on the training data comes at
a cost of decreasing performance on unseen test data.
As discussed in Section 4.3 we find no evidence for this,
and the test error continues to decrease until flattening.
Had we a larger training sample we would have sepa-
rated out a validation set, and stopped training when
the error on this set stopped decreasing, but we did not
want to further reduce the amount of available training
samples by separating out a validation set in addition to
the test set. This choice of not performing early stop-
ping during training was made to ensure that the model
remained blind to the test set.
We tabulate the final magnitude residuals for all meth-

ods in Table 1. While we do not have the same su-
pernovae in our dataset that were used in Boone et al.
(2021b), we find that the statistics we report for their
results are similar to those quoted in their paper of
NMAD = 0.83 ± 0.010 and � = 0.101 ± 0.070 over the
full sample of 134 SNe that passed their data cuts. To
approximate removing the component of the magnitude
residual stemming from peculiar velocities we assume
a 300 km/s velocity for each SN, which contributes an
added dispersion of 0.053 mag. We subtract this from
the RMS in quadrature. The uncertainty reported on
the RMS and NMAD are determined by bootstrap re-
sampling (Efron 1979) of the magnitude residuals.
The agreement between the Twins Embedding analy-

sis and our PAE is interesting given that the data prod-
ucts used to perform the analysis are quite di↵erent.
The Twins Embedding models the diversity of SNe Ia
only at maximum light, interpolating a max light spec-
tra using observations from within (�5 days, +5 days)
from peak brightness. Therefore any information from
observations outside of this window is not included in
the Twins Embedding analysis, while the PAE is al-
lowed to learn the full temporal evolution in addition
to the diversity at maximum light. Nevertheless, the
magnitude residuals between the two methods are sim-
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ilar, seemingly pointing towards observations near peak
brightness being the most important for standardiza-
tion, similar to as noted by (Fakhouri et al. 2015; Léget
et al. 2020). To investigate the PAEs reliance on ob-
servations near peak we perform an equivalent posterior
analysis while masking any spectra within a (�5 day,
+5 day) range from maximum brightness. We find that
when only using spectra outside of this range the NMAD
and RMS increase to 0.080± 0.014 and 0.112± 0.011 on
the training set, and 0.092 ± 0.032 and 0.135 ± 0.017
on the test set. This magnitude residual when only us-
ing observations away from peak brightness, while still
an increase over using the full timeseries, demonstrates
that the PAE does not require any observations near
peak brightness to still obtain relatively small magni-
tude residuals, and implies that the intrinsic brightness
of the supernovae can be determined from spectra at any
date from �10 to +40 days relative to peak brightness.

6. DISCUSSION & CONCLUSIONS

The goal of this paper is to develop a single framework
for SN Ia data analysis, developing a data driven model
that can be used for all of the downstream tasks, includ-
ing posterior analysis of all of its parameters including
the distance modulus, anomaly detection, and realis-
tic SN Ia spectro-temporal simulations. Our approach
is a physically-parameterized probabilistic autoencoder
(PAE) to model type Ia supernovae spectral evolution.
We showed that the model, trained directly on the data
without any data cuts, separately learns both intrin-
sic variation and extrinsic variation (dust and distance
modulus) of supernovae variability, and can model the
data to very high accuracy. We introduced a multi-stage
training procedure, which with the addition of a corre-
lation penalty term between the model parameters, dis-
entangles extrinsic magnitude changes due to peculiar
velocities from the portion of intrinsic luminosity of the
supernovae that correlated with optical spectral and/or
temporal features.
The disentanglement of intrinsic and extrinsic e↵ects

during training is novel to this work. Usually the dis-
covery of correlations between model parameters and
magnitude dispersion composes an additional “magni-
tude standardization” step after the model is trained,
which requires another linear or non-linear model, and
thus introduces another set of errors that need to be
propagated through to the final constraints. In con-
trast, in our approach all of the training is done once.
We demonstrate that the intrinsic scatter, even when in-

flated by the peculiar velocity dispersion, can be as low
as 0.1 magnitude, which bodes well for peculiar velocity
measurements with local supernovae.
Both our analysis and that of Boone et al. (2021b)

show that SNe Ia inhibit a 3-dimensional parameter
space (see Rubin (2020) for a more complete discus-
sion of this concept). Physical modeling of SN Ia explo-
sions involve many more parameters (e.g., Hillebrandt
& Niemeyer 2000), so our results imply the presence of
strong correlations among these parameters. The z1,2,3
space presented here o↵ers an e�cient means of com-
paring SN Ia model results with real SNe Ia. Signifi-
cant challenges remain in producing high-fidelity spec-
tral models of SN Ia explosions (cf. Röpke et al. 2012), as
even small changes in the modeling of radiative transfer
produce strong e↵ects on model spectra. More mature
physical models can eventually be e�ciently compared
in our z1,2,3 space.
We release all codes, and the trained models, at

github.com/georgestein/suPAErnova.
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