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Abstract—When scheduling multi-mode real-time systems on
multi-core platforms, a key question is how to dynamically adjust
shared resources, such as cache and memory bandwidth, when
resource demands change, without jeopardizing schedulability
during mode changes. This paper presents Omni, a first end-to-
end solution to this problem. Omni consists of a novel multi-mode
resource allocation algorithm and a resource-aware schedulabil-
ity test that supports general mode-change semantics as well
as dynamic cache and bandwidth resource allocation. Omni’s
resource allocation leverages the platform’s concurrency and the
diversity of the tasks’ demands to minimize overload during
mode transitions; it does so by intelligently co-distributing tasks
and resources across cores. Omni’s schedulability test ensures
predictable mode transitions, and it takes into account mode-
change effects on the resource demands on different cores, so as
to best match their dynamic needs using the available resources.

We have implemented a prototype of Omni, and we have
evaluated it using randomly generated multi-mode systems with
several real-world benchmarks as the workload. Our results show
that Omni has low overhead, and that it is substantially more
effective in improving schedulability than the state of the art.

I. INTRODUCTION

The trend towards full autonomy has transformed the design of

cyber-physical systems (CPS) in two fundamental ways. On

the software side, CPS are becoming increasingly adaptive:

for example, a self-driving vehicle may need to dynamically

execute different subsets of software features at runtime de-

pending on the road conditions or detected obstacles, and/or

it may switch between different controllers, such as an ad-

vanced MPC controller and a standard PID controller, to

optimize performance and safety. On the hardware side, CPS

increasingly use modern multi-core platforms in many critical

areas, such as automotive [20] and avionics [22, 32], where

they not only provide enhanced capabilities and performance,

but also lower costs. These developments have introduced a

new real-time challenge: How to ensure predictable run-time

adaptation on multi-core platforms while maximizing resource

use efficiency?
Recent research in real-time systems has already developed

two important technologies that can help to address this

challenge. First, multi-mode theories [10, 31, 34] can be used

to model and formally reason about adaptive systems. In this

formalism, the system is represented as a multi-mode system,

whose modes correspond to different configurations and whose

transitions correspond to configuration changes in response to

events. Each mode is associated with a set of tasks that are

active when the system is in that mode. Multi-mode analysis

can then be used to analyze the timing behavior of the system,

both within a mode and during a mode transition. The second

technology is multi-core resource allocation [39], which offers

a way to reduce interference among concurrent executions, en-

able better isolation among tasks, and consequentially achieve

better schedulability. However, these two technologies are

generally disconnected from one another: the former either

focuses on single core or completely ignores shared resources

such as cache and memory bandwidth, while the latter typi-

cally assumes a static system with a fixed taskset that does

not change at runtime. To the best of our knowledge, none

of the existing solutions considers both multi-mode systems

scheduling and shared multi-core multi-resource allocation.

Unfortunately, there is no easy way to extend one of the

two technologies to cover the entire scenario. One possible

approach would be to integrate a multi-mode scheduling

technique, such as [12], with an even partitioning of shared

resources. This approach can ensure timing guarantees for

multi-mode systems, but—as our evaluation shows—it suffers

from poor schedulability and resource utilization because it

cannot adapt to the dynamic changes in resource demands,

which happen naturally whenever the system transitions be-

tween modes. Another approach would be to apply existing

multi-core resource allocation methods, such as the holistic

allocation from [39], to each individual mode. This approach

produces a unique resource configuration for each mode that

closely matches each mode’s resource demand, but, without

considering mode transitions, it yields low schedulability and

cannot provide any guarantees.

In this paper, we present Omni, a first integrated end-to-

end solution to the multi-resource co-allocation problem of

multi-mode systems on multi-core platforms. Omni consists

of (1) a multi-mode resource allocation algorithm that holisti-

cally maps tasks and allocates cache and memory bandwidth

resources to cores, and (2) a resource-aware schedulability

test for the system. Our key insight is to concurrently (i)

adapt resource and task allocation dynamically as the system

transitions between modes, to closely match the changes in

resource demands at mode changes, and to (ii) take into

account the effect of mode changes on execution demands,

which in turn guide our allocation decisions. Omni’s resource

allocation algorithm leverages the platform concurrency and

the diversity of tasks’ demands to minimize overload during

mode transitions. This is achieved by strategically redistribut-

ing tasks and resources in tandem across cores. In doing

so, Omni aims to maximize schedulability in each mode

while minimizing the mode-change overhead by bringing the

modes’ allocations as close to each other as possible. Omni

further separates new tasks that appear only in the new mode

from existing tasks as much as possible; this is to avoid

potential overload during the transition, when new jobs of

new tasks (which are often released immediately at the mode-

change instant) co-exist on the same core with unfinished

jobs from the old mode. In summary, we make the following

contributions:
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• a multi-mode resource allocation algorithm that dynami-

cally adapts task mapping and shared resource allocation

to changes in resource demands at mode transitions

(Section IV);

• a resource-aware multi-mode schedulability analysis

(Section V); and

• a prototype implementation of Omni that supports general

mode-change semantics and dynamic resource allocation

(Section VI)

We have evaluated Omni using multi-mode systems generated

from PARSEC [5], SPLASH2x [37], DIS [24], and Isol-

bench [38] benchmarks. Our results show that Omni can be

implemented with low overhead, and that it substantially out-

performs state-of-the-art techniques in terms of schedulability

and resource-use efficiency.

II. RELATED WORK

Multi-mode systems have been studied extensively in real-time

literature. Existing solutions focus on two key areas: 1) new

models and timing analysis techniques for supporting multi-

mode behaviors (see e.g., [2, 7, 8, 16, 23, 28, 29, 30, 36]), and

2) mode change protocols for ensuring schedulability during

mode transitions (e.g., see [6, 35] and references therein).

Tools for systematic design exploration and evaluation of

MCPs have also been developed [31]. Most existing solutions

target uniprocessors, however.

Multi-mode scheduling and analysis have recently been

extended towards multiprocessors [1, 4, 12, 17, 26, 33]. While

the majority still considers CPU only, some recent work has

begun to consider shared resources. For instance, Negrean [25]

develops an analysis for multi-mode applications on AU-

TOSAR conform multi-core platforms; it considers resource

sharing protocols such as Priority Ceiling Protocol (PCP) and

spinlock-based mechanisms. Methods for mapping multi-mode

applications on NoC platforms have also been studied [13].

Closely related to our work, Kwon [19] recently proposes

a cache allocation technique that adapts cache allocation as

the system mode changes; however, it focuses exclusively on

cache allocation, and it considers neither memory bandwidth

nor task mapping. To the best of our knowledge, none of the

existing solutions for multi-mode systems are able to perform

adaptive co-allocation of tasks and multiple shared resources

(cache and memory bandwidth) on multi-core platforms in

response to mode changes, as Omni does.

Several multi-resource co-allocation techniques have been

developed. For example, CaM [40] and its virtualization exten-

sion [39] propose holistic resource allocation techniques that

find the assignments of tasks, cache and memory bandwidth to

cores in an integrated fashion. Unlike Omni, these techniques

are static and do not consider multi-mode behaviors. It is

highly non-trivial to extend such a solution to the multi-mode

setting–as our evaluation results show, a simple extension of

CaM suffers from very poor performance.

Dynamic co-allocation of multiple resources has also been

explored. For example, DNA/DADNA [15] adapts the resource

allocation at run time based on program phases. Like exist-

ing work in this space, DNA/DADNA assumes single-mode

systems. It is also designed for soft real-time and does not

have a theoretical analysis. As DNA uses average rates of

execution for its allocations, a worst-case schedulability test

would require fundamental changes to the algorithm itself.

Extending fine-grained adaptive solutions like DNA to multi-

mode hard real-time systems is an interesting future direction.

Several platforms have been developed to support multi-

mode behaviors. For instance, Neukirchner et al. [27] de-

velops an implementation of multi-mode monitors. Azim et.

al. [3] proposes an implementation in LITMUSRT that utilizes

checkpoints and rollback-based mode-change mechanisms for

efficient mode changes. Chen et. al. [10] provides a Xen-

based system called SafeMC for experimental exploration and

evaluation of MCPs. There also exist multi-mode virtualization

platforms that support multi-mode systems, such as M2-

Xen [21]. Unlike our Omni prototype, none of these platforms

supports dynamic shared resource allocations.

III. SYSTEM MODEL AND GOAL

Platform. We consider a multi-core platform consisting of

K identical cores, and a shared cache and memory bus that

are accessible by all cores. The cache is divided into Cmax

equal-size cache partitions, using an existing cache partition-

ing technique such as Intel’s CAT. Similarly, the memory

bandwidth (referred to as ‘bandwidth’ hereafter) is divided

into Bmax equal-size bandwidth partitions, using an existing

technique such as MemGuard. Cache and bandwidth are

allocated dynamically at the core level: at run time, each core

is allocated a set of cache and memory bandwidth partitions,

which are available to any task currently running on the core.

To minimize run-time overhead, we restrict cache and memory

reallocations to only during a mode change, i.e., when resource

demands change the most.

Within each mode, tasks are assigned to fixed cores. Tasks

on a core are scheduled using the partitioned Earliest Deadline

First (EDF) policy1. However, during a mode change, a task

may be assigned to a different core in the new mode to improve

schedulability. Our choice of limiting migrations and resource

reallocations to only during mode changes seeks to balance

the tradeoff between run-time efficiency and schedulability.

Multi-mode system model. We consider a multi-mode system

that is defined by a set of operating modes M, an initial mode

m0 ∈ M, a set of mode transitions R ⊆ M×M, and a set

of deadline-constrained periodic tasks T that need to execute

in the modes. Each mode m has a set of tasks T m ⊆ T that

are active when the system is in this mode. Each transition is

triggered by a mode-change request event (MCR), which for

simplicity is assumed to be unique for each transition. Initially,

the system begins in the initial mode m0. At runtime, whenever

an MCR associated with an outgoing transition arrives, the

system will perform the mode change, according to a given

mode change protocol, to move to the destination mode. As in

most existing work, we assume mode changes do not overlap –

the system processes MCRs in a first-come-first-served basis,

rejecting MCRs while performing the mode change until all

mode change actions complete.

1We use EDF due to its high resource utilization bound; it should be
possible to extend to other scheduling policies.
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Resource-aware task model. We follow a resource-aware

real-time task model based on [40], where each task is

characterized by three per-mode timing attributes: a period,

a deadline, and a resource-aware worst-case execution time

(WCET) that specifies the task’s WCET depending on the

resources it is given. For each mode m and each task τ ∈ T m,

we denote by pm
τ and dm

τ the period and deadline of τ in

mode m, respectively, and by em
τ (c,b) the WCET of τ in mode

m when it is allocated c cache partitions and b bandwidth

partitions (1 ≤ c ≤ Cmax and 1 ≤ b ≤ Bmax). As in existing

work, the task’s resource-aware WCET can be obtained by

formal analysis or measurement; we followed the latter for

our experiments.

Mode-change protocol (MCP). An MCP describes the execu-

tion behavior of a multi-mode system during a mode transition

– that is, from the instant the associated MCR arrives until

the instant where all new attributes associated with the new

(destination) mode are in effect. Before specifying the MCP,

we first distinguish the different types of tasks during a mode

transition from mode m′ to mode m:

• Old tasks: Active in m′ but not in m.

• New tasks: Active in m but not in m′.
• Existing tasks: Active in both modes. These tasks consist

of unchanged tasks, which maintain the same timing

attributes (period, deadline, WCET) in the new mode,

and changed tasks, which have at least one of their timing

parameters modified in the new mode.

We further categorize jobs during a transition into two types:

existing jobs are unfinished jobs that are released before the

MCR instant but have deadlines after the MCR instant, and

new jobs are jobs that are released at or after the MCR instant.

For analysis purposes, we assume the following mode

change semantics, as it can maintain periodicity while min-

imizing mode change latencies and system loads. However,

our analysis should extend to other MCPs as well.

• Old tasks are dropped immediately (including existing

jobs) and there are no new releases in the new mode.

Since old tasks are no longer needed, dropping them

immediately helps avoid unnecessary overload.

• Unchanged tasks release their jobs as before without

being affected by the mode change, to maintain their

periodicity.

• Changed tasks release their first new jobs based on the

old period (i.e., as if there were no mode transition),

and release all subsequent jobs based on the new period.

Again, this strategy aims to maintain the tasks’ periodicity

as much as possible.

• New tasks release their first jobs on their assigned cores

immediately, to enable a prompt transition to the new

mode.

• All new job releases follow their tasks’ periods and

deadlines associated with the new mode. Existing jobs,

however, maintain their existing deadlines.

During a mode transition, tasks may migrate among cores

and the resources allocated to each core may also change.

Therefore, we need to extend the above protocol to consider

migration and reallocation semantics, as follows:2

• If a task is assigned to a different core in the new mode,

its existing job will be migrated to the new core.

• All new jobs of active tasks will be released on the cores

they are mapped to in the new mode.

• Cache and bandwidth reallocation will take effect at

the MCR instant; consequently, existing jobs will be

(re)allocated the resources assigned to their cores in the

new mode.

Goal. Given the above setting, our goal is perform task and

resource co-allocation for the multi-mode system to maximize

its schedulability. Specifically, for each mode m of the system,

we seek to holistically compute the task-to-core mapping

Πm and the cache and bandwidth configurations (Cm,Bm) for

each core when the system is in mode m. Here, Πm
τ ∈ [1,K]

represents the core on which τ is mapped to in mode m,

and Cm
k and Bm

k represent the number of cache partitions

and bandwidth partitions allocated to core k in mode m,

respectively, for all 1≤ k ≤K. We require that the total number

of cache (bandwidth) partitions allocated to all cores is no

more than Cmax (Bmax).

Challenges. One common challenge in scheduling multi-mode

systems is to ensure timing guarantees during mode transitions,

because of the potential overload caused by the co-existence of

existing jobs and new jobs. In our setting, schedulability of a

transition has two additional challenges: (1) Existing jobs on a

core during a mode transition may come from a different core

in the old mode, so their (remaining) execution times depend

on not only the resource configurations and executions of their

old cores but also those of their new cores. This leads to extra

overhead and complicates resource allocation. (2) The task-

to-core mapping and resource allocation are interdependent: a

poor mapping in a mode can make it difficult to efficiently

allocate resources, and vice versa.

Baseline solutions. Since there exists no existing work that

considers shared resource allocation for multi-mode systems,

we extend the two most closely-related hard real-time solutions

(c.f. Section II) to our setting as baseline solutions. The first

extends the multi-modal task partitioning technique in [12],

which computes a static mapping of tasks to cores that

takes into account mode change effects but it ignores shared

resources. Our extension, referred to as MM-Static, applies

the same partitioning strategy, except that it statically divides

the cache and bandwidth as evenly as possible among the

cores, and then uses the resulting WCETs obtained under

that resource configuration for the analysis. (For consistency,

we also replace the zero-slack rate-monotonic (ZSRM) [11]

schedulability test used in [12] with our EDF-based schedu-

lability test in Section V.) The second baseline uses the static

holistic resource allocation algorithm from [40] to compute

the task mapping and resource allocation for each individual

mode in the system. We refer to this baseline as CaM.

One can observe that neither baseline solution is ideal: the

first cannot handle cases where the set of active tasks or their

2Systematic design exploration of novel resource-aware multi-core mode
change protocols, e.g., a resource-aware extension of SafeMC [10] is an
interesting future direction.
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timing attributes change drastically during a mode transition,

since it relies on a single static mapping for all modes.

In contrast, the second completely ignores mode transitions,

which can lead to substantial mode change overhead (as the

mappings may differ substantially) and poor schedulability

during mode transitions. We next discuss the Omni algorithm

and how it overcomes these challenges.

IV. OMNI RESOURCE ALLOCATION ALGORITHM

Basic ideas. Omni aims to co-allocate tasks and resources to

cores in each mode such that the resources given to each core

best match the demands generated by the tasks mapped to the

core. Towards this, it uses a combination of four key insights:

Insight #1. Omni performs reallocation at mode transitions,

since these are time points when resource demands may

change significantly.

Insight #2. For each mode, the task mapping and the (cache

and bandwidth) allocation are computed in a tightly integrated

fashion to account for their interdependence and their com-

bined effects on tasks’ WCETs and cores’ utilizations.

Insight #3. Omni reduces the worst-case overload and mode

change overhead during any mode transition by considering all

incoming transitions when computing an allocation for a mode.

The idea is to make the target mode’s allocation as similar to

the source mode’s allocation as possible across all possible

incoming transitions, thus reducing task migrations and mode

change latency. The implication is that existing tasks should

be kept on the same cores across as many mode transitions as

possible, without risking overall schedulability.

Insight #4. New tasks should share cores with existing tasks

as little as possible to reduce the chance of them overloading

the system during a mode transition, since they may co-exist

with existing jobs.

Omni works by exploring the multi-mode system structure

to compute new task and resource allocations for modes,

followed by a redistribution of tasks (and resources) for

unschedulable modes (if needed). It repeats this process over

multiple rounds, until either the system is schedulable and

a solution is found, or a given maximum number of task

redistributions R is reached.

Our algorithm relies on two pre-configured parameters: R,

the maximum number of task redistribution attempts after each
round; and r, the maximum number of task redistributions

performed when computing each mode’s allocation during a

round. These parameters can be configured based on, e.g.,

the maximum number of tasks per mode divided by the

average task utilization. Intuitively, the smaller the average

task utilization, the more tasks need to be redistributed to have

an impact on core schedulability, and vice versa.

We next describe an overview of our allocation algorithm.

A. Algorithm overview

Omni begins by initializing each mode with a base allocation,

which consists of a task-to-core mapping and a per-core cache

and bandwidth configuration. (For our experiments, we used

the static allocation given by MM-Static; however, Omni can

work with any base allocation, though the result may vary.)

It then selects a mode, mstart, to be the starting mode for the

multi-mode exploration; this could be the initial mode m0.

Phase 1: Multi-mode exploration and allocation. Starting

with mstart, Omni performs a round of iterative exploration

of the multi-mode system structure (e.g., in a breadth-first-

search manner). At each reachable mode m, it computes

a new resource and task allocation for m based on m’s

current allocation and the allocations of its (direct) predecessor

modes (i.e., modes with an incoming transition to m). This

computation is done by a ‘folding’ procedure that aims to

(i) keep existing tasks on the same cores across as many of

these modes as possible (to reduce migrations), (ii) limit core

sharing as much as possible between new tasks and existing

tasks (to reduce overload during mode transitions), and (iii)

balance loads among cores (to maximize schedulability). This

is shown in the FOLD() function in Algorithm 1.

Phase 2: System-wide schedulability analysis. After all

modes have been explored, Omni analyzes the schedulability

of the system under the new task and resource allocation,

using the schedulability analysis in Section V. If the system is

schedulable, Omni terminates and outputs the new allocation

as a solution. Otherwise, it computes a new load score
– defined as the sum of tasks’ utilizations under the new

allocation across all modes in the system. There are two cases:

a) If the new load score reduces the old load score (com-

puted in the previous round) by more than some config-

urable threshold: Omni saves the new allocation and load

score for the current round, and then continues to the next

round of multi-mode exploration (Phase 1), starting with

mstart as before.

b) Otherwise: Omni reverts to the old allocation (from the

previous round). It will then attempt to perform “task

redistribution” (Phase 3) for unschedulable modes and

transitions.

If the system is unschedulable and Omni has reached the

maximum number of task redistribution attempts R, it simply

reports unschedulable and outputs the old allocation.

Phase 3: Task redistribution. The task redistribution proce-

dure (c.f. TASKREDISTRIBUTE() function, Algorithm 2) aims

to bring the system out of an unschedulable state by moving or

swapping tasks between cores.3 Specifically, beginning with a

mode m∗ that is unschedulable or that has an unschedulable

incoming mode transition, our task redistribution tries to move

a task in m∗ from an unschedulable core to a schedulable core.

If this is not possible, it will consider swapping tasks between

cores. (Task swapping is useful, e.g., when the algorithm falls

into a local optima and cannot further reduce the system

load sufficiently.) To determine whether a task move/swap

is feasible, Omni checks whether the schedulable target core

will remain schedulable after the move/swap and a resource

redistribution. If a move/swap is feasible, Omni performs the

move/swap, followed by a resource redistribution for m∗. It

then saves the allocation given by the task redistribution, along

with its resulting load score, for the current round. It will then

repeat the multi-mode exploration (Phase 1), but starting with

3This procedure is also used internally by the FOLD() function in computing
the new allocation for a mode during Phase 1.
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mode m∗ (i.e., mstart = m∗). If neither a move nor a swap is

feasible for m∗, Omni tries with the next unschedulable mode

or transition. This is important because, even if an earlier

explored mode or mode transition remains unschedulable, a

task redistribution in a later mode can lead to a change in the

allocations of the whole multi-mode system, thus potentially

enabling schedulability of the earlier mode as well.

Termination condition. The algorithm terminates when (i) the

system is schedulable at the end of the current round of multi-

mode exploration, or (ii) task redistribution is not feasible for

any of the unschedulable modes or mode transitions, or (iii)

the maximum number of task redistribution attempts R has

been reached, whichever is earlier. Termination is guaranteed

because (1) either the system is schedulable, or (2) the algo-

rithm terminates because it has performed R task redistribution

attempts or because task redistribution is not feasible for any

of the unschedulable modes and mode transitions.

B. Details of key procedures

Next, we describe the folding and task redistribution proce-

dures in detail. Due to space constraints, we omit other simpler

or less critical functions.

Folding procedure. Algorithm 1 shows the folding procedure

for computing a new allocation for a current mode Mcur. The

procedure works by “folding” the current allocations of the

predecessor modes Mprevs and the current mode Mcur; the goal

is to keep existing tasks on the same cores across as many

mode transitions as possible. For this, Omni first filters out all

tasks of the predecessors that are not active in Mcur from their

allocations (Lines 2–3). It then assigns tasks in mode Mcur
into tiers (Line 4). Specifically, a task τ is in tier i if, under

the current allocation, i is mapped onto the same core for a

maximum of i modes in Mprevs ∪{Mcur}. We refer to such a

core as a best core for τ .

Intuitively, a task in a higher tier shares the same core across

more modes than a task in a lower tier; hence, we should keep

it on its best core if possible. In contrast, a task that belongs

to the lowest tier either shares no common core across the

modes or is a new task for any incoming mode transition

(i.e., not active in Mcur’s predecessors). In the former case, the

task will inevitably experience migration for all but at most

one incoming mode transition, regardless of which core it is

mapped to in Mcur. Therefore, Omni prioritizes minimizing

worst-case utilization in selecting a core for such tasks to

improve schedulability.4 In the latter case, Omni aims to keep

this new task on a different core from those of existing tasks

to avoid overloading unfinished jobs.

Based on the above insight, the algorithm works by iterating

through the tiers, in decreasing tier number until tier 1 (Line 6).

For each task τ in a chosen tier, it assigns τ to its best

core (Lines 7–8), keeping track of each core that contains

an existing task (carryoverCores in Line 10). Between task

assignments, Omni performs resource redistribution for Mcur
to balance the loads across cores (Line 9).

4The current worst-case utilization of a core is the total utilization of the
tasks that have been assigned to the core so far, assuming that each such task
has the largest WCET among its WCETs in Mprevs ∪{Mcur}.

Algorithm 1 Computation of a new allocation for a mode

1: function FOLD(Mcur , Mprevs, cores, r) �
Mcur: current mode,
Mprevs: previous modes that can transistion into Mcur ,
r: number of attempts for task redistribution

2: for Mprev ∈ Mprevs do
3: FilterAllocation(Mcur , Mprev.cores)

4: tierList =
CreateCoreTier(Mcur.T , Mcur ∪Mprevs, |Mcur|+ |Mprevs|)

5: carryoverCores = /0
6: for i = |tierList| . . .1 do � Map tasks to cores until tier 1
7: for τ ∈ tierList[i] do � Assign to most popular core
8: assignTask(Mcur , τ , τ.bestCore)
9: ResRedistribute(Mcur.cores)

10: carryoverCores ∪ τ.bestCore � Note carry-over task here

11:
12: delaySet = /0
13: for τ ∈ tierList[0] do � Iterate through tier 1 tasks
14: if τ ∈ Mprevs == false then
15: delaySet ∪ τ
16: continue
17: didAlloc = false
18: lcore = GetLowestUtil(carryoverCores)
19: while lcore! = NULL && didAlloc == false do
20: if U [lcore] + U [τ] > 1 then
21: lcore = GetLowestUtil(carryoverCores)
22: continue
23: assignTask(Mcur , τ , lcore)
24: didAlloc = true
25:
26: if didAlloc == false then
27: lcore = GetNextLowestUtil(Mprevs.cores)
28: assignTask(Mcur , τ , lcore)

29:
30: ResRedistribute(Mcur.cores)

31:
32: for τ ∈ delaySet do � Iterate through Mcur only tasks
33: didAlloc = false
34: lcore = GetLowestUtil(cores ∩ carryoverCores)
35: while lcore! = NULL && didAlloc == false do
36: if U [lcore] + U [τ] > 1 then
37: lcore = GetLowestUtil(carryoverCores)
38: continue
39: assignTask(Mcur , τ , lcore)
40: didAlloc = true
41:
42: if didAlloc == false then
43: lcore = GetNextLowestUtil(Mprevs.cores)
44: assignTask(Mcur , τ , lcore)

45: ResRedistribute(Mcur.cores)

46:
47: for i = 0 . . .r do
48: if ModeSchedulable(Mcur) == true then
49: return
50: if !TaskRedistribute(Mprevs, Mcur.cores, true) then
51: TaskRedistribute(Mprevs, Mcur.cores, false)

52: ResRedistribute(Mcur.cores)

Resource redistribution is done incrementally one partition

at a time, by first selecting the least-loaded (lowest-utilization)

core and most-loaded (highest-utilization) core, and then mov-

ing one resource partition from the former to the latter to

reduce their utilization difference. If it is not possible to move

a partition from the least loaded core to the most loaded core

without creating a swap in their utilization (i.e., the former

becomes more loaded than the latter), we move to the second

least-loaded core, and so on. Resource redistribution completes

when it is no longer beneficial to move partitions between

cores. When that happens, Omni proceeds with the next task

in the tier and repeats the same core assignment and resource

redistribution procedure, until there is no task left.
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Omni then proceeds to the lowest tier (tierList[0]), which

contains tasks that do not share cores across modes. It finds

an allocation for all existing tasks in this tier first (Lines 12–

30), delaying new tasks to the final stage (Lines 32–51).

For each existing task τ , Omni attempts to assign τ to the

lowest-utilization core lcore among the carryoverCores set

(containing only existing tasks so far) that can fit the task

(Lines 18–24). If no core in carryoverCores can accommodate

the task, Omni assigns τ to a core that has the smallest worst-

case utilization. The worst-case utilization considers only tasks

that have been assigned so far in the current round, and

assuming that those tasks inherit their largest WCETs from

any of the modes in Mprevs that they belong to (Lines 26–28).

Finally, Omni proceeds to the new tasks of Mcur. The

allocation for a new task works similar to that of an existing

task, except that Omni tries to assign the new task to cores

that are not in the carryoverCores set (Lines 33–40). This is

to separate new tasks from old tasks as much as possible to

avoid overloads during mode changes. If no such core exists,

it assigns the task to the core with the smallest worst-case uti-

lization. By assigning tasks in this order, Omni simultaneously

minimizes migrating carryover tasks, while still keeping new

mode tasks separate to avoid mode change overloads.

If the mode is unschedulable after folding all tasks together,

the algorithm attempts to redistribute tasks and resources

for a configurable number of times, r (Lines 47–52). Task

redistribution can be invoked to move either a new-mode

task or a carry-over task from an unschedulable core to

a schedulable core. We prioritize moving new mode tasks

(Line 50) first, as these tasks do not experience mode change

overheads that carry-over tasks potentially experience due to

core migration or resource reallocation. If no new-mode task

can be moved, we try again with a carry-over task (Line 51).

Since task redistribution only moves a single task at a time,

during heavy load situations, the mode may continue to be

unschedulable after several redistributions.

Task redistribution. Algorithm 2 shows the task redistribution

algorithm for a mode m∗ that is unschedulable or that has

an unschedulable incoming transition. As discussed above,

task redistribution is performed for new-mode tasks first and

then for carry-over tasks in m∗. The algorithm takes as

input a flag, nmTask, which is true if new-mode tasks are

considered, and false otherwise. To redistribute tasks, Omni

checks whether moving a task from an unschedulable core (in

decreasing core utilization) to a schedulable core (in increasing

core utilization) and redistributing resources afterwards will

make the former core schedulable without making the latter

unschedulable (Lines 2–24). If a move is not possible, Omni

will attempt to swap tasks (Lines 27–36).

Starting with the highest-utilization core hcore, Omni se-

lects a candidate task τ (i.e., a new task if nmTask = 1, and

a carry-over task otherwise) on the core for moving (Line 6

and 8). It then searches for a destination core for τ among

schedulable (low-utilization) cores, in increasing order of core

utilization (Lines 11–19). For each candidate core lcore, Omni

first checks whether the core would remain schedulable with

the extra task τ after a resource redistribution (Lines 21–24).

If such a move is not possible, Omni will check whether a

Algorithm 2 Omni Task Redistribution

1: function TASKREDISTRIBUTE(Mprevs, cores, nmTask) �
Mprevs: Previous modes that transistion into Mcur ,
nmTask: true for new mode, false for carry over

2: hcore = GetHighestUtilCore(cores)
3: while hcore do
4: lastCore = false
5: lcore = NULL
6: τ = SelectTask(hcore, Mprevs, nmTask)
7: while Util[hcore]−Util[τ]> 1 do
8: τ = SelectTask(hcore, Mprevs, nmTask)

9: if τ == NULL then return ERR
10:
11: if nmTask then
12: � Find next lowest util core with no carry over task
13: lcore =NextLowestUtilNoCOCore(cores, lcore)
14: else
15: � Find next lowest util core with carry over task
16: lcore =NextLowestUtilCOCore(cores, lcore)

17: if lcore == NULL then
18: lcore = GetLowestUtilCore(cores)
19: lastCore = true
20:
21: if Util[TestResRedistribute(lcore,τ)] ≤ 1 then
22: MoveTask(hcore, lcore, τ)
23: ResRedistribute(cores)
24: return OK � Successfully moved a task

25:
26: � Try to swap tasks
27: τ ′ = GetTaskWithUtilLessThan(lcore, 1−Util[lcore])
28: if τ ′ == NULL && lastCore == false then
29: go to 11 � Try with next lowest core
30: else if τ ′ == NULL && lastCore == true then
31: return ERR
32:
33: if Util[TestResRedistribute(lcore,τ ′)] ≤ 1 then
34: SwapTasks(hcore, lcore, τ , τ ′)
35: ResRedistribute(cores)
36: return OK
37: hcore = NextHighestUtilCore(cores, hcore)

38: return ERR

task swap between the two cores, hcore and lcore, followed

by a resource redistribution, would be feasible (Lines 27–36).

If a move (swap) is feasible, Omni performs the move (swap),

followed by the resource redistribution. (When there are

multiple candidate tasks for moving (swapping) that meet our

criteria, we prioritize the task(s) that would lead to the greatest

decrease in the utilization difference between the two cores

after task moving/swapping and resources redistribution.)

Complexity. As Algorithm 1 is the primary execution loop

for Omni, it is useful to understand its runtime complexity.

It takes O(n ·K ·E) and O(K · logK) to compute the tier list

and to sort cores, respectively, where n = maximum number

of tasks per mode, K = number of cores, and E = maximum

number of incoming transitions per mode. A resource redistri-

bution takes O(K ·Cmax ·Bmax), and a task redistribution takes

O(n2 ·K ·Cmax ·Bmax), where Cmax and Bmax are the maximum

number of cache and bandwidth partitions, respectively. Thus,

Algorithm 1 takes O(n ·E ·K+K · logK+r ·n2 ·K ·Cmax ·Bmax).
Since E, K, Bmax and Cmax are (typically small) constants, we

arrive at O(r ·n2).

V. SCHEDULABILITY ANALYSIS

We now present a schedulability analysis for our multi-mode

system model under a given task and resource allocation,

which is used by Omni during its allocation.
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Consider a multi-mode system and mode change protocol

defined by our model from Section III where tasks are

scheduled on their cores using EDF. The system is

schedulable under an allocation (Πm,Cm,Bm) iff it is

schedulable in each mode m ∈ M and during each mode

transition r ∈R under this allocation. Before establishing the

conditions for each case, let us define some notation. We

denote by T m
k the set of tasks that are mapped onto core

k in mode m, i.e., T m
k =

{
τ ∈ T m | Πm

τ = k
}

. In addition,

Dm
k denotes the maximum deadline of all tasks on core k in

mode m, i.e., Dm
k = max

τ∈T m
k

{dm
τ }. Finally, Em

τ and Um
τ denote

the WCET and utilization of τ in mode m, respectively. That

is, Em
τ = em

τ (C
m
k ,B

m
k ) where k = Πm

τ , and Um
τ = Em

τ /pm
τ .

Mode schedulability. The schedulability of a mode m can be

determined using an existing EDF schedulability test, except

that each task’s WCET corresponds to the resources assigned

to its core in this mode. The demand bound function (DBF)

of a task τ on core k in mode m is given by

∀t > 0 : dbfm
τ (t) =

⌊ t −dm
τ + pm

τ
pm

τ

⌋
Em

τ . (1)

The DBF of core k in mode m is thus given by and

dbfm
k (t) =

∑

τ∈T m
k

dbfm
τ (t). (2)

The next theorem states the schedulability condition for mode

m. Its proof follows directly from the analysis in [14].

Theorem 1. The system is schedulable in mode m if for all
1≤ k ≤K: Um

k =
∑

τ∈T m
k

Um
τ ≤ 1 and ∀t < Lm

k ,dbf
m
k (t)≤ t, where

Lm
k = max

{
Dm

k ,
1

1−Um
k
×

∑

τ∈T m
k

(pm
τ −dm

τ )U
m
τ

}
.

Mode transition schedulability. To determine the system

schedulability during a mode transition, we first assume that

the system is schedulable in each individual mode (i.e.,

Theorem 1 holds for all modes). Consider a mode transition

m′ → m, and suppose t0 is the instant when the transition is

triggered (i.e., when its MCR arrives). Since the system is

assumed to be schedulable in the old mode m′, it is schedulable

during the mode transition from m′ to m if every core k is

schedulable from time t0 onwards. Consider any interval [t1, t2]
of length t that begins at or after the MCR instant t0. If t1 > t0,

then all jobs whose release times and deadlines are both within

[t1, t2] could only be new jobs of the tasks in m. Hence, the

total demand on core k during this interval is bounded by

dbfm
k (t), which is at most t since the system is assumed to be

schedulable in mode m. Thus, we only need to consider the

case where t1 = t0, i.e., the demand generated by jobs during

the interval It = [t0, t0 + t] for t > 0.

Because all old tasks of the mode transition are dropped at

the MCR instant, only tasks that are active in the new mode

m contribute to the mode transition demand. Let τ be a task

on core k in mode m (i.e., τ ∈ T m
k ). The demand generated by

τ during the interval It depends on its type:

Fig. 1: Worst-case demand scenario of an existing task.

Case 1) If τ is a new task (i.e., τ /∈ T m′
), then its demand

can be computed using the standard DBF function, which is

given by dbfm
τ (t) in Eq. (1).

Case 2) If τ is an existing task (i.e., τ ∈ T m′
), then its

demand consists of (i) the demand generated by its new jobs,

which are released and have (new mode) deadlines in [t0, t0+t],
and (ii) the carry-in demand from at most one (unfinished)

existing job, which was released prior to t0 and has deadline

in the interval (t0, t0 + t], if it exists. We call such a job the

carry-in job of the task τ .5

To bound the demand of existing tasks, we first consider

each existing task individually and compute the total demand

generated by both its carry-in job and its new jobs based on a

worst-case execution scenario. We further tighten the analysis

by considering the total carry-in demand of carry-in jobs that

came from the same core in the old mode altogether.

A worst-case scenario that generates the maximum demand

by an existing task τ is given by Lemma 2. An example that

illustrates this scenario is shown in Figure 1.

Lemma 2. The worst-case demand of an existing task τ in
the interval [t0, t0 + t] happens when (i) there exists a job of
τ with a deadline at t0 + t, (ii) all new jobs of τ are released
as soon as possible, and (iii) the carry-in job of τ , if exists,
is executed as late as possible in the old mode.

The proof follows similar arguments as in existing EDF

demand analysis; due to space constraints, we omit it here.

Under the worst-case scenario illustrated in Figure 1, the

maximum demand of new jobs of τ in It is bounded by

dbfm
τ (t) = � t −dm

τ + pm
τ

pm
τ

�Em
τ (3)

where pm
τ , dm

τ and Em
τ are the period, deadline, and WCET of

τ in the new mode m.

To compute the carry-in demand for τ , we first recall that

the new resource allocation of the new mode takes effect

immediately after the MCR instant; thus, the maximum time

that τ’s carry-in job needs to execute in the new mode m
is no more than its WCET in the new mode, which is Em

τ .

This worst-case scenario can happen if τ’s carry-in job is

not executed at all prior to the MCR instant. In addition,

under the assumption that the system is schedulable in each

mode in isolation, τ’s carry-in job is guaranteed to meet its

deadline if the mode transition does not occur. Therefore,

as Figure 1 illustrates, the maximum remaining execution

time of τ’s carry-in job if it is continued to be given the

same resource allocation as in the old mode is bounded by

tdl − t0 ≤ t ′ − (pm′
τ − dm′

τ ), where pm′
τ and dm′

τ are the period

5There can be at most one carry-in job per existing task, since the system is
schedulable in the old mode and a task’s deadline is no more than its period.
Note also that the deadline of the carry-in job remains unchanged across a
mode transition; only new jobs’ deadlines follow the new mode’s.
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and deadline of τ in the old mode. Here, t ′ is the time from

the MCR instant to τ’s first new job release, if there exists at

least one such job within the interval It under the worst-case

scenario described above (i.e., if t ≥ dm
τ ); otherwise, t ′ is the

same as t. In other words, t ′ = (t − dm
τ ) mod pm

τ if t ≥ dm
τ ,

and t ′ = t otherwise.

However, since the resources allocated to τ’s carry-in job

may change in the new mode, its WCET can become larger

than its old mode’s WCET. This typically happens if τ is

assigned fewer cache/bandwidth partitions in m than in m′.
In that case, τ’s carry-in job might need to execute an extra

amount of at most Em
τ − Em′

τ execution time units, i.e., the

difference between τ’s new WCET and its old WCET. Thus,

depending on whether there exists a new job release for τ in

the interval It , the maximum remaining execution time of τ’s

carry-in job under the new mode’s allocation can be computed

as follows:

Case 1) If t ≥ d m
τ , then t ′= (t −d m

τ ) mod p m
τ , and

E(m′,m)
τ =min

{
Em

τ ,max{0, t ′−(pm′
τ −dm′

τ )}+max{0,Em
τ −Em′

τ }
}
.

Case 2) If t < dm
τ , then

E(m′,m)
τ = min

{
Em

τ , t +max{0,Em
τ −Em′

τ }
}
.

Since the mode transition demand of an existing task τ is

the sum of its new jobs’ demand and its carry-in demand, its

demand during the mode transition is bounded by

dbf
(m′,m)
τ (t) = � t −dm

τ + pm
τ

pm
τ

�Em
τ +E(m′,m)

τ (4)

By combining the demands of existing tasks and new tasks,

we derive Lemma 3.

Lemma 3. The maximum demand of a core k during a mode
transition m′ → m is bounded by

dbf
(m′,m)
k (t) =

∑

τ∈T m
k \T m′

dbfm
τ (t)+

∑

τ∈T m
k ∩T m′

dbf
(m′,m)
τ (t)

for all t > 0, where dbfm
τ (t) and dbf

(m′,m)
τ (t) are defined in

Eqs. (1) and (4), respectively.

The above lemma gives a means to check for schedulability

during a mode transition. However, the DBF function

dbf
(m′,m)
k (t) so far only considers each task individually,

which can be conservative. Since each mode is schedulable

individually, it is possible to bound the carry-in demand of

multiple tasks altogether to tighten the analysis.

Tightening the total carry-in demand. First, we observe that

existing tasks on a core k in the new mode may be migrated

from different cores in the old mode. We first divide the set

of existing tasks on core k in the new mode m into different

groups that correspond to the cores they were executing on

in the old mode m′. Specifically, let S(m
′,m)

i,k denote the set of

existing tasks τ ∈ T m
k such that τ was assigned to core i in

mode m′ (i.e., Πm′
τ = i), for all 1 ≤ i ≤ K.

Then, the total execution demand of all the carry-in jobs

in S(m
′,m)

i,k in an interval It , assuming that they continue with

the old mode’s resource allocation, must be bounded above

both by the maximum of their old mode’s deadlines and by

t. If either condition is violated, then at least one of the

carry-in jobs would miss its deadline on core i in the old

mode in the absence of a mode change, which contradicts our

assumption that each mode is always schedulable in isolation.

The maximum extra execution time that the carry-in job might

need to execute due to a change in the resource allocation in

the new mode is at most max{0,Em
τ −Em′

τ }. Hence, the total

demand of all carry-in jobs in S(m
′,m)

i,k in It is bounded by

min{t, max
τ∈S(m

′,m)
i,k

dm′
τ }+

∑

τ∈S(m
′,m)

i,k

max{0,Em
τ −Em′

τ }).

By combining the above with the DBF of new jobs of a task

in S(m
′,m)

i,k , given by Eq. (3), we imply that the total demand

of all tasks in S(m
′,m)

i,k in the interval It is bounded by

dbf
(m′,m)
k,i (t) = min{t, max

τ∈S(m
′,m)

i,k

dm′
τ }+

∑

τ∈S(m
′,m)

i,k

max{0,Em
τ −Em′

τ }

+
∑

τ∈S(m
′,m)

i,k

� t −dm
τ + pm

τ
pm

τ
�Em

τ .

Thus, the total demand of all existing tasks in mode m on

core k is bounded by the sum of the demand from all the

groups i, that is
∑K

i=1 dbf
(m′,m)
k,i (t). As a result, we can bound

the demand of a core using the next lemma.

Lemma 4. The maximum demand of a core k during a mode
transition from m′ to m is bounded by

dbf
(m′,m)
k (t) =

∑

τ∈T m
k ∧τ /∈T m′

dbfm
τ (t)+

K∑
i=1

dbf
(m′,m)
k,i (t)

for all t > 0.

dbf
(m′,m)
k,i (t) = min{t, max

τ∈S(m
′,m)

i,k

dm′
τ }+

∑

τ∈S(m
′,m)

i,k

max{0,Em
τ −Em′

τ }

+
∑

τ∈S(m
′,m)

i,k

� t −dm
τ + pm

τ
pm

τ
�Em

τ .

The following theorem states the schedulability condition

for a mode transition from m′ to m. Its proof comes directly

from Lemmas 3 and 4.

Theorem 5. The system is schedulable during a mode tran-
sition from m′ to m if
(1) the system is schedulable in modes m′ and m according

to Theorem 1, and
(2) for all 1 ≤ k ≤ K: min{dbf(m

′,m)
k (t),dbf(m

′,m)
k (t)} ≤ t for

all t > 0.

Thus, the multi-mode system is schedulable under a given

allocation if all of its mode transitions are schedulable under

that allocation.
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Overheads. The above analysis assumes that run-time over-

heads, such as task migration and resource allocation over-

heads, have been accounted for by inflating WCETs and

DBFs. Briefly, we can account for overheads by modifying

the mode schedulability test as follows: 1) adding the overhead

for performing mode change actions (stop old tasks, release

new tasks, modify task-to-core mapping, modify resource

allocations, etc.) on each core into the core’s DBF, and 2) for

each task that may carry-over to an outgoing mode, inflating its

WCET with the cost for reloading its working set to account

for the impact of migration or resource allocation. Due to

space limitations, we omit the detailed discussion.

VI. PROTOTYPE

To evaluate Omni and to show its utility in practice, we built

a prototype of Omni on top of LITMUSRT [9]. In this section,

we describe the key aspects of the prototype and some of the

challenges we faced in our implementation.

Scheduler extension. We implemented our prototype as a

scheduler plugin within the LITMUSRT extension for the

Linux 4.9.30 Kernel. LITMUSRT modifies the Linux kernel to

support various real-time task models and modular scheduler

plugins. To execute a task as a real-time task on top of

LITMUSRT , the user can add special system calls to the

target application’s source code. These system calls enable

the task to transition from Linux’s default scheduler to the

user’s scheduler of choice within LITMUSRT , such as EDF.

The user can then loop the desired application code, where

each iteration of the loop is considered as a single job instance

by LITMUSRT . During runtime, the plugin is responsible for

keeping track of each task’s real-time meta data, such as task

ordering within its own run queues, execution time tracking,

and relative deadline.

LITMUSRT also provides other common mechanisms that

our prototype utilizes, including, e.g., non-mode-change task

preemptions, task migrations between Linux’s run queues, and

concurrency control. However, it does not natively support

multi-mode execution. Hence, we extended LITMUSRT to in-

corporate multi-mode system structures, mode-dependent task

structures, and functions for executing mode change actions

(such as forcefully aborting, adding, or modifying tasks).

Mode change handler. We extended LITMUSRT ’s system call

interface to enable mode change information to be passed

to our scheduler plugin and to trigger mode transitions at

runtime from user space. For this, we dedicate one core to

Linux for executing Linux system-related tasks and our mode

change handler; we refer to this core as the management core.

The remaining cores can be used to execute Litmus real-

time tasks. This approach is not only essential for Linux to

function but also needed to isolate the real-time tasks from

Linux’s potential interference. Further, to avoid task excessive

creation overhead during mode transitions, we map each real-

time Litmus task its own single Linux task, irrelevant of how

many modes the real-time task is in.

When a mode transition occurs during a multi-mode exe-

cution, the management core preempts all Litmus cores, grab-

bing each of their scheduling locks to process mode change

actions on each Litmus real-time task. Using the mode change

information passed in previously, along with the current mode

transition number, our mode change handler determines if a

task should be aborted, be added back to a core as a new

mode task, have its runtime parameters updated and possibly

migrated, or have its current state left unchanged. Although

LITMUSRT already offers existing interfaces for adding a task

to and removing a task from its appropriate scheduling queues,

these actions can only happen during specific times of a task’s

lifetime. For example, existing scheduler implementations only

permit removing tasks from the ready queue (i.e., a queue used

for tasks that have had a job already released and is ready for

execution). In contrast, since an MCR can arrive at any time,

we need to perform mode change actions whenever the MCR

arrives. This asynchronous nature of MCRs created many

new race conditions that we needed to handle carefully. One

example is when a task finished its previous job and committed

the next job to be released in the future, there is no existing

mechanism in LITMUSRT to cancel this pending release until

after the task is put into the ready queue. Our mode change

handler is able to avoid the race conditions involved with

modifying a task’s state regardless of which state the task is

currently in (e.g., even if the task might have just been setup

for a new release and will only be moved to the ready queue

much later). To accomplish this with minimal overheads and

with minimal modifications to the existing LITMUSRT system,

we employed a lazy removal technique in which tasks that are

unable to be modified or removed from our scheduler plugin

at mode change instant are flagged as pending for removal.

When the task is eventually moved into the ready queue upon

release, we check its pending removal flag and remove the

task at that point if the removal flag is set.

Job reset. Another limitation of LITMUSRT is that it has

no way to control the progress of the user-level task that is

executing for each job loop. Ideally, when a task is scheduled,

it will finish its workload and return to the top of the loop

where it will sleep until LITMUSRT schedules its next job

release. If a task misses its deadline, however, LITMUSRT

has no mechanism to reset the task back to the top of the

loop such that its next job release will begin at the start of

the application. We remedied this by adding a system call at

the beginning of each application, immediately before the job

loop. This system call takes a snapshot of each task’s registers,

which is reloaded at the beginning of each job loop iteration.

This enables us to perform a reset of the task’s state, even

when its previous job never finished (e.g., because the job

missed its deadline, or because it was aborted in a previous

mode change). In total, our scheduler plugin contains about

2000 lines of code, including our mode change handler and

all LITMUSRT modifications.

Resource control. After performing mode change actions on

each real-time task, the mode change handler releases each

Litmus core’s scheduling plugin lock. Each core immediately

applies its resource allocation for the new mode, before

picking the next task to execute. For cache and memory

bandwidth partitioning, we integrated Intel’s Cache Allocation

Technology (CAT) [18] and Memguard [41] into our extension

of LITMUSRT , respectively. CAT divides the last-level cache

into partitions, which can be allocated to cores using special
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model-specific registers (MSRs) on certain Intel CPUs. The

number and size of these partitions are CPU specific and

are based on the number of set-associative ways. Using bit

masks, a user can set a class of service register (COS) to

have a specific mapping of contiguous partitions. Cores are

associated with a specific COS through the use of another

per-core register (PQR) that specifies which COS should be

used for that core. CAT enforces the property that all new

last-level cache allocations from a logical core are made only

to a way specified in the bitmask of that core’s COS.

Memguard is a software-based technique to control the

amount of memory requests a core can make within a con-

figurable time window. Through a kernel module, a core is

allocated a total bandwidth in terms of MB/s. If too many

requests are made before the core’s budget is refreshed, which

is tracked through a CPU performance counter, then the core

is preempted and a spinning thread is scheduled to throttle the

core until the next replenishment period. Memguard does not

work with LITMUSRT out of the box because the throttling

thread runs on Linux’s normal scheduler, which has lower

priority than any of Litmus’s plugins. This means that if a real-

time task is executing and Memguard wakes up, the throttle

thread will never be chosen to execute. We fixed this by

making the throttle thread a “real-time task” that is controlled

by our scheduler. When too many memory requests are made,

Memguard preempts our scheduler, which sees a per-core bit

signaling that the core should be throttled. We then manually

schedule the throttle thread until another interrupt disables the

bit at the next Memguard replenishment time.

Note that CAT and Memguard provide the mechanisms for

controlling shared cache and memory bandwidth throughput

only; they do not solve the question of how to achieve

an effective shared resource allocation, which our resource

allocation algorithm focuses on.

VII. EVALUATION

To evaluate the effectiveness and applicability of Omni, we

conducted an extensive set of experiments, both numerically

and experimentally on real multi-core hardware. Our key

questions were: (1) What is the run-time overhead of Omni?

(2) Can Omni indeed improve schedulability and resource use

efficiency compared to state-of-the-art solutions? And (3) How

well does Omni scale to the system size?

A. Experimental setup

Algorithms for comparison: Since we were not aware of

any existing solution for the shared cache, bandwidth, and

task allocation for multi-mode systems, we compared Omni

against two baseline solutions, MM-Static and CaM, described

in Section III. MM-Static extends the task-to-core partitioning

method for multi-mode systems from [12] with a static,

even distribution of cache and bandwidth to cores. (As we

wanted to evaluate overloaded scenarios as well, we made a

slight modification to the original algorithm in [12] in our

implementation: if a taskset is unschedulable, instead of re-

porting failure, MM-Static schedules the task on the core with

the lowest utilization.) CaM applies the holistic multi-core

resource allocation technique from [40] to compute the task

mapping and resource allocation for each mode individually.

These two baseline solutions are representative of the state

of the art in multi-core multi-mode system scheduling and

holistic multi-core resource allocation, respectively.

Experimental platform. Our prototype ran on a CAT-capable

Intel Xeon E5-2683 v4 processor with 16 cores and a 40MB

20-way set-associate L3 cache that is divided into 20 partitions

(Cmax = 20). The machine also has three single-channel 16GB

PC-2400 DDR4 DRAM sticks. Using the method from [41]

we measured a maximum guaranteed bandwidth of 1.4 GB/s,

which we divided into 20 partitions of 70MB/s each (Bmax =
20). While this is lower than the peak bandwidth that the

platform supports, it results in much better isolation between

the cores. To avoid nondeterministic timing, we disabled

Intel SpeedStep, hyperthreading and hardware prefetching.

We performed both the WCET profiling and experimental

evaluation on this platform. For our experiments, we con-

figured the platform to use 4 cores, 12 cache partitions,

and 12 bandwidth partitions, as this is a common core and

cache configuration for CAT-enabled CPUs. Our numerical

evaluation additionally considered a larger platform, with 8

cores and 20 cache/bandwidth partitions, to evaluate the effect

of platform configurations on schedulability performance.

Workload. Since real traces for multi-mode multi-core sys-

tems are usually proprietary and we are not aware of any

public ones, we combined real applications (from benchmarks)

with synthetic utilizations/periods for our evaluation workload.

We created a generation tool that can produce synthetic

multi-mode systems with many different configurable param-

eters. For example, we can specify: the number of modes,

the probability of mode transitions, the distribution of task

utilizations, the probability of a task being an existing, new,

or changed task across a mode transition, etc.

Following the approach outlined in [39], we randomly

picked tasks (programs) from several different benchmarks,

including PARSEC, SPLASH2x, DIS and IsolBench). We

obtained a total of 11 different benchmark tasks, thus forming

a diverse set of tasks with varied resource requirements.

All these benchmarks support tasks with a single threaded

execution mode, which we used in our evaluation.

We profiled each task program in the Omni prototype

running on our experimental platform, where we ran the

task under all possible cache and bandwidth configurations

(20×20 = 400 configurations in total). The collected WCET

values were then used for our analysis. We used the WCET

when the task is allocated the entire cache and the entire

memory bus as its reference WCET for our taskset generation.

We generated tasksets with taskset (reference) utilizations

ranging between 1.0 and 4.0, at steps of 0.1. (Note that, since

a taskset’s reference utilization assumes that each task is given

the entire cache and memory bus, it corresponds to a much

larger actual utilization when cache and bandwidth resources

are partitioned among tasks.) For each taskset utilization, we

generated 400 independent tasksets per mode, for a total of

24,800 tasksets per experiment in a system with 2 modes.

Tasks’ utilizations fall within the range of either [0.01, 0.4] or

[0.4, 0.9]. The probability of selecting one over the other is

determined by one of three different distributions: [ 8
9 , 1

9 ], [ 6
9 ,
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Sched Cache Membw Remove Insert Update MCR Reset
179 2362 7736 364 665 775 46615 772

TABLE I: Scheduling and mode-change overheads (in ns).
3
9 ] and [ 4

9 , 5
9 ]. We refer to first, second, and third distributions

as light, medium, and heavy distributions, respectively. Each

task’s period (deadline) was set to be the ratio of its reference

WCET to its utilization.

B. Run-time overhead

To evaluate the overheads introduced by our prototype, we

collected micro-benchmarks for the tasksets that we generated

above. We ran each taskset in our prototype on our exper-

imental platform. We used the timestamp counter to track

the time for a variety of functions and saved the timestamps

into memory to be reported after an experiment had finished.

In total, we collected micro-benchmarks of over 500 mode

changes for the following functions:

• sched(), the main scheduling function;

• cache(), setting CAT model-specific registers to con-

figure cache allocation;

• membw(), setting Memguard bandwidth;

• remove(), mode change action to remove a single old

mode task;

• insert(), mode change action to insert a single new

mode task;

• update(), mode change action to update a single

changed mode task;

• MCR(), full mode change handler for all tasks; and

• Reset(), resets task registers for a new job release after

old mode removal or missed deadline.

We took measurements over the course of 4 hours (the time

it took to run our experimental platform through 500 mode

changes) and report the average.

The overhead results are summarized in Table I, where all

times are averaged across the measured values and rounded

to the nearest nanosecond. The results show that Omni incurs

negligible scheduling overhead, and that it introduces only a

small overhead for the mode change actions and cache/band-

width allocations. The full mode change handler for all task

(MCR) overhead has the largest overhead, which is expected

since it covers the complete handling of a mode change.

C. Numerical evaluation

Schedulability performance. In this first experiment, we used

a platform with 4 cores and 12 cache/bandwidth partitions,

which resembles our configured experimental platform. We

generated multi-mode systems with 2 modes, with a 20%

probability of tasks migrating from one mode to the next, and

a 50% probability of a migrated task having its parameters

updated to a new value within the same utilization distribu-

tion. Each mode is associated with a taskset taken from the

generated tasksets, as described earlier.

For each multi-mode system, we performed resource alloca-

tions and schedulability analysis under 4 different algorithms:

1) Omni, our proposed resource allocation algorithm (Sec-

tion IV); 2) Omni-no-migration, a variant of Omni resource

allocation algorithm but with only resource redistribution

implemented, to evaluate how much migrations and resource

distributions help separately; 3) MM-Static; and 4) CaM. For

both Omni and Omni-no-migration, we set R = 10, r = 30,

and the load score threshold to be 0.01.6

Results. Figure 2 shows the fraction of schedulable tasksets

with respect to different taskset reference utilizations for each

of the three task utilization distributions. We can make the

following observations:

• CaM performs extremely poorly across all three utiliza-

tion distributions. At reference utilization 1.0, it fails

to schedule the majority of the tasksets. For example,

only 26% of the tasksets are schedulable under light

distribution and 44% of the tasksets are schedulable

under heavy utilization distribution. This further confirms

the importance of considering mode transitions when

computing resource allocation.

• MM-Static performs consistently better, but it is still

much worse compared to Omni and its simplified version

Omni-no-migration.

• Both Omni and its simplified version without migration

outperform the two baseline solutions by a significant

factor. In particular, Omni can schedule up to 2× more

tasksets compared to MM-Static, which is the better

performed state-of-the-art solution.

• Omni also consistently performs better than Omni-no-

migration, which shows that task migration does help

substantially in improving schedulability. In addition, the

difference between Omni-no-migration and the baseline

solutions also show that task Omni’s redistribution ap-

proach alone can already improve performance compared

to the state of the art.

Impact of platform configurations. To evaluate how well

Omni scales to the platform size, our next experiment con-

sidered a larger platform configuration with 8 cores and 20

cache/bandwidth partitions. We generated multi-mode systems

as before, except that the taskset utilization ranges from 1.0

to 8.0 (with steps of 0.1). We performed resource allocation

and schedulability analysis for all algorithms.

Figure 3 shows the schedulability results of the three algo-

rithms Omni, Omni-no-migration, and MM-Static. We can ob-

serve that, as we double the number of cores and increase the

number of partitions, Omni maintains a similar performance

improvement factor over Omni-no-migration and MM-Static.

The results also demonstrate the same relative performance

among the three algorithms, as well as the positive impacts of

both task redistribution and task migrations on schedulability.

Impact of multi-mode system size. Our last experiment

evaluated the algorithms as we increased the number of modes.

We considered the same platform configuration as in the first

experiment (4 cores, 12 partitions), but generated multi-mode

systems with twice as many modes (4 modes). Each mode

always has a mode transition to the next immediate mode

(Mode 0 → Mode 1 → Mode 2 → Mode 3 → Mode 0), as well

as an additional 50% probability of having a mode transition to

any other mode. We chose to exclude CaM from this analysis

6This threshold value is small enough to capture the minimum amount
of improvement that Omni could yield by redistributing a single resource
partition or by a single task move/swap; a smaller value would lead to little
improvement, whereas a larger one would make the algorithm stop too soon.
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Fig. 2: System schedulability under different taskset distributions (2 modes, 4 cores).
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Fig. 3: Schedulabilty of 8-core systems (2 modes).
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Fig. 4: Schedulabilty of 4-mode systems (2 cores).

since it significantly under-performed in our schedulability

evaluation with just 2 modes.

The results are shown in Figure 4. We observe a drop in

schedulability across all three algorithms compared to that of

the two-mode systems (c.f. Figure 2); this is expected, because

when the number of modes and mode transitions increase, the

system will also become harder to schedule. However, both

Omni and Omni-no-migration continue to perform substan-

tially better than the state-of-the-art algorithm MM-Static, and

their improvement factors also increase with more modes.

Summary. Our evaluation demonstrates that the insights and

strategies Omni employs are highly effective in improving

schedulability and resource use compared to the state of the

art. This schedulability improvement factor also maintains as

we scale the platform and multi-mode system size.

D. Experimental evaluation

For our experimental evaluation, we ran a subset of the gen-

erated multi-mode systems from the first numerical evaluation

on our prototype. We configured our experimental platform

to have 4 cores and 12 cache/bandwidth partitions. For each

multi-mode system, the amount of time we waited between

each mode transition is a random value that falls in the range

of the maximum deadline in the whole taskset plus 20%-80%.

Each core used for our experiment was fully isolated from

the Linux kernel to the best of our ability, and every core not

involved in running an experiment received a small amount of

memory bandwidth and its own isolated cache partition.
To begin an experiment, we passed the multi-mode sys-

tem to LITMUSRT through a custom system call, so that

LITMUSRT knows a task’s parameters for all modes. We then

launched our experiment from a management program that

was pinned to the management core (unused by LITMUSRT

for running real-time tasks). This management program forks a

unique instance of each task in the multi-mode system, which

is then transformed into a real-time LITMUSRT task before

executing its workload. After all tasks have transitioned to

our LITMUSRT scheduler, we launched a special setup mode

transition which will abort any tasks that do not belong to

our initial mode, while applying the proper task parameters

to tasks that do. Once this initial mode transition completes

from our management program, the experiment is considered

to have started and the management task will sleep itself until

the next mode transition.
For each multi-mode system, we repeated the same exper-

iment using two different resource allocation configurations:

the resource allocation solution produced by Omni, and the

one produced by MM-Static. We omit the experiment for CaM,

as it performs poorly compared to all other algorithms.
Results. Our measurement results further confirm the rela-

tive performance between Omni and MM-Static. Specifically,

the results show that for the same taskset utilization, Omni

is able to improve both (observed) schedulability and reduce

job deadline miss ratio substantially. For instance, at taskset

utilization of 2.0, out of 36 tasksets we ran, MM-Static expe-

rienced 3.79× more jobs missing their deadlines, and 1.53×
more multi-mode systems missing their deadlines compared to

Omni. The results demonstrate that Omni can arrive at a much

better resource and task allocation than existing solutions.

VIII. CONCLUSION

In this paper, we have introduced Omni, the first end-to-end

multi-mode real-time resource allocation algorithm that is able

to dynamically adjust shared resources and task allocation to

more optimally ensure schedulability during mode transitions.

Omni contributes a novel multi-mode resource allocation al-

gorithm and a resource-aware schedulability test that supports

general mode-change semantics as well as dynamic cache

and bandwidth resource allocation. Through our prototype and

analysis implementations, we have demonstrated that Omni

is able to outperform existing state-of-the-art solutions both

numerically and on a real platform by a significant factor.
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