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3,

Faye S. Taxman4, Martin P. Slawski5, Huzefa S. Rangwala1, Siddhartha Sikdar6

1 Department of Computer Science, George Mason University, Fairfax, VA, United States of America,

2 Clinical Psychology, George Mason University, Fairfax, VA, United States of America, 3 School of Nursing,

George Mason University, Fairfax, VA, United States of America, 4 Schar School of Policy and Government,

George Mason University, Fairfax, VA, United States of America, 5 Department of Statistics, George Mason

University, Fairfax, VA, United States of America, 6 Department of Bioengineering, George Mason

University, Fairfax, VA, United States of America

* aachary@gmu.edu

Abstract

Opioid overdoses within the United States continue to rise and have been negatively impact-

ing the social and economic status of the country. In order to effectively allocate resources

and identify policy solutions to reduce the number of overdoses, it is important to understand

the geographical differences in opioid overdose rates and their causes. In this study, we uti-

lized data on emergency department opioid overdose (EDOOD) visits to explore the county-

level spatio-temporal distribution of opioid overdose rates within the state of Virginia and

their association with aggregate socio-ecological factors. The analyses were performed

using a combination of techniques including Moran’s I and multilevel modeling. Using data

from 2016–2021, we found that Virginia counties had notable differences in their EDOOD

visit rates with significant neighborhood-level associations: many counties in the southwest-

ern region were consistently identified as the hotspots (areas with a higher concentration of

EDOOD visits) whereas many counties in the northern region were consistently identified as

the coldspots (areas with a lower concentration of EDOOD visits). In most Virginia counties,

EDOOD visit rates declined from 2017 to 2018. In more recent years (since 2019), the visit

rates showed an increasing trend. The multilevel modeling revealed that the change in clini-

cal care factors (i.e., access to care and quality of care) and socio-economic factors (i.e.,

levels of education, employment, income, family and social support, and community safety)

were significantly associated with the change in the EDOOD visit rates. The findings from

this study have the potential to assist policymakers in proper resource planning thereby

improving health outcomes.

Introduction

The continued rise in drug overdoses involving opioids has significantly impacted the social

and economic fabric of communities in the United States [1]. For instance, in 2017, the
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economic cost of opioid deaths, criminal justice involvement, treatment, and lost wages sur-

passed $1.02 trillion [2]. Between April 2020 and April 2021, over 100,000 deaths involved opi-

oids—an increase of 28.5% over the previous 12 months [3]. An effective response to the

opioid crisis requires policymakers to understand which communities are the most affected

and how the resources have been allocated in those communities [4].

Recent research has identified many socio-ecological factors as the risk factors of opioid

overdose [5, 6]. These risk factors are inextricably linked to personal and environmental fac-

tors and systems that hinder rather than support individuals [6]. For instance, among individ-

uals receiving healthcare services at a free clinic, prescription opioid misuse was more likely

among patients who were employed and less likely among those with post-high school educa-

tion [7]. Uninsured individuals were significantly more likely than insured individuals to be

high-risk drug users [8]. Access to prescription opioids is another prominent risk factor of

unintentional opioid overdose deaths [9, 10], which has increased in rural areas with a greater

need for medical services [11, 12].

Opioid overdose rates within the United States have been found to vary across different

geographical regions. A socio-ecological framework posits that the characteristics of the com-

munity in which individuals live significantly influence their health behaviors [13]. For

instance, counties across the United States with high economic distress, high opioid prescrip-

tion rates, and a lack of opioid treatment program providers have higher opioid overdose mor-

tality rates [14, 15]. Statewide health disparities, including lower socioeconomic status and

access to health care, can differ at the county level and are more predominant in rural areas

[16]. Opioid overdose patterns are consistent with counties that may lack the resources neces-

sary to prevent overdose [17]. In sum, the intersection of where and how people live is a signif-

icant factor in health outcomes and requires public health to work with urban planning to

create supportive and healthy environments to reduce the risks of opioid overdose [18].

Besides geographical differences, there have been significant variations in the temporal

trends of opioid overdose rates. Beginning around the year 2000, opioid overdose rates in the

United States have been increasing over time [19]. In recent years (since the early 2010s),

much of this growth has been attributed to synthetic opioids such as fentanyl, which increased

more than 50% from 2019 to 2020 [20]. During the same time period, prescription opioid-

related overdose showed the first increase in years (10.6%) whereas heroin-related overdose

showed a downward trend (down 3.6%), similar to the recent prior years [20]. Not all regions

within the United States have the same characteristics and the national pattern may not well

reflect the local growth trajectories.

Prior research has implemented different spatiotemporal analysis techniques to identify the

local geographical differences in opioid overdose rates over time. For instance, Hernandez

et al. [21] examined prescription opioid death rates in Ohio from 2010–2017 and identified 12

hotspots along with three significant changing trends of opioid overdose using temporal trend

analysis. Marotta et al. [17] examined cumulative opioid overdose deaths in New York State

using data from 2013–2015 and identified geographical hotspots of overdose death rates for

different types of opioids. Sauer et.al. [22] used spatio-temporal bayesian modeling and explor-

atory spatial analysis to evaluate risk factors related to drug-involved emergency department

visits in the greater Baltimore metropolitan from 2016–2019. These studies and a few others

[23–25] have demonstrated that spatio-temporal techniques utilizing local population-level

data can provide a profile of opioid overdose risk.

In this study, we performed a county-level spatio-temporal assessment of opioid overdose

rates and their association with different socio-ecological factors for the state of Virginia. We

focus on Virginia for two main reasons. First, its growing rates of fatal opioid overdose [26]

represent the growing rates of opioid overdose across the United States. Secondly, the Virginia
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Department of Health collects monthly emergency department opioid overdose (EDOOD)

visit data as part of syndromic surveillance to measure health trends [27]. This publicly avail-

able dataset can serve as a timely indicator of opioid overdose trends. Different from prior

studies, we used the EDOOD visits as a proxy for total overdoses to understand the spatio-tem-

poral dynamics of opioid overdose rates and potential socio-ecological risk and protective fac-

tors. Emergency departments (EDs) are the primary treatment venue for patients with

overdoses [28]. In recent years, urgent care centers’ utilization to treat opioid overdoses has

also significantly increased. Between 2007–2016 documented claims for urgent care centers

increased by 1,725 percent compared to a 229 percent increase for emergency department

claims with ‘injury, poisoning, and consequences of external causes’ [29]. However, the cur-

rent study only focuses on the visits obtained from hospital-based and free-standing EDs.

EDOOD visit rates increased by 28.5 percent across the United States in 2020, compared to

2018 and 2019 [30]. Understanding the spatio-temporal trends of EDOOD visit rates can help

identify targets for policy change and timely resource allocation to mitigate the opioid crisis.

To summarize, this study utilized a comprehensive, three-pronged approach to under-

standing the opioid overdose trends in Virginia. The goals of the study were to 1) identify spa-

tio-temporal variations of EDOOD visit rates from 2016–2021 among Virginia counties, 2)

assess how counties cluster together based on their EDOOD visit rates, and 3) identify socio-

ecological factors that are associated with the change in EDOOD visit rates over time. Moran’s

I [31], Local Indicators of Spatial Association (LISA) [32], Dynamic Time Warping (DTW)

[33], and multilevel modeling [34] were implemented for the spatio-temporal analysis. To our

knowledge, this is the first study to combine techniques from statistics, data mining, and geo-

graphic information systems (GIS) to examine how a county performs in terms of EDOOD

visits. Although the study focuses on Virginia, the study methods can be extended to other

geographic locations with similar data. The source code can be made available upon request.

Methods and materials

Study area

We analyzed the EDOOD visit rates and the associated socio-ecological factors across the dif-

ferent counties within the state of Virginia, United States. The state of Virginia consists of 95

counties and 38 independent cities that are considered county-equivalent for census purposes.

The analysis was performed for those 133 unique geographic regions.

Measures

Emergency department opioid overdose visits. The EDOOD visits dataset was obtained

from the Virginia Department of Health (VDH) [35] and is based on syndromic surveillance

reported by hospitals and free-standing EDs in Virginia. It consists of count and rate statistics

(monthly and annual) of ED visits for unintentional opioid overdose (fatal and nonfatal)

among Virginia residents aggregated by different geographical units. This dataset excludes

heroin from all other types of opioid overdoses. There is separate data that reports on heroin-

related ED visits. In Virginia, only a small percentage of the total overdoses are driven by her-

oin in recent years [35]. The numbers are not significant enough to analyze the spatio-tempo-

ral variations of opioid overdose rates. Thus, this study did not include data on heroin-related

ED visits in its analyses.

Although the EDOOD data spans from 2015 to 2022, we only examined data from 2016 to

2021 given that complete data (i.e., previous 12-month average visits, annual summary) was

not available for 2015 and 2022. The outcome variable was defined as the rate of EDOOD visits

per 100,000 population.
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Geography assignment. The county location in the EDOOD visit dataset is assigned based

on the patient’s self-reported residential zip code. A single zip code may belong to multiple cit-

ies and counties. In that case, the visit is assigned to the county/city where the majority of the

population resides. Additionally, some Virginia cities and counties are aggregated (e.g., Alle-

ghany County and Covington City) due to overlapping zip codes (see S1 File).

EDOOD visit definition. ICD9 (e.g., 965.00, 965.01), ICD10 (e.g., T40.0X1A, T40.601A), or

SNOMED (e.g., 295165009, 242253008) codes representing opioid overdose were used to iden-

tify overdose incidents. Similarly, the mention of terms like Narcan or naloxone in the chief

complaint or discharge diagnosis was also used to identify overdoses. This includes uninten-

tional overdose by opioids or unspecified substances (excluding heroin). The definitions men-

tioned here are merely provided as examples. For complete information on the inclusion and

exclusion criteria, please refer to the “Unintentional overdose by opioid or unspecified sub-

stance (excluding heroin)” section in [36].

Converting visit counts to rates. Whenever information was only available in the form of

counts, we used the population data from American Community Survey (ACS) to calculate

the rates (visits per 100K population) [37]. We followed the same guidelines as specified in

[35] for the population rates: 2016–2017 rates are based on the corresponding ACS year esti-

mates, 2018 and 2019 rates are based on 2017 estimates, 2020 rates are based on 2018 esti-

mates, and 2021 rates are based on 2019 estimates.

Socio-ecological factors. Socio-ecological factors at the Virginia county level were

obtained from the County Health Rankings & Roadmaps (CHR&R) dataset from the Robert

Wood Johnson Foundation [38]. We extracted data from 2016 to 2021 to be consistent with

the EDOOD visit dataset. This publicly available dataset aggregates data from the Centers for

Disease Control and Prevention (CDC) as well as other sources (e.g., U.S. Census Bureau,

Behavioral Risk Factor Surveillance System) to provide yearly county-level rankings based on

different attributes related to health outcomes. Based on prior studies on the association

between socio-ecological factors and opioid overdoses [5–9, 14, 15], we selected four variables:

health behaviors, clinical care, social and economic factors, and physical environment as the

most appropriate for our study (see Fig 1). The goal was to examine if these socio-ecological

factors influence the spatiotemporal trends of EDOOD visit rates. Other sources have also

aggregated data on socio-ecological factors (e.g., Opioid Environment Policy Scan, Virginia

Department of Health, etc.). However, the CHR&R dataset is an adequate proxy for socio-

Fig 1. Socio-ecological factors from County Health Rankings & Roadmaps (CHR&R).

https://doi.org/10.1371/journal.pone.0269509.g001
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ecological factors for our analysis because it encompasses a wide range of socio-ecological

inputs within its four variables:

Clinical care. Includes inputs about access to care and quality of care, such as uninsured

rates, and access to primary care physicians, dentists, and mental health providers.

Social and economic factors. Includes inputs from six unique data sources measuring

unemployment, children in poverty, income inequality, single-parent households, social asso-

ciations, violent crime, and injury deaths.

Physical environment. Includes inputs from four unique data sets measuring air pollu-

tion, alcohol drinking violations, severe housing problems, driving alone to work, and long

commute-driving alone.

Health behaviors. Includes inputs about tobacco and alcohol use, diet and exercise, and sex-

ual activity from seven unique data sources. These inputs further include physical inactivity, exces-

sive alcohol use and impaired driving deaths, sexually transmitted diseases, and teen pregnancy.

The rankings in the CHR&R dataset were calculated using standardized z-scores from sev-

eral data sources [39]. The county with the lowest z-score received a rank of 1, which indicates

the highest quality of socio-ecological factors (e.g., low tobacco use, better access to care, better

education). The county with the highest z-score received a ranking of 133, which indicates the

lowest quality of socio-ecological factors (e.g., high tobacco use, poor access to care, poor edu-

cation). The z-scores were averaged for the counties (or cities) that were combined in the

EDOOD visit dataset. The CHR&R dataset has been validated in other studies [40, 41].

Neighborhood adjacency. Data on neighborhood adjacency for Virginia counties was

obtained from the US Census Bureau [42]. This data lists each county along with its adjoining

neighbors including counties that are not in Virginia but adjacent to Virginia counties. For

this study, we only considered the neighboring counties that are a part of Virginia. This data

was utilized for our spatial analysis.

Data analysis

Spatial analysis. To identify any spatial variations in the opioid overdose rates across Vir-

ginia counties, we calculated the spatial autocorrelation using data on neighborhood adjacency

and EDOOD visits for the years 2016–2021. Average monthly EDOOD visit rates were used to

summarize the yearly EDOOD trends. Spatial autocorrelation is the phenomenon where the

presence of some quantity in an area makes its presence in neighboring areas more or less

likely [43]. Positive autocorrelation, which is more common in practice, is the tendency for

areas that are close together to have similar values. In contrast, negative autocorrelation is the

tendency for areas that are close together to have different values.

Global spatial autocorrelation. Global autocorrelation measures the overall association

within the data. In this study, it measures the similarity between the neighboring counties in

terms of EDOOD visit rates. We calculated the Moran’s I index, a common measure of global

autocorrelation [31]. Then we performed a permutation test to assess the significance of Mor-

an’s I index analysis. The values of Moran’s I range from +1 (strong positive spatial autocorre-

lation) to 0 (randomness) to -1 (strong negative pattern). Moran’s I value of 0.7, for instance,

indicates that the spatial pattern across counties is homogeneous meaning that the neighbor-

ing counties have very similar visit rates.

Local spatial autocorrelation. To study the contribution of each county to the global

Moran’s I index and identify local hotspots (clusters of high EDOOD visit rates) and coldspots

(clusters of low EDOOD visit rates), we calculated Local Indicators of Spatial Association

(LISA) [32] for each county. These auto-correlation indices were used to divide the counties

into four distinct groups:
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• High-high: Counties with high visit rates with neighboring counties that also have high visit

rates (also known as hotspots)

• Low-low: Counties with low visit rates with neighboring counties that also have low visit rates

(also known as coldspots)

• High-low: Counties with high visit rates but surrounded by counties that have low visit rates

• Low-high: Counties with low visit rates but surrounded by counties with high visit rates

The classification of counties into regions of low or high visit rates was done based on

whether they had rates less than or greater than (or equal to) the mean value of visit rates

across the state of Virginia. A permutation test was used to identify non-significant associa-

tions within neighbors (counties) thereby highlighting the significant hotspots and coldspots

of EDOOD visit rates. Both local and global autocorrelation analyses were performed in

python using the PySAL package [44].

Temporal analysis

Temporal analysis refers to the study of an outcome over time. We used two different methods

—clustering and multi-level modeling—to analyze the EDOOD visit rates over time and iden-

tify their association with different socio-ecological risk factors.

Clustering. To identify similarities between the temporal trends of visit rates in different

counties, we used dynamic time warping (DTW) [33]. DTW is a data mining technique used

to compute the similarity between multiple time series (e.g., opioid overdose rates over time)

and cluster them together based on their shapes and magnitudes. We utilized the moving aver-

age of the monthly visit rates (for a smoother curve) to perform the clustering. After we

obtained clusters of counties, we mapped the clusters using choropleth maps for easy visualiza-

tion. Analyses were performed in Python using the PySAL package [44] and tslearn package

[45].

Multilevel modeling. To identify how the changes in EDOOD visit rates relate to the

changes in different socio-ecological factors, we performed multilevel modeling [34] with the

visit rates as the outcome variable and four different time-varying aggregated variables from

the CHR&R dataset as our predictors. Multilevel modeling is advantageous because it accounts

for correlations across time within individual counties. Moreover, multilevel models handle

missing data in visit rates for any county and at any time point without pairwise deletion of

individual counties. Multilevel modeling was performed in R using the lme4 package [46]. A

forward-stepping procedure was used to create the final model [47]. First, an unconditional

means model (i.e., baseline model) was created. From this model, an intraclass correlation

coefficient (ICC)—representing the proportion of variance explained within counties—was

computed. Next, conditional growth models were created to examine the linear effect of time

on EDOOD visit rates, with time modeled as a fixed and random slope in separate models.

The model (i.e., either fixed or random slope) with a better fit compared to the unconditional

growth model was used moving forward. Finally, a conditional random growth model was cre-

ated to examine the linear effects of the time-varying covariates (i.e., socio-ecological factors)

on the visit rates:

Level 1 :

Yit ¼ p0i þ p1iðYearÞ þ p2iðHealth BehaviorsÞ þ p3iðClinical CareÞ þ p4iðSocial and Economic

FactorsÞ þ p5iðPhysical EnvironmentÞ þ eit
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Level 2 :

p0i ¼ b00 þ r0i; p1i ¼ b10 þ r1i; p2i ¼ b20; p3i ¼ b30; p4i ¼ b40; p5i ¼ b50

The Level-1 equation models the within-county variance based on EDOOD visit rates.

Thus, for county i at time t, the expected outcome, Y, is equal to the intercept, π0i, plus an effect

for the slope, π1i, plus an effect for Health Behaviors, π2i, plus an effect for Clinical Care, π3i,

plus an effect for Social and Economic Factors, π4i, plus an effect for Physical Environment,

π5i, plus error, eit. The Level-2 equations state that the intercept and year were fitted using ran-

dom effects whereas the socio-ecological predictors were modeled using fixed effects. We used

a fixed slope for the socio-ecological factors because specifying many random coefficients

overfits the model producing misleading results [48].

Lastly, we ran ANOVA-like table with tests of random effects for each model using the

ImerTest package. Each model was compared to the preceding model using these ANOVA

tests.

Results

Spatial analysis

Global auto-correlation. The results from Moran’s I index indicate that there is some

similarity between counties and their neighbors with respect to their EDOOD visit rates in

most of the years. As shown in Table 1, the values of indices are greater than 0 for all the years

indicating a positive global spatial autocorrelation. However, the similarity scores and the cor-

responding p-values vary across different years. The strongest association seems to be present

in the year 2018 (Moran’s I = 0.25). This indicates that many neighboring counties had similar

EDOOD visit rates during that time. On the other hand, the Morans’I value for 2016 is almost

close to 0, meaning that the EDOOD visit rates were not significantly similar across the neigh-

boring counties.

Local auto-correlation. Fig 2 represents the plots of EDOOD visit rates alongside the clas-

sification returned by LISA for the 3 years (2017, 2018, and 2021) with the most significant

neighborhood association (based on Moran’s I values). To show them in the maps, we assigned

the same value/color coding to counties that were combined together in the analyses (although

they were only counted once in analyses). For instance, the combined rate for Grayson and

Galax for the year 2016 was 21.7, but they are both represented separately as a value of 21.7 on

the map.

Table 1. Global Moran’s I indices returned for the years 2016–2019.

Year Moran’s I Index p-value

2016 0.04 0.182

2017 0.11 0.033

2018 0.25 0.001

2019 0.07 0.089

2020 0.09 0.04

2021 0.10 0.04

Note. Positive value: Neighboring counties have homogeneous patterns. Negative value: Neighboring counties have

heterogeneous patterns.

https://doi.org/10.1371/journal.pone.0269509.t001
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EDOOD visit rates. As shown in Fig 2A, The EDOOD visit rates differed within the state

and across time. However, some of the highest rates of visits can be seen across the southwest-

ern region (e.g., Galax & Grayson, Smyth, Martinsville & Henry) and also in the northwestern

region (e.g., Orange, Louisa, Culpeper). In contrast, most counties in the northern region (e.g.,

Fairfax & Falls Church, Loudon) and some in the eastern region (e.g., Accomack) had rela-

tively lower rates.

LISA values. The LISA values were calculated for every county in Virginia for the years

2016–2021. However, as aforementioned, Fig 2B only presents results for the years 2017, 2018,

and 2021. The four distinct subgroups returned by LISA are shown in choropleth maps (in Fig

2B) in distinct colors: red (high-high), blue (low-low), light blue (low-high), pink (high-low).

The significant clusters returned by the permutation test are highlighted in yellow. These

highlighted counties had significantly higher or lower concentrations of EDOOD visit rates

based on their color coding (red: hotspots, blue: coldspots). As expected, the hotspots were

mostly concentrated around the southwestern region and the northwestern region. The cold

spots were scattered across multiple regions with the most consistent one being in the northern

region. There were some counties (pink clusters and blue clusters) that had significantly differ-

ent visit rates than their neighboring counties. For instance, counties like Floyd, Scott, and

Caroll in southwestern Virginia had lower EDOOD visit rates even when most of their neigh-

boring counties had higher rates. Similarly, as also verified by Moran’s I, the neighborhood

similarity seems to be the most prominent in the year 2018, where there are close clusters of

high and low EDOOD visit rates. The locations of the LISA subgroups seem to be changing

over time.

Fig 2. Choropleth plots of (A) EDOOD visit rates (darker color signifies higher rates), and (B) results from LISA analysis returned for the years 2017, 2018,

and 2021 highlighted by different colors (red: high-high–hot spots, blue: low-low–cold spots, pink: high-low, light blue: low-high). The yellow border marks the

significant clusters.

https://doi.org/10.1371/journal.pone.0269509.g002
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Temporal analysis

Clustering. Five distinct groups of counties (clusters) were returned by the DTW cluster-

ing algorithm. The clusters with plots of their temporal trends and their corresponding geospa-

tial mapping are provided in Fig 3. These clusters differ in their magnitude and trend over

time. As depicted in Fig 3, counties in Groups A and E had similar trends over time but dif-

fered in their magnitudes. Most counties in these groups had EDOOD visit rates that slightly

decreased from 2016 to 2018, which started increasing around 2019. However, counties in

Group A (e.g., Buchanan, Louisa, Shenandoah) had slightly lower rates of EDOOD visits

(starting range 7–16) as compared to the counties in Group E (e.g., Orange, Smyth, Wise,

Dickenson), which had a starting range of 13–20. Similarly, counties in Group B (e.g., Amelia,

Bland, Amherst) and Group C (e.g., Grayson & Galax, Martinsville & Henry) also had similar

trends which differed in magnitudes. Overall, these counties had increasing rates over time.

Fig 3. 5 different cluster groups (A, B, C, D, E) as determined by the Dynamic Time Warping (DTW) clustering algorithm along with their corresponding

choropleth mapping. Note. Each cluster group is represented by a unique color in the choropleth map. The same color is used to represent the cluster group

names.

https://doi.org/10.1371/journal.pone.0269509.g003
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Group B had a starting range of 0–10 whereas Group C had a starting range of 0–15. Group C,

however, had a steeper rising curve with an ending range of 16–38. Lastly, counties in Group D

(e.g., Arlington, Fairfax & Falls Church, Alexandria, Williamsburg) did not show a consistent

temporal trend and mostly had low EDOOD visit rates throughout the 6-year period. Note that

for each month, we plotted the average EDOOD visit rates of the previous 12 months.

Multilevel modeling. The baseline unconditional model returned an ICC of 0.59, which

indicates that 59% of the variance is attributable to differences between counties while 41% of

the variance is attributable to differences within counties over time. Given that more than 5%

of the variance is attributable to differences within counties over time, the use of multilevel

modeling is justified. We ran ANOVA-like table tests of random effects for each model and

compared each model to the preceding model. First, we found that the fixed growth model

was a better fit than the unconditional model (X2 = 34.37, df = 1, Pr(>Chisq) = 4.556 x 10−9, p
< .001). Next, we found that the random growth model was a better fit than the fixed growth

model (X2 = 60.197, df = 2, Pr(>Chisq) = 8.481 x 10−14, p < 0.001). Thus, we proceeded to run

a random growth model with our time-varying socio-ecological predictors. Table 2 shows the

goodness of fit values for all four models. The random growth model showed that time pre-

dicted, on average, increases in EDOOD visits from 2016–2021 (see Table 2). When incorpo-

rating predictors into the model (i.e., conditional random growth model), Clinical Care and

Social and Economic Factors emerged as significant time-varying predictors of the slope for

EDOOD visits (see Table 2). This suggests that a 1 unit decrease in Clinical Care z-scores (i.e.,

higher ranking/better clinical care) increased the slope of EDOOD visit rates by 6.64. In addi-

tion, a 1 unit increase in Social and Economic Factors z-scores (i.e., lower ranking/lower qual-

ity of social and economic factors) increased the slope of visit rates by 6.74. These sociological

factors are important predictors of changes in EDOOD visits.

Table 2. Multilevel growth models with socio-ecological risk factors as time-varying covariates (TVCs).

Parameters Unconditional Fixed Growth Random Growth Random Growth with TVCs

Fixed Effects β (SE) β (SE) β (SE) β (SE)

Intercept 9.14(0.39)��� 8.08(0.42)��� 8.08(0.38)��� 8.14(0.37)���

Time (Year) — 0.42(0.07)��� 0.42(0.10)�� 0.42(0.10)���

Health Behaviors — — — -3.36(2.41)

Clinical Care — — — -6.64(3.04)�

Social and Economic Factors — — — 6.74(1.83)��

Physical Environment — — — 8.77(4.95)

Random Effects Variance Variance Variance Variance
Intercept 14.24 14.34 12.21 11.05

Residual 10.05 9.45 7.10 7.10

Time (Year) — — 0.67 0.66

Goodness of Fit
AIC 3582.6 3550.3 3494.1 3484.7

BIC 3596.1 3568.2 3520.9 3529.4

Deviance 3576.6 3542.3 3482.1 3464.7

Log Likelihood -1788.3 -1771.1 -1741 -1732.3

Parameters 3 4 6 10

Note.
�p < .05

��p < .01

���p < .001.

https://doi.org/10.1371/journal.pone.0269509.t002
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Discussion

This study examined spatio-temporal patterns of EDOOD visits across Virginia, as well as

socio-ecological factors associated with these patterns using techniques from statistics, data

mining, and geographical information systems (GIS). Our spatial analysis revealed that

EDOOD visit rates significantly varied across Virginia counties with clusters of overdose hot-

spots (primarily southwestern region) and coldspots (primarily northern region). Clustering

analysis helped identify 5 distinct groups of counties based on the magnitude and the direction

of change of the EDOOD visit rates over time. Although the overall trend of EDOOD visit

rates differed in these groups, we observed rising trends in recent years (starting around 2019)

and a slight decline in the visit rates from 2017 to 2018, in all the groups. The steepest rise in

the EDOOD visit rates was seen in counties belonging to Group C (e.g., Grayson & Galax,

Martinsville & Henry). Finally, the multilevel analysis revealed that the changes in the

EDOOD visit rates were significantly associated with the changes in clinical care factors (i.e.,

access to care and quality of care) and socio-economic factors (i.e., levels of education, employ-

ment, income, family and social support, and community safety).

As aforementioned, hotspots of EDOOD visit rates were the most prominent and consis-

tent in the southwestern part of Virginia. Southwest Virginia is a rural area where residents

have higher morbidity and mortality rates often correlated to a shortage of healthcare services

[49]. Residents in southwest Virginia often cannot afford annual health insurance deductibles

and many medical expenses are not covered by insurance [50]. A portion of individuals

reported only seeking healthcare as a last resort and many did not receive regular care from a

health provider. Individuals in southwestern counties with lower access to care and quality of

care, therefore, may be more at risk of opioid overdose. For example, Martinsville County had

one of the highest EDOOD rates throughout the six-year period. On the other hand, many

counties in northern Virginia had low EDOOD visit rates throughout the 6-year period. This

region includes counties that are close to the capital and is considered to have good access to

healthcare, better employment opportunities, and higher levels of education [38].

Study findings also revealed sub-groups of counties with similar EDOOD visit trends. Spa-

tial mapping of these counties in Fig 3 indicates that many counties that belong to the same

group are clustered together in space suggesting a possible association with the neighborhood

characteristics. In most counties, the EDOOD visit rates decreased from 2017 to 2018. This is

consistent with the national pattern and is believed to be attributed to the reduced prescribing

volume of high-dose opioid pills and a sudden decline in the availability of a highly potent syn-

thetic opioid (carfentanil) [20]. The increase in EDOOD visits from 2019 may depict how

Covid-19 influenced the overall opioid overdose trends. Research conducted across six health

care systems in the US [51] identified that EDOOD visit counts increased by 10.5% in 2020

compared to the counts in 2018 and 2019 despite having a 14% decrease in the overall ED vis-

its. The same study pointed out that this rise might be attributed to the disruption of access to

treatment, social support, loss of employment, social isolation, and many more during the

Covid-19 period. Further, this increase in EDOOD rates from 2019 may reflect the increased

prevalence and use of illicitly manufactured fentanyl, which has been the major driver of the

opioid epidemic over the past few years (having surpassed prescription opioids and heroin as

major causes of opioid overdose) [52]. This may also explain the sharp, increasing rates of

EDOOD visits (throughout the 6-year period) in some Virginia counties (Group C in Fig 3).

Finally, our multilevel analysis found that a decrease in socio-economic factors over time

was associated with increased EDOOD visit rates. This finding is consistent with studies that

demonstrate associations between poor economic and social conditions and high opioid over-

dose mortality rates [5, 6]. Conversely, the analysis revealed that counties with poor access to
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care and quality of care (i.e., higher clinical care z-scores) had lower EDOOD visit rates. It is

possible that the inaccessibility and poor quality of clinical care might have led to individuals

not being able to seek care or go to the ED. These findings suggest that addressing county-level

deficits in clinical care and socioeconomic factors may help reduce opioid overdoses.

Some limitations of this study could be addressed in the future. If the necessary data is avail-

able, the study can be expanded to include a broader time frame and nationwide data. Addi-

tionally, breaking down the EDOOD visits by the type of opioids could provide a better

picture of the epidemic which was not possible with the data that we used. Lastly, the spatio-

temporal variations of EDOOD visits were assessed separately but they could be modeled

together to identify how these interact with other outcomes and with each other.

Conclusion

Overall, there are differences between the counties in Virginia in their EDOOD visit patterns

across time. These differences are significantly associated with socio-economic factors (i.e.,

education, employment, community safety, income, and family and social support) and clini-

cal care (i.e., access to care and quality of care). Targeting areas that are consistently hot spots

for EDOOD rates and identifying areas that vary over time is critical to address the social

determinants of opioid use disorders and health care access.
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