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We introduce a new general-purpose approach to deep learning on 3D
surfaces, based on the insight that a simple diffusion layer is highly effective
for spatial communication. The resulting networks are automatically robust
to changes in resolution and sampling of a surface—a basic property which is
crucial for practical applications. Our networks can be discretized on various
geometric representations such as triangle meshes or point clouds, and can
even be trained on one representation then applied to another. We optimize
the spatial support of diffusion as a continuous network parameter ranging
from purely local to totally global, removing the burden of manually choosing
neighborhood sizes. The only other ingredients in the method are a multi-
layer perceptron applied independently at each point, and spatial gradient
features to support directional filters. The resulting networks are simple,
robust, and efficient. Here, we focus primarily on triangle mesh surfaces, and
demonstrate state-of-the-art results for a variety of tasks including surface
classification, segmentation, and non-rigid correspondence.
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1 INTRODUCTION

Recently there has been significant interest in learning techniques
for non-uniform geometric data, inspired by the tremendous suc-
cess of convolutional neural networks (CNNs) in computer vision. A
particularly challenging setting is extending the power of CNNs to
learning directly on curved surfaces [Bronstein et al. 2017; Hanocka
et al. 2019; Masci et al. 2015; Poulenard and Ovsjanikov 2018]. Un-
like volumetric [Maturana and Scherer 2015] or point-based [Qi
et al. 2017a] approaches, surface-based methods exploit the connec-
tivity of the surface representation to improve performance, and
furthermore can be robust in the presence of non-rigid deformations,
making them a strong solution for many tasks such as deformable
shape matching [Boscaini et al. 2016; Masci et al. 2015].
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Fig. 1. Surface learning methods must generalize to shapes represented
differently from the training set to be useful in practice, yet many existing
approaches depend strongly on mesh connectivity. Here, our DiffusionNet
trained for human segmentation with limited variability seen during training
automatically generalizes to widely varying mesh samplings (left), scales
gracefully to resolutions ranging from a simplified model to a large raw
scan (middle), and can even be evaluated directly on point clouds (right).

However, although the field has largely been focused on the
benchmark accuracy of networks for such problems, at least two
other major roadblocks remain for achieving the full potential of
learning on surfaces. First, whereas real-world geometric data comes
from a variety of sources, existing networks are strongly tied to
a particular representation (e.g., triangulations or point clouds) or
even discretization resolution. Hence, training cannot benefit from
all available data. One popular strategy is to simply convert all
data to a common representation (e.g., via point sampling), but
this approach has well-known drawbacks (sampling a high-quality,
detailed surface can alias thin features, lose informative details, etc.).
Second, many existing mesh-based architectures do not scale well to
high-resolution surface data. Though coarse inputs are sufficient for,
e.g., classification tasks, they preclude potential future applications
such as high-fidelity geometric analysis and synthesis.

A key technical difficulty in surface-based learning is defining
appropriate notions of convolution and pooling—two main building
blocks in traditional CNNs. Unfortunately, unlike the Euclidean case,
there is no universal canonical notion of convolution on surfaces. Ex-
isting approaches have tried to address this challenge through a vari-
ety of solutions such as mapping to a canonical domain [Maron et al.
2017; Sinha et al. 2016], exploiting local parametrizations [Boscaini
et al. 2016; Masci et al. 2015; Wiersma et al. 2020] or applying convo-
lution on the edges of the mesh [Hanocka et al. 2019]. However, the
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use of more advanced and delicate geometric operations, such as
computing geodesics or parallel transport, has a significant impact
on both the robustness and scalability of the resulting methods. Per-
haps even more importantly, existing surface-based approaches are
often too sensitive to the underlying mesh structure, and thus unable
to generalize to significantly different sampling and triangulations
between training and test sets. As a result, despite significant recent
progress in geometric deep learning [Cao et al. 2020; Greengard
2020], current methods typically struggle to cope with the variabil-
ity, complexity and scale encountered in the real-world surface and
mesh-based settings.

In this work, we propose a method that exploits the surface rep-
resentation, but is both scalable and robust in the presence of signif-
icant sampling changes (see Figure 1). Our main observation is that
expensive and potentially brittle operations used in previous works
[Masci et al. 2015; Poulenard and Ovsjanikov 2018; Wiersma et al.
2020] can be replaced with two basic geometric operations: a learned
diffusion layer for information propagation and a spatial gradient
for capturing anisotropy. Discretizing these operations with the
principled techniques of discrete differential geometry [Crane et al.
2013; Meyer et al. 2003] then automatically endows the resulting
networks with both robustness and scalability, while maintaining
the simplicity of the learning framework.

Remarkably, we show that combining these basic geometric oper-
ations yields neural networks that are not only robust and scalable,
but also achieve state-of-the-art results in a wide variety of appli-
cations, including deformable surface segmentation, classification,
as well as unsupervised and supervised non-rigid shape matching.
Perhaps even more fundamentally, our DiffusionNet offers a unified
perspective across representations of surface geometry—in principle
it can be applied to any geometric representation where one has a
Laplacian and gradient operator. In this paper, for example, we show
how the same architecture achieves accurate results for both meshes
and point clouds, and even allows training on one and evaluating
on the other.

Contributions. The main contributions of this work are:

e We show that a simple learned diffusion operation is sufficient
to share spatial data in surface learning.

e We introduce spatial gradient features for learning local di-
rectional filters.

e Inspired by these insights, we present DiffusionNet, an archi-
tecture for learning on surfaces which has many advantages
including robustness to discretization, and achieves state-of-
the-art results on several benchmarks.

2 RELATED WORK

Applying deep learning techniques to 3D shapes is a rich and exten-
sive area of research. Below we review the approaches most closely
related to ours, and refer the interested readers to recent surveys,
including [Bronstein et al. 2017; Cao et al. 2020; Xu et al. 2016].

View-based and volumetric methods. Most early geometric deep
learning-based methods directly leveraged tools developed for 2D
images, and thus mapped 3D shapes onto the plane either using
multi-view renderings [Kalogerakis et al. 2017; Su et al. 2015; Wei
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et al. 2016] or more global, often parametrization-based techniques
such as panoramas [Sfikas et al. 2017; Shi et al. 2015], geometry
images [Sinha et al. 2016], or metric-preserving mappings [Ezuz
et al. 2017], among many others.

Another direct approach to applying convolution to 3D shapes
relies on volumetric voxel grid representations, which has led to a
variety of methods, including [Maturana and Scherer 2015; Wu et al.
2015] and their efficient extensions [Klokov and Lempitsky 2017;
Wang et al. 2017]. Such techniques can, however, be computationally
expensive and difficult to apply to detailed deformable shapes.

2.1 Learning on Surfaces

Methods that learn on 3D surfaces directly typically fall into two
major categories, based either on point cloud or triangle mesh rep-
resentations.

Point-based methods. A successful set of methods for learning
on 3D shapes represented as point clouds was pioneered by the
PointNet [Qi et al. 2017a] and PointNet++ [Qi et al. 2017b] architec-
tures, which have been extended in many recent works, including
PointCNN [Li et al. 2018], DGCNN [Wang et al. 2019], PCNN [Atz-
mon et al. 2018] and KPConv [Thomas et al. 2019] to name a few (see
also [Guo et al. 2020] for a recent survey). Moreover, recent efforts
have also been made to incorporate invariance and equivariance
of the networks with respect to various geometric transformations,
e.g., [Deng et al. 2018; Hansen et al. 2018; Li et al. 2021; Poulenard
etal. 2019; Zhang et al. 2019; Zhao et al. 2020]. The major advantages
of point-based methods are their simplicity, flexibility, applicabil-
ity in a wide range of settings and robustness in the presence of
noise and outliers. However, first, their overall accuracy can often
be lower than that of methods that explicitly use surface (e.g., mesh)
connectivity when it is available. Second, though effective on static
mechanical objects and scenes, point-based methods may not be
well-suited for deformable (non-rigid) shape analysis, requiring ex-
tremely large training sets and significant data augmentation to
achieve good results, e.g., for non-rigid shape matching applications
[Donati et al. 2020; Groueix et al. 2018]. Globally supported point-
based networks were recently considered in [Peng et al. 2020]; our
method naturally allows global support via learned diffusion.
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Fig. 2. Many recent mesh-based learning methods are applied only to dra-
matically simplified inputs (Section 5.6), while our method easily processes
full-resolution models, preserving detail and facilitating adoption.



Surface and graph-based methods. To address the limitations of
point-based approaches, several methods have been proposed that
operate directly on mesh surfaces and thus can learn filters that
are intrinsic and robust to complex non-rigid deformations. The
earliest pioneering approaches in this direction generalize convolu-
tions [Boscaini et al. 2016; Fey et al. 2018; Masci et al. 2015; Monti
et al. 2017], typically using local surface parameterization via the
logarithmic map. Unfortunately local parameterizations are only
defined up to rotation in the tangent plane, leading to several meth-
ods which address this issue through design of equivariant surface
networks [Haan et al. 2021; He et al. 2020; Mitchel et al. 2021; Poule-
nard and Ovsjanikov 2018; Wiersma et al. 2020; Yang et al. 2021].
Likewise, operating on vector-valued data in a local tangent space
can expand the expressivity of the filter space [Beani et al. 2021;
Mitchel et al. 2021; Wiersma et al. 2020]. Our method leverages
learned gradient features (Section 3.4), which geometrically require
only a local spatial gradient operation, and sidestep the challenge
of equivariant filters by using only inner products, which are natu-
rally invariant. These gradient features are built on local differential
operators, which have also been exploited in other recent methods
(e.g., [Eliasof and Treister 2020; Jiang et al. 2018]).

Surface mesh structure has also been used in variety of graph-like
approaches which specifically leverage mesh connectivity [Bod-
nar et al. 2021; Feng et al. 2019; Gong et al. 2019; Hajij et al. 2020;
Hanocka et al. 2019; Lim et al. 2018; Milano et al. 2020; Verma et al.
2018], the structure of discrete operators [Smirnov and Solomon
2021], or even random walks along edges [Lahav and Tal 2020],
among others. While accurate, these methods can be costly on
densely sampled shapes and often are not robust to significant
changes in the mesh structure (Figure 3).
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Fig. 3. Although past methods have achieved high-accuracy benchmark
results for learning on meshes [Fey et al. 2018; Li et al. 2020b], they are prone
to over-fitting to the mesh connectivity, rather than learning the underlying
shape structure (Section 5.4). In contrast, DiffusionNet learns an accurate
representation-agnostic solution, which even supports training on meshes
and evaluating on a point cloud (last column).
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2.2 Spectral Methods

Our use of diffusion is also loosely related to techniques that operate
in the spectral domain and often exploit the link between convolu-
tion and operations in a derived (e.g., Fourier or Laplace-Beltrami)
basis, including [Bruna et al. 2014; Levie et al. 2018; Sun et al. 2020].
Such methods have a long history in graph-based learning and
are well-rooted in data analysis more broadly, including Laplacian
eigenmaps [Belkin and Niyogi 2003], spectral clustering [Vallet and
Lévy 2008] and diffusion maps [Coifman et al. 2005]. In geometry
processing, spectral methods have been used for a range of tasks
including multi-resolution representation [Levy 2006], segmenta-
tion [Rustamov 2007] and matching [Ovsjanikov et al. 2012], among
others [Vallet and Lévy 2008; Zhang et al. 2010].

Unfortunately, Laplacian eigenfunctions depend on each shape
and thus coefficients or learned filters from one shape are not triv-
ially transferable to another. Levie et al. [2019] argue for transfer
between discretizations of the same shape, but 3D geometric learn-
ing typically demands transfer between different shapes. Functional
maps [Ovsjanikov et al. 2012] can be used to “translate” coefficients
between shapes, and have been used, e.g., in [Yi et al. 2017] with
spectral filter learning. Deep functional maps [Litany et al. 2017]
propose to learn features in the primal domain, which are then
projected onto the Laplace-Beltrami basis for functional map esti-
mation. However, the features are still learned either with MLPs
starting from pre-computed descriptors [Ginzburg and Raviv 2020;
Halimi et al. 2019; Litany et al. 2017; Roufosse et al. 2019] or using
point-based architectures [Donati et al. 2020].

Instead, we propose an approach that learns the parameters of a
diffusion process which is directly transferable across shapes and, as
we show below, can be used effectively in applications like non-rigid
shape matching. We also stress that DiffusionNet is not spectral in
nature and only uses spectral operations as an acceleration tech-
nique for evaluating diffusion efficiently.

We also note that our use of the Laplacian in defining the diffusion
operator is related to methods based on polynomials of the Lapla-
cian [Defferrard et al. 2016; Kostrikov et al. 2018], CayleyNets [Levie
et al. 2018] and their recent application in shape matching using
ACSCNNSs [Li et al. 2020b]. However, we demonstrate that complex
polynomial filters can be replaced with simple learned diffusion, and
moreover that gradient features can inject orientation information
into the network, improving performance and robustness.

Similarly to our approach, diffusion for smooth communication
has been explored on graphs [Klicpera et al. 2019; Xu et al. 2019],
images [Liu et al. 2016], and point clouds [Hansen et al. 2018]. In
contrast, our method directly learns a diffusion time per-feature
(which significantly improves performance, Table 7), incorporates a
learned gradient operation, and is applied directly to mesh surfaces.

Pooling. In surface learning it is nontrivial to define pooling, es-
pecially on meshes where it often amounts to mesh simplification
[Hanocka et al. 2019]. Various recent operations have been proposed
for point cloud [Hu et al. 2020; Lin et al. 2020], mesh [Milano et al.
2020; Zhou et al. 2020] or even graph pooling [Li et al. 2020a; Ma
et al. 2020]. A key advantage of our approach is that it automati-
cally supports global spatial support without any downsampling
operation, simplifying implementation and improving learning.
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3 METHOD

Our method consists of three main building blocks: multi-layer per-
ceptrons (MLPs) applied at each point to model pointwise scalar
functions of feature channels, a learned diffusion operation for
propagating information across the domain, and local spatial gradi-
ent features to expand the network’s filter space beyond radiallly-
symmetric filters. In this section, we describe these main numerical
components, and then we assemble them into an effective architec-
ture in Section 4. Our method is defined in a representation-agnostic
manner; applying it to meshes or point clouds simply amounts to
assembling the appropriate Laplacian and gradient matrices as we
discuss below.

3.1 Pointwise Perceptrons

On a mesh or point cloud with V vertices, we consider a collection
of D scalar features defined at each vertex. Our first basic building
block is a pointwise function f : RP — RP, which is applied inde-
pendently at every vertex to transform the features. We represent
these pointwise functions as a standard multilayer perceptron (MLP)
with shared weights across all vertices. Although these MLPs can
fit arbitrary functions at each point, they do not capture the spa-
tial structure of the surface, or allow any communication between
vertices, so a richer structure is needed.

Past approaches for communication have ranged from global re-
ductions to explicit geodesic convolutions—instead, we will demon-
strate that a simple learned diffusion layer effectively propagates
information, without the need for potentially costly or error-prone
computations.

3.2 Learned Diffusion
In the continuous setting, diffusion of a scalar field 4 on a domain
is modeled by the heat equation

%ut = Auy, (1

where A is the Laplacian (or more formally: the Laplace-Beltrami
operator). The action of diffusion can be represented via the heat
operator Hy, which is applied to some initial distribution uy and
produces the diffused distribution u;; this action can be defined as
H;(ug) = exp(tA)ug, where exp is the operator exponential. Over
time, diffusion is an increasingly-global smoothing process: for t = 0,
H; is the identity map, and as t — oo it approaches the average over
the domain.

We propose to use the heat equation to spatially propagate fea-
tures for learning on surfaces; its principled foundations ensure
that results are largely invariant to the way the surface is sampled
or meshed. To discretize diffusion, one replaces A with the weak
Laplace matrix L and mass matrix M. Here, L is a positive semi-
definite sparse matrix L € RY*Y with the opposite sign convention
such that M~1L ~—A. The number of entries in L and M are gener-
ally O(V), scaling effectively to large inputs (Table 6). On triangle
meshes, we will use the cotan-Laplace matrix, which is ubiquitous
in geometry processing applications [Crane et al. 2013; MacNeal
1949; Pinkall and Polthier 1993]; for point clouds we will use the
related Laplacian from [Sharp and Crane 2020]. This matrix has
also been defined for voxel grids [Caissard et al. 2019], polygon
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Fig. 4. We propose to learn a diffusion time for each feature channel, auto-
matically tuning spatial support during training. The histograms show the
learned times at each block in a DiffusionNet trained for segmentation; the
times marked by the dashed lines are visualized by diffusing a point source
from the starred point. The first block uses mainly local diffusion, while a
channel in the last block finds nearly global support.

meshes [Bunge et al. 2020], tetrahedral meshes [Alexa et al. 2020],
etc. The weak Laplace matrix is accompanied by a mass matrix M,
such that the rate of diffusion is given by —~M~!Lu. Here M will be
a “lumped” diagonal matrix of areas associated with each vertex.
We define a learned diffusion layer h; : RV — RV, which diffuses
a feature channel u for learned time t € R¢. In our networks, h; (1)
is applied independently to each feature channel, with a separate
learned time t per-channel. Learning the diffusion parameter is a
key strength of our method, allowing the network to continuously
optimize for spatial support ranging from purely local to totally
global, and even choose different receptive fields for each feature
(Figure 4). We thus sidestep challenges like manually choosing the
support radius of a convolution, or sizes for a pooling hierarchy.
In the language of deep learning, diffusion can be viewed as a kind
of smooth mean (average) pooling operation with many benefits:
it has a geometrically-principled meaning, its support ranges from
purely local to totally global via the choice of diffusion time, and
it is differentiable with respect to diffusion time, allowing spatial
support to be automatically optimized as a network parameter.

A note on generality. Remarkably, eschewing traditional repre-
sentations of convolutions in favor of diffusion does not reduce
the expressive power of our networks. This is supported by the
following theoretical result (that we prove in Appendix A), which
shows that radially-symmetric convolutions are contained in the
function space defined by diffusion followed by a pointwise map:

LEMMA 1 (INCLUSION OF RADIALLY-SYMMETRIC CONVOLUTIONS).
For a signal u : R? — R, let Up(p) : Rsg — R denote the integral
of u along the r-sphere at p, and let u;(p) : R>o — R denote the
signal value at p after diffusion for time t. Then there exists a function
transform T which recovers U, (p) from u; (p)

Ur(p) = T [u: (p)1(r).

Thus convolution with a radial kernel & : R>o — R is given by

wra)p)= [ ala=phuo(@ dg= [ at)TTu(p) () dr,

which is a pointwise operation at p on the diffused values u; (p).



This fact is significant because it suggests that simple and ro-
bust diffusion can, without loss of generality, be used to replace
complicated operations such as radial geodesic convolution.

Importantly, we will also extend our architecture beyond radially-
symmetric filters by incorporating gradient features (Section 3.4).

3.3 Computing Diffusion

Many numerical schemes could potentially be used to evaluate the
diffusion layer h; (1), from direct solvers [Chen et al. 2008] to hierar-
chical schemes [Liu et al. 2021; Vaxman et al. 2010]. In particular, we
seek schemes which are efficient as well as differentiable, to enable
network training. Here we describe two simple methods considered
in our experiments. The first scheme we consider is an implicit
timestep, which is straightforward but requires solving large sparse
linear systems, and the second is spectral expansion, which uses
only efficient dense arithmetic at evaluation time but requires some
modest precomputation. Both are easily implemented using com-
mon numerical libraries, and we observe that networks trained with
either approach have similar accuracy. Efficiency is evaluated in
Section 5.6; we generally recommend spectral acceleration.

3.3.1 Direct Implicit Timestep. Perhaps the simplest effective ap-
proach to simulate diffusion is a single implicit Euler timestep

he(u) = (M + tL) " Mu )

which amounts to solving a (sparse) linear system for each diffu-
sion operation. Using an implicit backward timestep rather than
an explicit forward timestep is crucial as it makes the scheme sta-
ble, allows global support, and yields a reasonable approximation
of diffusion after just one step. Solving linear systems (including
derivative computation) is supported in modern learning software
frameworks, allowing Equation 2 to implement a learnable diffu-
sion block. However, this amounts to solving a distinct large linear
system for each channel, and GPU-based computation may fall back
to solving dense linear systems, which means that direct implicit
timesteps may not scale well to large problems.

3.3.2  Spectral Acceleration. An alternate approach is to leverage a
closed-form expression for diffusion in the basis of low-frequency
Laplacian eigenfunctions [Vallet and Lévy 2008; Zhang et al. 2010].
Once the eigenbasis has been precomputed, diffusion can then be
evaluated for any time ¢ via elementwise exponentiation. Truncating
diffusion to a low-frequency basis incurs some approximation error,
but we find that this approximation has little effect on our method
(Figure 13), perhaps because diffusion quickly damps high-frequency
content regardless.

For weak Laplace matrix L and ¢1?/ ) ¢"V
mass matrix M, the eigenvectors
$; € RY are solutions to:

¢16v +1

/2N /’:\ e\
A A

Lo = 2iMg;, ®3)
corresponding to the first k smallest- -1
magnitude eigenvalues Ay, ..., Ag. ‘ : :

We normalize them so that ¢iTM¢i = 1. These eigenvectors are
easily precomputed for each shape of interest via standard numeri-
cal packages [Lehoucq et al. 1998]; the inset figure shows several
example functions ¢; for a surface of a human shape.
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Let ® := [¢;] € RV*K be the stacked matrix of eigenvectors,
which form an orthonormal basis with respect to M. We can then
project any scalar function u to obtain its coefficients c in the spec-
tral basis via ¢ « ®T Mu, and recover values at vertices as u «— ®c.
Conveniently, diffusion for time ¢ is easily expressed as an elemen-
twise scaling of spectral coefficients according to ¢; « e~Mite;.
The diffusion layer h;(u) is then evaluated by projecting on to the
spectral basis, evaluating pointwise diffusion, and projecting back

oot

he(u) =@ [Nt | © (OT Mu) (@)

where © denotes the Hadamard (elementwise) product. This opera-
tion is efficiently evaluated using dense linear algebra operations
like elementwise exponentiation and matrix multiplication, and is
easily differentiable with respect to u and ¢.

Remarks. We emphasize that DiffusionNet can still learn high-
frequency outputs despite the use of a low-frequency basis (e.g.,
in Section 5.4). Intuitively, diffusion is used for communication
across points, for which a low-frequency approximation is typically
sufficient, while MLPs and gradient features learn high-frequency
features as needed for a task. Additionally, we note that DiffusionNet
is not a spectral learning method—spectral coefficients are never
used to represent filters or latent data, and thus no issues arise due
to differing eigenbases on different shapes. Spectral acceleration is
merely one possible numerical scheme to compute diffusion.

3.4 Spatial Gradient Features

Our learned diffusion layer enables propagation of information
across different points on a shape, but it supports only radially-
symmetric filters about a point. The last building block in our
method enables a larger space of filters by computing additional
features from the spatial gradients of signal values at vertices (Fig-
ure 6). Specifically, we construct features from the inner products
between pairs of feature gradients at each vertex, after applying a
learned scaling or rotation.

Evaluating gradients. We will express the spatial gradient of a
scalar function on a surface as a 2D vector in the tangent space
of each vertex. These gradients can be evaluated by a standard
procedure, choosing a normal vector at each vertex (given as input
or locally approximated), then projecting neighbors into the tangent
plane—either 1-ring neighbors on a mesh, or m-nearest neighbors in
a point cloud. The gradient is then computed in the tangent plane via
least-squares approximation of the function values at neighboring
points (see Mukherjee and Wu [2006] for analysis). These gradient
operators at each vertex can be assembled into a sparse matrix
G € CV*V which is applied to a vector u of real values at vertices
to produce gradient tangent vectors at each vertex. This matrix
does not depend on the features, and can be precomputed once for
each shape. We use complex numbers as a convenient notation for
tangent vectors, in an arbitrary reference basis in the tangent plane
of each point (as in [Knoppel et al. 2013; Sharp et al. 2019], etc.).
If the normals are consistently oriented, then the imaginary axis
is chosen to form a right-handed basis in 3D with respect to the
outward surface normal.
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Learned pairwise products. Equipped with per-vertex spatial gra-
dients of each channel, we learn informative scalar features by
evaluating an inner product between pairs of feature gradients at
each vertex, after a learned linear transformation. Inner products
are invariant to rotations of the coordinate system, so these features
are invariant to the choice of tangent basis at vertices, as expected.
Putting it all together, given a collection of D scalar feature channels,
for each channel u we first construct its spatial gradient as z,, € CV,
a vector of local 2D gradients per-vertex

zy =Gu (5)

then at each vertex v, we stack the local gradients of all channels to
form wy € CP and obtain real-valued features Jo € RP as

Jo = tanh(Re(wy © Awy)) (6)

where A is a learned square D X D matrix, and taking the real part
Re after a complex conjugate wy, is again just a notational conve-
nience for dot products between pairs of 2D vectors. This means
the i entry of the output at vertex v is given by the dot product
go(i) = tanh(Re {Zle Wv(i)Aijwv(j)} ), so that each inner prod-
uct is scaled by a learned coefficient A;;. The outer tanh(-) nonlin-
earity is not fundamental, but we find that it stabilizes training.

The choice of A as a complex or real matrix has a subtle relation-
ship with the orientation of the underlying surface. Multiplying
wy(j) by a complex scalar both rotates and scales local gradient
vectors before taking inner products (recall that complex multipli-
cation can be interpreted as a rotation and scaling in the complex
plane). In contrast, real A only allows scaling. However, the direc-
tion of rotation (clockwise or counter-clockwise) depends on the
choice of the outward normal, and hence on orientation—so surfaces
with consistently oriented normals gain a richer representation by
learning a complex matrix, whereas surfaces without consistent
orientation (e.g., raw point clouds) should restrict to real A.

In Figure 5, a small synthetic experiment (detailed in Appendix C)
demonstrates how these learned rotations allow our method to
disambiguate bilateral symmetry even in a purely intrinsic repre-
sentation, a common challenge in non-rigid shape correspondence.

99.9%
accuracy

50.0%
accuracy

H right side
B left side

gradient features
w/ scaling only

gradient features
w/ rotation and scaling

Fig. 5. In a synthetic experiment, we demonstrate how our networks can
successfully segment the left and right sides of bilaterally symmetric models
even in a purely-intrinsic formulation (left), because rotation in the tangent
space for gradient features encodes a notion of orientation. Replacing this
rotation with scaling (i.e., using a real matrix A in Equation 6) removes
the sensitivity to shape orientation (right), but also avoids the need for
consistent outward normals. See Appendix C for details.
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+1

O O .

diffusion + MLP + gradient features
Fig. 6. Diffusion followed by an MLP enables the network to learn radially-
symmetric filters (left); introducing gradient features expands the space to
include directional filters (right), while remaining invariant to the choice of
local tangent basis. Here, we take a DiffusionNet block trained for segmen-
tation and visualize the learned filter via channels of a normalized signal
which maximizes the block output at the center point.

4 DIFFUSIONNET ARCHITECTURE

The previous section establishes three ingredients for learning on
surfaces: an MLP applied independently at each vertex to represent
pointwise functions, learned diffusion for spatial communication,
and spatial gradient features to model directional filters. We combine
these ingredients to construct DiffusionNet (Figure 7), composed of
several DiffusionNet blocks. This simple network operates on a fixed
channel width D of scalar values throughout, with each DiffusionNet
block diffusing the features, constructing spatial gradient features,
and feeding the result to an MLP.

We include residual connections to stabilize training [He et al.
2016], as well as linear layers to convert to the expected input and
output dimension. When appropriate, results at the edges or faces
of a mesh can be computed by averaging network outputs from
the incident vertices, e.g., to segment the faces of a mesh. Various
activations can be appended to the end of the network based on the
problem at hand, such as a softmax for segmentation, or a global
mean followed by a softmax for classification; otherwise, this same
architecture is used for all experiments.

Remarkably, we do not find it necessary to use any spatial convolu-
tions or pooling hierarchies on surfaces—avoiding these potentially-
complex operations helps keep DiffusionNet simple and robust.

Invariance. DiffusionNet is invariant to rigid motion of the under-
lying shapes as long as the input features remain unchanged, due
to the intrinsic geometric nature of diffusion and spatial gradients.
The overall invariance then depends on the choice of input features.

4.1 Input features

DiffusionNet takes a vector of scalar values per-vertex as input fea-
tures. Here we consider two simple choices of features, others could
easily be included when available. Most directly, we simply use the
raw 3D coordinates of a shape as input; rotation augmentation can
be used to promote rigid invariance when inputs are not consis-
tently aligned. When rigid or even non-rigid invariance is desired,
we instead use the Heat Kernel Signatures [Sun et al. 2009] as input;
these signatures are trivially computed from the spectral basis in
Section 3.3.2. Due to the intrinsic nature of our approach, with HKS
as input, the networks are invariant to any orientation-preserving
isometric deformation of the shape. Higher-order descriptors such as
SHOT [Tombari et al. 2010] seem unnecessary, and may be unstable
under remeshing [Donati et al. 2020].
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Fig. 7. We present DiffusionNet, a simple and effective architecture for learning on surfaces. It is composed of successive identical DiffusionNet blocks.
Each block diffuses every feature for a learned time scale, forms spatial gradient features, and applies a spatially shared pointwise MLP at each vertex in a
mesh/point cloud/etc. These networks achieve state-of-the-art performance on surface learning tasks without any explicit surface convolutions or pooling
hierarchies, in part because they automatically optimize for variable spatial support (see e.g., Figure 4).

5 EXPERIMENTS AND ANALYSIS

The same network architecture achieves state-of-the-art results
across many tasks, and more importantly offers new and valuable
capabilities. See the appendix for additional analyses.

Setup. We use the same basic 4-block DiffusionNet architecture
and training procedure for all tasks, varying the network size from
a small 32-width (30k parameter) to a large 256-width (1.8M param-
eter) DiffusionNet according to the scale of the problem. The shape
of the first and last linear layers is adapted to the input and output
dimension for the problem. MLPs use ReLU activations and option-
ally dropout after intermediate linear layers. We let “xyz” and “hks”
denote networks with positions and heat kernel signatures as input,
respectively. All inputs are centered and scaled to be contained in
a unit sphere, and heat kernel signatures are sampled at 16 values
of t logarithmically spaced on [0.01,1]. We do not use any data
augmentation, except random rotations in tasks where positions
are used as features yet a rotation-invariant network is desired.

We fit DiffusionNet using the ADAM optimizer with an initial
learning rate of 0.001 and a batch size of 1, training for 200 epochs
and decaying the learning rate by a factor of 0.5 every 50 epochs.
Cross-entropy loss is used for labelling problems. Spectral acceler-
ation is used to evaluate diffusion except where noted, truncated
to a k = 128 eigenbasis. On point clouds, 30 nearest-neighbors are
used to assemble matrices. Test accuracies are measured after the
last epoch of training.

Implementation details. Precomputation to assemble matrices and
compute the Laplacian eigenbasis for spectral acceleration is per-
formed once as a preprocess on the CPU using SciPy [Lehoucq
et al. 1998; Virtanen et al. 2020]. Networks are implemented in
PyTorch [Paszke et al. 2019] and evaluated on a single GPU with
standard backpropagation. Performance is discussed in Section 5.6;
we find that DiffusionNet is very efficient and scalable compared

Table 1. DiffusionNet achieves nearly-perfect accuracy classifying 30-class
SHREC11 [Lian et al. 2011] while training on just 10 samples per class.
Results marked by T are trained and tested on simplified models.

Method Accuracy
GWCNN [Ezuz et al. 2017] 90.3%
MeshCNNT [Hanocka et al. 2019] 91.0%
HSNT [Wiersma et al. 2020] 96.1%
MeshWalker! [Lahav and Tal 2020] 97.1%
PD-MeshNet' [Milano et al. 2020] 99.1%
HodgeNetT [Smirnov and Solomon 2021] 94.7%
FC' [Mitchel et al. 2021] 99.2%
DiffusionNet - xyz 99.4%
DiffusionNet - xyz 99.0%
DiffusionNet - hks' 99.5%
DiffusionNet - hks 99.7%

to recent mesh-based learning methods. Code and reproducible
experiments are available at github.com/nmwsharp/diffusion-net.

5.1 Classification

We first apply DiffusionNet to classify meshes in the SHREC-11
dataset [Lian et al. 2011], which has 30 categories of 20 shapes each.
We demonstrate that DiffusionNet learns successfully even in the
presence of limited data. As in the other cited results, we train on
just 10 samples per class; our results are averaged over 10 trials of
the experiment with random training splits. We fit a cross-entropy
loss with a label smoothing factor of 0.2 (see discussion in [Goyal
et al. 2021]). We use a 32-width DiffusionNet for hks features, and
64-width DiffusionNet for xyz features with rotation augmentation.
DiffusionNet achieves the highest reported accuracy when applied
directly on the original dataset models, or to the simplified models
common in recent mesh-based learning work (Table 1).
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Table 2. Accuracy of various mesh and point cloud schemes for RNA seg-
mentation. DiffusionNet achieves state-of-the-art results, in part because it
can be applied directly to the raw meshes. “xyz” and “hks” denote networks
taking raw coordinates or heat kernel signatures as input, respectively.

Method Accuracy
PointNet++ [Qi et al. 2017a] 74.4%
PCNN [Atzmon et al. 2018] 78.0%
cloud SPHNet [Poulenard et al. 2019] 80.1%
DiffusionNet - hks 84.0%
DiffusionNet - xyz 85.0%
SplineCNN [Fey et al. 2018] 53.6%
mesh SurfaceNetworks [Kostrikov et al. 2018] 88.5%
DiffusionNet - hks 91.0%
DiffusionNet - xyz 91.5%

5.2 Segmentation

Molecular segmentation. We evaluate a 128-width DiffusionNet
on the task of segmenting RNA molecules into functional compo-
nents, using the dataset introduced by Poulenard et al. [2019]. This
dataset consists of 640 RNA surface meshes of about 15k vertices
each extracted from the Protein Data Bank [Berman et al. 2000],
labelled at each vertex according to 259 atomic categories, with a
random 80/20 train-test split. We learn these labels directly on the
raw meshes, as well as on point clouds of 4096 uniformly-sampled
points as in past work Poulenard et al. [2019]. For comparison, we
cite point cloud results reported in [Poulenard et al. 2019], and addi-
tionally train methods related to ours, SplineCNN [Fey et al. 2018]
and a Dirac Surface Network [Kostrikov et al. 2018] on meshes.
We also attempted to train MeshCNN [Hanocka et al. 2019] and
HSN [Wiersma et al. 2020], but found the former prohibitively ex-
pensive, while the latter could not successfully preprocess the data.
Our method achieves state-of-the-art accuracy on both the mesh
and point cloud variants of the problem (Table 2, Figure 8). Learn-
ing directly on the mesh yields greater accuracy, perhaps because
no information is lost when sampling a point cloud, and surface
structure is preserved.

Human segmentation. We train a 128-width DiffusionNet with
dropout to segment the human body parts on the composite dataset
of [Maron et al. 2017], containing models from several other hu-
man shape datasets [Adobe 2016; Anguelov et al. 2005; Bogo et al.
2014; Giorgi et al. 2007; Vlasic et al. 2008]. Additionally, we cite a
variety of reported results from other approaches on this task, as
reported by the respective original authors and by Wiersma et al.
[2020]. For clarity, we distinguish between variants of this task in
past work which used simplified meshes and soft ground truth;
more details in Appendix C. Our model is quite effective using both
rotation-augmented raw coordinates or heat kernel signatures as
input (Table 3).
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ground truth mesh prediction point cloud prediction

Fig. 8. Segmenting RNA molecules with our method achieves accurate
results when applied either directly to meshes or to sampled point clouds.

Table 3. Human part segmentation on the dataset of Maron et al. [2017].
xyz and hks denote DiffusionNet with positions or heat kernel signatures
as input, respectively. The T rows use simplified inputs with a soft ground
truth at edges, and the ¥ rows use simplified inputs with hard ground truth
at faces; details in Appendix C.

Method Accuracy
GCNN [Masci et al. 2015] 86.4%
ACNN [Boscaini et al. 2016] 83.7%
Toric Cover [Maron et al. 2017] 88.0%
PointNet++ [Qi et al. 2017a] 90.8%
MDGCNN [Poulenard et al. 2018] 88.6%
DGCNN [Wang et al. 2019] 89.7%
SNGC [Haim et al. 2019] 91.0%
HSN [Wiersma et al. 2020] 91.1%
MeshWalker [Lahav and Tal 2020] 92.7%
CGConv [Yang et al. 2021] 89.9%
FC [Mitchel et al. 2021] 92.5%
DiffusionNet - xyz 90.6%
DiffusionNet - hks 91.7%
MeshCNN [Hanocka et al. 2019] 92.3%
MeshWalker [Lahav and Tal 2020] 94.8%
f DiffusionNet - xyz 95.5%
DiffusionNet - hks 95.5%
PD-MeshNet [Milano et al. 2020] 85.6%
HodgeNet [Smirnov and Solomon 2021] 85.0%
¥ DiffusionNet - xyz 90.3%
DiffusionNet - hks 90.8%
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Fig. 9. DiffusionNet is highly effective as a feature extractor for nonrigid correspondence via functional maps, shown here in the supervised setting (Section 5.3).
Correspondences are visualized by transferring a texture through the map. All methods yield a visually plausible solution when trained on the same dataset as
the query pair (SCAPE, top row), but only DiffusionNet yields good results when generalizing after training on a different dataset (FAUST, bottom row).

5.3 Functional Correspondence

Functional maps compute a correspondence between a pair of shapes
by finding a linear transformation between spectral bases, aligning
some set of input features [Ovsjanikov et al. 2012]. Recent work
has shown that learned features can improve performance, e.g., Do-
nati et al. [2020]; Litany et al. [2017]. Here we demonstrate that
using DiffusionNet as a feature extractor outperforms other recent
approaches, yielding to state-of-the-art correspondence results in
both the supervised and weakly-supervised variants of the problem.
We emphasize that the spectral representation in functional maps
is unrelated to the spectral acceleration from Section 3.3.2, which is
merely a scheme for evaluating diffusion; DiffusionNet itself does
not learn in the spectral domain.

Our experiments follow the setup of Donati et al. [2020], training
and evaluating on both SCAPE [Anguelov et al. 2005; Ren et al. 2018],
and FAUST [Bogo et al. 2014] including training on one dataset and
evaluating on the other. In the supervised setting we fit dataset-
provided correspondences, and we generate rigid-invariant models
by randomly rotating all inputs for training and testing. For the
weakly-supervised setting, we use the dataset and losses advocated
in [Sharma and Ovsjanikov 2020], where rigid alignment of the
input is used as weak supervision, without known correspondences.
In all cases we extract point-to-point maps between test shapes
and evaluate them against ground truth dense correspondences;
for simplicity we compare all methods without post-processing the
maps, though we also report accuracies after postprocessing with
ZoomOut for our method [Melzi et al. 2019]. In addition to citing
results obtained using the KPConv feature extractor [Thomas et al.
2019] by Donati et al. [2020], we also train HSN [Wiersma et al. 2020],
ACSCNN [Li et al. 2020b], and our own 128-width DiffusionNet with
dropout. We also tried MeshCNN [Hanocka et al. 2019], but it proved
to be prohibitively expensive at 14hr per epoch.

Table 4. Our approach yields state-of-the-art correspondences when used
as a feature extractor for deep functional maps, both in the supervised (top,
as in Donati et al. [2020]) and the weakly supervised setting (bottom, as
in Sharma and Ovsjanikov [2020]). The dotted rows apply ZoomOut post-
processing to the previous result [Melzi et al. 2019]. X on Y means train on
X and test on Y. Values are mean geodesic error X100 on unit-area shapes.

Method / Dataset FAUST SCAPE FonS SonF
KPConv [Thomas et al. 2019] 3.1 44 11.0 6.0
KPConv - hks 2.9 3.3 10.6 5.5
HSN [Wiersma et al. 2020] 3.3 3.5 25.4  16.7
ACSCNN [Li et al. 2020b] 2.7 3.2 8.4 6.0
DiffusionNet - hks 2.7 3.0 3.8 3.0
DiffusionNet - xyz 2.7 3.0 33 3.0
~ +ZoomOut 19 24 24 19
WSupFMNet 3.3 7.3 11.7 6.2
WSupFMNet + DiffusionNet - xyz 3.8 4.4 48 3.6
~ +ZoomOut 19 26 27 19

As shown in Table 4, DiffusionNet yields state-of-the-art results
for non-rigid shape correspondence in the both the supervised and
weakly-supervised settings, especially when transferring between
datasets. One might wonder whether the improvement in this task
truly stems from our DiffusionNet architecture, or from the use of
HKS features. As shown in the same table, training KPConv with
HKS as features shows DiffusionNet yields significant improve-
ments regardless. Figure 9 visualizes the resulting correspondences
on a challenging test pair, where only DiffusionNet achieves a high-
quality correspondence when generalizing after training on a differ-
ent dataset.
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Fig. 10. Examples of the remeshed FAUST test dataset used in Table 5.

Table 5. DiffusionNet automatically retains highly accurate results under
changes in meshing and sampling, while many other approaches overfit to
mesh connectivity. Here we give correspondence errors on our remeshed
FAUST dataset after training on template meshes, measured in mean geo-
desic distance X100 after normalizing by the geodesic diameter.

remeshed/sampled variants

Method orig iso dense ges cloud
ACSCNN 0.05 35.29 19.09 41.15 N/A
SplineCNN 3.51 31.09 27.95 40.43 N/A
HSN 9.57 20.01 24.84 25.40 N/A

PointNet (vertices)  3.83 2.92 3.04 2.67 2.60
PointNet (sampled)  9.99 4.25 7.84 4.44 4.13
DGCNN (vertices) 2.44 14.58 15.72 27.00 32.13
DGCNN (sampled) 6.52 4.30 5.57 3.61 2.66
DiffusionNet 0.33 0.68 0.62 0.82 2.59

5.4 Discretization Agnostic Learning

A key benefit of DiffusionNet compared to many past approaches
is that its outputs are robust to changes in the discretization of the
input (e.g., different meshes of the same shape, or a mesh vs. a point
cloud). This property is essential for practical applications where
meshes for inference are likely to be tessellated differently from
the training set, etc. Other invariants (e.g., rigid invariance) can be
encouraged via data augmentation, but for discretization it is im-
practical to generate augmented inputs across all possible sampling
patterns. Below, we demonstrate that DiffusionNet generalizes quite
well across discretizations without any special regularization or
augmentation, especially compared to recent mesh-based methods.
We study discretization invariance using a popular formulation of
the shape correspondence task on the FAUST human dataset [Bogo
et al. 2014], where each vertex of a mesh is to be labelled with
the corresponding vertex on a template mesh. Importantly, these
input meshes are already manually aligned templates, with exactly
identical mesh connectivity. Past work has achieved near-perfect
accuracy in this problem setup (e.g., [Fey et al. 2018; Li et al. 2020b]),
however we suggest that these models primarily overfit to mesh
graph structure. In contrast, DiffusionNet learns an accurate and
general function of the shape itself, despite the synthetic setup.
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Fig. 11. Accuracy curves for vertex-labelling correspondence on the FAUST
dataset, as in Table 5. The first plot gives accuracy on the original test
meshes, and the subsequent plots denote testing on our remeshed variants
of the test set. For each plot, the x-axis is the geodesic error X100 after
normalizing by geodesic diameter, and the y-axis is the percent of predicted
correspondences within that error.

To experimentally quantify this effect, we construct a version of
the FAUST test set after remeshing with several strategies: orig is
the original test mesh, iso is a uniform isotropic remeshing, dense
refines the mesh in randomly sampled regions, ges first refines
the meshes, then applies quadric error simplification [Garland and
Heckbert 1997], and cloud is a point cloud with normals sampled
from the surface (Figure 10). Unrelated remeshings have appeared
in [Poulenard and Ovsjanikov 2018; Wiersma et al. 2020], but the
procedure therein left large regions of the mesh unchanged. Ground
truth for evaluation is defined via nearest-neighbor on the original
test mesh. We train on the 3D coordinates of the 80 standard FAUST
registered meshes, but evaluate on the remeshed set to mimic the
practical scenario where the training set contains meshes tessellated
via some particular common strategy, yet the fitted model must be
applied to totally different meshes encountered in the wild. We also
train several other methods—details in Appendix C.

Table 5 and Figure 11 show how other mesh-based approaches
degrade rapidly under remeshing; only DiffusionNet yields accurate
correspondences which are largely stable under remeshing and
resampling. Some point-based methods avoid the dependence on
connectivity, yet do not match the overall accuracy of the surface-
based DiffusionNet.



5.5 Transfer Across Representations

Not only are the outputs of DiffusionNet consistent across remesh-
ing and resampling of a shape, but furthermore the same network
can be directly applied to different discrete representations. The
only geometric data required for DiffusionNet are the Laplacian,
mass, and spatial gradient matrices, which are easily constructed for
many representations. Because all geometric operations in the net-
work are defined in terms of these standard matrices, fitted network
weights retain the same meaning across different representations.
This enables us to train on one representation and evaluate on an-
other as seen in Figure 1 and Section 5.4, cloud, without any special
treatment or fine-tuning. In the future, DiffusionNet opens the door
to heterogeneous training sets which intermingle mesh, point cloud,
and other surface data from various sources.

5.6 Efficiency and Robustness

Runtime. DiffusionNet requires only standard linear algebra op-
erations for training and inference, and is thus straightforward and
efficient on modern hardware. As an example, DiffusionNet with
spectral acceleration trains on the 14k-vertex RNA meshes (Sec-
tion 5.2) in 38ms per input and requires 2.2GB of GPU memory.
Preprocessing is performed on the CPU once for each input; for
these RNA meshes preprocessing takes 5.4sec and generates 12MB
of data each, composed mainly of the Laplacian eigenbasis ® for
spectral acceleration. Table 6 summarizes the runtime performance
of DiffusionNet and several other recent methods on the human

Table 6. Runtimes of DiffusionNet and other mesh-based methods across
several different input mesh resolutions. Reported times are for one-time
preprocessing (pre), a training evaluation with derivatives (train), and an
inference evaluation (infer), each on a single input of the specified size.
Entries marked by “—” were infeasibly expensive in time or memory usage.
Unlike many recent mesh-based learning methods, DiffusionNet easily
trains directly on medium-sized inputs, and even scales to very large meshes.

small medium large

Method 752 vert 10k vert 184k vert

pre:  288ms 3.55sec 69.5sec

DiffusionNet train: 19ms 25ms 379ms
(spectral) infer: 7ms 10ms 154ms
pre: 104ms — —
DiffusionNet train: 329ms — -
(direct) infer: 81ms — —
pre:  85ms 1.13sec —
MeshCNN train:  269ms 2.97sec -
[Hanocka et al. 2019]  infer: 194ms 2.71sec —
pre: 905ms 162sec -
HSN train: 188ms 1.08sec —
[Wiersma et al. 2020]  infer: 68ms 389ms —
pre:  n/a n/a -
HodgeNet train:  752ms 7.61sec -
[Smirnov et al. 2021]  infer: 645ms 6.87sec —
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segmentation task (Section 5.2), including preprocessing, training
with gradient computation, and inference. All timings are measured
on a 24GB Titan RTX GPU and dual Xeon 5120 2.2Ghz CPUs.

Scaling. Most significantly, DiffusionNet’s efficiency enables di-
rect learning on common mesh data without dramatic simplification,
in contrast to other recent mesh-based schemes. As an example, the
segmentation meshes from Maron et al. [2017] have up to 13k ver-
tices, yet recent approaches simplify/downsample to roughly 1k
vertices for training, as shown in Figure 2 [Hanocka et al. 2019;
Lahav and Tal 2020; Mitchel et al. 2021; Wiersma et al. 2020]. In
contrast, our networks easily run at full resolution on this and other
datasets, paving the way for adoption in practice and improving
accuracy due to preserved details (e.g., in Table 2). We even demon-
strate DiffusionNet on a large, 184k vertex raw scan mesh from
FAUST—again no special treatment is needed (Table 6, Figure 1).

Robustness. DiffusionNet is also very robust to poor-quality input
data; diffusion is a stable smoothing operation, and our method
does not require any complex geometry processing operations such
as geodesic distance [Masci et al. 2015], edge collapse [Hanocka
et al. 2019], parallel transport [Wiersma et al. 2020], or managing
pooling hierarchies with upsampling/downsampling. Even the gra-
dient matrix G is the result of a stable least-squares fit. If desired,
techniques like the intrinsic Delaunay Laplacian on meshes can
be used to further increase robustness [Bobenko and Springborn
2007; Sharp and Crane 2020], though we do not find it necessary in
our experiments. We demonstrate in Figure 1 that DiffusionNet can
be applied directly to a low-quality, nonmanifold raw scan mesh
without any issues.

6 CONCLUSION

We present a new approach for learning on surfaces that is built by
using learned diffusion as the main network component, with spatial
gradient features to inject directional information. Our method is
very efficient to train and evaluate, is robust to changes in sampling,
and even generalizes across representations, in addition to achieving
state-of-the-art results on a range of tasks.

Limitations. DiffusionNet is designed
to leverage the geometric structure of
a surface; consequently it is not auto-
matically robust to topological errors or
outliers. In fact, diffusion does not allow
any communication at all between dis-
tinct components of a surface, leading
to nonsensical outputs in the presence
of spuriously disconnected components
(see inset). Subsequent work might mit-
igate the limitation by combining diffu-
sion with other notions of communica-
tion, such as global pooling (d la [Qietal. Fig. 12. Erroneous segmen-
2017a]) or edge convolutions over latent ~tation results due to discon-
nearest-neighbors [Wang et al. 2019]. nected components.
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Our networks are intentionally agnostic to local discretization,
and thus may not be suited for tasks where one learns some property
of the local discrete structure, such as denoising or mesh modifica-
tion. Finally, although our method discourages overfitting to mesh
sampling (Section 5.4), it cannot guarantee to totally eliminate it,
and we still observe a small drop in performance when transferring
between representations—further investigation will seek to close
this gap entirely.

Future work. DiffusionNet can be applied to any surface repre-
sentation for which a Laplacian matrix and spatial gradients can
be constructed. This opens the door to directly learning—and even
transferring pretrained networks—on a wide variety of surface rep-
resentations, from occupancy grids [Caissard et al. 2019] to subdivi-
sion surfaces [De Goes et al. 2016]. More broadly, DiffusionNet need
not be restricted to explicit surfaces, and could easily be adapted to
other geometric domains like volumetric meshes, curve networks,
implicit level sets, depth maps, or images. We believe that grounding
geometric deep learning in the mathematically and computationally
well-established diffusion operation will offer benefits across surface
learning and beyond.
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A AN ARGUMENT FOR GENERALITY

In Section 3.2, we propose diffusion at various learned timescales fol-
lowed by a learned pointwise function as the essential components
of our method. Although this formulation clearly offers nonlocal
support to the pointwise functions, it is not immediately clear how
general the resulting function space is. In particular, it is significant
to show that this function space includes at least radially symmetric
convolutions, a basic building block which has appeared widely in
past work. The treatment of radially symmetric convolutions arises
because points on surfaces do not generally have canonical tangent
coordinates, though it should be noted that recent work has since fo-
cused on expanding beyond symmetric filters, and our own method
includes gradient features for precisely this purpose. Lemma 1 states
that, at least in the flat, continuous setting, this function space is
sufficiently general to represent radially symmetric convolutions.
Here, we give a full version of this argument and some discussion.
Consider a scalar field u : R? — R in the plane. Let U,(p) :
R>0 — R denote the integral of the field u along the sphere with
radius r centered at p, i.e. Uy (p) = faB(p,r) u(y)dy. Recall that u; (p) :
R0 — Rdenotes the value of u at p after diffusion for time ¢. We are
interested in Uy, (p), because it will enable the evaluation of radially-
symmetric convolutions against u. The crux of our argument is
to show that U,(p) can be recovered from u;(p), which we will
formalize by showing the existence of a function transform

7 :(R>0 > R) > (R>0 — R)
such that
Ur(p) = T [ur (p)] (7). ™
The heat kernel solution for u; (p) is given by

1 _lpa? oo 1 2
ut(p)=/ u(g) e dq=/ (o) - rdr. (8)
R2 4t 0 4t

where the second equality moves to a radial integral, recalling that
U, (p) is defined as the integral of u along the sphere of radius r at
p. Calculation verifies that this integral has the form of a Laplace
transform of Uy (p)

1 1 1
ur(p) = EL[Z_\/?U\F’@)](E)' ©)



Table 7. An ablation study, evaluated on the human segmentation task.
Omitting any of the components of our method leads to a significant drop
in performance. Manually fixing a non-optimal diffusion time also impairs
performance—our learned procedure automatically optimizes a diffusion
time for each channel.

Ablation Accuracy
no diffusion 314 %
fixed-time diffusion t = 0.1 89.1%
fixed-time diffusion t = 0.5 81.6 %
no gradient features 84.1 %
unlearned gradient features 85.6 %
(full method) 90.6 %

The Laplace transform is injective [Lerch 1903], which allows us to
consider the inverse transform

Ur(p) = T [u: (p)1(r).

And in fact, 7 will have the form of an inverse Laplace transform,
up to reparameterization by % and constant coefficients.

Now that we have established the existence of 77, it is straightfor-
ward to evaluate a radially-symmetric convolution via a pointwise
map applied to diffused values. Convolution against any radially
symmetric kernel a(r) : R>o — R is given by

wra)p) = [ allp-ahu(adq
:/Oooa(r)u,(p)dr (10)

- /O ()T [ur (p)] (r)dr

In this sense, the function space defined by diffusion followed by a
pointwise map contains the space of radially symmetric convolu-
tions, completing our argument.

Extending this treatment from R? to curved manifolds would
require a deeper analysis, though the same essential properties hold
for diffusion on surfaces. Furthermore, we treat only the continu-
ous setting above, rather than the discrete setting where pointwise
maps are approximated via finite-dimensional MLPs, and diffusion
is evaluated at a collection of times ¢. More generally, it would be
valuable to extend this analysis to formalize the stability proper-
ties of diffusion, a la [Kostrikov et al. 2018; Perlmutter et al. 2020].
Nonetheless, we consider this argument to be important evidence
that diffusion followed by pointwise functions is an expressive func-
tion space, supported by the strong results of our method in practical
experiments.

B ANALYSIS

Ablation. To validate the components of our approach, we con-
sider a simple ablation study on the full-resolution human seg-
mentation task from Section 5.2, using rotation-augmented raw
coordinates as input. The variant no diffusion omits the diffusion
layer from each DiffusionNet block, fixed-time diffusion manually
specifies a diffusion time, no gradient features omits the gradient fea-
tures, and unlearned gradient features includes gradient features but
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Fig. 13. The effect of varying the size of the truncated basis for spectral

diffusion evaluation, measured via error on the FAUST vertex-labelling cor-
respondence from Table 5, orig. We use 128 eigenvectors in all experiments.

omits the learned transformation of gradient vectors A. We observe
a noticeable drop in accuracy when omitting any of the components
of the method (Table 7). Manually specifying shared, non-optimal
diffusion times (¢t = 0.1, t = 0.5) yields a network with significantly
worse accuracy compared to our learned approach. A key advantage
of our learned diffusion is that this time is automatically tuned by
the optimization process, individually for each feature channel.

Spectral basis size. When evaluating diffusion with spectral accel-
eration (Section 3.3.2), increasing the size k of the spectral basis more
accurately resolves diffusion at the cost of increased computation.
In Figure 13 we vary k for the FAUST vertex-labeling correspon-
dence task as in Table 5, measuring accuracy on the original test
set. We find performance degrades significantly with fewer than
64 eigenvectors on this problem, while larger bases offer negligible
benefit—our experiments use k = 128 eigenvectors as a safe default.

C EXPERIMENT DETAILS

Here we provide additional methodology details for experiments.

Orientation. Figure 5 shows the results of a simple artificial ex-
periment in which we segment the left vs. right side of human
models from the FAUST dataset [Bogo et al. 2014] using a purely
intrinsic 32-width DiffusionNet with HKS as input. On the original
dataset, asymmetric biases—such as a template mesh with asymmet-
ric connectivity—make it unintentionally easy to distinguish left
from right. We cancel the effect of these biases by augmenting the
dataset with a copy of each mesh that has been mirrored across
the left-right axis (preserving orientation by inverting triangles).
With a complex-valued A, our network is able to easily distinguish
left from right with 99.9% accuracy, despite both a purely intrinsic
architecture and intrinsic input features. Restricting to real-valued
A removes the effect; the network is unable to disambiguate the
symmetry, with a totally random 50.0% accuracy.

Human segmentation. All results are given in Table 3. Past work
has used different variations of this dataset, both in terms of the
input data and evaluation criteria. The original dataset presented
by Maron et al. [2017] contains moderately large meshes of up to
12k vertices, with segmentations labeled per-face, and accuracy is
reported as the fraction of faces in the entire test set which were
classified correctly. The experiments from Wiersma et al. [2020]
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deviate slightly: they remap the ground truth to vertices, and train
and test on a subsampling of the vertex set; nonetheless we group
these results with the original dataset for the sake of simplicity as
they are very similar.

MeshCNN [Hanocka et al. 2019] generated a simplified version of
the dataset where the meshes have < 1k vertices, and segmentations
have been remapped to edges. Additionally, when reporting test
evaluation, a soft ground truth is used allowing for multiple correct
segmentation results for edges at the boundary between two regions.
For comparison we also apply DiffusionNet to this variant of the
task, denoted by T in Table 3—we directly generate a prediction per-
edge by averaging per-vertex outputs to edges before applying the
final softmax, and evaluate test results against the same soft ground
truth. Finally, PD-MeshNet [Milano et al. 2020] generated per-face
labels for the MeshCNN simplified models and trained and tested
on these without any soft ground-truth—we denote this variant by
¥ and again evaluate DiffusionNet with per-face predictions.

Across all variants, DiffusionNet achieves highly accurate perfor-
mance. Unlike many of these methods, DiffusionNet can easily be
trained directly on the original meshes without any special treat-
ment. Even methods which evaluate on full-resolution models may
be scalable only due to special pre- and post-processing schemes,
which add complexity to adoption in practice—for instance, Mesh-
Walker [Lahav and Tal 2020] trains on simplified meshes then applies
an upsampling and smoothing scheme to handle full resolution data.

Discretization agnostic learning. To investigate robustness to dis-
cretization on our remeshed FAUST dataset, we train several re-
cent mesh-based and point-based surface learning methods, in
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addition to our own 256-width DiffusionNet with dropout. For
mesh-based methods, we also train SplineCNN [Fey et al. 2018],
ACSCNN [Li et al. 2020b], HSN [Wiersma et al. 2020]; we also tried
MeshCNN [Hanocka et al. 2019], but found it prohibitively expen-
sive. For point-based methods, we train PointNet [Qi et al. 2017a]
and DGCNN [Wang et al. 2019], and consider using both the vertex
set as a point set, as well as sampling a random point cloud on the
surface, predicting there, then projecting the results back to vertices
according to nearest-neighbors. For equivalent comparison, all mod-
els are trained with only vertex positions as input (or the constant
function, for ACSCNN and SplineCNN), and we augment during
training with random rotations about the vertical axis to encourage
rotation-invariance. Wherever possible, we mimic the training con-
figuration of the original work or make a best-effort to find suitable
parameters for this task. We note that some models perform slightly
worse than previously reported results, presumably due to the use
of simpler input features or learning in a rotation-invariant setting
rather than aligned.

In general, only DiffusionNet learns accurate correspondences
which are robust to remeshing and resampling. In particular, AC-
SCNN still produces nearly perfect results on the original template
meshes even in the rotation-invariant setting, but yields essentially
random noise after any remeshing. Perhaps unsurprisingly, point-
based methods are less prone to overfitting the mesh connectivity
(though the DGCNN on vertices still manages to do so), but are still
notably less accurate than mesh-based techniques. Figure 11 gives
full geodesic error plots corresponding to Table 5.
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