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We introduce a new general-purpose approach to deep learning on 3D

surfaces, based on the insight that a simple diffusion layer is highly effective

for spatial communication. The resulting networks are automatically robust

to changes in resolution and sampling of a surface—a basic property which is

crucial for practical applications. Our networks can be discretized on various

geometric representations such as triangle meshes or point clouds, and can

even be trained on one representation then applied to another. We optimize

the spatial support of diffusion as a continuous network parameter ranging

from purely local to totally global, removing the burden ofmanually choosing

neighborhood sizes. The only other ingredients in the method are a multi-

layer perceptron applied independently at each point, and spatial gradient

features to support directional filters. The resulting networks are simple,

robust, and efficient. Here, we focus primarily on triangle mesh surfaces, and

demonstrate state-of-the-art results for a variety of tasks including surface

classification, segmentation, and non-rigid correspondence.
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1 INTRODUCTION
Recently there has been significant interest in learning techniques

for non-uniform geometric data, inspired by the tremendous suc-

cess of convolutional neural networks (CNNs) in computer vision. A

particularly challenging setting is extending the power of CNNs to

learning directly on curved surfaces [Bronstein et al. 2017; Hanocka

et al. 2019; Masci et al. 2015; Poulenard and Ovsjanikov 2018]. Un-

like volumetric [Maturana and Scherer 2015] or point-based [Qi

et al. 2017a] approaches, surface-based methods exploit the connec-

tivity of the surface representation to improve performance, and

furthermore can be robust in the presence of non-rigid deformations,

making them a strong solution for many tasks such as deformable

shape matching [Boscaini et al. 2016; Masci et al. 2015].
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Fig. 1. Surface learning methods must generalize to shapes represented
differently from the training set to be useful in practice, yet many existing
approaches depend strongly on mesh connectivity. Here, our DiffusionNet
trained for human segmentationwith limited variability seen during training
automatically generalizes to widely varying mesh samplings (left), scales
gracefully to resolutions ranging from a simplified model to a large raw
scan (middle), and can even be evaluated directly on point clouds (right).

However, although the field has largely been focused on the

benchmark accuracy of networks for such problems, at least two

other major roadblocks remain for achieving the full potential of

learning on surfaces. First, whereas real-world geometric data comes

from a variety of sources, existing networks are strongly tied to

a particular representation (e.g., triangulations or point clouds) or
even discretization resolution. Hence, training cannot benefit from

all available data. One popular strategy is to simply convert all

data to a common representation (e.g., via point sampling), but

this approach has well-known drawbacks (sampling a high-quality,

detailed surface can alias thin features, lose informative details, etc.).
Second, many existing mesh-based architectures do not scale well to

high-resolution surface data. Though coarse inputs are sufficient for,

e.g., classification tasks, they preclude potential future applications

such as high-fidelity geometric analysis and synthesis.

A key technical difficulty in surface-based learning is defining

appropriate notions of convolution and pooling—two main building

blocks in traditional CNNs. Unfortunately, unlike the Euclidean case,

there is no universal canonical notion of convolution on surfaces. Ex-

isting approaches have tried to address this challenge through a vari-

ety of solutions such as mapping to a canonical domain [Maron et al.

2017; Sinha et al. 2016], exploiting local parametrizations [Boscaini

et al. 2016; Masci et al. 2015; Wiersma et al. 2020] or applying convo-

lution on the edges of the mesh [Hanocka et al. 2019]. However, the
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use of more advanced and delicate geometric operations, such as

computing geodesics or parallel transport, has a significant impact

on both the robustness and scalability of the resulting methods. Per-

haps even more importantly, existing surface-based approaches are

often too sensitive to the underlying mesh structure, and thus unable

to generalize to significantly different sampling and triangulations

between training and test sets. As a result, despite significant recent

progress in geometric deep learning [Cao et al. 2020; Greengard

2020], current methods typically struggle to cope with the variabil-

ity, complexity and scale encountered in the real-world surface and

mesh-based settings.

In this work, we propose a method that exploits the surface rep-

resentation, but is both scalable and robust in the presence of signif-

icant sampling changes (see Figure 1). Our main observation is that

expensive and potentially brittle operations used in previous works

[Masci et al. 2015; Poulenard and Ovsjanikov 2018; Wiersma et al.

2020] can be replaced with two basic geometric operations: a learned

diffusion layer for information propagation and a spatial gradient

for capturing anisotropy. Discretizing these operations with the

principled techniques of discrete differential geometry [Crane et al.

2013; Meyer et al. 2003] then automatically endows the resulting

networks with both robustness and scalability, while maintaining

the simplicity of the learning framework.

Remarkably, we show that combining these basic geometric oper-

ations yields neural networks that are not only robust and scalable,

but also achieve state-of-the-art results in a wide variety of appli-

cations, including deformable surface segmentation, classification,

as well as unsupervised and supervised non-rigid shape matching.

Perhaps even more fundamentally, our DiffusionNet offers a unified

perspective across representations of surface geometry—in principle

it can be applied to any geometric representation where one has a

Laplacian and gradient operator. In this paper, for example, we show

how the same architecture achieves accurate results for both meshes

and point clouds, and even allows training on one and evaluating

on the other.

Contributions. The main contributions of this work are:

• We show that a simple learned diffusion operation is sufficient

to share spatial data in surface learning.

• We introduce spatial gradient features for learning local di-

rectional filters.

• Inspired by these insights, we present DiffusionNet, an archi-

tecture for learning on surfaces which has many advantages

including robustness to discretization, and achieves state-of-

the-art results on several benchmarks.

2 RELATED WORK
Applying deep learning techniques to 3D shapes is a rich and exten-

sive area of research. Below we review the approaches most closely

related to ours, and refer the interested readers to recent surveys,

including [Bronstein et al. 2017; Cao et al. 2020; Xu et al. 2016].

View-based and volumetric methods. Most early geometric deep

learning-based methods directly leveraged tools developed for 2D

images, and thus mapped 3D shapes onto the plane either using

multi-view renderings [Kalogerakis et al. 2017; Su et al. 2015; Wei

et al. 2016] or more global, often parametrization-based techniques

such as panoramas [Sfikas et al. 2017; Shi et al. 2015], geometry

images [Sinha et al. 2016], or metric-preserving mappings [Ezuz

et al. 2017], among many others.

Another direct approach to applying convolution to 3D shapes

relies on volumetric voxel grid representations, which has led to a

variety of methods, including [Maturana and Scherer 2015; Wu et al.

2015] and their efficient extensions [Klokov and Lempitsky 2017;

Wang et al. 2017]. Such techniques can, however, be computationally

expensive and difficult to apply to detailed deformable shapes.

2.1 Learning on Surfaces
Methods that learn on 3D surfaces directly typically fall into two

major categories, based either on point cloud or triangle mesh rep-

resentations.

Point-based methods. A successful set of methods for learning

on 3D shapes represented as point clouds was pioneered by the

PointNet [Qi et al. 2017a] and PointNet++ [Qi et al. 2017b] architec-

tures, which have been extended in many recent works, including

PointCNN [Li et al. 2018], DGCNN [Wang et al. 2019], PCNN [Atz-

mon et al. 2018] and KPConv [Thomas et al. 2019] to name a few (see

also [Guo et al. 2020] for a recent survey). Moreover, recent efforts

have also been made to incorporate invariance and equivariance

of the networks with respect to various geometric transformations,

e.g., [Deng et al. 2018; Hansen et al. 2018; Li et al. 2021; Poulenard

et al. 2019; Zhang et al. 2019; Zhao et al. 2020]. The major advantages

of point-based methods are their simplicity, flexibility, applicabil-

ity in a wide range of settings and robustness in the presence of

noise and outliers. However, first, their overall accuracy can often

be lower than that of methods that explicitly use surface (e.g., mesh)

connectivity when it is available. Second, though effective on static

mechanical objects and scenes, point-based methods may not be

well-suited for deformable (non-rigid) shape analysis, requiring ex-
tremely large training sets and significant data augmentation to

achieve good results, e.g., for non-rigid shape matching applications

[Donati et al. 2020; Groueix et al. 2018]. Globally supported point-

based networks were recently considered in [Peng et al. 2020]; our

method naturally allows global support via learned diffusion.

simplified inputs only
(some other methods)

original resolution
(ours)

Fig. 2. Many recent mesh-based learning methods are applied only to dra-
matically simplified inputs (Section 5.6), while our method easily processes
full-resolution models, preserving detail and facilitating adoption.
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Surface and graph-based methods. To address the limitations of

point-based approaches, several methods have been proposed that

operate directly on mesh surfaces and thus can learn filters that

are intrinsic and robust to complex non-rigid deformations. The

earliest pioneering approaches in this direction generalize convolu-

tions [Boscaini et al. 2016; Fey et al. 2018; Masci et al. 2015; Monti

et al. 2017], typically using local surface parameterization via the

logarithmic map. Unfortunately local parameterizations are only

defined up to rotation in the tangent plane, leading to several meth-

ods which address this issue through design of equivariant surface
networks [Haan et al. 2021; He et al. 2020; Mitchel et al. 2021; Poule-

nard and Ovsjanikov 2018; Wiersma et al. 2020; Yang et al. 2021].

Likewise, operating on vector-valued data in a local tangent space

can expand the expressivity of the filter space [Beani et al. 2021;

Mitchel et al. 2021; Wiersma et al. 2020]. Our method leverages

learned gradient features (Section 3.4), which geometrically require

only a local spatial gradient operation, and sidestep the challenge

of equivariant filters by using only inner products, which are natu-

rally invariant. These gradient features are built on local differential

operators, which have also been exploited in other recent methods

(e.g., [Eliasof and Treister 2020; Jiang et al. 2018]).

Surface mesh structure has also been used in variety of graph-like

approaches which specifically leverage mesh connectivity [Bod-

nar et al. 2021; Feng et al. 2019; Gong et al. 2019; Hajij et al. 2020;

Hanocka et al. 2019; Lim et al. 2018; Milano et al. 2020; Verma et al.

2018], the structure of discrete operators [Smirnov and Solomon

2021], or even random walks along edges [Lahav and Tal 2020],

among others. While accurate, these methods can be costly on

densely sampled shapes and often are not robust to significant

changes in the mesh structure (Figure 3).

target

original mesh a�er remeshing

same
Di�usionNet

on point cloud

recent
methods

Di�usionNet

Fig. 3. Although past methods have achieved high-accuracy benchmark
results for learning on meshes [Fey et al. 2018; Li et al. 2020b], they are prone
to over-fitting to the mesh connectivity, rather than learning the underlying
shape structure (Section 5.4). In contrast, DiffusionNet learns an accurate
representation-agnostic solution, which even supports training on meshes
and evaluating on a point cloud (last column).

2.2 Spectral Methods
Our use of diffusion is also loosely related to techniques that operate

in the spectral domain and often exploit the link between convolu-

tion and operations in a derived (e.g., Fourier or Laplace-Beltrami)

basis, including [Bruna et al. 2014; Levie et al. 2018; Sun et al. 2020].

Such methods have a long history in graph-based learning and

are well-rooted in data analysis more broadly, including Laplacian

eigenmaps [Belkin and Niyogi 2003], spectral clustering [Vallet and

Lévy 2008] and diffusion maps [Coifman et al. 2005]. In geometry

processing, spectral methods have been used for a range of tasks

including multi-resolution representation [Levy 2006], segmenta-

tion [Rustamov 2007] and matching [Ovsjanikov et al. 2012], among

others [Vallet and Lévy 2008; Zhang et al. 2010].

Unfortunately, Laplacian eigenfunctions depend on each shape

and thus coefficients or learned filters from one shape are not triv-

ially transferable to another. Levie et al. [2019] argue for transfer

between discretizations of the same shape, but 3D geometric learn-

ing typically demands transfer between different shapes. Functional

maps [Ovsjanikov et al. 2012] can be used to “translate” coefficients

between shapes, and have been used, e.g., in [Yi et al. 2017] with

spectral filter learning. Deep functional maps [Litany et al. 2017]

propose to learn features in the primal domain, which are then

projected onto the Laplace-Beltrami basis for functional map esti-

mation. However, the features are still learned either with MLPs

starting from pre-computed descriptors [Ginzburg and Raviv 2020;

Halimi et al. 2019; Litany et al. 2017; Roufosse et al. 2019] or using

point-based architectures [Donati et al. 2020].

Instead, we propose an approach that learns the parameters of a

diffusion process which is directly transferable across shapes and, as

we show below, can be used effectively in applications like non-rigid

shape matching. We also stress that DiffusionNet is not spectral in
nature and only uses spectral operations as an acceleration tech-

nique for evaluating diffusion efficiently.

We also note that our use of the Laplacian in defining the diffusion

operator is related to methods based on polynomials of the Lapla-

cian [Defferrard et al. 2016; Kostrikov et al. 2018], CayleyNets [Levie

et al. 2018] and their recent application in shape matching using

ACSCNNs [Li et al. 2020b]. However, we demonstrate that complex

polynomial filters can be replaced with simple learned diffusion, and

moreover that gradient features can inject orientation information

into the network, improving performance and robustness.

Similarly to our approach, diffusion for smooth communication

has been explored on graphs [Klicpera et al. 2019; Xu et al. 2019],

images [Liu et al. 2016], and point clouds [Hansen et al. 2018]. In

contrast, our method directly learns a diffusion time per-feature

(which significantly improves performance, Table 7), incorporates a

learned gradient operation, and is applied directly to mesh surfaces.

Pooling. In surface learning it is nontrivial to define pooling, es-

pecially on meshes where it often amounts to mesh simplification

[Hanocka et al. 2019]. Various recent operations have been proposed

for point cloud [Hu et al. 2020; Lin et al. 2020], mesh [Milano et al.

2020; Zhou et al. 2020] or even graph pooling [Li et al. 2020a; Ma

et al. 2020]. A key advantage of our approach is that it automati-

cally supports global spatial support without any downsampling

operation, simplifying implementation and improving learning.
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3 METHOD
Our method consists of three main building blocks: multi-layer per-

ceptrons (MLPs) applied at each point to model pointwise scalar

functions of feature channels, a learned diffusion operation for

propagating information across the domain, and local spatial gradi-

ent features to expand the network’s filter space beyond radiallly-

symmetric filters. In this section, we describe these main numerical

components, and then we assemble them into an effective architec-

ture in Section 4. Our method is defined in a representation-agnostic

manner; applying it to meshes or point clouds simply amounts to

assembling the appropriate Laplacian and gradient matrices as we

discuss below.

3.1 Pointwise Perceptrons
On a mesh or point cloud with 𝑉 vertices, we consider a collection

of 𝐷 scalar features defined at each vertex. Our first basic building

block is a pointwise function 𝑓 : R𝐷 → R𝐷 , which is applied inde-

pendently at every vertex to transform the features. We represent

these pointwise functions as a standard multilayer perceptron (MLP)

with shared weights across all vertices. Although these MLPs can

fit arbitrary functions at each point, they do not capture the spa-

tial structure of the surface, or allow any communication between

vertices, so a richer structure is needed.

Past approaches for communication have ranged from global re-

ductions to explicit geodesic convolutions—instead, we will demon-

strate that a simple learned diffusion layer effectively propagates

information, without the need for potentially costly or error-prone

computations.

3.2 Learned Diffusion
In the continuous setting, diffusion of a scalar field 𝑢 on a domain

is modeled by the heat equation

𝑑
𝑑𝑡
𝑢𝑡 = Δ𝑢𝑡 , (1)

where Δ is the Laplacian (or more formally: the Laplace-Beltrami
operator). The action of diffusion can be represented via the heat

operator 𝐻𝑡 , which is applied to some initial distribution 𝑢0 and

produces the diffused distribution 𝑢𝑡 ; this action can be defined as

𝐻𝑡 (𝑢0) = exp(𝑡Δ)𝑢0, where exp is the operator exponential. Over

time, diffusion is an increasingly-global smoothing process: for 𝑡 = 0,

𝐻𝑡 is the identity map, and as 𝑡 →∞ it approaches the average over

the domain.

We propose to use the heat equation to spatially propagate fea-

tures for learning on surfaces; its principled foundations ensure

that results are largely invariant to the way the surface is sampled

or meshed. To discretize diffusion, one replaces Δ with the weak

Laplace matrix 𝐿 and mass matrix 𝑀 . Here, 𝐿 is a positive semi-

definite sparse matrix 𝐿 ∈ R𝑉×𝑉 with the opposite sign convention

such that𝑀−1𝐿≈−Δ. The number of entries in 𝐿 and𝑀 are gener-

ally 𝑂 (𝑉 ), scaling effectively to large inputs (Table 6). On triangle

meshes, we will use the cotan-Laplace matrix, which is ubiquitous

in geometry processing applications [Crane et al. 2013; MacNeal

1949; Pinkall and Polthier 1993]; for point clouds we will use the

related Laplacian from [Sharp and Crane 2020]. This matrix has

also been defined for voxel grids [Caissard et al. 2019], polygon

co
un

t

.50 .25.50 .25.50 .25.50 .25

block 0 block 1 block 2 block 3

learned times

Fig. 4. We propose to learn a diffusion time for each feature channel, auto-
matically tuning spatial support during training. The histograms show the
learned times at each block in a DiffusionNet trained for segmentation; the
times marked by the dashed lines are visualized by diffusing a point source
from the starred point. The first block uses mainly local diffusion, while a
channel in the last block finds nearly global support.

meshes [Bunge et al. 2020], tetrahedral meshes [Alexa et al. 2020],

etc. The weak Laplace matrix is accompanied by a mass matrix𝑀 ,

such that the rate of diffusion is given by −𝑀−1𝐿𝑢. Here𝑀 will be

a “lumped” diagonal matrix of areas associated with each vertex.

We define a learned diffusion layer ℎ𝑡 : R
𝑉 → R𝑉 , which diffuses

a feature channel𝑢 for learned time 𝑡 ∈ R≥0. In our networks, ℎ𝑡 (𝑢)
is applied independently to each feature channel, with a separate

learned time 𝑡 per-channel. Learning the diffusion parameter is a

key strength of our method, allowing the network to continuously

optimize for spatial support ranging from purely local to totally

global, and even choose different receptive fields for each feature

(Figure 4). We thus sidestep challenges like manually choosing the

support radius of a convolution, or sizes for a pooling hierarchy.

In the language of deep learning, diffusion can be viewed as a kind

of smooth mean (average) pooling operation with many benefits:

it has a geometrically-principled meaning, its support ranges from

purely local to totally global via the choice of diffusion time, and

it is differentiable with respect to diffusion time, allowing spatial

support to be automatically optimized as a network parameter.

A note on generality. Remarkably, eschewing traditional repre-

sentations of convolutions in favor of diffusion does not reduce

the expressive power of our networks. This is supported by the

following theoretical result (that we prove in Appendix A), which

shows that radially-symmetric convolutions are contained in the

function space defined by diffusion followed by a pointwise map:

Lemma 1 (Inclusion of radially-symmetric convolutions).

For a signal 𝑢 : R2 → R, let 𝑈𝑟 (𝑝) : R≥0 → R denote the integral
of 𝑢 along the 𝑟 -sphere at 𝑝 , and let 𝑢𝑡 (𝑝) : R≥0 → R denote the
signal value at 𝑝 after diffusion for time 𝑡 . Then there exists a function
transform T which recovers 𝑈𝑟 (𝑝) from 𝑢𝑡 (𝑝)

𝑈𝑟 (𝑝) = T [𝑢𝑡 (𝑝)] (𝑟 ) .
Thus convolution with a radial kernel 𝛼 : R≥0 → R is given by

(𝑢 ∗ 𝛼) (𝑝) =
∫
R2

𝛼 ( |𝑞 − 𝑝 |)𝑢0 (𝑞) 𝑑𝑞 =

∫ ∞

0

𝛼 (𝑟 )T [𝑢𝑡 (𝑝)] (𝑟 ) 𝑑𝑟,

which is a pointwise operation at 𝑝 on the diffused values 𝑢𝑡 (𝑝).

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.



DiffusionNet: Discretization Agnostic Learning on Surfaces • 1:5

This fact is significant because it suggests that simple and ro-

bust diffusion can, without loss of generality, be used to replace

complicated operations such as radial geodesic convolution.

Importantly, we will also extend our architecture beyond radially-

symmetric filters by incorporating gradient features (Section 3.4).

3.3 Computing Diffusion
Many numerical schemes could potentially be used to evaluate the

diffusion layer ℎ𝑡 (𝑢), from direct solvers [Chen et al. 2008] to hierar-

chical schemes [Liu et al. 2021; Vaxman et al. 2010]. In particular, we

seek schemes which are efficient as well as differentiable, to enable

network training. Here we describe two simple methods considered

in our experiments. The first scheme we consider is an implicit

timestep, which is straightforward but requires solving large sparse

linear systems, and the second is spectral expansion, which uses

only efficient dense arithmetic at evaluation time but requires some

modest precomputation. Both are easily implemented using com-

mon numerical libraries, and we observe that networks trained with

either approach have similar accuracy. Efficiency is evaluated in

Section 5.6; we generally recommend spectral acceleration.

3.3.1 Direct Implicit Timestep. Perhaps the simplest effective ap-

proach to simulate diffusion is a single implicit Euler timestep

ℎ𝑡 (𝑢) := (𝑀 + 𝑡𝐿)−1𝑀𝑢 (2)

which amounts to solving a (sparse) linear system for each diffu-

sion operation. Using an implicit backward timestep rather than

an explicit forward timestep is crucial as it makes the scheme sta-

ble, allows global support, and yields a reasonable approximation

of diffusion after just one step. Solving linear systems (including

derivative computation) is supported in modern learning software

frameworks, allowing Equation 2 to implement a learnable diffu-

sion block. However, this amounts to solving a distinct large linear

system for each channel, and GPU-based computation may fall back

to solving dense linear systems, which means that direct implicit

timesteps may not scale well to large problems.

3.3.2 Spectral Acceleration. An alternate approach is to leverage a

closed-form expression for diffusion in the basis of low-frequency

Laplacian eigenfunctions [Vallet and Lévy 2008; Zhang et al. 2010].

Once the eigenbasis has been precomputed, diffusion can then be

evaluated for any time 𝑡 via elementwise exponentiation. Truncating

diffusion to a low-frequency basis incurs some approximation error,

but we find that this approximation has little effect on our method

(Figure 13), perhaps because diffusion quickly damps high-frequency

content regardless.

+1

-1

For weak Laplace matrix 𝐿 and

mass matrix 𝑀 , the eigenvectors

𝜙𝑖 ∈ R𝑉 are solutions to:

𝐿𝜙𝑖 = 𝜆𝑖𝑀𝜙𝑖 , (3)

corresponding to the first𝑘 smallest-

magnitude eigenvalues 𝜆1, . . . , 𝜆𝑘 .

We normalize them so that 𝜙𝑇
𝑖
𝑀𝜙𝑖 = 1. These eigenvectors are

easily precomputed for each shape of interest via standard numeri-

cal packages [Lehoucq et al. 1998]; the inset figure shows several

example functions 𝜙𝑖 for a surface of a human shape.

Let Φ := [𝜙𝑖 ] ∈ R𝑉×𝑘 be the stacked matrix of eigenvectors,

which form an orthonormal basis with respect to𝑀 . We can then

project any scalar function 𝑢 to obtain its coefficients 𝑐 in the spec-

tral basis via 𝑐 ← Φ𝑇𝑀𝑢, and recover values at vertices as 𝑢 ← Φ𝑐 .
Conveniently, diffusion for time 𝑡 is easily expressed as an elemen-

twise scaling of spectral coefficients according to 𝑐𝑖 ← 𝑒−𝜆𝑖𝑡𝑐𝑖 .
The diffusion layer ℎ𝑡 (𝑢) is then evaluated by projecting on to the

spectral basis, evaluating pointwise diffusion, and projecting back

ℎ𝑡 (𝑢) := Φ


𝑒−𝜆0𝑡

𝑒−𝜆1𝑡

. . .

 ⊙ (Φ𝑇𝑀𝑢) (4)

where ⊙ denotes the Hadamard (elementwise) product. This opera-

tion is efficiently evaluated using dense linear algebra operations

like elementwise exponentiation and matrix multiplication, and is

easily differentiable with respect to 𝑢 and 𝑡 .

Remarks. We emphasize that DiffusionNet can still learn high-

frequency outputs despite the use of a low-frequency basis (e.g.,
in Section 5.4). Intuitively, diffusion is used for communication

across points, for which a low-frequency approximation is typically

sufficient, while MLPs and gradient features learn high-frequency

features as needed for a task. Additionally, we note that DiffusionNet

is not a spectral learning method—spectral coefficients are never

used to represent filters or latent data, and thus no issues arise due

to differing eigenbases on different shapes. Spectral acceleration is

merely one possible numerical scheme to compute diffusion.

3.4 Spatial Gradient Features
Our learned diffusion layer enables propagation of information

across different points on a shape, but it supports only radially-

symmetric filters about a point. The last building block in our

method enables a larger space of filters by computing additional

features from the spatial gradients of signal values at vertices (Fig-

ure 6). Specifically, we construct features from the inner products

between pairs of feature gradients at each vertex, after applying a

learned scaling or rotation.

Evaluating gradients. We will express the spatial gradient of a

scalar function on a surface as a 2D vector in the tangent space

of each vertex. These gradients can be evaluated by a standard

procedure, choosing a normal vector at each vertex (given as input

or locally approximated), then projecting neighbors into the tangent

plane—either 1-ring neighbors on a mesh, or𝑚-nearest neighbors in

a point cloud. The gradient is then computed in the tangent plane via

least-squares approximation of the function values at neighboring

points (see Mukherjee and Wu [2006] for analysis). These gradient

operators at each vertex can be assembled into a sparse matrix

𝐺 ∈ C𝑉×𝑉 , which is applied to a vector 𝑢 of real values at vertices

to produce gradient tangent vectors at each vertex. This matrix

does not depend on the features, and can be precomputed once for

each shape. We use complex numbers as a convenient notation for

tangent vectors, in an arbitrary reference basis in the tangent plane

of each point (as in [Knöppel et al. 2013; Sharp et al. 2019], etc.).
If the normals are consistently oriented, then the imaginary axis

is chosen to form a right-handed basis in 3D with respect to the

outward surface normal.
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Learned pairwise products. Equipped with per-vertex spatial gra-

dients of each channel, we learn informative scalar features by

evaluating an inner product between pairs of feature gradients at

each vertex, after a learned linear transformation. Inner products

are invariant to rotations of the coordinate system, so these features

are invariant to the choice of tangent basis at vertices, as expected.

Putting it all together, given a collection of𝐷 scalar feature channels,

for each channel 𝑢 we first construct its spatial gradient as 𝑧𝑢 ∈ C𝑉 ,
a vector of local 2D gradients per-vertex

𝑧𝑢 := 𝐺𝑢 (5)

then at each vertex 𝑣 , we stack the local gradients of all channels to

form𝑤𝑣 ∈ C𝐷 and obtain real-valued features 𝑔𝑣 ∈ R𝐷 as

𝑔𝑣 := tanh(Re(𝑤𝑣 ⊙ 𝐴𝑤𝑣)) (6)

where 𝐴 is a learned square 𝐷 × 𝐷 matrix, and taking the real part

Re after a complex conjugate 𝑤𝑣 is again just a notational conve-

nience for dot products between pairs of 2D vectors. This means

the 𝑖th entry of the output at vertex 𝑣 is given by the dot product

𝑔𝑣 (𝑖) = tanh

(
Re

{∑𝐷
𝑗=1𝑤𝑣 (𝑖)𝐴𝑖 𝑗𝑤𝑣 ( 𝑗)

} )
, so that each inner prod-

uct is scaled by a learned coefficient 𝐴𝑖 𝑗 . The outer tanh(·) nonlin-
earity is not fundamental, but we find that it stabilizes training.

The choice of 𝐴 as a complex or real matrix has a subtle relation-

ship with the orientation of the underlying surface. Multiplying

𝑤𝑣 ( 𝑗) by a complex scalar both rotates and scales local gradient

vectors before taking inner products (recall that complex multipli-

cation can be interpreted as a rotation and scaling in the complex

plane). In contrast, real 𝐴 only allows scaling. However, the direc-

tion of rotation (clockwise or counter-clockwise) depends on the

choice of the outward normal, and hence on orientation—so surfaces

with consistently oriented normals gain a richer representation by

learning a complex matrix, whereas surfaces without consistent

orientation (e.g., raw point clouds) should restrict to real 𝐴.

In Figure 5, a small synthetic experiment (detailed in Appendix C)

demonstrates how these learned rotations allow our method to

disambiguate bilateral symmetry even in a purely intrinsic repre-

sentation, a common challenge in non-rigid shape correspondence.

gradient features
w/ rotation and scaling

99.9%
accuracy

50.0%
accuracy

gradient features
w/ scaling only

right side
le� side

Fig. 5. In a synthetic experiment, we demonstrate how our networks can
successfully segment the left and right sides of bilaterally symmetric models
even in a purely-intrinsic formulation (left), because rotation in the tangent
space for gradient features encodes a notion of orientation. Replacing this
rotation with scaling (i.e., using a real matrix 𝐴 in Equation 6) removes
the sensitivity to shape orientation (right), but also avoids the need for
consistent outward normals. See Appendix C for details.

di�usion + MLP + gradient features

+1

-1

Fig. 6. Diffusion followed by an MLP enables the network to learn radially-
symmetric filters (left); introducing gradient features expands the space to
include directional filters (right), while remaining invariant to the choice of
local tangent basis. Here, we take a DiffusionNet block trained for segmen-
tation and visualize the learned filter via channels of a normalized signal
which maximizes the block output at the center point.

4 DIFFUSIONNET ARCHITECTURE
The previous section establishes three ingredients for learning on

surfaces: an MLP applied independently at each vertex to represent

pointwise functions, learned diffusion for spatial communication,

and spatial gradient features tomodel directional filters.We combine

these ingredients to construct DiffusionNet (Figure 7), composed of

several DiffusionNet blocks. This simple network operates on a fixed

channel width𝐷 of scalar values throughout, with eachDiffusionNet

block diffusing the features, constructing spatial gradient features,

and feeding the result to an MLP.

We include residual connections to stabilize training [He et al.

2016], as well as linear layers to convert to the expected input and

output dimension. When appropriate, results at the edges or faces

of a mesh can be computed by averaging network outputs from

the incident vertices, e.g., to segment the faces of a mesh. Various

activations can be appended to the end of the network based on the

problem at hand, such as a softmax for segmentation, or a global

mean followed by a softmax for classification; otherwise, this same

architecture is used for all experiments.

Remarkably, we do not find it necessary to use any spatial convolu-

tions or pooling hierarchies on surfaces—avoiding these potentially-

complex operations helps keep DiffusionNet simple and robust.

Invariance. DiffusionNet is invariant to rigid motion of the under-

lying shapes as long as the input features remain unchanged, due

to the intrinsic geometric nature of diffusion and spatial gradients.

The overall invariance then depends on the choice of input features.

4.1 Input features
DiffusionNet takes a vector of scalar values per-vertex as input fea-

tures. Here we consider two simple choices of features, others could

easily be included when available. Most directly, we simply use the

raw 3D coordinates of a shape as input; rotation augmentation can

be used to promote rigid invariance when inputs are not consis-

tently aligned. When rigid or even non-rigid invariance is desired,

we instead use the Heat Kernel Signatures [Sun et al. 2009] as input;

these signatures are trivially computed from the spectral basis in

Section 3.3.2. Due to the intrinsic nature of our approach, with HKS

as input, the networks are invariant to any orientation-preserving

isometric deformation of the shape. Higher-order descriptors such as

SHOT [Tombari et al. 2010] seem unnecessary, and may be unstable

under remeshing [Donati et al. 2020].
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learned weights
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addition
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(optional)
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fast spectral solve
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Computing di�usion

Fig. 7. We present DiffusionNet, a simple and effective architecture for learning on surfaces. It is composed of successive identical DiffusionNet blocks.
Each block diffuses every feature for a learned time scale, forms spatial gradient features, and applies a spatially shared pointwise MLP at each vertex in a
mesh/point cloud/etc. These networks achieve state-of-the-art performance on surface learning tasks without any explicit surface convolutions or pooling
hierarchies, in part because they automatically optimize for variable spatial support (see e.g., Figure 4).

5 EXPERIMENTS AND ANALYSIS
The same network architecture achieves state-of-the-art results

across many tasks, and more importantly offers new and valuable

capabilities. See the appendix for additional analyses.

Setup. We use the same basic 4-block DiffusionNet architecture

and training procedure for all tasks, varying the network size from

a small 32-width (30k parameter) to a large 256-width (1.8M param-

eter) DiffusionNet according to the scale of the problem. The shape

of the first and last linear layers is adapted to the input and output

dimension for the problem. MLPs use ReLU activations and option-

ally dropout after intermediate linear layers. We let “xyz” and “hks”

denote networks with positions and heat kernel signatures as input,

respectively. All inputs are centered and scaled to be contained in

a unit sphere, and heat kernel signatures are sampled at 16 values

of 𝑡 logarithmically spaced on [0.01, 1]. We do not use any data

augmentation, except random rotations in tasks where positions

are used as features yet a rotation-invariant network is desired.

We fit DiffusionNet using the ADAM optimizer with an initial

learning rate of 0.001 and a batch size of 1, training for 200 epochs

and decaying the learning rate by a factor of 0.5 every 50 epochs.

Cross-entropy loss is used for labelling problems. Spectral acceler-

ation is used to evaluate diffusion except where noted, truncated

to a 𝑘 = 128 eigenbasis. On point clouds, 30 nearest-neighbors are

used to assemble matrices. Test accuracies are measured after the

last epoch of training.

Implementation details. Precomputation to assemble matrices and

compute the Laplacian eigenbasis for spectral acceleration is per-

formed once as a preprocess on the CPU using SciPy [Lehoucq

et al. 1998; Virtanen et al. 2020]. Networks are implemented in

PyTorch [Paszke et al. 2019] and evaluated on a single GPU with

standard backpropagation. Performance is discussed in Section 5.6;

we find that DiffusionNet is very efficient and scalable compared

Table 1. DiffusionNet achieves nearly-perfect accuracy classifying 30-class
SHREC11 [Lian et al. 2011] while training on just 10 samples per class.
Results marked by † are trained and tested on simplified models.

Method Accuracy

GWCNN [Ezuz et al. 2017] 90.3%

MeshCNN
†
[Hanocka et al. 2019] 91.0%

HSN
†
[Wiersma et al. 2020] 96.1%

MeshWalker
†
[Lahav and Tal 2020] 97.1%

PD-MeshNet
†
[Milano et al. 2020] 99.1%

HodgeNet
†
[Smirnov and Solomon 2021] 94.7%

FC
†
[Mitchel et al. 2021] 99.2%

DiffusionNet - xyz
†

99.4%

DiffusionNet - xyz 99.0%

DiffusionNet - hks
†

99.5%

DiffusionNet - hks 99.7%

to recent mesh-based learning methods. Code and reproducible

experiments are available at github.com/nmwsharp/diffusion-net.

5.1 Classification
We first apply DiffusionNet to classify meshes in the SHREC-11

dataset [Lian et al. 2011], which has 30 categories of 20 shapes each.

We demonstrate that DiffusionNet learns successfully even in the

presence of limited data. As in the other cited results, we train on

just 10 samples per class; our results are averaged over 10 trials of

the experiment with random training splits. We fit a cross-entropy

loss with a label smoothing factor of 0.2 (see discussion in [Goyal

et al. 2021]). We use a 32-width DiffusionNet for hks features, and

64-width DiffusionNet for xyz features with rotation augmentation.

DiffusionNet achieves the highest reported accuracy when applied

directly on the original dataset models, or to the simplified models

common in recent mesh-based learning work (Table 1).
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Table 2. Accuracy of various mesh and point cloud schemes for RNA seg-
mentation. DiffusionNet achieves state-of-the-art results, in part because it
can be applied directly to the raw meshes. “xyz” and “hks” denote networks
taking raw coordinates or heat kernel signatures as input, respectively.

Method Accuracy

cloud


PointNet++ [Qi et al. 2017a] 74.4%

PCNN [Atzmon et al. 2018] 78.0%

SPHNet [Poulenard et al. 2019] 80.1%

DiffusionNet - hks 84.0%

DiffusionNet - xyz 85.0%

mesh


SplineCNN [Fey et al. 2018] 53.6%

SurfaceNetworks [Kostrikov et al. 2018] 88.5%

DiffusionNet - hks 91.0%

DiffusionNet - xyz 91.5%

5.2 Segmentation
Molecular segmentation. We evaluate a 128-width DiffusionNet

on the task of segmenting RNA molecules into functional compo-

nents, using the dataset introduced by Poulenard et al. [2019]. This

dataset consists of 640 RNA surface meshes of about 15k vertices

each extracted from the Protein Data Bank [Berman et al. 2000],

labelled at each vertex according to 259 atomic categories, with a

random 80/20 train-test split. We learn these labels directly on the

raw meshes, as well as on point clouds of 4096 uniformly-sampled

points as in past work Poulenard et al. [2019]. For comparison, we

cite point cloud results reported in [Poulenard et al. 2019], and addi-

tionally train methods related to ours, SplineCNN [Fey et al. 2018]

and a Dirac Surface Network [Kostrikov et al. 2018] on meshes.

We also attempted to train MeshCNN [Hanocka et al. 2019] and

HSN [Wiersma et al. 2020], but found the former prohibitively ex-

pensive, while the latter could not successfully preprocess the data.

Our method achieves state-of-the-art accuracy on both the mesh

and point cloud variants of the problem (Table 2, Figure 8). Learn-

ing directly on the mesh yields greater accuracy, perhaps because

no information is lost when sampling a point cloud, and surface

structure is preserved.

Human segmentation. We train a 128-width DiffusionNet with

dropout to segment the human body parts on the composite dataset

of [Maron et al. 2017], containing models from several other hu-

man shape datasets [Adobe 2016; Anguelov et al. 2005; Bogo et al.

2014; Giorgi et al. 2007; Vlasic et al. 2008]. Additionally, we cite a

variety of reported results from other approaches on this task, as

reported by the respective original authors and by Wiersma et al.

[2020]. For clarity, we distinguish between variants of this task in

past work which used simplified meshes and soft ground truth;

more details in Appendix C. Our model is quite effective using both

rotation-augmented raw coordinates or heat kernel signatures as

input (Table 3).

ground truth mesh prediction point cloud prediction

Fig. 8. Segmenting RNA molecules with our method achieves accurate
results when applied either directly to meshes or to sampled point clouds.

Table 3. Human part segmentation on the dataset of Maron et al. [2017].
xyz and hks denote DiffusionNet with positions or heat kernel signatures
as input, respectively. The † rows use simplified inputs with a soft ground
truth at edges, and the ‡ rows use simplified inputs with hard ground truth
at faces; details in Appendix C.

Method Accuracy

GCNN [Masci et al. 2015] 86.4%

ACNN [Boscaini et al. 2016] 83.7%

Toric Cover [Maron et al. 2017] 88.0%

PointNet++ [Qi et al. 2017a] 90.8%

MDGCNN [Poulenard et al. 2018] 88.6%

DGCNN [Wang et al. 2019] 89.7%

SNGC [Haim et al. 2019] 91.0%

HSN [Wiersma et al. 2020] 91.1%

MeshWalker [Lahav and Tal 2020] 92.7%
CGConv [Yang et al. 2021] 89.9%

FC [Mitchel et al. 2021] 92.5%

DiffusionNet - xyz 90.6%

DiffusionNet - hks 91.7%

†


MeshCNN [Hanocka et al. 2019] 92.3%

MeshWalker [Lahav and Tal 2020] 94.8%

DiffusionNet - xyz 95.5%
DiffusionNet - hks 95.5%

‡


PD-MeshNet [Milano et al. 2020] 85.6%

HodgeNet [Smirnov and Solomon 2021] 85.0%

DiffusionNet - xyz 90.3%
DiffusionNet - hks 90.8%
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source target
(ground-truth map) KPConv HSN ACSCNN (ours)

trained on
SCAPE

trained on
FAUST

Fig. 9. DiffusionNet is highly effective as a feature extractor for nonrigid correspondence via functional maps, shown here in the supervised setting (Section 5.3).
Correspondences are visualized by transferring a texture through the map. All methods yield a visually plausible solution when trained on the same dataset as
the query pair (SCAPE, top row), but only DiffusionNet yields good results when generalizing after training on a different dataset (FAUST, bottom row).

5.3 Functional Correspondence
Functionalmaps compute a correspondence between a pair of shapes

by finding a linear transformation between spectral bases, aligning

some set of input features [Ovsjanikov et al. 2012]. Recent work

has shown that learned features can improve performance, e.g., Do-
nati et al. [2020]; Litany et al. [2017]. Here we demonstrate that

using DiffusionNet as a feature extractor outperforms other recent

approaches, yielding to state-of-the-art correspondence results in

both the supervised and weakly-supervised variants of the problem.

We emphasize that the spectral representation in functional maps

is unrelated to the spectral acceleration from Section 3.3.2, which is

merely a scheme for evaluating diffusion; DiffusionNet itself does

not learn in the spectral domain.

Our experiments follow the setup of Donati et al. [2020], training

and evaluating on both SCAPE [Anguelov et al. 2005; Ren et al. 2018],

and FAUST [Bogo et al. 2014] including training on one dataset and

evaluating on the other. In the supervised setting we fit dataset-

provided correspondences, and we generate rigid-invariant models

by randomly rotating all inputs for training and testing. For the

weakly-supervised setting, we use the dataset and losses advocated

in [Sharma and Ovsjanikov 2020], where rigid alignment of the

input is used as weak supervision, without known correspondences.

In all cases we extract point-to-point maps between test shapes

and evaluate them against ground truth dense correspondences;

for simplicity we compare all methods without post-processing the

maps, though we also report accuracies after postprocessing with

ZoomOut for our method [Melzi et al. 2019]. In addition to citing

results obtained using the KPConv feature extractor [Thomas et al.

2019] by Donati et al. [2020], we also train HSN [Wiersma et al. 2020],

ACSCNN [Li et al. 2020b], and our own 128-width DiffusionNet with

dropout. We also triedMeshCNN [Hanocka et al. 2019], but it proved

to be prohibitively expensive at 14hr per epoch.

Table 4. Our approach yields state-of-the-art correspondences when used
as a feature extractor for deep functional maps, both in the supervised (top,
as in Donati et al. [2020]) and the weakly supervised setting (bottom, as
in Sharma and Ovsjanikov [2020]). The dotted rows apply ZoomOut post-
processing to the previous result [Melzi et al. 2019]. X on Y means train on
X and test on Y. Values are mean geodesic error ×100 on unit-area shapes.

Method / Dataset FAUST SCAPE FonS SonF

KPConv [Thomas et al. 2019] 3.1 4.4 11.0 6.0

KPConv - hks 2.9 3.3 10.6 5.5

HSN [Wiersma et al. 2020] 3.3 3.5 25.4 16.7

ACSCNN [Li et al. 2020b] 2.7 3.2 8.4 6.0

DiffusionNet - hks 2.7 3.0 3.8 3.0
DiffusionNet - xyz 2.7 3.0 3.3 3.0

+ ZoomOut 1.9 2.4 2.4 1.9

WSupFMNet 3.3 7.3 11.7 6.2

WSupFMNet + DiffusionNet - xyz 3.8 4.4 4.8 3.6
+ ZoomOut 1.9 2.6 2.7 1.9

As shown in Table 4, DiffusionNet yields state-of-the-art results

for non-rigid shape correspondence in the both the supervised and

weakly-supervised settings, especially when transferring between

datasets. One might wonder whether the improvement in this task

truly stems from our DiffusionNet architecture, or from the use of

HKS features. As shown in the same table, training KPConv with

HKS as features shows DiffusionNet yields significant improve-

ments regardless. Figure 9 visualizes the resulting correspondences

on a challenging test pair, where only DiffusionNet achieves a high-

quality correspondence when generalizing after training on a differ-

ent dataset.
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original isotropic variable
density

quadric
simplification

cloud

Fig. 10. Examples of the remeshed FAUST test dataset used in Table 5.

Table 5. DiffusionNet automatically retains highly accurate results under
changes in meshing and sampling, while many other approaches overfit to
mesh connectivity. Here we give correspondence errors on our remeshed
FAUST dataset after training on template meshes, measured in mean geo-
desic distance ×100 after normalizing by the geodesic diameter.

remeshed/sampled variants

Method orig iso dense qes cloud

ACSCNN 0.05 35.29 19.09 41.15 N/A

SplineCNN 3.51 31.09 27.95 40.43 N/A

HSN 9.57 20.01 24.84 25.40 N/A

PointNet (vertices) 3.83 2.92 3.04 2.67 2.60
PointNet (sampled) 9.99 4.25 7.84 4.44 4.13

DGCNN (vertices) 2.44 14.58 15.72 27.00 32.13

DGCNN (sampled) 6.52 4.30 5.57 3.61 2.66

DiffusionNet 0.33 0.68 0.62 0.82 2.59

5.4 Discretization Agnostic Learning
A key benefit of DiffusionNet compared to many past approaches

is that its outputs are robust to changes in the discretization of the

input (e.g., different meshes of the same shape, or a mesh vs. a point
cloud). This property is essential for practical applications where

meshes for inference are likely to be tessellated differently from

the training set, etc. Other invariants (e.g., rigid invariance) can be

encouraged via data augmentation, but for discretization it is im-

practical to generate augmented inputs across all possible sampling

patterns. Below, we demonstrate that DiffusionNet generalizes quite

well across discretizations without any special regularization or

augmentation, especially compared to recent mesh-based methods.

We study discretization invariance using a popular formulation of

the shape correspondence task on the FAUST human dataset [Bogo

et al. 2014], where each vertex of a mesh is to be labelled with

the corresponding vertex on a template mesh. Importantly, these

input meshes are already manually aligned templates, with exactly

identical mesh connectivity. Past work has achieved near-perfect

accuracy in this problem setup (e.g., [Fey et al. 2018; Li et al. 2020b]),
however we suggest that these models primarily overfit to mesh

graph structure. In contrast, DiffusionNet learns an accurate and

general function of the shape itself, despite the synthetic setup.

Di�usionNet
ACSCNN
SplineCNN
HSN
PointNet (vertices)
PointNet (sampled)
DGCNN (vertices)
DGCNN (sampled)

�adric Simplification (qes)

0 5 10
Sampled Point Cloud (cloud)

0%

50%

100%

0 5 10

Original (orig)

0%

50%

100%

0 5 10

Isotropic (iso)

0 5 10
Variable Density (dense)

0%

50%

100%

0 5 10

Fig. 11. Accuracy curves for vertex-labelling correspondence on the FAUST
dataset, as in Table 5. The first plot gives accuracy on the original test
meshes, and the subsequent plots denote testing on our remeshed variants
of the test set. For each plot, the x-axis is the geodesic error ×100 after
normalizing by geodesic diameter, and the y-axis is the percent of predicted
correspondences within that error.

To experimentally quantify this effect, we construct a version of

the FAUST test set after remeshing with several strategies: orig is

the original test mesh, iso is a uniform isotropic remeshing, dense
refines the mesh in randomly sampled regions, qes first refines
the meshes, then applies quadric error simplification [Garland and

Heckbert 1997], and cloud is a point cloud with normals sampled

from the surface (Figure 10). Unrelated remeshings have appeared

in [Poulenard and Ovsjanikov 2018; Wiersma et al. 2020], but the

procedure therein left large regions of the mesh unchanged. Ground

truth for evaluation is defined via nearest-neighbor on the original

test mesh. We train on the 3D coordinates of the 80 standard FAUST

registered meshes, but evaluate on the remeshed set to mimic the

practical scenario where the training set contains meshes tessellated

via some particular common strategy, yet the fitted model must be

applied to totally different meshes encountered in the wild. We also

train several other methods—details in Appendix C.

Table 5 and Figure 11 show how other mesh-based approaches

degrade rapidly under remeshing; only DiffusionNet yields accurate

correspondences which are largely stable under remeshing and

resampling. Some point-based methods avoid the dependence on

connectivity, yet do not match the overall accuracy of the surface-

based DiffusionNet.
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5.5 Transfer Across Representations
Not only are the outputs of DiffusionNet consistent across remesh-

ing and resampling of a shape, but furthermore the same network

can be directly applied to different discrete representations. The

only geometric data required for DiffusionNet are the Laplacian,

mass, and spatial gradient matrices, which are easily constructed for

many representations. Because all geometric operations in the net-

work are defined in terms of these standard matrices, fitted network

weights retain the same meaning across different representations.

This enables us to train on one representation and evaluate on an-

other as seen in Figure 1 and Section 5.4, cloud, without any special

treatment or fine-tuning. In the future, DiffusionNet opens the door

to heterogeneous training sets which intermingle mesh, point cloud,

and other surface data from various sources.

5.6 Efficiency and Robustness
Runtime. DiffusionNet requires only standard linear algebra op-

erations for training and inference, and is thus straightforward and

efficient on modern hardware. As an example, DiffusionNet with

spectral acceleration trains on the 14k-vertex RNA meshes (Sec-

tion 5.2) in 38ms per input and requires 2.2GB of GPU memory.

Preprocessing is performed on the CPU once for each input; for

these RNA meshes preprocessing takes 5.4sec and generates 12MB

of data each, composed mainly of the Laplacian eigenbasis Φ for

spectral acceleration. Table 6 summarizes the runtime performance

of DiffusionNet and several other recent methods on the human

Table 6. Runtimes of DiffusionNet and other mesh-based methods across
several different input mesh resolutions. Reported times are for one-time
preprocessing (pre), a training evaluation with derivatives (train), and an
inference evaluation (infer), each on a single input of the specified size.
Entries marked by “—” were infeasibly expensive in time or memory usage.
Unlike many recent mesh-based learning methods, DiffusionNet easily
trains directly on medium-sized inputs, and even scales to very large meshes.

small medium large
Method 752 vert 10k vert 184k vert

pre: 288ms 3.55sec 69.5sec

DiffusionNet train: 19ms 25ms 379ms

(spectral) infer: 7ms 10ms 154ms

pre: 104ms — —

DiffusionNet train: 329ms — —

(direct) infer: 81ms — —

pre: 85ms 1.13sec —

MeshCNN train: 269ms 2.97sec —

[Hanocka et al. 2019] infer: 194ms 2.71sec —

pre: 905ms 162sec —

HSN train: 188ms 1.08sec —

[Wiersma et al. 2020] infer: 68ms 389ms —

pre: n/a n/a —

HodgeNet train: 752ms 7.61sec —

[Smirnov et al. 2021] infer: 645ms 6.87sec —

segmentation task (Section 5.2), including preprocessing, training

with gradient computation, and inference. All timings are measured

on a 24GB Titan RTX GPU and dual Xeon 5120 2.2Ghz CPUs.

Scaling. Most significantly, DiffusionNet’s efficiency enables di-

rect learning on commonmesh data without dramatic simplification,

in contrast to other recent mesh-based schemes. As an example, the

segmentation meshes from Maron et al. [2017] have up to 13k ver-

tices, yet recent approaches simplify/downsample to roughly 1k

vertices for training, as shown in Figure 2 [Hanocka et al. 2019;

Lahav and Tal 2020; Mitchel et al. 2021; Wiersma et al. 2020]. In

contrast, our networks easily run at full resolution on this and other

datasets, paving the way for adoption in practice and improving

accuracy due to preserved details (e.g., in Table 2). We even demon-

strate DiffusionNet on a large, 184k vertex raw scan mesh from

FAUST—again no special treatment is needed (Table 6, Figure 1).

Robustness. DiffusionNet is also very robust to poor-quality input
data; diffusion is a stable smoothing operation, and our method

does not require any complex geometry processing operations such

as geodesic distance [Masci et al. 2015], edge collapse [Hanocka

et al. 2019], parallel transport [Wiersma et al. 2020], or managing

pooling hierarchies with upsampling/downsampling. Even the gra-

dient matrix 𝐺 is the result of a stable least-squares fit. If desired,

techniques like the intrinsic Delaunay Laplacian on meshes can

be used to further increase robustness [Bobenko and Springborn

2007; Sharp and Crane 2020], though we do not find it necessary in

our experiments. We demonstrate in Figure 1 that DiffusionNet can

be applied directly to a low-quality, nonmanifold raw scan mesh

without any issues.

6 CONCLUSION
We present a new approach for learning on surfaces that is built by

using learned diffusion as the main network component, with spatial

gradient features to inject directional information. Our method is

very efficient to train and evaluate, is robust to changes in sampling,

and even generalizes across representations, in addition to achieving

state-of-the-art results on a range of tasks.

Fig. 12. Erroneous segmen-
tation results due to discon-
nected components.

Limitations. DiffusionNet is designed
to leverage the geometric structure of

a surface; consequently it is not auto-

matically robust to topological errors or

outliers. In fact, diffusion does not allow

any communication at all between dis-

tinct components of a surface, leading

to nonsensical outputs in the presence

of spuriously disconnected components

(see inset). Subsequent work might mit-

igate the limitation by combining diffu-

sion with other notions of communica-

tion, such as global pooling (à la [Qi et al.
2017a]) or edge convolutions over latent

nearest-neighbors [Wang et al. 2019].
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Our networks are intentionally agnostic to local discretization,

and thus may not be suited for tasks where one learns some property

of the local discrete structure, such as denoising or mesh modifica-

tion. Finally, although our method discourages overfitting to mesh

sampling (Section 5.4), it cannot guarantee to totally eliminate it,

and we still observe a small drop in performance when transferring

between representations—further investigation will seek to close

this gap entirely.

Future work. DiffusionNet can be applied to any surface repre-

sentation for which a Laplacian matrix and spatial gradients can

be constructed. This opens the door to directly learning—and even

transferring pretrained networks—on a wide variety of surface rep-

resentations, from occupancy grids [Caissard et al. 2019] to subdivi-

sion surfaces [De Goes et al. 2016]. More broadly, DiffusionNet need

not be restricted to explicit surfaces, and could easily be adapted to

other geometric domains like volumetric meshes, curve networks,

implicit level sets, depth maps, or images. We believe that grounding

geometric deep learning in the mathematically and computationally

well-established diffusion operation will offer benefits across surface

learning and beyond.
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A AN ARGUMENT FOR GENERALITY
In Section 3.2, we propose diffusion at various learned timescales fol-

lowed by a learned pointwise function as the essential components

of our method. Although this formulation clearly offers nonlocal

support to the pointwise functions, it is not immediately clear how

general the resulting function space is. In particular, it is significant

to show that this function space includes at least radially symmetric

convolutions, a basic building block which has appeared widely in

past work. The treatment of radially symmetric convolutions arises

because points on surfaces do not generally have canonical tangent

coordinates, though it should be noted that recent work has since fo-

cused on expanding beyond symmetric filters, and our own method

includes gradient features for precisely this purpose. Lemma 1 states

that, at least in the flat, continuous setting, this function space is

sufficiently general to represent radially symmetric convolutions.

Here, we give a full version of this argument and some discussion.

Consider a scalar field 𝑢 : R2 → R in the plane. Let 𝑈𝑟 (𝑝) :
R≥0 → R denote the integral of the field 𝑢 along the sphere with

radius 𝑟 centered at 𝑝 , i.e.𝑈𝑟 (𝑝) =
∫
𝜕𝐵 (𝑝,𝑟 ) 𝑢 (𝑦)𝑑𝑦. Recall that𝑢𝑡 (𝑝) :

R≥0 → R denotes the value of𝑢 at 𝑝 after diffusion for time 𝑡 . We are

interested in𝑈𝑟 (𝑝), because it will enable the evaluation of radially-

symmetric convolutions against 𝑢. The crux of our argument is

to show that 𝑈𝑟 (𝑝) can be recovered from 𝑢𝑡 (𝑝), which we will

formalize by showing the existence of a function transform

T : (R>0 → R) → (R>0 → R)

such that

𝑈𝑟 (𝑝) = T [𝑢𝑡 (𝑝)] (𝑟 ). (7)

The heat kernel solution for 𝑢𝑡 (𝑝) is given by

𝑢𝑡 (𝑝) =
∫
R2

𝑢 (𝑞) 1

4𝜋𝑡
𝑒−
|𝑝−𝑞 |2

4𝑡 𝑑𝑞 =

∫ ∞

0

𝑈𝑟 (𝑝)
1

4𝜋𝑡
𝑒−

𝑟2

4𝑡 𝑑𝑟, (8)

where the second equality moves to a radial integral, recalling that

𝑈𝑟 (𝑝) is defined as the integral of 𝑢 along the sphere of radius 𝑟 at

𝑝 . Calculation verifies that this integral has the form of a Laplace

transform of 𝑈𝑟 (𝑝)

𝑢𝑡 (𝑝) =
1

4𝜋𝑡
L[ 1

2

√
𝑟
𝑈√𝑟 (𝑝)] (

1

4𝑡
). (9)
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Table 7. An ablation study, evaluated on the human segmentation task.
Omitting any of the components of our method leads to a significant drop
in performance. Manually fixing a non-optimal diffusion time also impairs
performance—our learned procedure automatically optimizes a diffusion
time for each channel.

Ablation Accuracy

no diffusion 31.4 %

fixed-time diffusion 𝑡 = 0.1 89.1 %

fixed-time diffusion 𝑡 = 0.5 81.6 %

no gradient features 84.1 %

unlearned gradient features 85.6 %

(full method) 90.6 %

The Laplace transform is injective [Lerch 1903], which allows us to

consider the inverse transform

𝑈𝑟 (𝑝) = T [𝑢𝑡 (𝑝)] (𝑟 ) .
And in fact, T will have the form of an inverse Laplace transform,

up to reparameterization by
1

𝑡 and constant coefficients.

Now that we have established the existence of T , it is straightfor-
ward to evaluate a radially-symmetric convolution via a pointwise

map applied to diffused values. Convolution against any radially

symmetric kernel 𝛼 (𝑟 ) : R≥0 → R is given by

(𝑢 ∗ 𝛼) (𝑝) =
∫
R2

𝛼 ( |𝑝 − 𝑞 |)𝑢 (𝑞)𝑑𝑞

=

∫ ∞

0

𝛼 (𝑟 )𝑈𝑟 (𝑝)𝑑𝑟 (10)

=

∫ ∞

0

𝛼 (𝑟 )T [𝑢𝑡 (𝑝)] (𝑟 )𝑑𝑟 .

In this sense, the function space defined by diffusion followed by a

pointwise map contains the space of radially symmetric convolu-

tions, completing our argument.

Extending this treatment from R2 to curved manifolds would

require a deeper analysis, though the same essential properties hold

for diffusion on surfaces. Furthermore, we treat only the continu-

ous setting above, rather than the discrete setting where pointwise

maps are approximated via finite-dimensional MLPs, and diffusion

is evaluated at a collection of times 𝑡 . More generally, it would be

valuable to extend this analysis to formalize the stability proper-

ties of diffusion, à la [Kostrikov et al. 2018; Perlmutter et al. 2020].

Nonetheless, we consider this argument to be important evidence

that diffusion followed by pointwise functions is an expressive func-

tion space, supported by the strong results of our method in practical

experiments.

B ANALYSIS
Ablation. To validate the components of our approach, we con-

sider a simple ablation study on the full-resolution human seg-

mentation task from Section 5.2, using rotation-augmented raw

coordinates as input. The variant no diffusion omits the diffusion

layer from each DiffusionNet block, fixed-time diffusion manually

specifies a diffusion time, no gradient features omits the gradient fea-

tures, and unlearned gradient features includes gradient features but
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Fig. 13. The effect of varying the size of the truncated basis for spectral
diffusion evaluation, measured via error on the FAUST vertex-labelling cor-
respondence from Table 5, orig. We use 128 eigenvectors in all experiments.

omits the learned transformation of gradient vectors 𝐴. We observe

a noticeable drop in accuracy when omitting any of the components

of the method (Table 7). Manually specifying shared, non-optimal

diffusion times (𝑡 = 0.1, 𝑡 = 0.5) yields a network with significantly

worse accuracy compared to our learned approach. A key advantage

of our learned diffusion is that this time is automatically tuned by

the optimization process, individually for each feature channel.

Spectral basis size. When evaluating diffusion with spectral accel-

eration (Section 3.3.2), increasing the size𝑘 of the spectral basis more

accurately resolves diffusion at the cost of increased computation.

In Figure 13 we vary 𝑘 for the FAUST vertex-labeling correspon-

dence task as in Table 5, measuring accuracy on the original test

set. We find performance degrades significantly with fewer than

64 eigenvectors on this problem, while larger bases offer negligible

benefit—our experiments use 𝑘 = 128 eigenvectors as a safe default.

C EXPERIMENT DETAILS
Here we provide additional methodology details for experiments.

Orientation. Figure 5 shows the results of a simple artificial ex-

periment in which we segment the left vs. right side of human

models from the FAUST dataset [Bogo et al. 2014] using a purely

intrinsic 32-width DiffusionNet with HKS as input. On the original

dataset, asymmetric biases–such as a template mesh with asymmet-

ric connectivity–make it unintentionally easy to distinguish left

from right. We cancel the effect of these biases by augmenting the

dataset with a copy of each mesh that has been mirrored across

the left-right axis (preserving orientation by inverting triangles).

With a complex-valued 𝐴, our network is able to easily distinguish

left from right with 99.9% accuracy, despite both a purely intrinsic

architecture and intrinsic input features. Restricting to real-valued

𝐴 removes the effect; the network is unable to disambiguate the

symmetry, with a totally random 50.0% accuracy.

Human segmentation. All results are given in Table 3. Past work

has used different variations of this dataset, both in terms of the

input data and evaluation criteria. The original dataset presented

by Maron et al. [2017] contains moderately large meshes of up to

12k vertices, with segmentations labeled per-face, and accuracy is

reported as the fraction of faces in the entire test set which were

classified correctly. The experiments from Wiersma et al. [2020]
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deviate slightly: they remap the ground truth to vertices, and train

and test on a subsampling of the vertex set; nonetheless we group

these results with the original dataset for the sake of simplicity as

they are very similar.

MeshCNN [Hanocka et al. 2019] generated a simplified version of

the dataset where the meshes have < 1k vertices, and segmentations

have been remapped to edges. Additionally, when reporting test

evaluation, a soft ground truth is used allowing for multiple correct

segmentation results for edges at the boundary between two regions.

For comparison we also apply DiffusionNet to this variant of the

task, denoted by
†
in Table 3—we directly generate a prediction per-

edge by averaging per-vertex outputs to edges before applying the

final softmax, and evaluate test results against the same soft ground

truth. Finally, PD-MeshNet [Milano et al. 2020] generated per-face

labels for the MeshCNN simplified models and trained and tested

on these without any soft ground-truth—we denote this variant by

‡
and again evaluate DiffusionNet with per-face predictions.

Across all variants, DiffusionNet achieves highly accurate perfor-

mance. Unlike many of these methods, DiffusionNet can easily be

trained directly on the original meshes without any special treat-

ment. Even methods which evaluate on full-resolution models may

be scalable only due to special pre- and post-processing schemes,

which add complexity to adoption in practice—for instance, Mesh-

Walker [Lahav and Tal 2020] trains on simplifiedmeshes then applies

an upsampling and smoothing scheme to handle full resolution data.

Discretization agnostic learning. To investigate robustness to dis-

cretization on our remeshed FAUST dataset, we train several re-

cent mesh-based and point-based surface learning methods, in

addition to our own 256-width DiffusionNet with dropout. For

mesh-based methods, we also train SplineCNN [Fey et al. 2018],

ACSCNN [Li et al. 2020b], HSN [Wiersma et al. 2020]; we also tried

MeshCNN [Hanocka et al. 2019], but found it prohibitively expen-

sive. For point-based methods, we train PointNet [Qi et al. 2017a]

and DGCNN [Wang et al. 2019], and consider using both the vertex

set as a point set, as well as sampling a random point cloud on the

surface, predicting there, then projecting the results back to vertices

according to nearest-neighbors. For equivalent comparison, all mod-

els are trained with only vertex positions as input (or the constant

function, for ACSCNN and SplineCNN), and we augment during

training with random rotations about the vertical axis to encourage

rotation-invariance. Wherever possible, we mimic the training con-

figuration of the original work or make a best-effort to find suitable

parameters for this task. We note that some models perform slightly

worse than previously reported results, presumably due to the use

of simpler input features or learning in a rotation-invariant setting

rather than aligned.

In general, only DiffusionNet learns accurate correspondences

which are robust to remeshing and resampling. In particular, AC-

SCNN still produces nearly perfect results on the original template

meshes even in the rotation-invariant setting, but yields essentially

random noise after any remeshing. Perhaps unsurprisingly, point-

based methods are less prone to overfitting the mesh connectivity

(though the DGCNN on vertices still manages to do so), but are still

notably less accurate than mesh-based techniques. Figure 11 gives

full geodesic error plots corresponding to Table 5.
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