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Abstract

Neural language models (LMs) such as GPT-
2 estimate the probability distribution over the
next word by a softmax over the vocabulary.
The softmax layer produces the distribution
based on the dot products of a single hidden
state and the embeddings of words in the vo-
cabulary. However, we discover that this sin-
gle hidden state cannot produce all probabil-
ity distributions regardless of the LM size or
training data size because the single hidden
state embedding cannot be close to the embed-
dings of all the possible next words simulta-
neously when there are other interfering word
embeddings between them. In this work, we
demonstrate the importance of this limitation
both theoretically and practically. Our work
not only deepens our understanding of soft-
max bottleneck and mixture of softmax (MoS)
but also inspires us to propose multi-facet soft-
max (MFS) to address the limitations of MoS.
Extensive empirical analyses confirm our find-
ings and show that against MoS, the proposed
MFS achieves two-fold improvements in the
perplexity of GPT-2 and BERT.

“The greater the ambiguity, the greater the plea-
sure.” — Milan Kundera

1 Introduction

Recently, researchers have found that transformer-
based language models (LMs), such as GPT-2, can
predict the next/masked word distribution better
as their sizes grow (Radford et al., 2019; Brown
et al., 2020; Kaplan et al., 2020). Compared to
greedily outputting the most probable next word,
sampling the next word from the predicted distri-
bution allows a LM to generate more diverse and
high-quality text sequences (Holtzman et al., 2020).
By autoregressively sampling the next word ac-
cording to its predicted probability, large LMs can
be used to assist creative writing (Akoury et al.,
2020), reduce the cost of building datasets (West

et al., 2021; Liu et al., 2022), generate codes (Li
et al., 2022), solve math problems (Cobbe et al.,
2021), etc. As a result, one natural question arises:
Do modern language modeling architectures still
have restrictions in their ability to represent the ap-
propriate distribution over next words or masked
words?

In this paper, we discover that, when predict-
ing the next word probabilities given an ambigu-
ous context, GPT-2 is often incapable of assigning
the highest probabilities to the appropriate non-
synonym candidates. For example, given the in-
put prompt “After debating whether to bow to
the woman or the king first, the jester decided on
the [MASK]”, we would expect the distribution
over the [MASK] fillers to put high probabilities
on woman or king or their synonyms. However,
GPT-2 might incorrectly assign the second-highest
probability to “queen” as in Figure 1.

In the final softmax layer of GPT-2, the log prob-
abilities of the woman and king are computed based
on the dot product between a single hidden state
embedding and the global word embeddings of
the woman and king, respectively. To have the
highest but similar dot products for the two op-
tions, the transformer encoder in GPT-2 wants to
output the hidden state that is close to the aver-
age of the woman embedding and the king embed-
ding. However, the words queen, king, woman, and
man tend to form a parallelogram in the embed-
ding space (Mikolov et al., 2013; Ethayarajh et al.,
2019; Wang et al., 2019)1, which means the man
and queen also have a similar average. Therefore,
GPT-2 is forced to also output man or queen when
it wants to output woman or king.

The problem not only happens to GPT-2 or the
words whose embeddings form a parallelogram
shape. Even though the hidden state embeddings
of LMs are contextualized, the embedding of each

1Section 2.1 provides more background knowledge about
the parallelogram shape and the softmax bottleneck.
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Figure 1: Comparison between the softmax layers using a single embedding and multiple embeddings when the
next word should be either woman or king. In GPT-2 and multi-embedding GPT-2, the hidden states of the context
are visualized by the single facet and multiple facets , respectively. The word embeddings are visualized using
•••••••••••. GPT-2 cannot output woman and king as the top two words because queen and man are close to the midpoint
of woman and king. The improvement in this type of ambiguous context will be quantified in Section 5.

word in the softmax layer is global and static dur-
ing the inference time. Globally dissimilar words
could all become the suitable next word in a con-
text while other interfering words might be between
them, which makes the ideal next word embedding
distribution have multiple modes and cannot be
modeled by the single embedding representation.

In this work, we propose theorems showing that
given any LM using the output softmax layer, when
there are more than N word embeddings in a N−1
dimensional subspace/hyperplane (e.g., four em-
beddings in a two-dimensional plane), we can al-
ways find a set of possible next words (e.g., woman
and king) such that there are some other interfering
words between them (e.g., man or queen). That is,
the multimodal next word distribution must exist if
a few word embeddings are linearly dependent.

Recently, mixture of softmax (MoS) (Yang et al.,
2018) regains attention as one of the few effec-
tive architecture modifications for transformer LM
(Narang et al., 2021; Anonymous, 2021). In the
meanwhile, Parthiban et al. (2021) show that the
softmax bottleneck (Yang et al., 2018) theory is not
sufficient to explain the improvement of MoS. As a
remedy, our theorems not only provide geometrical
intuitions of why and when the multiple embed-
ding representation such as MoS would do better
but also suggest that the softmax bottleneck might
not be completely solved even if we adopt a very
large hidden state size. For example, no matter

how large the hidden state size is, as long as queen
- king = woman - man in the embedding space, the
LMs cannot output a pair of words in the longer
diagonal of the parallelogram as the top two output
words.

After better understanding why mixture of soft-
max (MoS) works well, we propose two enhance-
ments over MoS. The first enhancement considers
the hidden states of multiple positions and multiple
transformer layers when determining the probabil-
ity in each softmax; the second enhancement uses
different contextualized embeddings to compute
the probabilities of different subsets of words in
the vocabulary.

The resulting method, multi-facet softmax
(MFS), significantly outperforms the MoS and the
softmax layer in GPT-2 on the perplexity for pre-
dicting the next word, especially in ambiguous con-
text and non-English text in OpenWebText (Rad-
ford et al., 2019). Finally, we also show that MFS
could improve the performance of GPT-2 on Pro-
toQA (Boratko et al., 2020), a commonsense ques-
tion answering dataset where each question has
multiple acceptable answers.

We summarize our theoretical, methodological,
and empirical contributions as follows.
• Theory: We show the softmax layer using a sin-

gle embedding is sometimes not able to output
an appropriate rank of probabilities on a set of
words with linearly dependent embeddings.
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• Method: Addressing two weaknesses in
MoS (Yang et al., 2018), we propose multi-facet
softmax (MFS), a new alternative to the output
softmax layer. MFS can replace the softmax in
pre-trained LMs to better handle ambiguous con-
texts without re-training the LMs from scratch.

• Analysis: Our comprehensive empirical analyses
discover and explain several phenomena, such
as a) why using multiple embeddings is usually
better than the single embedding with the non–
linearity, b) why the improvement is larger in
ambiguous contexts, less common languages, or
GPT-2 compared to BERT, and c) why a LM of-
ten confuses with similar words.

2 Theoretical Limitations of the Single
Embedding in the Softmax Layer

In this section, we first review the softmax layer of
GPT-2 formally and explain why queen - king =
woman - man still tends to hold in contextualized
LMs. Next, we present our theoretical analyses,
which generalize the woman and king example by
showing that the candidate words in a low dimen-
sional subspace would induce the impossibility of
ranking some candidates on top of other candidates.

2.1 Background

The LMs typically use a softmax layer to predict
PS(x|ct), the probability of the next word x given
the context at the tth position ct:

PS(x|ct) =
exp(hTctwx)∑
x′ exp(h

T
ctwx′)

, (1)

where hct is the tth hidden state in the context
c, and wx is the output word embedding for
the word x (i.e., the linear weights that project
the hidden state to the logit of the word x).2

Yang et al. (2018) point out that the log proba-
bility distribution over all the words in the vo-
cabulary V is log (PS(x|ct)) |x∈V = hTctwx −
log
(∑

x′ exp(h
T
ctwx′)

)
|x∈V . The distribution is

a linear projection from the hidden state hct with
dimension D, so the degree of freedom in the dis-
tribution is only D (i.e., there cannot be more than
D linearly independent log distributions). We call
this restriction softmax bottleneck theory.

2Notice that some LMs such as BERT add a bias term
for each word before the softmax layer. For simplicity, our
theoretical analyses focus on the LMs without the bias term
such as GPT-2.

During training, the ideal output word embed-
ding wx should be close to the hidden states of
the contexts hct that co-occur with the word x
while far away from the other hidden states. This
objective is similar to the objective function of
Word2Vec (Mikolov et al., 2013) except that the
context embeddings are contextualized (Kong et al.,
2020; Li et al., 2020).

If a context ct has a higher chance to co-occur
with queen compared to king, the context also
has a higher chance to co-occur with woman com-
pared to man to a similar degree. This is the main
reason that makes queen - king = woman - man
in the Word2Vec space (Ethayarajh et al., 2019).
Therefore, the same linear relations tend to hold
in the output word embedding space of GPT-2 as
well (Wang et al., 2019).

2.2 Structural Weakness Theorems from
Linear Dependency

In addition to words satisfying the analogy rela-
tions, the following theorems imply that any linear
dependency among the words causes the difficulties
of LM in ranking the words in an arbitrary order
according to their logits (i.e., dot products between
the hidden state and the word embedding). For
example, woman + king = queen + man makes a
LM unable to assign the highest positive logits to
woman and king and output them as the top two
words in Figure 1.

Theorem 1. If the nonzero output embeddings of
N words in a set W are linearly dependent and on
one side of a hyperplane through the origin, the
single embedding representation cannot produce
positive logits for a subset of the words in W that
are higher than all the logits of the other words in
W .

Here, we provide an intuitive justification: if N
embeddings are in a subspace whose dimension
is smaller than N − 1 (e.g., three points in a one-
dimensional line), the N embeddings are going to
be linearly dependent and some set of words cannot
have the top dot products due to the limited degree
of freedom in the subspace. In Appendix D, we
formally prove the theorem by identifying the sets
of words that cannot be ranked top by the single
embedding representation.

In practice, linear dependency holds approxi-
mately instead of exactly. For example, woman =
queen + man - king + ε. In this practical condition,
the following theorem states that the logits of the
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i nt erf eri n g w or ds (i. e., m a n a n d q u e e n ) c a n n ot b e
m u c h s m all er t h a n t h e l o gits of t h e c a n di d at e w or ds
(i. e., w o m a n a n d ki n g ).

T h e o r e m 2. L et t h e o ut p ut w or d e m b e d di n gs i n
t h e s et W = { w i = 0 |i = 1 ... N } s atisf y
w 1 = a 2 w 2 + ... + a N w N + ε , w h er e t h e c o n-
st a nt a 2 , ..., aN ar e n eit h er all z er o n or all n e g-
ati v e a n d ||ε || < . T h e n, t h er e m ust b e a n o n-
tri vi al p artiti o n P = { G, S } of W s u c h t h at
t h er e is n o hi d d e n st at e ||h || ≤ r a n d a t hr es h ol d
τ ≥ r t h at m a k e mi n w g ∈ G h T w g ≥ ( 1 + δ )τ a n d
m a x w s ∈ S h T w s < τ , w h er e δ = 2

1 + i = 2 ... N |a i |
.

I n t h e ki n g- w o m a n e x a m pl e, ( 1 + δ ) = ( 1 + 2
4 ) =

1 .5 . Ass u mi n g ||ε || < = 0 .0 1 a n d ||h || ≤ r =
2 0 , w e c a n g et h T ε ≤ 0 .0 1 × 2 0 = 0 .2 . T h e n, w e
c a n n ot fi n d a hi d d e n st at e h s u c h t h at h T w ki n g ≥
1 .5 × 0 .0 1 × 2 0 = 0 .3 a n d h T w w o m a n ≥ 0 .3
b ut h T w q u e e n < 0 .2 a n d h T w m a n < 0 .2 b e c a us e
h T w ki n g + h T w w o m a n = h T w q u e e n + h T w m a n +
h T ε . T h e f or m al pr o of of T h e or e m 2 c a n b e f o u n d
i n A p p e n di x D a n d A p p e n di x B. 1 esti m at es i n
s e v er al l a n g u a g e m o d els.

E v e n t h o u g h, t h e or eti c all y s p e a ki n g, o ut p utti n g
w o m a n a n d ki n g as t h e t o p t w o w or ds is p ossi bl e
d u e t o t h e a p p e ar a n c e of ε , L Ms m a y n ot s u c c ess-
f ull y l e ar n t o o ut p ut t h e o pti m al h a n d t h e o pti m al
hi d d e n st at e f or t h es e f o ur w or ds c o ul d l e a d t o t h e
wr o n g pr o b a biliti es of t h e ot h er w or ds. C o ns e-
q u e ntl y, L Ms s o m eti m es still r a n k q u e e n or m a n
hi g h er t h a n w o m a n or ki n g i n pr a cti c e.

3 M ulti-f a c et S oft m a x

Usi n g m ulti pl e e m b e d di n gs is a n at ur al s ol uti o n
f or m o d eli n g a m ulti m o d al distri b uti o n (Bis h o p ,
1 9 9 4 ). F or i nst a n c e, w e c a n us e t hr e e e m b e d di n gs
t o c a pt ur e t h e hi g h pr o b a bilit y o n t h e w o m a n a n d
ki n g b ut l o w pr o b a bilit y o n t h e m a n a n d q u e e n i n
Fi g ur e 1 .

I ns pir e d b y o ur g e o m etri c a n al ysis o n t h e li m-
it ati o n of t h e si n gl e e m b e d di n g, w e i m pr o v e t h e
st at e- of-t h e- art m ulti pl e e m b e d di n g s ol uti o n, mi x-
t ur e of s oft m a x ( M o S) (Ya n g et al. , 2 0 1 8 ) b y t w o
e n h a n c e m e nts: m ulti pl e i n p ut hi d d e n st at es a n d
m ulti pl e p artiti o ns o n t h e v o c a b ul ar y.

3. 1 Mi xt u r e of S oft m a x

Ya n g et al. (2 0 1 8 ) pr o p os e mi xt ur e of s oft m a x
( M o S) t o all o w a L S T M- b as e d (H o c hr eit er a n d
S c h mi d h u b er , 1 9 9 7 ) L M t o pr o d u c e m or e li n e arl y
i n d e p e n d e nt l o g pr o b a bilit y distri b uti o ns of t h e o ut-
p ut w or ds gi v e n diff er e nt c o nt e xts. As i n Fi g ur e 2
( c), t h e M o S first us es m ulti pl e li n e ar l a y ers L f

k t o
pr oj e ct a hi d d e n st at e h c t i nt o m ulti pl e f a c et e m-
b e d di n gs f c t , k = L f

k (h c t ).
3 T h e m ulti pl e f a c ets

f c t , k a n d s oft m a x es w o ul d l e a d t o m ulti pl e pr o b-
a bilit y distri b uti o ns, a n d o ut p ut pr o b a bilit y is t h e
w ei g ht e d a v er a g e of t h e distri b uti o ns:

P M o S (x |c t ) =
K

k = 1

π c t , k

e x p( f T
c t , kw x )

x e x p( f T
c t , kw x )

. ( 2)

3 We r e m o v e t h e t a n h l a y er i n t h e ori gi n al M o S t o i m pr o v e
its p erf or m a n c e o n G P T- 2. S e e A p p e n di x G. 1 f or d et ails.
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The prior weights πct,k =
exp(Lπk (hct ))∑
k′ exp(L

π
k′ (hct ))

, where
Lπk is another linear projection for dynamically gen-
erating the weights and the projection goes through
a softmax to ensure

∑K
k=1 πct,k = 1.

3.2 Multiple Input Hidden States

To model the multimodal distribution, the facets
(i.e., the embeddings for different softmaxes)
should be able to move freely. For example, in
Figure 1, we have three facets but only have two
modes, so the two embeddings are very close to
the word king. However, when we want to output
three dissimilar top words such as the king, woman,
and knight, one of the facets should be moved to
be near to the embedding of the knight.

Therefore, we want our solution to satisfy two
properties: a) the linear transformation matrix in
Lfk should have a full rank to avoid limiting the
degree of freedom in each facet, and b) the relative
location of the facets should be context-dependent.
MoS cannot satisfy both properties. If the first one
is satisfied, the input hidden state is uniquely de-
termined by a facet (e.g., hct = (Lf1)

−1(fct,1)).
Then, there exists a global transformation between
two facets (e.g., fct,2 = Lf2

(
(Lf1)

−1(fct,1)
)

),
which violates the second property. That is, as-
suming LM can move every facet freely (i.e., the
facet’s degree of freedom is the same as the dimen-
sion of the hidden state), LM cannot make the first
two facets close to woman and king in one context
but make the two facets close to woman and knight
in another context. In other words, since the facet
embeddings are the projection of a single hidden
state, the total degree of freedom in all facet embed-
dings cannot exceed the dimension of the hidden
state.

Our solution to this issue is using more in-
put hidden states to construct the facets. As
the orange box in Figure 2, we first concate-
nate a W × H block of input hidden states into
⊕i=0...W−1,m=0...H−1h

M−m
ct−i , where M −m is the

transformer layer index and t− i is the index of the
ith to the last word in the context. The W ×H is
fixed as 3×3 in this paper. We make its dimension
the same as the original hidden state hMct using
a linear layer Lh plus a GELU activation func-
tion (Hendrycks and Gimpel, 2016). Then, we con-
catenate it with the original hidden state to form a
new input hidden state

qct = hMct ⊕GELU
(
Lh(⊕i,mhM−mct−i )

)
. (3)

The new input hidden state is passed through the
linear transformation Lfk to compute the facets
fct,k = Lfk(qct) and our prior weights πct,k =

exp(Lπk (qct ))∑
k′ exp(L

π
k′ (qct ))

. Since the dimension of qct is
larger than the dimension of fct,k, the inverse func-
tion (Lfk)

−1 no longer exists.

3.3 Multiple Partitions
The next word distribution could have many modes.
However, using many softmaxes significantly in-
creases our computational burden because we need
to compute the dot product between each facet and
all the word embeddings in our vocabulary.

Inspired by our analysis, we propose to split all
the words in the vocabulary into multiple parti-
tions4 and use different facets for different parti-
tions. For example, if we can put any word from
{queen, man, woman, king} into one partition and
the rest of the words into another partition, we no
longer have queen - king = woman - man in ei-
ther of the partitions. In this method, each word
only belongs to one partition, so we only need to
compute one dot product for each word. Thus, the
extra computational cost only comes from the extra
linear projections for preparing the facets.

In many contexts ct, the distribution of the next
word has only a single mode and the global sim-
ilarity between words may be useful. Using the
multiple partitions alone might lose the similar-
ity information between words in different parti-
tions. Therefore, we propose to only replace the
first softmax layer in MoS with the multiple parti-
tion method to learn the global similarity of words
in different partitions using the other softmaxes.
The architecture is illustrated in Figure 2 (d). For-
mally, we compute the probability using

PMP (x|ct) = πct,1
exp((f jxct,1)

Twx)∑
x′ exp((f

jx′
ct,1

)Twx′)

+

K∑
k=2

πct,k
exp(fTct,kwx)∑
x′ exp(f

T
ct,k

wx′)
, (4)

where jx is the partition index that the word x be-
longs to and f jxct,1 is the facet for the jxth partition.

4In this work, we simply put the J × n + jth word into
jth partition (e.g., when the number of partitions J = 4,
the first partition includes the words with indexes 0, 4, 8, ... ).
This simple global partitioning method reduces the chance of
putting all the interfering words and candidates in the same
partition, while minimizing the extra computational cost in our
PyTorch implementation because PyTorch supports strided
index slicing without copying the variable.
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Multi-facet softmax (MFS) is equipped with multi-
ple input hidden states and multiple partitions.

4 Language Modeling Experiments

We evaluate different LM architectures by compar-
ing their capability of predicting the next word
in Wikipedia 2021 and a subset of OpenWeb-
Text (Radford et al., 2019). In addition to perplex-
ity, we also compare their mean reciprocal ranks
(MRR) in Appendix C.1. The size of the training,
validation, and testing set are 96%, 2%, and 2%
of the whole corpus, respectively. After loading
the pre-trained GPT-2 models, we train the GPT-
2 Small for 1 epoch and GPT-2 Medium for 0.4
epochs. We also test our methods on BERT in
Appendix B.2. Please see Appendix G for more
details of our experiment setup.

4.1 Baselines

We set different numbers of softmaxes, input hid-
den states, and partitions in our MFS framework
to construct our baselines. The configuration of
different baselines could be seen in Table 1.

Softmax (GPT-2): Using a single softmax, in-
put hidden state, and partition as in Figure 2 (a)
and Equation 1. The baseline is the same as the
original GPT-2 except that we add one more linear
layer that converts the hidden state hMct to the facet
embedding fct,1 as in other methods.

SigSoftmax (Kanai et al., 2018): The same as
Softmax except when predicting the next word,
Kanai et al. (2018) add some non-linearity into
the softmax layer by multiplying the exponent and
sigmoid of the logits.

Softmax + Multi-input: Letting Softmax access
multiple input hidden states as in Figure 2 (b) and
Equation 3. The method is similar to Tenney et al.
(2019); Fan et al. (2020), and Tay et al. (2021).

MoS (Yang et al., 2018): MoS (3) is the mixture
of softmax with 3 facets/softmaxes, whose prob-
ability comes from Equation 2. We also run the
MoS with 4 softmaxes in GPT-2 Small and call the
model MoS (4).

DOC (Takase et al., 2018): Similar to our en-
hancement using multiple input hidden states, di-
rect output connection (DOC) makes each of their
facets coming from a different input hidden state.

Other configurations include Softmax + Multi-
partition, which adds four partitions into the soft-
max, MFS w/o Multi-partition, which uses only
one partition in MFS and could also be viewed

as MoS + Multi-input, and MFS w/o Multi-input,
which uses only one input hidden state to generate
all facets.

4.2 Results

Table 1 shows that applying MFS to GPT-2 Small
achieves more than 15% of the perplexity improve-
ment between GPT-2 Small and GPT-2 Medium,
while only increasing 5% of their size differences.
Except for Softmax + Multi-partition, adding
multiple input hidden states or partitions in dif-
ferent configurations significantly boost the perfor-
mances. In Appendix B.3, we further show that the
improvement of MFS over Softmax could even
become 3-5 times larger in the top 5-10% of the
most ambiguous contexts compared to the rest of
the contexts, which suggests that some improve-
ments indeed come from successfully modeling
multimodal distribution.

MFS usually doubles the perplexity improve-
ments between MoS (3) and Softmax but the run-
ning time of MFS remains similar to MoS (3) be-
cause MFS only needs a few more linear layers,
which is more efficient than adding one more soft-
max as in MoS (4). DOC is worse than MoS (3).
This may be due to a starvation problem: the facet
from the last hidden state hMct has the prior proba-
bility close to 1 and receives most of the gradients.
Finally, compared with Softmax, the mixed results
in SigSoftmax suggest that adding non-linearity
into the softmax layer without modeling the mul-
timodal distribution might not always improve the
models (Parthiban et al., 2021).

OpenWebText is mostly composed of English
text, but some non-English text in the corpus al-
lows us to compare the capability of different mod-
els in a multi-lingual setting. Table 2 shows that
multiple embeddings improve the perplexity of the
non-English text more than the perplexity of the
English text. We hypothesize that the distribution
of the next non-English word is more likely to be
multi-mode because GPT-2 learns the global token
embeddings mostly in the English contexts, which
could make the embeddings of similar tokens in
non-English contexts far away.

In Table 3, we present three contexts from the
validation set of different datasets and compare the
top three predictions of MFS and Softmax on GPT-
2 Small. In OpenWebText and Wikipedia 2021, we
can see that Softmax misses the correct answer in
its top three predictions.
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Configuration GPT-2 Small GPT-2 Medium
Models ↓ #S #I #P Size Time OWT Wiki Size Time OWT Wiki

Softmax (GPT-2) 1 1 1 163.6M 84ms 18.72 24.06 407.3M 212ms 15.89 20.34
SigSoftmax (Kanai et al., 2018) 1 1 1 163.6M 91ms 18.63 24.06 407.3M 221ms 16.07 20.65

Softmax + Multi-input 1 9 1 169.5M 87ms 18.50 23.89 417.8M 219ms 15.76 20.29
Softmax + Multi-partition 1 1 4 165.4M 88ms 18.77 24.08 410.5M 218ms 15.89 20.30

MoS (Yang et al., 2018) (4) 4 1 1 165.4M 152ms 18.61 23.77 410.5M 299ms 15.75 20.08
MoS (Yang et al., 2018) (3) 3 1 1 164.8M 130ms 18.63 23.81 409.4M 270ms 15.79 20.11
DOC (Takase et al., 2018) 3 3 1 164.8M 130ms 18.69 24.02 409.4M 270ms 15.88 20.34
MFS w/o Multi-partition 3 9 1 171.9M 133ms 18.37 23.56 422.0M 276ms 15.65 20.06

MFS w/o Multi-input 3 1 4 166.6M 134ms 18.60 23.72 412.6M 275ms 15.71 20.08
MFS (Ours) 3 9 4 175.4M 138ms 18.29 23.45 428.3M 283ms 15.64 20.02

Table 1: Perplexity comparison between MFS (Ours) and baselines. #S, #I, #P are the number of softmaxes (i.e.,
K), input hidden states, and partitions, respectively. The top four baselines use a single softmax. OWT and Wiki
are the test set perplexity of OpenWebText and Wikipedia 2021, respectively. The standard errors of all models are
smaller than 0.02 perplexity. We also compare the number of parameters and the inference time on one batch.

Non-English English
Ratio in Corpus→ 14% 86%

Softmax 13.50 (0.0%) 19.23 (0.0%)
MoS (Yang et al., 2018) (3) 13.19 (2.3%) 19.16 (0.4%)

MFS w/o Multi-partition 12.98 (3.8%) 18.91 (1.7%)
MFS (Ours) 12.83 (5.0%) 18.83 (2.1%)

Table 2: Perplexity of the GPT-2 Small in OpenWeb-
Text. The percentages of the perplexity reduction com-
pared to Softmax are presented in the parentheses.

5 Evaluation on Ambiguous Templates

We synthesize a dataset using templates (Ribeiro
et al., 2020) to verify whether the softmax layer in
the original GPT-2 really has difficulty in learning
to output the bimodal distribution in Figure 1 and
whether the multiple embedding methods could
overcome the problem. First, we collect the four
words with semantic analogy relations in Google
analogy dataset (Mikolov et al., 2013). Next, we
insert two out of the four words into our manually
written templates to form the contexts and the tem-
plates we used could be found in Appendix G.3.
For example, given the context “I went to Paris and
Germany before, and I love one of the places more,
which is”, the GPT-2 learns to predict either Paris
or Germany.

The two words can be either the diagonal words
(e.g., king and woman) or the edge word (e.g., king
and queen) in the parallelogram. Finally, we create
a dataset with 122k training contexts, 250k vali-
dation contexts, and 122k testing contexts, where
the word pairs in the testing set are unseen in the
training set to see whether the model could learn to
output the bimodal distribution in a general way.5

5The setting is realistic because any related words could
become the next word in some ambiguous contexts and all

We load the models pre-trained on OpenWeb-
Text and continue fine-tuning the models on the
last word of each sentence for 10 epochs. We re-
port the testing performances of the best model
selected by the validation loss. Since the sets of the
word pairs in the training and testing set are disjoint,
updating the output word embedding would make
GPT-2 solve the task by memorizing/overfitting the
training set quickly and lead to much worse testing
performances. Thus, we freeze the output word
embedding during the training.

We visualize the predictions of the Paris-
Germany example in the last column of Table 3.
We can see two of the softmaxes are close to Paris
and the remaining one is close to German, while
Softmax overestimates the probability of Paris and
ranks France higher than the German. The result
verifies that the correct probability distribution of
the words in some ambiguous context is hard to
learn using Softmax.

Quantitatively, Table 4 indicates that when the
possible next words are the diagonal words, the
Softmax model performs much worse compared to
other multiple embedding alternatives. In the edge
word dataset, the multiple embedding solutions are
still better but have a much smaller gap. MFS
w/o Multi-partition slightly improves MoS. We
hypothesize the reason is that multiple input hidden
states could help the facets to be moved more freely.
Finally, multiple partitions seem to cause slight
overfitting in this bimodal distribution prediction
task.

the words are related in a certain way (Sigman and Cecchi,
2002). We cannot expect the training corpora to contain the
ambiguous contexts with so many possible next words.
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Corpus→ OpenWebText Wikipedia 2021 Analogy in Templates (Section 5)

Input Context
... The Elastic Endpoint Security and
Elastic SIEM solutions mentioned in

this post are now referred to as Elastic

... law and chance working together
cannot generate CSI, either. Moreover,

he claims that CSI

I went to Paris and Germany before, and I
love one of the places more, which is

Germany
Softmax (GPT-2) the 0.087, E 0.043, End 0.039 the 0.174, this 0.054, if 0.038 Paris 0.893, France 0.045, Germany 0.033

MFS (Ours) Elastic 0.220, the 0.089, EC 0.033 CSI 0.186, the 0.140, there 0.033 Paris 0.544, Germany 0.389, France 0.064
MFS Softmax 1 end 0.051, the 0.043, security 0.023 the 0.191, law 0.127, if 0.053 Paris 0.979, France 0.013, Germany 0.007
MFS Softmax 2 Elastic 0.652, EC 0.080, ES 0.046 the 0.191, there 0.049, this 0.047 Paris 1.000 Berlin 0.000 ##Paris 0.000
MFS Softmax 3 the 0.193, E 0.040, a 0.014 CSI 0.677, law 0.029, laws 0.019 Germany 0.852, France 0.139, China 0.004

Table 3: Prediction visualization using a context in each dataset. We show the top three words with the highest
prediction probabilities of each method. In the last three rows, we visualize the outputs of the softmax grey boxes
in Figure 2 (d), which model different modes of the next word distribution. The prediction target is boldfaced in
the context and the predictions. ## indicates there is no space before the word.

Diagonal (e.g., king or woman) Edge (e.g., king or queen)
Analogy Relation Types→ capital- capital- city-in-

family
capital- capital- city-in-

family
Models ↓ valid common world state valid common world state

Softmax (GPT-2) 2.30 3.30 2.00 2.25 2.95 2.11 2.42 1.91 2.26 2.38
MoS (Yang et al., 2018) (3) 1.75 2.18 1.60 1.85 2.82 1.87 2.26 1.70 2.04 2.27

MFS w/o Multi-partition 1.72 2.13 1.59 1.82 2.52 1.84 2.23 1.72 1.96 2.16
MFS (Ours) 1.74 2.15 1.59 1.82 2.63 1.92 2.28 1.78 2.00 2.24

Table 4: Perplexity comparison of different GPT-2 Small models on the words with different types of analogy
relations. The validation set (valid) includes all four types of relations.

Perplexity on Scraped Max Answers Max Incorrect
Models ↓ Development Set Top 1 Top 3 Top 5 Top 10 Top 1 Top 3 Top 5

Softmax (GPT-2) 1.5432 ± 0.0003 34.1 ± 0.8 35.2 ± 0.5 37.8 ± 0.4 45.0 ± 0.5 18.3 ± 0.4 30.7 ± 0.5 38.5 ± 0.6
MoS (Yang et al., 2018) (3) 1.5407 ± 0.0004 33.9 ± 0.8 36.0 ± 0.6 37.7 ± 0.6 44.9 ± 0.4 18.3 ± 0.4 31.7 ± 0.6 38.2 ± 0.6

MFS w/o Multi-partition 1.5411 ± 0.0003 34.3 ± 0.7 36.7 ± 0.7 38.1 ± 0.5 45.2 ± 0.4 19.4 ± 0.4 32.0 ± 0.5 38.6 ± 0.3
MFS (Ours) 1.5402 ± 0.0005 34.1 ± 0.6 36.7 ± 0.5 38.6 ± 0.4 45.4 ± 0.5 19.7 ± 0.4 32.1 ± 0.4 39.7 ± 0.4

Table 5: ProtoQA performances. All the numbers except perplexity are the percentages of the predictions that
match the ground truth exactly on the crowdsourced development set. Max answers top k implies only evaluating
the top k answers. Max incorrect top k indicates only evaluating the top answers that contain k errors. The best
average performances are highlighted and the standard errors are reported as the confidence interval.

6 Answering Ambiguous Questions

ProtoQA (Boratko et al., 2020) is a question-
answering dataset built for evaluating the common-
sense reasoning ability of language models. Each
question in ProtoQA is ambiguous and leads to a
distribution of possible answers. For instance, the
answer to “Name something that people usually
do before they leave for work?” is “Shower 0.43,
Breakfast 0.30, ...”. The paper discovers that by
reformulating the question-answering task as a con-
text (e.g., “One thing people usually do before they
leave for work is ...”), GPT-2 could generate the
possible answers by sampling the next words from
its word prediction distribution.

The dataset gives us a chance to directly com-
pare the quality of the distributions generated by
different LMs in Table 5. After pretraining GPT-2
Medium on the OpenWebText, we fine-tune them
using the training data in ProtoQA for 2 epochs.
We repeat the fine-tuning 5 times and compare their

average perplexity in our validation set. Next, we
generate 150 sentences starting from each context
and compare the generated answers with the ground
truth distribution. For each fine-tuned model, we
repeat the generation evaluation 3 times and report
the average accuracy of the resulting 15 trials.

We can see that the multiple softmaxes, input
hidden states, and partitions usually improve the
quality of prediction distribution, and the proposed
MFS, which combines all modifications, achieves
the best performances.

7 Related Work

Yang et al. (2018) propose the concept of softmax
bottleneck, which points out that the dot product in
the softmax layer restricts the representation power
of outputting arbitrary conditional probabilities. It
also proposes MoS to break the softmax bottle-
neck in an RNN-based LM. Kanai et al. (2018)
and Ganea et al. (2019) add nonlinearities into the
softmax layer to break the bottleneck more effi-
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ciently, but the approaches gain less improvement
compared to MoS.

A limitation of the aforementioned previous
work is that they do not tell us which kinds of sen-
tences would be affected by the bottleneck more
and whether the order of the top few next words
would be affected, which are the main research
questions of our work. Contrary to the previous
belief that a large hidden state dimension would
eliminate the softmax bottleneck, our theorems sug-
gest that some words in a low dimensional sub-
space could still make the single embedding in the
softmax layer become a bottleneck of arbitrarily
ranking the output words. Furthermore, our geo-
metric analyses provide an intuitive explanation
about why breaking the bottleneck using multiple
embeddings leads to better performances compared
to only adding the non-linearity.

Demeter et al. (2020) also analyze the structural
weakness of the softmax layer from a geometric
perspective. They discover that the words with
high prior frequencies could stop the LMs from as-
signing the high probabilities to rare words, which
can be viewed as a special case of our theory (See
Appendix E). For instance, our work shows that
the softmax layer could still prevent the LMs from
outputting some top words even if all the possible
next words have the same prior frequency.

Our theory is deeply connected to the mathe-
matical work that counts the number of possible
rankings of points in an embedding space (Cover,
1967; Good and Tideman, 1977). Compared to
the studies, our work focuses more on analyzing
the multimodal distribution in the word embedding
space and its implication to language models.

An alternative to model the multimodal distri-
bution is to use multiple embeddings to represent
each output word (Athiwaratkun and Wilson, 2017;
Miao et al., 2019). Compared to MoS or our ap-
proach that use multiple embeddings to represent
each hidden state of the context, their method re-
quires many extra parameters to store different
senses of each output word. Another type of re-
lated model (Shazeer et al., 2017; Fedus et al.,
2021) dynamically routes the signals to different
experts (i.e., feed-forward networks) and Zhang
et al. (2022); Mittal et al. (2022) use multiple em-
beddings in the attention layers. The methods are
similar to MoS and our approach, but they add
the multiple embeddings inside each layer of the
transformer encoder while the proposed MFS is an

alternative to the output softmax layer.

8 Conclusion

When the ideal distribution in the output word em-
bedding space has multiple modes, GPT-2 cannot
learn to correctly rank the words in all the modes as
the top next words. This shows that the single em-
bedding in the softmax layer, which is used nearly
universally by current LMs, constitutes a perfor-
mance upper bound of predicting the next/masked
word. To address the systematic failure caused
by these structural weaknesses, we propose multi-
facet softmax (MFS). In our experiments, we con-
firm that the MFS significantly outperforms the
standard softmax layer and alleviates the softmax
bottleneck in the transformer-based LMs such as
GPT-2 better than mixture of softmax (MoS).
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10 Ethical and Broader Impact

This work studies a general limitation of LMs and
proposes solutions. The proposed theory can help
us to understand that some types of hallucinations,
mistakes, or biases of LMs could come from soft-
max bottleneck and their incapability of modeling
the correct distribution. For example, there are 60%
of male characters and 40% of female characters
in our training corpus. The language generation
model might be forced to assign more than 60%
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probability to male characters as being much more
likely to output king than woman in Figure 1.

Recently, Narang et al. (2021); Anonymous
(2021) show that MoS is one of the few architecture
modifications of transformer-based LM that can
provide consistent improvements in downstream
applications. Our work provides a fundamental
reason why the multiple embedding representation
is better, which could inspire more future studies
that propose a better multiple-embedding architec-
ture to improve LMs (e.g., multi-lingual BERT)
or downstream applications. As examples, we list
several possible future directions in Appendix H.

Finally, a better LM could lead to both positive
and negative societal impacts, but they are not the
focus of this paper. Generally speaking, this paper
deepens our understanding of the weaknesses of
modern LMs and we believe the knowledge can
help us to design a better LM that increases the
positive impacts and reduces the negative impacts
in the future.
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A Appendix Overview

To demonstrate the wide applicability of our ap-
proaches, we conduct more experiments such as
applying MFS to BERT in Appendix B. We also
show more results and conduct more analyses in
Appendix C to further support our conclusions.
Next, we provide technical details including the
proof of our theorems in Appendix D, show that the
structure weakness studied by Demeter et al. (2020)
is a special case of our theory in Appendix E, the
method details in Appendix F, and the experiment
details in Appendix G. Finally, in Appendix H, we
list several directions that could be further studied
in the future.

B More Experiments

We conduct the following five extra experiments to
measure the linear dependency among word embed-
dings in LMs, extend our multi-facet approaches
to BERT, confirm the source of the improvement
comes from modeling multimodal distribution, and
extend our synthetic experiments to include the
output candidate words that have various types of
relations and to include the template that favors the
single embedding representation.

B.1 Linear Dependency among Words
Theorem 2 shows that when N words are linearly
dependent after moving one of the embeddings
with a short distance ε, the output softmax layer of
a LM cannot output a large logit margin between
two subsets of the N words. We want to measure
ε in the pretrained word embedding and compare
the ε from different sets of words or from different
LMs.

Given a set of N words, we form a matrix by
their word embeddings and estimate the ε value
by the minimal eigenvalue of the matrix. We first
want to verify that the four analogical words used
in Section 5 indeed have a smaller ε compared to a
randomly selected four words. Thus, we define the
min eigenvalue ratio as εS

εR
, where εR is the aver-

age of minimal eigenvalues from 1,000 sampled N
word sets and εS is the average of minimal eigen-
values from sets of words (e.g., analogical words
from the Google analogy dataset). We analyze the
ratio instead of ε because the average word embed-
ding magnitudes in different LMs would affect the
absolute value of ε.

In addition to analogical words, we also test sets
of N similar words, which are composed by the

nearest N − 1 words of every query word in the
vocabulary, and test the N similar stop words by
finding the nearest N − 1 words of every query
word in a stop word list.6

We plot the min eigenvalue ratio versusN in Fig-
ure 3 and compare the curves from three GPT LMs
and two T5 LMs (Raffel et al., 2020). All the ratios
are below 0 and decrease as N increases, which
shows the analogical words and similar words in-
deed have significantly smaller ε especially for a
large N . The low minimal eigenvalues and our
theory support the recent empirical finds that LMs
tend to be confused by the similar words (Zagoury
et al., 2021). This figure also provides a potential
explanation why the candidates often include stop
words when multiple embeddings outperform the
single embedding in Table 3 and Table 7.

Surprisingly, we find that a larger LM does not
necessarily yield a larger ratio (i.e., embeddings
of related words do not become more linearly in-
dependent as dimension or the size of the LM in-
creases). All the LMs have very similar ratios of
similar stop words. Compared to GPT-small, al-
though GPT-J-6B (Wang and Komatsuzaki, 2021)
has a significantly higher ratio for analogical words,
its ratio for similar words is significantly lower. Be-
sides, T5-11B has significantly lower ratios com-
pared to T5-small. We need further investigation to
understand the reason for this empirical finding and
whether a larger LM suffers less from the limitation
caused by the single embedding.

B.2 Language Modeling using BERT

To demonstrate that our proposed method could
improve the LMs other than GPT-2, we apply multi-
facet softmax, MFS, to BERT. We test the model on
Wikipedia 2021 and the validation size is 0.25% of
the whole corpus. After loading pretrained model,
we train bert_base_cased for 100k batches and
bert_large_cased for 30k batches.

The results are presented in Table 6. First, MoS
outperforms Softmax on BERT. The results sup-
port the finding of Narang et al. (2021) that the
softmax bottleneck not only exists in the next word
prediction tasks but also in the masked word predic-
tion tasks. Similar to GPT-2, MFS at least doubles

6We find that some rare words or special characters might
have nearly identical word embeddings due to the lack of train-
ing instances, so we exclude half of rarer word pieces in the
vocabulary and exclude the word pieces whose first character
is not a space. The rarity of a word piece is determined by the
l2 norm of its word embedding.
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(a) GPT-2 Small (0.1B, D=768), GPT-2 XL (1.5B, D=1600), and
GPT-J-6B (6B, D=4096) (b) T5 Small (0.06B, D=512) and T5 11B (11B, D=1024)

Figure 3: Minimal eigenvalue ratios to indicate the linear dependency among different groups of N word embed-
dings

BERT base after training on 100k batches
Softmax (S1I1P1) SigSoftmax (S1I1P1)

5.8699 5.8749
Softmax + Multi-input (S1I9P1) Softmax + Multi-partition (S1I1P4)

5.8520 5.8656
MoS (Yang et al., 2018) (4) (S4I1P1) MoS (Yang et al., 2018) (3) (S3I1P1) DOC (Takase et al., 2018) (S3I3P1)

5.8523 5.8535 5.8547
MFS w/o Multi-partition (S3I9P1) MFS w/o Multi-input (S3I1P4) MFS (S3I9P4)

5.8231 5.8536 5.8231

BERT large after training on 30k batches
Softmax (S1I1P1) SigSoftmax (S1I1P1)

4.8355 4.8354
Softmax + Multi-input (S1I9P1) Softmax + Multi-partition (S1I1P4)

4.8305 4.8363
MoS (Yang et al., 2018) (4) (S4I1P1) MoS (Yang et al., 2018) (3) (S3I1P1) DOC (Takase et al., 2018) (S3I3P1)

4.8268 4.8291 4.8231
MFS w/o Multi-partition (S3I9P1) MFS w/o Multi-input (S3I1P4) MFS (S3I9P4)

4.8111 4.8287 4.8109

Table 6: Perplexity of models building on BERT in Wikipedia 2021.

Corpus → OpenWebText Wikipedia 2021 Similar Nouns in Templates

Input Context

... "Part of the Clinton inevitability
strategy was to lock down the usual
suspects in left-liberal policy," said

Dan Nexon, a Georgetown professor
who served as one of those informal

Sanders advisers. Nex

... The projective line over the dual
numbers was described by Josef

Grünwald in 1906. This ring includes a
nonzero nilpotent "n" satisfying. The
plane of dual numbers has a project

There are the militia and the enemy in front of
a woman, and she decides to pursue the

militia

Softmax (GPT-2) He 0.014, But 0.011, The 0.007 finite 0.062, hom 0.059, project 0.034 enemy 0.860, militia 0.111, Militia 0.005
MFS (Ours) Nex 0.013, He 0.012, But 0.011 project 0.096, hom 0.049, dual 0.046 enemy 0.535, militia 0.433, enemies 0.029
MFS Avg ", He, But, The, In, And, (, It hom, dual, finite, non, ", complex, unit militia, enemy, Militia, enemies, militias

MFS Softmax 1 But 0.005, He 0.004, The 0.002 project 0.201, dual 0.075, finite 0.030 enemy 0.772, militia 0.189, Militia 0.017
MFS Softmax 2 Nex 0.260, " 0.028, He 0.023 hom 0.093, unit 0.040, non 0.037 militia 0.938, Militia 0.062, militias 0.000
MFS Softmax 3 He 0.025, But 0.022, The 0.014 finite 0.065, map 0.041, plane 0.030 enemy 1.000, enemies 0.000, foe 0.003

Table 7: Prediction visualization using a context in each dataset. Each row visualizes a model as in Table 3. The
models are built on GPT-2 Medium in OpenWebText and Wikipedia and on GPT-2 Small in the synthesized dataset.
MFS Avg shows the words that are closest to the average facet embedding in MFS. See the details in Appendix B.3.
We underline the words that appear in the top predictions of both MFS and MFS Avg.

the improvement of MoS. The most improvement
over MoS comes from using multiple input hidden
states while adding multiple partitions yield a small

or no improvement. Finally, the improvement be-
tween MFS and Softmax is around 4.5%, which is
much smaller than 15% in GPT-2.
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Corpus→ OpenWebText Wikipedia 2021
Improvement Model S3I9P4 S3I9P4 S3I9P4 S3I9P1 S3I1P1 S3I9P4 S3I9P4 S3I9P4 S3I9P1 S3I1P1

Reference Model S3I9P1 S3I1P1 S1I1P1 S1I9P1 S1I1P1 S3I9P1 S3I1P1 S1I1P1 S1I9P1 S1I1P1
Multi-mode Percentage (%) 10.03 10.03 10.03 4.81 3.24 5.85 5.85 5.85 2.66 3.05

Multi-mode Loss Improvement 0.0248 0.0474 0.0649 0.0203 0.0110 0.0282 0.0644 0.1000 0.0472 0.0295
Other Loss Improvement 0.0035 0.0158 0.0211 0.0086 0.0064 0.0033 0.0128 0.0219 0.0136 0.0100

Improvement Ratio 7.01 3.00 3.08 2.34 1.71 8.63 5.04 4.57 3.47 2.94

Table 8: The loss improvement comparison between the Improvement Models and Reference Models. The models
are named using their number of softmaxes, input hidden states, and partitions. Thus, S3I9P4 is MFS, S3I9P1
is MFS w/o Multi-partition, S1I9P1 is Softmax + Multi-input, S3I1P1 is MoS (3), and S1I1P1 is Softmax. Multi-
mode Percentage is the percentage of the contexts where the Improvement Models output multimodal distribution.
Multi-mode Loss Improvement refers to the average improvement when Improvement Models outputs multimodal
distribution and Other Loss Improvement refers to the improvement of the contexts where the facets of Improve-
ment Models are close to each other. Improvement Ratio divides Multi-mode Loss Improvement by Other Loss
Improvement.

project

finite

hom

map

dual

non unit

plane

favgctfct,1

fct,2

fct,3

MFS 
Softmax 1

MFS 
Softmax 2

MFS 
Softmax 3

MFS Avg

f1ct,1
f2ct,1

f3ct,1 f4ct,1

Figure 4: Illustration of the MFS predictions given
the Wikipedia context in the second column of Ta-
ble 7. The green circles mean the facet embeddings
from MFS. The orange circle is the average of the facet
embeddings (MFS Avg). The blue circles are the word
embeddings that are close to the facet embeddings and
MFS Avg. The word project is highlighted because it
is the next word in our ground truth.

The smaller improvement supports the conclu-
sion of our geometric analyses that the multi-mode
ambiguity intensifies the softmax bottleneck. We
only observe the one-directional context before
the next target word in GPT-2, but we can ob-
serve the bi-directional context surrounding the
masked target word in BERT. Thus, compared to
next word prediction, the multi-mode ambiguity of
the masked word prediction occurs less frequently
when the masking probability is small (e.g., 15%
in BERT). Since the masked word distribution only
has a single mode most of the time but we some-
times still want the distribution to have multiple
modes, multiple input hidden states can improve

the performance by helping the facets to move more
freely. On the other hand, multiple partitions are
less useful because the distribution rarely has more
than three modes.

B.3 Analysis of Improvement on Multimodal
Distribution

To confirm that the perplexity improvements ac-
tually come from modeling the multimodal distri-
bution, we define a metric to measure how multi-
mode a distribution is, and then we can compare
the perplexity improvement from multimodal distri-
butions and the improvement from the distributions
that are close to a single-mode distribution.

For the method with multiple embeddings, we
first compute the weighted average of all the facets
favgct =

∑K
k=1 πct,kfct,k, where we lower the in-

fluence of kth facet embedding fct,k with lower
prior weight πct,k and fct,1 = 1

J

∑J
j=1 f

j
ct,1

if J
partitions are used. Figure 4 illustrates favgct and
fct,k using the example in the second column of
Table 7.

We visualize the new average facet using the
words that are closest to the favgct in the MFS Avg
row of Table 7. We can see that the predictions
of MFS Avg is different from MFS but similar to
Softmax. This means there are indeed some other
words between the actual next word and the other
possibilities, which makes the predictions of MFS
multi-mode.

Next, to quantify the difference between MFS
and MFS Avg, we define multi-mode ratio

as
∑T
b=1 PM (yb|ct)∑T
b=1 PM (xb|ct)

, where PM could be either

PMoS from equation 2 or PMP from equation 4.
{y1, ..., yT } is the set of words with embed-
dings closest to favgct and {x1, ..., xT } is the set
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Dissimilar Words Similar Words
Models ↓ Testing Validation Training Testing Validation Training
Softmax 1.97 1.98 1.95 2.16 2.16 2.17
MoS (3) 1.81 1.80 1.69 2.05 2.05 1.87

MFS w/o Multi-partition 1.78 1.79 1.70 2.04 2.06 1.88
MFS 1.79 1.79 1.69 2.02 2.05 1.89

Table 9: Perplexity comparison of different models on the similar words or dissimilar words. The models are based
on GPT-2 Small and trained in OpenWebText.

GPT-2 Small after 1 epoch
Softmax (S1I1P1) SigSoftmax (S1I1P1)

0.5494 0.5489
Softmax + Multi-input (S1I9P1) Softmax + Multi-partition (S1I1P4)

0.5508 0.5492
MoS (Yang et al., 2018) (4) (S4I1P1) MoS (Yang et al., 2018) (3) (S3I1P1) DOC (Takase et al., 2018) (S3I3P1)

0.5501 0.5499 0.5494
MFS w/o Multi-partition (S3I9P1) MFS w/o Multi-input (S3I1P4) MFS (S3I9P4)

0.5515 0.5502 0.5519

GPT-2 Medium after 0.4 epoch
Softmax (S1I1P1) SigSoftmax (S1I1P1)

0.5665 0.5650
Softmax + Multi-input (S1I9P1) Softmax + Multi-partition (S1I1P4)

0.5677 0.5665
MoS (Yang et al., 2018) (4) (S4I1P1) MoS (Yang et al., 2018) (3) (S3I1P1) DOC (Takase et al., 2018) (S3I3P1)

0.5674 0.5672 0.5665
MFS w/o Multi-partition (S3I9P1) MFS w/o Multi-input (S3I1P4) MFS (S3I9P4)

0.5685 0.5677 0.5685

Table 10: MRR (mean reciprocal rank) of different models in OpenWebText. Larger is better.

of words with highest PM (xb|ct). Using the
Wikipedia context in Table 7 as an example, the
word project is retrieved by MFS but not by
MFS Avg, so its multi-mode ratio for T = 2

is PMFS(hom|ct)+PMFS(dual|ct)
PMFS(project|ct)+PMFS(hom|ct) = 0.049+0.046

0.096+0.049 ≈
0.66. Figure 4 illustrates the relation between the
MFS Softmax k and MFS Avg.

When the ratio is closer to 1, the context is less
ambiguous and the prediction is closer to a single-
mode distribution. We set T = 20 and call the pre-
diction with multi-mode ratio smaller than 0.9 mul-
timodal distribution and in Table 8,7 we compare
the loss (i.e., log of the perplexity) improvements in
the multimodal distributions and the improvements
in the nearly single-mode distributions.

Table 8 shows that all the multiple embedding ap-
proaches have larger loss improvements when out-
putting multimodal distributions. The table shows
the results based on GPT-2 Small and the same
analysis using GPT-2 Medium also show the same
trend. As we use multiple input hidden states and
partitions, the differences would be enlarged. Es-
pecially when we compare MFS and MFS w/o

7We also tried T=5 or 10 and the trends are similar. If
we set the threshold smaller than 0.9, the improvement ratios
(e.g., MFS over MoS) would increase but the multi-mode
percentages would decrease.

Multi-partition, the loss improvements of highly
ambiguous context is 7 or 8 times larger than the
other loss improvements, which means a large por-
tion of the overall improvement lies on a small per-
centage of ambiguous contexts. For the multimodal
distribution in Wikipedia, the loss improvement be-
tween MFS and Softmax could reach 0.10, which
is close to the improvement between GPT-2 Small
and Medium (0.16). Thus, we expect that if the
corpus has more ambiguous contexts, MFS could
achieve larger overall loss improvement.

B.4 Template-based Analysis on Similar or
Dissimilar Nouns

To know whether the single embedding also has
trouble modeling the distribution over nouns with-
out the analogy relation, we let the different models
learn to assign similarly high probabilities to two
related nouns in our templates. One example in
our synthesized dataset is “I love the banana and
the lemon, and my favorite is the [MASK]”. The
nouns come from a hypernymy detection bench-
mark (Shwartz et al., 2017) containing 25,498
noun pairs. The relations between nouns in the
benchmark include synonym, antonym, attribute,
meronym, hypernym, coordination, event, or ran-
dom. We further split the noun pairs into two
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datasets based on their cosine similarity in the out-
put word embedding space of our Softmax base-
line. The pairs with the cosine similarity higher
than the medium of all cosine similarities are put
into the similar word set and the other pairs are put
into the dissimilar word set.

The results are presented in Table 9. In terms
of the training, validation, and testing perplexity,
multi-embedding approaches consistently outper-
form the single-embedding baselines, though the
margins are smaller than those from the analogous
words. Moreover, the improvement gap is larger
when the nouns are dissimilar. We hypothesize that
as the word embeddings of nouns become further
away from each other, the next word distribution
is more likely to be multi-mode and thus could be
better captured by multiple embeddings.

B.5 Adversarial Template Analysis

To test whether the proposed methods still can ef-
fectively utilize the information from the global
word embeddings, we design an adversarial tem-
plate to create the contexts that can only be com-
pleted by averaging the global word embeddings.
For example, “Miami is not in Wisconsin but is in
[MASK]=Florida”.

In this task, the validation perplexity of Soft-
max, MoS, MFS w/o Multi-partition, and MFS
are 2.50, 2.59, 2.54, and 2.88, respectively. Since
multiple embeddings are not required, it is not sur-
prising that Softmax performs the best. Neverthe-
less, the differences are smaller than the differences
in Table 4. We believe that the similar losses are be-
cause multiple embeddings are a generalization of
the single embedding, so GPT-2 could learn to gen-
erate the same embedding for all facets to mimic
the behavior of single embedding if required.

The significantly worse performance of MFS
here is caused by the multiple partition technique.
This result supports our motivation of combining
multiple partitions with multiple softmaxes and
shows that multiple partitions handle ambiguous
contexts better (as shown in Table 8) by sacrificing
some global word embedding structures. Never-
theless, a corpus usually has more ambiguous con-
texts than the adversarial context tested here, so
using multiple embeddings and multiple partitions
performs better in Wikipedia and OpenWebText
overall.

C More Results

We provide more numbers and analyses of our ex-
periments.

C.1 Ranking Metric in Language Modeling
Experiments

We would like to verify that our perplexity improve-
ments come from not only the slight probability
differences of each candidate but also the better
ranks of the candidates. Thus, in Table 10, we eval-
uate different models using mean reciprocal rank
(MRR). Similar to the perplexity, the MRR im-
provement from Softmax to MFS is around 15%
of the MRR improvement from GPT-2 Small to
GPT-2 Medium, which is similar to the percent-
age of perplexity improvement. This suggests that
MFS could lead to not only a better probability pre-
diction but also a better candidate rank prediction.

C.2 Perplexity Curves in Language Modeling
Experiments

In Table 1, we only show the testing perplexity at
the end of our training. In Figure 6, we plot the val-
idation perplexity decay curves during the training
on OpenWebText. We can see that the performance
ranking of each model is stable during the training,
while the improvement of each enhancement may
vary. For example, in GPT-2 Medium, the improve-
ment of MFS over MFS w/o Multi-partition is
more obvious in epoch 0.25 compared to epoch
0.4.

C.3 Perplexity Curves in Template Analysis

In Table 4, we only show the lowest validation
perplexity after each of the ten epochs. In Figure 5,
we plot the training and validation perplexity decay
curves.

The curves tell us that the multi-embedding
models perform better in both training and valida-
tion perplexity. As we train the single-embedding
models longer, the validation perplexity increases
quickly, which implies that using a single embed-
ding to model multimodal distribution could cause
severe overfitting when we predict the next word
given an ambiguous context.

C.4 Stability in Language Modeling
Experiments

In our case, training our model requires a huge
amount of GPU resources for us, so it is not very
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(a) Curves on GPT-2 Small (b) Curves on GPT-2 Medium

Figure 5: The perplexity curves for the language modeling tasks using the validation set of OpenWebText.

(a) Perplexity in the training data (b) Perplexity in the validation data

Figure 6: The perplexity curves from different models for the ambiguous template analysis

Max Answers Max Incorrect
Models ↓ Top 1 Top 3 Top 5 Top 10 Top 1 Top 3 Top 5

Softmax (GPT-2) 36.5 ± 0.7 39.7 ± 0.5 43.5 ± 0.4 52.2 ± 0.6 20.9 ± 0.4 37.7 ± 0.6 46.7 ± 0.6
MoS (Yang et al., 2018) (3) 36.6 ± 0.8 40.2 ± 0.6 43.2 ± 0.6 52.1 ± 0.4 21.3 ± 0.6 38.4 ± 0.5 45.9 ± 0.6

MFS w/o Multi-partition 37.7 ± 0.7 42.0 ± 0.6 44.6 ± 0.5 52.6 ± 0.3 22.9 ± 0.4 39.5 ± 0.5 47.4 ± 0.4
MFS 36.9 ± 0.7 41.6 ± 0.7 44.4 ± 0.6 52.3 ± 0.6 23.1 ± 0.5 39.7 ± 0.6 46.9 ± 0.6

Table 11: ProtoQA performances on the crowdsourced development sets. The matching between prediction and
ground truth is done by WordNet. All the numbers are percentages. Max answers top k implies only evaluating
the top k answers from different LMs. Max incorrect top k indicates only evaluating the top answers that contain
k errors. The highest average performances are highlighted and the standard errors are reported as the confidence
interval.

feasible to train multiple times using multiple ran-
dom seeds. We indeed try to use different random
seeds for a few models and we confirm that the val-
idation loss difference is at least ten times smaller
than the improvement of different models.

To verify that our testing dataset is large enough
to provide stable perplexity, we randomly split the
testing dataset into 10 subsets and compute the

standard error of the average testing perplexity of
the 10 subsets. We find that the standard error is
less than 0.02 perplexity in all models and datasets
in Table 1. The standard error is much smaller than
most of the improvements, which means our testing
dataset is large enough to make the reported per-
plexity stable. The consistent improvements during
the whole training process in Figure 5 further sup-
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Figure 7: The log of model size versus the log of per-
plexity in the text set of OpenWebText. The group of
points on the left comes from the models based on GPT-
2 Small. The group of points on the right comes from
the models based on GPT-2 Medium. The models are
trained for 0.4 epoch.

port the stability of our experiments.

C.5 ProtoQA Results using WordNet

In Table 5, we report the metrics using exact match-
ing. In Table 11, we report the metrics that match
the prediction with the ground truth using Word-
Net (Miller, 1992) and find the scores show a simi-
lar trend.

C.6 Perplexity Improvement versus Model
Size

Kaplan et al. (2020) empirically demonstrate that
increasing the model size would decrease the loss
and their relation follows a scaling law. That is,
we can plot the log of model size (i.e., parameter
number) versus its loss as in Figure 7, and if a new
LM model could result in lines that are closer to the
origin than the baselines, the new model is better
in terms of the loss than only increasing the model
size of the baselines.

From Figure 7, we can see that the approaches
using multiple embedding are better than the Soft-
max baseline using single embedding. Although
the lines formed by MFS w/o Multi-partition and
MFS are not always closer to the origin than MoS,
our perplexity improvement from adding multiple
input hidden states or multiple partitions cannot
be solely explained by their extra parameters for
several reasons:

• Compared to MoS, the line formed by MFS
w/o Multi-partition becomes slightly closer to
the origin when the model size is close to GPT-2

Medium.

• The improvement of MFS w/o Multi-
partitions (S3I9P1) is larger than the
improvement of Softmax + Multi-input
(S1I9P1) plus the improvement of MoS
(S3I1P1) in BERT and GPT-2. For example,
in BERT base, the perplexity improvement of
Softmax + Multi-input, MoS (3), and MFS
w/o Multi-partitions are 0.018, 0.016, and
0.047, respectively.

• Our multi-mode analyses in Appendix B.3 in-
dicate that our enhancements, especially using
multiple partitions, capture the multimodal dis-
tribution better. We expect that the overall per-
plexity improvement would be larger if the cor-
pus contains more ambiguous contexts. We also
conduct a preliminary experiment to confirm the
claim. We add more ambiguous contexts into
Wikipedia 2016 by mapping all the uppercased
words into the [UNK] token. That is, we add
another mode corresponding to the [UNK] to-
ken in many context positions. Then, we train
and test the uncased BERT in this synthesized
dataset. We found that the improvement of
MFS w/o Multi-partition in this case can do
significantly better than simply increasing the
model size.

• Our enhancements only require some extra lin-
ear layers, which are usually more efficient than
increasing the model size (e.g., by adding an-
other transformer layer).

• Unlike increasing the model size, keep increas-
ing the number of input hidden states or the
number of partitions would lead to a smaller
improvement. This suggests that MFS cannot
keep storing more and more knowledge into its
extra linear layers as in the architecture using a
larger hidden state size or a deeper transformer
encoder.

C.7 More Visualization

In Table 3, we compare the prediction of MFS and
Softmax on GPT-2 Small. In the first two columns
of Table 7, we present the examples from the mod-
els built on GPT-2 Medium in OpenWebText and
Wikipedia 2021. We can see a similar pattern. The
embedding of the correct answer is different from
the embeddings of other possibilities, so Softmax
assigns lower probabilities to the correct answer,
while MFS does much better. This suggests that a
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larger model such as GPT-2 Medium suffers from
the softmax bottleneck in a similar way.

In the last column of Table 7, we visualize an
example in another synthetic experiment described
in Appendix B.4. We can see that although there
may not be any words between the appropriate
candidates, the prediction of Softmax may still be
biased toward one option much more than the other,
while the prediction of MFS is much closer to the
equally likely bimodal distribution we created in
the training data.

D Proof of Theorems

To prove Theorem 1, we first introduce a lemma.
Assuming in the word embedding of GPT-2,
woman + king = queen + man, we want to show
that GPT-2 cannot output woman and king as the
top two words in this lemma. This means we can-
not find a hidden state h and a threshold τ > 0
such that hTwoman≥ τ and hT king≥ τ but
hT queen< τ and hTman< τ . This example
could be generalized into the following Lemma
and Theorems. We can generalize the example as
follows:

Lemma 1. Let the output word embeddings in
the set W = {wlj 6= 0|j = 1...L} ∪ {wrj 6=
0|j = 1...R} satisfy −al1wl1 − ... − alLwlL =
ar1wr1 + ... + arRwrR , where their coefficient
−al1 , ...,−alL , ar1 , ..., arR are all positive con-
stants and −al1 − ... − alL ≥ ar1 + ... + arR .
Then, there is no hidden state h and a thresh-
old τ > 0 that make min

wg∈G
hTwg ≥ τ and

max
ws∈S

hTws < τ , where G = {wlj |j = 1...L}
and S = {wrj |j = 1...R}.

Proof. To prove by contradiction, we assume there
is a h such that ∀wlj ∈ G,hTwlj ≥ τ and ∀wrj ∈
S,hTwrj < τ . Thus, we can get −al1hTwl1 −
... − alLhTwlL ≥ −al1τ − ... − alLτ ≥ (ar1 +
...+arR)τ > ar1h

Twr1 + ...+arRh
TwrR , which

contradicts to −al1wl1 − ...− alLwlL = ar1wr1 +
...+ arRwrR .

We can rephrase the condition and the conclu-
sion to have our Theorem 1.

Theorem 1. If the nonzero output embeddings of
N words in a set W are linearly dependent and on
one side of a hyperplane through the origin, the
single embedding representation cannot produce
positive logits to a subset of the words in W that

are higher than all the logits of the other words in
W .8

Proof. The set W = {wi 6= 0|i = 1...N} contain
the embeddings of the N words. Based on the
premise, we can write 0 = a1w1 + ... + aNwN

and minwi∈W hT0 wi > 0, where h0 is a normal
vector of the hyperplane. At least one of the ai is
negative. Otherwise, we will get the contradiction
0 = hT0 0 = a1h

T
0 w1 + ... + aNh

T
0 wN ≥ (a1 +

...+ aN )minwi∈W hT0 wi > 0. Similarly, at least
one of ai is positive. We can move all the terms in
0 = a1w1+...+aNwN with negative ai to the left
as−al1wl1−...−alLwlL = ar1wr1+...+arRwrR .
If −al1 − ... − alL ≥ ar1 + ... + arR , we choose
G = {wlj |j = 1...L}. Otherwise, we choose
G = {wrj |j = 1...R}

If we can have a hidden state such that the pos-
itive logits of words in G are always larger than
the logits of the other words in W (let’s call the
complementary set S), there must exist τ > 0 that
can make min

wg∈G
hTwg ≥ τ and max

ws∈S
hTws < τ ,

which violates our Lemma 1.

Next, we would like to generalize our Theorem 1
by using a more practical condition where the word
embeddings are almost linearly dependent. Notice
that the theorem needs to assume the magnitude of
the hidden state is limited. Otherwise, the margin
could be arbitrarily magnified. In practice, the
magnitude is not arbitrarily large in GPT-2 and
BERT because a too large magnitude of hidden
state could magnify the gradients too much to have
a stable training process.

Theorem 2. Let the output word embeddings in
the set W = {wi 6= 0|i = 1...N} satisfy
w1 = a2w2 + ... + aNwN + ε, where the con-
stant a2, ..., aN are neither all zero nor all neg-

8Notice that Theorem 1 does not cover the situations where
the target top words have negative logits (i.e., some logits of
the words in G are negative). In the single softmax model, we
believe the situations rarely happen in the LMs empirically.

If some logits of the target top words are still positive, the
words that are somehow similar to those words are very likely
to also be positive, which would be ranked higher than the
target top words with the negative logits.

If the logits of all the target top words are negative in some
contexts, the logits of all the words would be negative. Then,
the word embeddings with smaller magnitudes tend to have
the logits closer to 0, so having the larger logits than the other
negative logits. This means the prior probability of the words
would be inversed when the hidden states sometimes produce
all negative logits.

If a LM always uses negative logits to compute probability
in all the contexts, Lemma 1 and Theorem 1 still hold if we
set τ < 0 and switch the choices of G and S.
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ative and ||ε|| < ε. Then, there must be a non-
trivial partition P = {G,S} of W such that
there is no hidden state ||h|| ≤ r and a threshold
τ ≥ rε that makes minwg∈G hTwg ≥ (1+δ)τ and
maxws∈S h

Tws < τ , where δ = 2
1+

∑
i=2...N |ai|

.

Proof. We can first move all the terms with nega-
tive ai to the left as w1− al1wl1 − ...− alLwlL =
ar1wr1 + ...+ arRwrR + ε. We perform proof by
contradiction, so we assume the logits of the words
in G can always be larger than (1 + δ)τ and the
logits of the words in S can always be smaller than
τ .

Case 1: 1− al1 − ...− alL ≥ ar1 + ...+ arR , so
1 − al1 − ... − alL ≥

1+
∑
i=2...N |ai|
2 . We choose

G = {w1,wl1 , ...,wlL} and S = {wr1 , ...,wrR}.
Thus, we can get hTε ≤ ||h||||ε|| ≤ rε ≤ τ and

hTw1 − al1hTwl1 − ...− alLh
TwlL (5)

≥(1− al1 − ...− alL)(1 + δ)τ (6)

=(1− al1 − ...− alL)(1 +
2

1 +
∑

i=2...N |ai|
)τ

(7)

≥(1− al1 − ...− alL)(1 +
1

1− al1 − ...− alL
)τ

(8)

=(1− al1 − ...− alL + 1)τ (9)

≥(ar1 + ...+ arR + 1)τ (10)

>ar1h
Twr1 + ...+ arRh

TwrR + hTε, (11)

which contradict with w1−al1wl1−...−alLwlL =
ar1wr1 + ...+ arRwrR + ε.

Case 2: 1 − al1 − ... − alL < ar1 + ... +
arR . We choose G = {wr1 , ...,wrR} and S =
{w1,wl1 , ...,wlL}. Therefore,

ar1h
Twr1 + ...+ arRh

TwrR (12)

≥(ar1 + ...+ arR)(1 +
2

1 +
∑

i=2...N |ai|
)τ

(13)

>(ar1 + ...+ arR)(1 +
1

ar1 + ...+ arR
)τ (14)

=(ar1 + ...+ arR + 1)τ (15)

>(1− al1 − ...− alL + 1)τ (16)

>hTw1 − al1hTwl1 − ...− alLh
TwlL − hTε.

(17)

xi

xr1

xr2

ali xi  =  
ar1 xr1 + ar2 xr2

Figure 8: An example for explaining the connection
between our Theorem 1 and the theorem from Demeter
et al. (2020).

E Theoretical Connection to Demeter
et al. (2020)

The theory in Demeter et al. (2020) is as follows:
“Let C be the convex hull of the embeddings {xi} of
a vocabulary V . If an embedding xi for word wi ∈
V is interior to C, then the maximum probability
P (wi) assigned to wi using a dot-product softmax
is bounded by the probability assigned to at least
one word wi whose embedding is on the convex
hull”

The theory is a special case of our Lemma 1 if
we only consider the hidden states that would lead
to the positive logit of the interior word wi. To
see that, we first find a constant ali > 1 such that
alixi intersects with one supporting hyperplane of
the convex hull. This intersection point could be
expressed by

∑
j arjxrj , where the word embed-

dings xrj are vertexes of C and
∑

j arj = 1. As
a result, we satisfy the condition of our Lemma 1:
alixi =

∑
j arjxrj and ali >

∑
j arj . Please see

an illustration in Figure 8 for an example. Then,
Lemma 1 suggests that the logit hTxi cannot be
larger than the logits of all the word embeddings
hTxrj . This means at least one of the hTxrj on
the convex hull would lead to a larger prediction
probability, which is also the conclusion of the the-
ory in Demeter et al. (2020).

F Method Details

When replacing the softmax layer in the pretrained
LMs, we found that the initialization of the ex-
tra linear layers should make the initial prediction
of LMs close to the prediction using a softmax
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layer, which is the architecture used in the pre-
training. Otherwise, the performance would drop
significantly. The initialization is especially impor-
tant for BERT. To achieve the goal, we initialize
the weights of the linear layers such that different
facets are almost identical at the beginning and let
the LMs gradually learn to output diverse facets
during the training. Specifically, we can write the
linear layer on the new hidden state Lfk(qct) as

fct,k = Lfk(qct)

= LI
kh

M
ct + LB

kGELU
(
Lh(⊕i,mhM−mct−i )

)
+ b.

(18)

We initialize LI
k as an identity matrix, b← 0, and

LB
k ← U(−ε, ε), where U is the uniform distri-

bution and ε = 0.00005 if k 6= K. Otherwise,
ε = 0. Consequently, all the facets fct,k are ini-
tially close to the last hidden state of the original
GPT-2 hMct . Our baselines (e.g., Softmax, MoS,
and DOC) also adopt the same way to initialize
their weights.

We implement our models based on hugging-
face9 (Wolf et al., 2020). Please see our codes for
more details.

F.1 Architecture Differences in BERT

The architecture of MFS for BERT is mostly the
same as the one for GPT-2 and the differences are
described in this subsection.

In GPT-2 the block of input hidden state is right-
aligned with the last word to prevent seeing the
ground truth. On the other hand, the block in BERT
is centered at the masked word.

The softmax layer of BERT is slightly different
from that of GPT-2. For example, BERT adds a
bias term after the dot product between the hidden
state and the output word embedding. We keep
the bias term in our experiments. Besides, the
pretrained BERT has a language modeling head
including a linear layer, a GELU (Gaussian Error
Linear Unit) layer (Hendrycks and Gimpel, 2016),
and a layernorm layer (Ba et al., 2016), so instead
of adding an extra linear layer as in GPT-2, we just
use different language modeling heads to create dif-
ferent facets in BERT. All the heads are initialized
using the weights in the pretrained BERT except
that the linear layer is initialized as in Equation 18
when the multiple input hidden states are used and

9https://huggingface.co/

the corresponding linear weights LB
k ← U(−ε, ε),

where ε = 0.05 if k 6= K. Otherwise, ε = 0.

G Experimental Details

In this section, we describe some details of our
experimental setup.

G.1 Baselines

The MoS (Yang et al., 2018) and DOC (Takase
et al., 2018) are originally designed for RNN-
based LM. To improve their methods on pretrained
Transformer-based LM and make their results more
comparable to MFS, we change some of their im-
plementation details.

MoS originally has a tanh layer before the soft-
max layers. However, we found that adding tanh
hurts the performances of all methods we tested,
especially the Softmax and MoS baselines. For ex-
ample, after adding tanh and training GPT-2 Small
for 0.4 epoch on Wikipedia, the validation perplex-
ity degradation of Softmax is from 25.70 to 26.15,
the degradation of MoS is from 25.42 to 25.83,
and the degeneration of MFS is from 25.06 to
25.12. We suspect this is because GPT-2 is pre-
trained without the tanh layer and the tanh limits
the magnitude of facets ||fct,k||, which could be
viewed as the inverse of the temperature in the soft-
max layer. Therefore, we remove the tanh layer
in all of our experiments. From the theoretical
perspective, adding tanh does not invalidate our
motivation because adding tanh does not change
the total degree of freedom in all facet embeddings
and the dimension of the hidden state.

In DOC, we use the hidden states of the last
three transformer layers to compute the three facets
and we set λβ = 0. Each facet is only determined
by one layer of hidden state, so the first two facets
cannot access the last hidden state. We found that
the model quickly learns to only use the last facet
because only the last hidden state is trained to per-
form the LM task in the pretrained models. This
prevents the first two facets from getting any gradi-
ents and causes a starvation problem.

We tried an aggressive dropout trick to solve the
starvation problem in DOC. If one of the softmaxes
does not assign the highest probability to any of the
correct next words in a batch, we consider that the
corresponding facet starves, so we drop the other
facets with some probability to ensure this starved
facet receives some gradients and gradually gets
back on track. However, our preliminary experi-
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ment suggests that the dropout trick cannot improve
the perplexity of DOC. The dropout probability is
either too low to solve the starvation problem or
too high to preserve the knowledge learned from
pretraining. Thus, we do not adopt this trick in our
final experiment.

G.2 Language Modeling

We download Wikipedia using http:
//medialab.di.unipi.it/wiki/
Wikipedia_Extractor and OpenWebText us-
ing https://github.com/jcpeterson/
openwebtext. For Wikipedia, we prepro-
cess the text using https://github.com/
attardi/wikiextractor. For OpenWeb-
Text, we download the pre-filtered URLs in 2017
and 2018 and scrape the text on April 2021. When
splitting the corpus into training, validation, and
testing sets, we do not shuffle the data. Instead,
we use the text near the end of the corpus as
the validation and test set to reduce information
leakage. To ensure every model is trained on
the same data and accelerate the training in
our machines, we split the training data into 20
consecutive partitions and load only one partition
at a time during training. When training GPT-2
Medium, we only use the first 8 partitions to let the
training be finished within a week. For BERT, we
perform the sentence segmentation using SpaCy10

and input one sentence into BERT at a time.
We set our hyperparameters (e.g., facet number

K = 3 and W ×H = 3× 3 when using multiple
input hidden states) based on the validation perfor-
mance in Wikipedia 2016, the resulting model size,
and the memory constraint in GPUs. To explore
the limitation of the softmax layer, we untie the
input word embeddings and output word embed-
dings in all of our experiments. The untying allows
the LMs to arrange the output word embeddings
more freely and allows us to observe if the result-
ing output word embeddings still cause multi-mode
distribution. This is also the main reason the model
size of our GPT-2 baseline is larger than the size
of pretrained GPT-2 (Radford et al., 2019). We
use AdamW (Loshchilov and Hutter, 2019) opti-
mizer and set the learning rate as 1e-5 and do not
use the warm-up because the training starts from
the pretrained models. The sequence length (i.e.,
bptt) is set as 200 for GPT-2 and 256 for BERT.
The batch sizes are set as 4 for GPT-2 Small, 16

10https://spacy.io/

for GPT-2 Large, 120 for BERT base, and 128 for
BERT large.

The analyses in Table 2 and Table 8 use the
first 4000 sequences in the validation dataset and
all the methods are based on GPT-2 Small. We
use PYCLD211 to distinguish between English and
non-English text.

We use NVIDIA GeForce RTX 2080 for training
GPT-2 Small and BERT base, GeForce RTX 8000
for training GPT-2 Medium, Tesla M40 for training
BERT large. Since we start from the pretrained LM,
we can finish training each LM within 2 weeks
using 1 GPU for GPT-2 Small, BERT base, and
GPT-2 Medium, and using 4 GPUs for training
BERT large.

When testing the inference time in Table 1, we
average the time of running NVIDIA TITAN X
on 10,000 batches, where each batch contains 4
sequences whose length are 200.

When visualizing the prediction in Table 3, we
exclude the non-ASCII symbol prediction from the
top word list of all models.

G.3 Ambiguous Templates Analysis

Among the semantic relations in Google anal-
ogy dataset, we choose three different relations
between locations: capital-common-countries,
capital-world, city-in-state, and one relation be-
tween people: family. We exclude the currency
category because their instance often does not form
a parallelogram in the word embedding space (Etha-
yarajh et al., 2019). The templates we use are listed
in Table 12. For the family category, our templates
assume the words are not pronouns, so we exclude
the set of four words that include he or she.

For each of the four words in an analogy instance
(e.g., queen : king = woman : man), we would cre-
ate 32 training or testing sequences12 based on the
diagonal words such as king or woman. Similarly,
we would create 64 sequences in the edge datasets.
Some words contain multiple word pieces and we
average the losses of all word pieces during training
and testing.

We split the synthesized sequences based on
their word pair overlapping. First, we randomly
sample half of the word pairs (e.g., king and queen)
in each category as our training pairs. If both of
the word pairs in an analogy instance are training

11https://github.com/aboSamoor/pycld2)
122 (diagonal words) × 4 (templates) × 2 (word orders in

the template) × 2 (possible next words)
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Dataset ↓ Templates
Anology Between the $ARG1 and the $ARG2, I decided to first talk to the [MASK]
(Person The $ARG1 and the $ARG2 are my favorites, and I especially love the [MASK]

or The $ARG1 and the $ARG2 happily live together. One day, bad luck happens to the [MASK]
Person) The $ARG1 and the $ARG2 stay at my house, and I need to take care of the [MASK]
Anology I went to $ARG1 and $ARG2 before, and I love one of the places more, which is [MASK]
(Location $ARG1 and $ARG2 are my favorites, and I especially love [MASK]

or My uncle used to live in $ARG1 and $ARG2 but now, he is selling his house in [MASK]
Location) The traveler plans to visit $ARG1 and $ARG2, and the traveler first arrives in [MASK]
Similarity I love the $ARG1 and the $ARG2, and my favorite is the [MASK]

(Noun Yesterday, a man encountered the $ARG1 and the $ARG2. Today, he again saw the [MASK]
or There are the $ARG1 and the $ARG2 in front of a woman, and she decides to pursue the [MASK]

Noun) If you can choose the $ARG1 or the $ARG2, would you choose the [MASK]

Table 12: The templates used in the analysis. The first four templates are for the analogy relations from the
capital-common-countries, capital-world, and city-in-state categories. The next four templates are for the analogy
relations from the family category. The final four templates are for similar or dissimilar nouns.

pairs, the instance is put into our training set. If
only one of the word pairs is a training pair, the
instance would belong to our validation set. The
rest of the instances form our testing set. During
the fine-tuning, we evaluate a model using the val-
idation set after each epoch and select the model
based on its best validation perplexity.

G.4 ProtoQA Evaluation

In our experiments, we use the scraped develop-
ment set as our validation set and the crowdsourced
development set as our test set. We do not test our
methods on the test set of ProtoQA because the
result of every submission would show up in their
leaderboard and we do not want to overwhelm the
leaderboard with our 15 trials.

Due to our limited GPU resources, we com-
pare the methods built on GPT-2 Medium rather
than GPT-2 Large. To maximize the perplexity of
the GPT-2 Medium model using Softmax on the
scraped development set, we fine-tune our models
using learning rate 3e-5 and warmup step 500.

The original paper (Boratko et al., 2020) does
not consider the frequency of the answer during the
fine-tuning (i.e., the most possible answer and the
least possible answer of each question appear in
the training data with the same chance). In terms
of the performance of the scraped development set,
we find that weighting each answer based on the
square root of its frequency is better than weighting
each answer uniformly as in the original paper or
weighting each answer based on its frequency, so
we use the square root weighting to finetuning all
our models.

During testing time, each model generates the

answers using Nucleus Sampling (Holtzman et al.,
2020) with p = 0.9 and temperature = 1. Then, we
collect all the words before the first period as an
answer and drop the generated sentences without a
period.

H Future Work

Capturing the next word distribution well given
an ambiguous context could be important in some
downstream applications. A next step could be
investigating whether multiple facets lead to a bet-
ter language generation model for the applications.
For example, we would like to know whether break-
ing the softmax bottleneck could reduce the hallu-
cination of LMs (e.g., outputting queen when the
reasonable next words should be king or woman)
and increase the coherence of the generated text.
We also want to more systematically investigate
whether modeling multi-mode distribution could
help LMs to reduce the undesired bias and to better
distinguish similar words (Zagoury et al., 2021) as
in Appendix B.4.

Narang et al. (2021); Anonymous (2021) find
that MoS can significantly improve the BERT-like
LMs on natural language understanding (NLU)
tasks when the LMs are trained from scratch. Al-
though we find that the perplexity improvement of
multi-embedding BERT is not as large as multi-
embedding GPT-2, pretraining using multiple em-
beddings does not decrease the inference speed of
the BERT encoder on NLU tasks. This motivates
the future studies that test if MFS also provides a
larger improvement than MoS in NLU tasks.

Table 2 suggests that multiple embeddings im-
prove more in a non-English context. We wonder
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whether multiple embeddings are more beneficial
to the LMs that are trained on a non-English dom-
inating corpus. Chung et al. (2021) discover that
using a larger output embedding dimension im-
proves the multilingual BERT. An interesting re-
search question is whether the improvement comes
from alleviating the softmax bottleneck and whether
MFS could also lead to similar improvements in
multilingual benchmarks.

The hidden state size of GPT-3 175B (Brown
et al., 2020) is huge (12,288). An interesting ques-
tion is whether some sets of output word embed-
dings in GPT-3 are still in a low-dimensional sub-
space and whether the softmax bottleneck is still
a prominent problem on the road of pursuing gen-
eral intelligence when such a large hidden state
dimension is used. We also would like to know if
models using multiple facets could reach a similar
performance by a smaller hidden state size.

Recently, Gao et al. (2019a); Rajaee and Pilehvar
(2021); Cai et al. (2021); Su et al. (2022) point out
the structure in the contextual embedding space
prevents it from having an isotropic property. Our
study and Demeter et al. (2020) show that the struc-
ture in the word embedding space only models the
global similarity between words and prevents the
LM from outputting arbitrary context-dependent
word distributions. We would like to know if we
can discover a new LM architecture with a better
contextual/word embedding space that could bet-
ter model context-dependent word similarities and
balance it with the global word similarities. In ad-
dition, our finding might be one of the reasons that
we can improve the language generation quality by
encouraging word embedding to be more isotropic
(Su et al., 2022).

Gao et al. (2019b) show that a mixture of kernel
functions outperforms MoS. Mixtape (Yang et al.,
2019) is another efficient solution to the softmax
bottleneck, whose hidden state for each word is the
weighted average of the facets where the weights
are dynamically predicted. If only using one soft-
max (i.e., K = 1), our multiple partition method
could be viewed as a special case of Mixtape that
uses a global and binarized weight to prevent com-
plications of predicting the weights of each word.
Our results indicate that multiple partitions need to
be combined with multiple softmax layers in order
to gain consistent performance improvement. A
potential future direction is to compare MFS with
a mixture of kernel functions and Mixtape on the

transformer-based LMs or combine MFS with a
mixture of kernel functions and Mixtape to gain
further improvements.

The results in Kong et al. (2020) suggest that
predicting n-grams could be better than predicting
individual words in BERT in some applications.
The total number of possible n-grams is several
orders of magnitude higher than the number of indi-
vidual tokens in the vocabulary. In addition, the lin-
ear dependency among n-grams might be common.
For example, the embedding of the brown color
+ a dog may be similar to the embedding of the
brown dog. The problem would be more serious as
the length of the prediction sequence (n) increases,
so predicting the next sentence using a single em-
bedding might suffer from the softmax bottleneck
even more. Therefore, our solutions to softmax
bottleneck may lead to a better phrase represen-
tation or sentence representation in this type of
self-supervised pretraining.

Finally, language modeling is only an example of
extreme classification. The nearly ubiquitous usage
of single embedding representation in the classi-
fication, self-supervised models (e.g., contrastive
learning models), or recommendation problems
provides many research opportunities. We believe
that our theoretical results could guide researchers
to identify the potential applications where the soft-
max bottleneck is serious and multi-embedding rep-
resentation is accordingly helpful.
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