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ABSTRACT
We generalize the spatial and subset scan statistics from the single to the multiple subset case. The two main
approaches to defining the log-likelihood ratio statistic in the single subset case—the population-based
and expectation-based scan statistics—are considered, leading to risk partitioning and multiple cluster
detection scan statistics, respectively. We show that, for distributions in a separable exponential family,
the risk partitioning scan statistic can be expressed as a scaled f -divergence of the normalized count and
baseline vectors, and the multiple cluster detection scan statistic as a sum of scaled Bregman divergences.
In either case, however, maximization of the scan statistic by exhaustive search over all partitionings of
the data requires exponential time. To make this optimization computationally feasible, we prove suffi-
cient conditions under which the optimal partitioning is guaranteed to be consecutive. This Consecutive
Partitions Property generalizes the linear-time subset scanning property from two partitions (the detected
subset and the remaining data elements) to the multiple partition case. While the number of consecutive
partitionings of n elements into t partitions scales as O(nt−1), making it computationally expensive for large
t, we present a dynamic programming approach which identifies the optimal consecutive partitioning in
O(n2t) time, thus allowing for the exact and efficient solution of large-scale risk partitioning and multiple
cluster detection problems. Finally, we demonstrate the detection performance and practical utility of
partition scan statistics using simulated and real-world data. Supplementary materials for this article are
available online.
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1. Introduction

The spatial scan statistic is a widely used methodological
approach for spatial and space-time cluster detection, first
proposed by Kulldorff (Kulldorff 1997; Kulldorff and Nagar-
walla 1995) and building on prior work in scan statistics
by Naus, Glaz, and others (Naus 1965a, 1965b; Glaz, Naus,
and Wallenstein 2001). Spatial scanning has been used for
detection of high-risk clusters for cancer and other chronic
diseases, emerging infections in human and animal populations,
suspicious network activity, areas of increased brain activity
from imaging data, and many other applications (Kulldorff
1997; Neill 2012). In the usual spatial scan setting, data elements
si, for i ∈ {1, . . . , n}, represent spatial locations with associated
values xi (representing counts or concurrent measurements)
and yi (representing baselines, expectations, or populations).
The goal is to identify a subset of locations with unusual
(typically, increased) values of xi as compared to the expected
yi. This is done by maximizing a log-likelihood ratio statistic
F(S) over subsets S ⊆ {s1, . . . , sn}, assuming a parametric
model for the xi. For example, for Kulldorff ’s spatial scan
statistic (Kulldorff 1997), we assume xi ∼ Poisson(qiyi) for
all si. Under the null hypothesis H0, qi = qall everywhere
for some constant qall, while under the alternative hypothesis

CONTACT Daniel B. Neill daniel.neill@nyu.edu, pehlivaniancharles@gmail.com New York University, New York, NY.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JCGS.

H1(S), qi = qin for si ∈ S and qi = qout for si �∈ S, for
constants qin > qout. The values of qin, qout, and qall are fit by
maximum likelihood, leading to the generalized log-likelihood
ratio statistic:

F(S) = log
maxqin>qout Pr(Data | H1(S))

maxqall Pr(Data | H0)

= log

maxqin>qout

∏
si∈S Pr(xi ∼ Poisson(qinyi))

∏
si �∈S

Pr(xi ∼ Poisson(qoutyi))

maxqall

∏
si Pr(xi ∼ Poisson(qallyi))

=
(

Cin log
Cin
Bin

+ Cout log
Cout
Bout

− Call log
Call
Ball

)

×1
{

Cin
Bin

>
Cout
Bout

}
,

where Cin = ∑
si∈S xi, Cout = ∑

si �∈S xi, and Call = ∑
si xi, and

similarly Bin = ∑
si∈S yi, Bout = ∑

si �∈S yi, and Ball = ∑
si yi.

Often, baselines are computed such that Ball = Call, and thus
Call log Call

Ball
= 0; in any case, this term is the same for all S and

can be neglected when computing S∗ = arg maxS F(S). Once
the highest-scoring regions are found, a randomization test is
used to determine whether they are statistically significant at a
given level (Kulldorff 1997), or in some simple cases a limiting
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distribution is known. Alternatively, baselines can be updated
under a Bayesian framework, and significance can be estimated
from the posterior (Neill, Moore, and Cooper 2006).

While Kulldorff ’s original approach focused on maximizing
F(S) over the set of circular spatial regions, which can be done
exhaustively in O(n2) time, Neill (2012) reframed the problem
as a (constrained or unconstrained) search over all subsets S,
thus, allowing detection of irregularly shaped clusters as well
as extensions to nonspatial data. While exhaustive enumeration
and evaluation of the 2n subsets of data elements is compu-
tationally infeasible, many log-likelihood ratio scan statistics
(including the Kulldorff statistic defined above) were shown
to satisfy the linear-time subset scanning property, enabling
exact optimization over the exponentially many subsets while
requiring only a linear number of subsets to be evaluated
(Neill 2012).

The spatial and subset scans can be thought of as partitioning
the data elements si into two disjoint subsets: a “high-risk” sub-
set S and a “low-risk” subset {s1, . . . , sn} \ S, assuming constant
relative risk q within each subset. Real-world datasets, how-
ever, may not satisfy this strong assumption, and may be better
modeled by identifying multiple disjoint subsets S1, S2, . . . , St
of varying risk. This finer-grained partitioning of the data is
useful for detection of multiple clusters (Li et al. 2011), for risk
stratification in disease mapping (Lawson et al. 1999), and for
discretization of high-arity attributes such as occupations (Kull-
dorff, Fang, and Walsh 2003).

In this work, we demonstrate that a large class of log-
likelihood ratio statistics, including the Poisson scan statistic
defined above, can be exactly and efficiently optimized over
partitionings of the data, requiring worst-case time O(n2t)
to divide a set of size n into t partitions. This efficient
optimization follows from two sets of results. First, we define
partition score functions and show that a large class of partition
score functions satisfy the consecutive partitions property,
a generalization of linear-time subset scanning from t = 2
to t ≥ 2 partitions. Second, while naive optimization of
the score function over consecutive partitionings would be
computationally infeasible for large t, with time complexity
O(nt−1), we provide a dynamic programming algorithm
which reduces the time cost to quadratic in n and linear in t,
while still guaranteeing that the optimal partitioning will be
found.

2. Partition Scan Statistics

Let n ∈ N be positive and set V = {1, . . . , n}. Let X =
{x1, . . . , xn} and Y = {

y1, . . . , yn
}

be finite real sequences,
with yi > 0 for all i. In many of the applications that follow,
each tuple (xi, yi) corresponds to realized and baseline counts
or measures of an attribute for the item or spatial location si.
Denote by D = DX,Y the set of tuples

{(
xi, yi

)}
associated with

X and Y.
Given the dataset D and a target number of partitions t,

our goal is to maximize the partition scan statistic F(P) =
F({S1, . . . , St}) over all possible partitionings P of size t, where
each subset Sj ⊆ {1, . . . , n} is nonempty, Sj ∩ Sj′ = ∅ for j �= j′,
and

⋃
j=1...t Sj = V . The partition score F(P) is defined in terms

of a score function f (x, y) as

F(P) =
∑

j=1...t
F(Sj) =

∑
j=1...t

f

⎛
⎝∑

i∈Sj

xi,
∑
i∈Sj

yi

⎞
⎠ .

As a concrete example, the Kulldorff scan statistic defined
above is a partition scan statistic for size t = 2, with associated
score function f (x, y) = x log x

y , and the extension to Poisson
partition scan statistics of size t > 2 follows naturally from the
above:

F(P) =
∑

j=1...t
Cj log

Cj

Bj
,

where Cj = ∑
i∈Sj xi and Bj = ∑

i∈Sj yi are the aggregate count
and baseline for partition Sj.

We will also refer to the rational score functions f (x, y) =
xαy−β for constants α, β > 0, and their corresponding partition
scan statistics F(P). More formally, we define a score function as
follows:

Definition 1. A score function is a continuous function
f (x, y) : R × R

+ → R with continuous extension to the origin
in any wedge W (μ1, μ2) =

{
(x, y) : y > 0, μ1 ≤ x

y ≤ μ2
}

, for
−∞ < μ1 ≤ μ2 < ∞, with lim(x,y)∈W→(0,0) f (x, y) = 0.

The regularity condition on W in wedges simply guarantees
a continuous extension to the origin on any positive cone in
R

+; for rational score functions it is equivalent to the constraint
α > β . Several additional properties have been associated with
score functions, namely monotonicity in x or y, quasi-convexity,
convexity, or an isotone differences constraint ∂2f

∂x∂y ≤ 0 related
to submodularity. We do not assume smoothness beyond conti-
nuity, nor (quasi-)convexity, etc., unless explicitly stated.

A score function f naturally gives rise to a set function
F : 2N → R, as above, defined by summation over subsets,
F(S) = f (

∑
i∈S xi,

∑
i∈S yi), for S ⊆ V . Associating S ⊆ V with

its X, Y attributes as in XS = ∑
i∈S xi, YS = ∑

i∈S yi allows us to
write F(S) = f (

∑
x∈XS x,

∑
y∈YS y) = f (XS, YS), etc. Likewise,

the partition scan statistic F(P) = F({S1, . . . , St}) can be written
as

∑
j=1...t F(Sj), as above, and we are interested in identifying

the optimal partitioning

P∗ = argmax
P={S1,...,St}

∑
j=1...t

F
(
Sj

)

= argmax
P={S1,...,St}

∑
j=1...t

f

⎛
⎝∑

i∈Sj

xi,
∑
i∈Sj

yi

⎞
⎠. (1)

Common approaches to solving Equation (1) rely on
properties of the set function F. For F submodular, a class of
greedy algorithms can provide (1 − 1

e )-approximate solutions
for the single subset problem in polynomial time (Von-
drák 2008; Filmus and Ward 2012), based on Monte Carlo
approximation of the multilinear extension fm(x1, . . . , xn) =∑

S⊆V F(S)
∏

i∈S xi
∏

i∈V\S(1 − xi), for x ∈ [0, 1]n. Mini-
mization of a submodular F over subsets of 2V admits an
exact solution using the Lovasz extension (Grötschel, Lovasz,
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and Schrijver 1981), which is guaranteed to be convex. The
essence of these approaches is a “relaxation by expectation” to
a continuous problem on the n-dimensional unit hypercube,
associating S ⊆ V with the point (1{1∈S}(S), . . . ,1{n∈S}(S)). In
this way every boundary point of the hypercube is associated
with a subset of V . In our setting, the ambient extension
is already specified as f, and the natural extensions to R

n

(multilinear, Lovasz) do not allow for a convenient restriction
of the admissible set of partitionings. Nevertheless, we will
demonstrate an alternative approach based on consecutive
partitions which enables exact and efficient optimization of
Equation (1), as described in Section 3.

2.1. Partition Scan Statistics for the Separable
Exponential Family

Let us assume a parametric specification for the generating
distribution � for the xi values, where the null and alternative
hypotheses are defined as follows:

H0 : xi ∼ �(·; μ = qallμi) ∀si,
H1(P) : xi ∼ �(·; μ = qjμi) ∀si ∈ Sj,

where P = {S1, . . . , St} is a partitioning of D of size t, and the
constants q1 . . . qt (the “relative risk” for each partition Sj ∈ P)
and qall are computed by maximum likelihood. The most com-
mon choices of distribution are Poisson and Gaussian. For many
distributional assumptions, the score function is expressed
only in terms of sufficient statistics of the underlying � , and
closed-form solutions for the qj can be solved for and resub-
stituted. Let us consider the (generalized) log-likelihood ratio
statistic:

F(P) = F({S1, . . . , St})

= log
maxq1,...,qt

∏
j=1...t

∏
si∈Sj Pr(xi | xi ∼ ψ(·; μ = qjμi))

maxqall
∏

si Pr(xi | xi ∼ ψ(·; μ = qallμi))
. (2)

Following Neill (2012), we now assume that � comes from an
exponential family, in which case we can write � in terms of its
mean μ as log Pr(x | μ) = T(x)θ(μ)−ψ(θ(μ)) = T(x)θ(μ)−
μθ(μ) + φ(μ), where T(x) is the sufficient statistic, θ(μ) is a
function mapping the mean μ to the natural parameter θ , ψ is
the log-partition function, and φ is the convex conjugate (in the
Legendre-Fenchel sense) of ψ . Plugging in the log-likelihood for
the exponential family into the expression for F(P) above, we
obtain

F(P) =
∑

j=1...t

∑
si∈Sj

(T(xi)θ(qjμi) − qjμiθ(qjμi) + φ(qjμi))

−
∑

si

(T(xi)θ(qallμi) − qallμiθ(qallμi) + φ(qallμi)).

For distributions � in a separable exponential family (Neill
2012), including the Poisson, Gaussian, and exponential
distributions, we can further write θ(qμi) = ziθ0(q) + vi,
where the function θ0 depends only on q, while zi and vi can
depend on μi and σi but are independent of q. We also have
φ(qμi) = μiziφ0(q) + μiviq + Ki, where φ0(q) = ∫

θ0(q) dq,
and Ki is independent of q. The expression for F(P) can then be
simplified to

F(P) =
∑

j=1...t
(Cjθ0(qj) + Bj(φ0(qj) − qjθ0(qj)))

−Callθ0(qall) − Ball(φ0(qall) − qallθ0(qall)),

where Cj and Bj are the sufficient statistics for subset Sj, Cj =∑
si∈Sj T(xi)zi and Bj = ∑

si∈Sj μizi, respectively. Similarly, we
have Call = ∑

si T(xi)zi and Ball = ∑
si μizi. To obtain the

maximum likelihood estimate of qj, we set ∂F
∂qj

= 0, obtaining

qj = Cj
Bj

, and similarly qall = Call
Ball

. Substituting these values of qj
and qall into the equation for F(P) and simplifying, we find that

F(P) =
∑

j=1...t
Bj

(
φ0

(Cj

Bj

)
− φ0

(
Call
Ball

))
= BallDf

(�C || �B
)

,

where �C and �B are the normalized count and baseline vectors
1

Call
〈C1, . . . , Ct〉 and 1

Ball
〈B1, . . . , Bt〉, respectively, and Df is the

f -divergence, Df (P || Q) = ∑
j=1...t Qjf

(
Pj
Qj

)
, with f (q) =

φ0
(

q Call
Ball

)
− φ0

(
Call
Ball

)
.1 F(P) can also be written in terms of the

sufficient statistics Cj and Bj, and the score function f (x, y) =
yφ0

(
x
y

)
, as F(P) =

(∑
j=1...t f (Cj, Bj)

)
− f (Call, Ball), where

the last term is independent of P.
As a concrete example, for the Gaussian distribution we have

φ0(q) = q2

2 , and the corresponding f (q) = C2
all

2B2
all

(q2 − 1). This

gives us F(P) =
(∑

j=1...t
C2

j
2Bj

)
− C2

all
2Ball

, or equivalently, F(P) =(∑
j=1...t f (Cj, Bj)

)
−f (Call, Ball), where f (x, y) = x2

2y . Moreover,
we note that T(xi) = xi and zi = μi

σ 2
i

for the Gaussian, so the

sufficient statistics are Cj = ∑
si∈Sj

xiμi
σ 2

i
and Bj = ∑

si∈Sj
μ2

i
σ 2

i
,

respectively.
Similarly, for the Poisson distribution (i.e., the generaliza-

tion of Kulldorff ’s spatial scan statistic to t ≥ 2 partitions),
we have φ0(q) = q log q, and the corresponding F(P) =(∑

j=1...t f (Cj, Bj)
)

− f (Call, Ball), where f (x, y) = x log x
y . In

this case, owing to the form of φ0, the partition scan statistic
can also be written as F(P) = CallDKL(�C, �B), where DKL is the
Kullback-Liebler divergence between the normalized count and
baseline vectors. Since T(xi) = xi and zi = 1 for the Poisson,
the sufficient statistics are Cj = ∑

si∈Sj xi and Bj = ∑
si∈Sj μi,

respectively.

3. The Consecutive Partitions Property

We now return to the general formulation of the partition
scan statistic, F(P) = F({S1, . . . , St}) = ∑

j=1...t f (
∑

si∈Sj xi,∑
si∈Sj yi), and identify conditions on the score function f that

will enable us to efficiently compute the optimal partitioning
P∗ = arg maxP F(P).

1In the common case in which Ball is set equal to Call by construction,
F(P) simplifies to BallDφ0 (�C || �B). This is similar to the expectation-based
scan statistics for the separable exponential family (Neill 2012), F(S) =
BDφ0 (C/B, 1), but in the latter case D is the Bregman divergence rather than
f -divergence corresponding to φ0.
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We first note that exhaustively searching over all partition-
ings P is computationally infeasible, even for relatively small
values of n and t. More precisely, the number of such partition-
ings

{n
t
}

is a Stirling number of the second kind. The Stirling
numbers have an asymptotic growth rate which is exponential
in n for fixed t,

{n
t
} ∼ tn

t! . For example, for n = 30 and t = 10, we
already have

{n
t
} ≈ 1.73 × 1022.

Moreover, it is well known that even for monotone submod-
ular set functions F, the maximization maxS∈V F(S) is NP-hard,
while the submodular minimization problem can be solved in
polynomial time (Calinescu et al. 2007; Bach 2013). For non-
monotone submodular objectives, any polynomial time algo-
rithm for the maximization is only guaranteed to satisfy a lower
bound of (1 − 1

e ) from optimality, that is, F(S) ≥ (1 − 1
e )F(S∗),

where S∗ is the argmax solution (Freige, Mirrokni, and Vondrak
2011). For monotone submodular objectives, a greedy algorithm
can do better, but only efficient approximations are known.
Monotonicity and submodularity are generally not satisfied by
even the rational score functions.

On the other hand, the number of candidate partitionings
would be greatly reduced by the requirement that each partition
Sj be consecutive, that is, of the form {si, si+1, . . . , sk} for 1 ≤
i ≤ k ≤ n, assuming some appropriate ordering of the data ele-
ments. The set Tn,t of partitionings of V of size t containing only
consecutive elements has size

(n−1
t−1

)
, which grows polynomially

in n, as O
(
nt−1). We will show that, under certain sufficient

conditions on f, the optimal partitioning is guaranteed to be
consecutive when the set D is ordered under an appropriate
priority function g. Formally, we define:

Definition 2. A priority function is a function g : R×R
+ → R

that induces an ordering on the dataset D. We refer to g(x, y) =
x
y as the standard priority function.

Unless otherwise stated, the sets X, Y will be assumed to be
already indexed in standard priority order, that is, g(x1, y1) ≤
· · · ≤ g(xn, yn), where g is the standard priority function.

Given the datasetD ordered by priority, we can now formally
define the consecutive partitions property.

Definition 3. A nonempty subset S ⊆ D is consecutive if it is of
the form {si, si+1, . . . , sk}, for 1 ≤ i ≤ k ≤ n.

Definition 4. A partitioning P = {S1, . . . , St} of D of size t is
consecutive if each partition Sj is a consecutive subset.

Definition 5. A partition scan statistic F(P), with associated
score function f (x, y) and priority function g(x, y), satisfies
the consecutive partitions property (CPP) if, for all datasets
D = {(xi, yi)} ordered by priority, and all sizes 1 ≤
t ≤ |D|, the highest scoring partitioning of D of size t,
P∗ = arg maxP={S1,...,St}

∑
j=1...t f

(∑
si∈Sj xi,

∑
si∈Sj yi

)
, is

consecutive.

We also define a weaker version of CPP, as follows:

Definition 6. A partition scan statistic F(P), with associated
score function f (x, y) and priority function g(x, y), satisfies the
weak consecutive partitions property (WCPP) if, for all datasets
D = {(xi, yi)} ordered by priority, and all sizes 1 ≤ t ≤

|D|, the highest scoring partitioning of D of size t′ ≤ t,
P∗ = arg maxP={S1,...,St′ },t′≤t

∑
j=1...t′ f

(∑
si∈Sj xi,

∑
si∈Sj yi

)
, is

consecutive.

It is clear from these definitions that, if F(P) satisfies CPP,
then it also satisfies WCPP. However, the converse is not nec-
essarily true. As a concrete example, Chakravarty, Orlin, and
Rothblum (1982) show that, if f (x, y) is convex and yi > 0
for all i, then a consecutive partitioning of size t′ ≤ t exists
that is maximal in the sense of (1) for the standard priority
function; in other words, F(P) satisfies WCPP. Let us consider
the rational score function f (x, y) = x4

y , which is convex, and
consider the dataset D = (X, Y), where X = {8, 2, 9} and Y =
{8, 1, 3}, ordered by priority. We observe that the highest-scoring
partitioning F(P) of size t = 2 consists of {s1, s3} and {s2}, which
is not consecutive, so CPP does not hold. The highest scoring
partitioning of size t′ ≤ 2 is the trivial (size-1) partitioning
P = {S1}, where S1 = {s1, s2, s3}. In such cases, we are unable to
say anything about the optimal partitioning for sizes t > 1.

Thus, we wish to identify sufficient conditions under which
CPP and WCPP hold. These are provided by our main results,
Theorems 1 and 2:

Theorem 1. Given a partition scan statistic F(P) with associated
score function f (x, y) and priority function g(x, y) = x

y . If f is
convex and subadditive, then F satisfies CPP.

Theorem 2. Given a partition scan statistic F(P) with associated
score function f (x, y) and priority function g(x, y) = x

y . If f is
convex, then F satisfies WCPP.

Note that convexity and subadditivity are both preserved
under function addition. The proofs of Theorems 1 and 2 are
based on a novel geometric construction, described in detail in
the following section. It follows that partition scan statistics for
the separable exponential family satisfy CPP:

Corollary 1. Let F(P) be the partition scan statistic correspond-
ing to the log-likelihood ratio statistic for a distribution � in
a separable exponential family, with associated score function
f (x, y) = yφ0

(
x
y

)
, where φ0 is defined as above, and priority

function g(x, y) = x
y . Then F(P) satisfies CPP.

Proof. The proof of Corollary 1 follows from the convexity and
subadditivity of f (x, y), and from Theorem 1. Convexity of f
follows from convexity of φ0 and the fact that the perspective
of a convex function is also convex. To show subadditivity, we
have:

f (x1 + x2, y1 + y2) = (y1 + y2)φ0

(
x1 + x2
y1 + y2

)

= (y1 + y2)φ0

(
λ

(
x1
y1

)
+ (1 − λ)

(
x2
y2

))

≤ (y1 + y2)

(
λφ0

(
x1
y1

)
+ (1 − λ)φ0

(
x2
y2

))

= y1φ0

(
x1
y1

)
+ y2φ0

(
x2
y2

)

= f (x1, y1) + f (x2, y2),
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where λ = y1
y1+y2

and the inequality follows from convexity
of φ0.

We can also easily characterize the partition scan statistics
corresponding to the rational score functions:

Corollary 2. Let F(P) be the partition scan statistic with asso-
ciated score function f (x, y) = xαy−β , for constants α, β > 0,
and priority function g(x, y) = x

y . Assume x > 0. If α −β ≥ 1,
then F(P) satisfies WCPP. If α − β = 1, then F(P) satisfies CPP.

Proof. We note that the Hessian of f has principal minors
M1 = α(α − 1)xα−2y−β ,

M2 = αβ(α − β − 1)x2(α−1)y−2(β+1),
so that for x ∈ R

+, f is convex iff α−β ≥ 1, and f is subadditive
iff α − β ≤ 1. The result then follows from Theorems 1 and 2.

A similar result holds when x is not restricted to be positive,
but in this case α must be an even integer:

Corollary 3. Let F(P) be the partition scan statistic with associ-
ated score function f (x, y) = xαy−β , for constants α, β > 0, and
priority function g(x, y) = x

y . If α ∈ N is even and α − β ≥ 1,
then F(P) satisfies WCPP. If α ∈ N is even and α − β = 1, then
F(P) satisfies CPP.

Proof. For x ∈ R, f is convex iff α − β ≥ 1, and α ∈ N is even.
f is subadditive iff α − β ≤ 1, and α, β ∈ N. The result then
follows from Theorems 1 and 2.

4. A Geometric Proof of the Consecutive Partitions
Property

Let D = {(xi, yi)}n
i=1 be a dataset, where xi ∈ R and yi ∈ R

+,
ordered by the standard priority function g(x, y) = x

y . Let us
consider the subsets S ⊆ V and their corresponding sums
xS = ∑

i∈S xi and yS = ∑
i∈S yi, associating each subset S with

a corresponding point in R
2, pS = (xS, yS), which we term the

partition point of S. By convention, p∅ = (0, 0). Our proofs of
Theorems 1 and 2 are based on a geometric characterization of
the convex hull of the partition points pS for S ⊆ V . Denoting
the convex hull of a set S ⊆ R

m as Ŝ, we define:

Definition 7. For S ⊆ V , let pS = (
∑

i∈S xi,
∑

i∈S yi) ∈ R
2.

The partition polytope C and the constrained partition polytope
C are defined by the convex hulls C = P̂ and C = P̂, respectively,
where P = {pS : S ⊆ V} and P = {pS : S ⊆ V , S �= ∅, S �= V}.

We now characterize the extreme points of C and C. It will
then follow from the convexity of the score function f (x, y)
that the optimal size-2 partitioning is P∗ = {S,V \ S} for some
extreme point pS, and the remainder of the proofs of Theorems 1
and 2 proceed by induction. Let us define:

Definition 8. A consecutive subset S ⊆ V is nonsplitting if both
S and V \ S are consecutive; otherwise, it is splitting. A con-
secutive nonsplitting subset of the form {1, . . . , j} is ascending,

and a consecutive nonsplitting subset of the form {j, . . . , n} is
descending. By convention, ∅ andV are consecutive nonsplitting,
both ascending and descending. Define

T = Tn = {S ⊆ V : S is consecutive},
S = Sn = {S ⊆ V : S is consecutive splitting},
U = Un = {S ⊆ V : S is consecutive nonsplitting},
U = Un = Un \ {∅,V} .

A special case occurs when S is the singleton {j}: the pair S,
V \S is called a singleton splitting or nonsplitting pair, depending
on whether V \ S is consecutive. The set of singleton splitting
subsets S and their complements in V is denoted by

S = Sn = {S ⊆ V : (S,V \ S) form a singleton splitting pair}.

We note that S ⊂ T and U ⊂ U ⊆ T , but S �⊆ S , T ,
since S includes the nonconsecutive complement V \ S for
each singleton splitting subset S. It is easy to see that |Un| =
2n, |Sn| = (n−1)(n−2)

2 , with |Tn| = |Un| + |Sn| = n(n+1)
2 + 1,

while |Sn| = 2n − 4.
For any partitioning P = {S1, . . . , St}, or more generally, a

set of subsets of V , denote by �(P) the mapping taking P to the
point set {{pS1}, . . . , {pSt }} ⊂ R

2, so �(S) ⊂ �(T ), �(U) ⊆
�(T ), etc.

Proposition 1. Let D = {(x, y)} be a dataset ordered by the
standard priority function g(x, y) = x

y . Let E and E be the sets of
extreme points of the partition polytope C and the constrained
partition polytope C, respectively. Then

1. E ⊆ �(U),
2. E ⊆ �

(
U

) ∪ �
(
S

)
.

In particular, E contains only consecutive nonsplitting sub-
sets, while E may also contain consecutive splitting subsets and
nonconsecutive subsets, but only singletons and their comple-
ments.

Proof. Let p∗ = (x∗, y∗) ∈ E . Then there is an affine l
(
x, y

) =
Ax + By + C which separates p∗ in C, or equivalently a vector
v = (A, B) ∈ R

2 for which

(x∗, y∗) = argmin
p∈C

v · p = argmin
pS∈C:S⊆V

v · pS. (3)

The point pS∗ , where S∗ = {
i ∈ V : v · (xi, yi) ≤ 0

}
minimizes

the last expression. If A = 0 then necessarily B �= 0, in which
case S∗ = {

i ∈ V : yi ≤ 0
} = ∅ or S∗ = {

i ∈ V : yi ≥ 0
} =

V , so that S∗ and V \ S∗ are both consecutive. Otherwise S∗ ={
i ∈ V : xi

yi
≤ − B

A

}
or S∗ =

{
i ∈ V : xi

yi
≥ − B

A

}
, depending on

the sign of A, and the same conclusion holds. So E ⊆ �(U).
We now prove that E ⊆ �

(
U

) ∪ �
(
S

)
. For p =

(
x, y

)
∈ E ,

we can again find a separating affine function l
(
x, y

) = Ax +
By + C and corresponding v = (A, B) satisfying

p = argmin
p∈C

v · p = argmin
pS∈C:S⊆V ,

S�=∅,
S�=V

v · pS. (4)
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Let p = argminpS∈C:S⊆Vv · pS, which by the previous argument
is of the form pS for some consecutive nonsplitting subset S. If
0 < |S| < n, then it also minimizes the expression in (4), and
p ∈ �

(
U

)
. Otherwise there are two cases.

Case 1. S = ∅. Since the minimizing subset S can be written S =
{i ∈ V : v·(xi, yi) ≤ 0}, we must have Ax+By > 0 for all (x, y) ∈
C. So expression (4) is minimized by selecting p = pS, for S =
{i}, where i∗ = argmini∈V (Axi + Byi), a singleton. It follows
that p lies in either �(U) or �(S), depending on whether {i} is
splitting.

Case 2. S = V . By similar reasoning, Ax + By < 0 for all
(x, y) ∈ C. Thus, expression (4) is minimized by removing
a single element from V ; take S = V \ {i∗}, where i∗ =
argmaxi∈V (Axi + Byi), and set p = pS. Again p lies in either
�(U) or �(S).

Thus, E ⊆ �
(
U

) ∪ �
(
S

)
.

For a given score function f , we now define the symmetric score
function f : C ⊆ R × R

+ → R by

f
(
x, y

) =
⎧⎨
⎩

f
(
x, y

) + f
(

Cn
x − x, Cn

y − y
)

,
(
x, y

) ∈ C \
{
(0, 0) ,

(
Cn

x , Cn
y

)}
f
(

Cn
x , Cn

y

)
,

(
x, y

) ∈
{
(0, 0) ,

(
Cn

x , Cn
y

)}

where Cn
x = ∑

i=1...n xi, Cn
y = ∑

i=1...n yi. We note that f is
continuous on C for any score function f, and is convex on C for
any convex score function f.

By Proposition 1, a convex f will take its maximum on C
at either a splitting or nonsplitting consecutive partition point.
We show that the former case represents a kind of degenerate
behavior, associated with a collapse of the unconstrained case to
the trivial partitioning:

Proposition 2. Let f (x, y) be a convex score function and
define the symmetric score function f (x, y) as above. If
the set argmax(x,y)∈C f

(
x, y

)
contains only partition points

associated with consecutive splitting subsets, then pV =
argmax(x,y)∈C f (x, y).

Proof. Let p = argmax(x,y)∈C f (x, y), with p consecutive splitting
in V . Let p = argmax(x,y)∈C f (x, y). Convexity of f on C follows
from convexity of f, so p ∈ E . Since f (p) ≥ f (p), and p �∈ E by
Proposition 1, we have f (p) > f (p). So p cannot lie in E , and
thus p ∈ E \ E = {p∅, pV }.

Given Propositions 1 and 2, we can now prove the main theo-
rems:

Theorem 1. Given a partition scan statistic F(P) with associated
score function f (x, y) and priority function g(x, y) = x

y . If f is
convex and subadditive, then F satisfies CPP.

Proof. The proof proceeds by induction on t. Let t = 2, and note
that argmaxPF(P) = {S∗,V \ S∗}, where S∗ = argmaxSf (pS).
By convexity of f and Proposition 1, the maximum of f on C
occurs at a point pS ∈ �(U) ∪ �(S). Since f is subadditive,
the maximum of f on C cannot occur at pV , hence, pS ∈ �(U)

by Proposition 2. So the maximal partitioning {S,V \ S} is
consecutive.

Now let t ≥ 3. The arguments here are motivated
by Chakravarty, Orlin, and Rothblum (1982). Define, for any
subset S ⊆ V , MS = max i : i ∈ S, mS = min i : i ∈ S, and
d(S) = MS − mS. Let P = {S1, . . . , St} be a size-t partitioning

that maximizes F(P) and also minimizes
∑

j=1...t d(Sj) among
all optimal size-t partitionings. If not all Sj are consecutive, then
we can find two partitions Si, Sj ∈ P and an element k ∈ Sj
with mSi < k < MSi . Note that min(MSi , MSj) ≥ k, and
max(mSi , mSj) ≤ k, so that min(MSi , MSj)−max(mSi , mSj) ≥ 0.
By the induction hypothesis, we can find an optimal partitioning
of Si ∪ Sj into nonempty consecutive sets S′

i, S′
j. Then d

(
S′

i
) +

d
(

S′
j

)
≤ max

(
MSi , MSj

)
− min

(
mSi , mSj

)
− 1, so

d (Si) + d
(
Sj

) = MSi − mSi + MSj − mSj

= max
(

MSi , MSj

)
+ min

(
MSi , MSj

)

− min
(

mSi , mSj

)
− max

(
mSi , mSj

)

≥ d
(
S′

i
) + d

(
S′

j

)
+ 1,

a contradiction. So all of the Sj are consecutive and
nonempty.

Theorem 2. Given a partition scan statistic F(P) with associated
score function f (x, y) and priority function g(x, y) = x

y . If f is
convex, then F satisfies WCPP.

Proof. The proof proceeds by induction as in the convex, subad-
ditive case, but we allow the partitioning P = {V , ∅} at the initial
step, and thereafter for the base assumption in the induction
step. Call this the trivial size-2 partitioning. In this way we will
create a partitioning of size t′ ≤ t consisting of consecutive
elements and possibly repetitions of instances of the empty set.

To this end, let t = 2 and consider p∗ = argmaxp∈C f (p).
By Proposition 1, p∗ ∈ �(U), and we have a (possibly trivial)
maximal partitioning of V with size t′ ≤ 2.

The inductive step proceeds as before, and assuming Si, Sj
nonconsecutive, we produce the consecutive partitions S′

i and
S′

j with S′
i ∪ S′

j = Si ∪ Sj, with possibly one of S′
i, S′

j empty.

If, without loss of generality, S′
j = ∅, then d

(
S′

i
) + d

(
S′

j

)
≤

max
(

MSi , MSj

)
− min

(
mSi , mSj

)
− 1 as before, and we arrive

at a contradiction. Thus, we obtain, for any t, an optimal con-
secutive partitioning P of V , possibly containing empty sets and
thus having size t′ ≤ t. Therefore, WCPP holds for F.
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4.1. Further Characterization of the Partition Polytopes

Proposition 1 demonstrates that the extreme points of the
unconstrained partition polytope C consist only of consecutive
nonsplitting subsets, while the extreme points of the constrained
partition polytope C may include consecutive nonsplitting
subsets (excluding ∅ and V), singleton splitting subsets,
and their (nonconsecutive) complements. We can further
characterize these polytopes by showing that (i) all consecutive
nonsplitting subsets pS ∈ �(U) are on the boundary of
the unconstrained partition polytope, and (ii) all consecutive
nonsplitting subsets pS ∈ �(U) are on the boundary of the
constrained partition polytope.

Given the dataset D = {(xi, yi)}, we define the summations
Cj

x = ∑
i=1...j xi, Cj

y = ∑
i=1...j yi, C−j

x = ∑
i=j...n xi, and

C−j
y = ∑

i=j...n yi, for 1 ≤ j ≤ n, with the conventions that
C0

x = C0
y = C−(n+1)

x = C−(n+1)
y = 0 and x0 = y0 = 0.

Thus, pCj = (Cj
x, Cj

y) is the partition point associated with the
ascending nonsplitting subset Cj = {1, . . . , j}, while pC−j =
(C−j

x , C−j
y ) is the partition point associated with the descending

nonsplitting subset C−j = {j, . . . , n}.
We can now construct the convex hull of the points pCj

(for j = 0 . . . n) and pC−j (for j = 2 . . . n) using a Graham
scan (Graham 1972). By repeated application of the inequality
xj
yj

≤ xj+xk
yj+yk

≤ xk
yk

for j < k, it follows that C1
x

C1
y

≤ · · · ≤ Cn
x

Cn
y

≤
C−2

x
C−2

y
≤ · · · ≤ C−n

x
C−n

y
.

So a ray sweeping out an angle clockwise from −π to π

radians, anchored at the origin pC0 , will meet the partition
points in the order pC1 , . . . , pCn , pC−2 , . . . , pC−n .

We note that pC0 and pCn are extreme points since they have
the lowest and highest y-coordinates, respectively. For other
points, we can use the Graham scan’s “right turn rule” to check
whether they are on the boundary of the convex hull.

For pCj (where 1 ≤ j ≤ n − 1), we have:

(Cj
x − Cj−1

x )(Cj+1
y − Cj−1

y ) − (Cj
y − Cj−1

y )(Cj+1
x − Cj−1

x )

= xj(yj + yj+1) − yj(xj + xj+1)

= xjyj+1 − yjxj+1

= yjyj+1

(xj

yj
− xj+1

yj+1

)

≤ 0.

Thus, pCj is on the boundary of the unconstrained partition
polytope, and is an extreme point if xj

yj
is strictly less than xj+1

yj+1
.

Similarly, for pC−j (where 2 ≤ j ≤ n), we have:

(C−j
x − C−(j−1)

x )(C−(j+1)
y − C−(j−1)

y )

−(C−j
y − C−(j−1)

y )(C−(j+1)
x − C−(j−1)

x )

= xj−1(yj−1 + yj) − yj−1(xj−1 + xj)

= xj−1yj − yj−1xj

= yjyj−1

(xj−1

yj−1
− xj

yj

)

≤ 0.

Figure 1. Example of partition polytope C and constrained partition polytope C
for n = 6 points, with level sets for f (x, y) = x2

y . When points ∅ and V are removed
from C, the singleton splitting subsets {2} and {5}, and their nonconsecutive com-
plements, become extreme points of C.

Thus, pC−j is on the boundary of the unconstrained partition
polytope, and is an extreme point if xj−1

yj−1
is strictly less than xj

yj
.

From this argument, we can see that all of the consecutive
nonsplitting subsets S ∈ U correspond to points pS on the
boundary of the unconstrained partition polytope C, and to
extreme points if the priority function g(xj, yj) = xj

yj
is strictly

increasing with j. Again, from Proposition 1, no other extreme
points exist.

For the constrained partition polytope C, we remove p∅ =
pC0 and pV = pCn , and consider the convex hull of the remain-
ing points. All of the points pS corresponding to the consecutive
nonsplitting subsets S ∈ U remain on the boundary of the
convex hull when these two points are removed. Additionally,
from Proposition 1, the singleton splitting pairs must be consid-
ered, as some or all of these may be vertices. See Figure 1 for an
example of unconstrained and constrained partition polytopes,
where removal of p∅ and pV adds a singleton splitting pair to the
boundary of the convex hull.

If any singleton is a vertex of C, it will lie between pC−n and
pC1 when the vertices of C are traversed in a clockwise direction
along the partition polytope. Since the singleton splitting subsets
p{i} are indexed by 1 < i < n, they can be enumerated and tested
successively. Thus, we can perform a Graham scan to identify
the lower convex hull of the points pC−n , p{n−1}, p{n−2}, …,
p{2}, pC1 (in clockwise order). For any points p = (x, y), p′ =
(x′, y′), and p′′ = (x′′, y′′) in the given order, if (x′ −x)(y′′ −y)−
(y′ − y)(x′′ − x) > 0, then p′ is in the interior of C and can be
removed, and this process can be repeated until all remaining
points are on the boundary of C.

Finally, the extreme point classification allows us to specify
sufficient conditions on the dataset D = {(x, y)} under which
the solution to expression (1) occurs for a consecutive partition-
ing of size t, for f convex but not necessarily subadditive:
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Theorem 3. Given a partition scan statistic F(P) with associated
score function f (x, y) and priority function g(x, y) = x

y , and a
dataset D = {(xi, yi)} (for i = 1 . . . n) ordered by priority. If f
is convex, and (xi − xn)(y1 − yn) − (yi − yn)(x1 − xn) ≥ 0 for
i = 2 . . . n − 1, then the solution to

argmaxP={S1,...,St}
∑

j=1...t
f (

∑
i∈Sj

xi,
∑
i∈Sj

yi)

is a consecutive partitioning of size t.

Proof. By the right turn rule, if (xi−xn)(y1−yn)−(yi−yn)(x1−
xn) ≥ 0, then the singleton splitting subset p{i} lies above the
segment joining the vertices pC−n and pC1 , and is thus in the inte-
rior of C, not an extreme point. If all singleton splitting subsets
are in the interior, then by Proposition 1, the only extreme points
of C correspond to consecutive nonsplitting subsets, and the
symmetric score function f (x, y) is maximized at one of these
subsets. Finally, following Theorems 1 and 2, the partition scan
statistic is maximized for a consecutive partitioning.

For example, for the sets X = {7.0, 9.4, 8.9, 7.5, 6.9, 7.2,
7.5, 6.3} and Y = {8.4, 9.3, 6.7, 4.7, 1.8, 1.4, 0.6, 0.1}, we know
that any partition scan statistic with a convex score function f
satisfies CPP for this particular choice of X and Y.

5. Efficient Optimization over Consecutive
Partitionings

As noted in Section 3, an exhaustive search over all size-t par-
titionings P, in order to find the optimal partitioning P∗ =
argmaxP={S1...St}F(P), is computationally infeasible even for rel-
atively small datasets, requiring time exponential in the number
of data records n. However, if a partition scan statistic is known
to satisfy CPP or WCPP, then the corresponding optimization
can be accelerated substantially by evaluating only the much
smaller set of consecutive partitionings.

A constrained optimization over the set of all size-t consec-
utive partitionings has cost that grows as

(n−1
t−1

)
, that is, as a

polynomial of degree t – 1 in n. For very small t, exhaustive
enumeration of the consecutive partitionings is a low-degree
polynomial in n, and thus computationally feasible, but this
approach does not scale well for larger t.

Thus, we propose an alternative approach based on dynamic
programming (Algorithm 1), which runs in quadratic O(n2t)
time and requires linear O(nt) space. Algorithm 1 finds the
highest-scoring consecutive partitioning, arg maxP={S1...St′ }
F(P), for each size t′ ∈ {1, . . . , t}. For a partition scan
statistic F(P) satisfying CPP, we are guaranteed that the highest-
scoring consecutive partitioning of size t is the optimal size-t
partitioning. For a partition scan statistic satisfying WCPP but
not CPP, the highest-scoring consecutive partitioning of size t is
only guaranteed to be the optimal size-t partitioning if no other
consecutive partitioning of size t′ < t has higher score.

For each size t′ ∈ {1, . . . , t} and each element j ∈ {1, . . . , (n+
1−t′)}, Algorithm 1 computes two quantities: (a) the maximum
score F∗(j, t′) for dividing elements {j, . . . , n} into t′ consecutive
partitions, and (b) the starting element ρ(j, t′) of the second
partition of the highest-scoring consecutive size-t′ partitioning

Figure 2. Run times of Algorithm 1 as a function of n, with score function f (x, y) =
x2y−1.

of {j, . . . , n}. In the final stage of the algorithm (lines 25–36),
the highest-scoring consecutive partitioning of each size t′ ∈
{1, . . . , t} is recovered by repeatedly applying ρ, starting at j = 1,
and its corresponding score is F∗(1, t′).

The key step of the algorithm (lines 16–20) is that F∗(j, t′) =
maxk f (Cj,k

x , Cj,k
y ) + F∗(k + 1, t′ − 1), where k ∈ {j, . . . , (n +

1 − t′)}, f (Cj,k
x , Cj,k

y ) is the score of the partition formed by
elements {j, . . . , k}, and F∗(k+1, t′−1) is the maximum score for
dividing elements {k+1, . . . , n} into t′−1 consecutive partitions.
We note that the sufficient statistics (Cj,k

x , Cj,k
y ) are aggregated

iteratively (lines 4 and 15), giving constant-time computation
for each combination of t ∈ {1, . . . , t′}, j ∈ {1, . . . , (n +
1 − t′)}, and k ∈ {j, . . . , (n + 1 − t′)}, for a total run time
of O(n2t).

A display of run times of Algorithm 1 as a function of n,
for various values of t, is shown in Figure 2. We observe the
quadratic dependence of run time on n and linear dependence
on t. Average run time was under 2.7 sec for all n ≤ 5000 and
t ≤ 100.

6. Partition Scan Statistics for Multiple Cluster
Detection

The partition scan statistics presented in Section 2.1 generalize
Kulldorff ’s spatial scan statistic (Kulldorff 1997) from t = 2
to t > 2 partitions and from the Poisson distribution to
other distributions in a separable exponential family. As such,
they are best applied to risk partitioning, where the goal is to
optimally divide the dataset into t partitions of differing risks
q1, . . . , qt . We now consider the application of partition scan
statistics to the related problem of multiple cluster detection,
where we place additional constraints on the values of q1, . . . , qt
(and qall) in order to distinguish clusters of elevated risk from the
remaining background data. More precisely, consider the null
and alternative hypotheses in Section 2.1,

H0 : xi ∼ �(·; μ = qallμi) ∀si,
H1(P) : xi ∼ �(·; μ = qjμi) ∀si ∈ Sj,
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with constraints qj > 1 for j ∈ {2, . . . , t}, and q1 = qall = 1.
Then Equation (2) simplifies to:

Fclust(P) = Fclust({S1, . . . , St})
= log max

q2,...,qt>1

∏
j=2...t

∏
si∈Sj

Pr(xi | xi ∼ ψ(·; μ = qjμi))

Pr(xi | xi ∼ ψ(·; μ = μi))
.

This generalizes the expectation-based scan statistic (Neill
2012) from a single cluster (t = 2) to multiple clusters (t > 2).
For consistency with Neill (2012), we allow partitions to be
empty, so that the detected clusters (nonempty partitions with
qj > 1) could include some, all, or none of the data elements.

For expectation-based scan statistics in a separable exponen-
tial family, following Neill (2012):

Fclust(P) = Fclust({S1, . . . , St}) =
∑

j=2...t
f (Cj, Bj),

Algorithm 1 Dynamic Programming Algorithm for Optimizing
over Consecutive Partitionings

1: # Base case (t′ = 1)
2: (Cx, Cy) = (0, 0)

3: for j ∈ {n, n − 1, . . . , 1} do
4: (Cx, Cy) = (Cx, Cy) + (xj, yj)
5: F∗(j, 1) = f (Cx, Cy)
6: ρ(j, 1) = n + 1
7: end for
8:
9: # Iterative step

10: for t′ ∈ {2, . . . , t} do
11: for j ∈ {1, . . . , (n + 1 − t′)} do
12: F∗(j, t′) = −∞
13: (Cx, Cy) = (0, 0)

14: for k ∈ {j, . . . , (n + 1 − t′)} do
15: (Cx, Cy) = (Cx, Cy) + (xk, yk)

16: Fj,k = f (Cx, Cy) + F∗(k + 1, t′ − 1)

17: if Fj,k > F∗(j, t′) then
18: F∗(j, t′) = Fj,k

19: ρ(j, t′) = k + 1
20: end if
21: end for
22: end for
23: end for
24:
25: # Recover the highest-scoring consecutive partitioning for

each t′
26: for t′ ∈ {1, . . . , t} do
27: scores[t′] = F∗(1, t′).
28: partitions[t′] = []
29: j = 1;
30: for t′′ ∈ {t′, (t′ − 1), . . . , 1} do
31: jnext = ρ(j, t′′)
32: Append [j, jnext − 1] to partitions[t′]
33: j = jnext
34: end for
35: end for
36: return scores, partitions

where Cj and Bj are the sufficient statistics for partition Sj, Cj =∑
si∈Sj T(xi)zi and Bj = ∑

si∈Sj μizi, respectively, and the score
function f (x, y) = yDφ0(

x
y , 1) for x > y, 0 otherwise, where

Dφ0 is a Bregman divergence. We can now show:

Theorem 4. Let Fclust(P) = Fclust({S1, . . . , St}) = ∑
j=2...t

f (
∑

si∈Sj xi,
∑

si∈Sj yi) be the multiple cluster scan statistic cor-
responding to the expectation-based scan statistic for a distribu-
tion � in a separable exponential family, with associated score
function f (x, y) = yDφ0(

x
y , 1)1{x > y}, where Dφ0 is a Bregman

divergence, and priority function g(x, y) = x
y . Let dataset D =

{(xi, yi)}, i = 1 . . . n, be ordered by priority. Then the solution
to P∗ = arg maxP={S1...St} Fclust(P), allowing empty partitions, is
a consecutive partitioning of D, of size t′ ≤ t, with S1 ascending
consecutive.

Proof. We first note that the score function f (x, y) is convex,
since Bregman divergences are convex in their first argument
and the perspective of a convex function is convex. We now
proceed by induction. For the case t = 2, the convex score
function f (x, y) is maximized at an extreme point of the par-
tition polytope C, which is consecutive by Proposition 1. By
the reasoning in Section 4.1, the order of clockwise traversal
of the vertices of C, starting from the origin pC0 = pC−(n+1) , is
pC1 , . . . pCn , pC−2 , . . . , pC−n . Since the y-coordinates are increas-
ing on pC1 , . . . pCn , it follows that for each point pCj for j ∈
{1, . . . , n − 1}, there is a δ > 0 such that (Cj

x + δ, Cj
y) lies in

C. Since f is nondecreasing in x, the maximizing point must be
descending consecutive of the form pC−k , for 1 ≤ k ≤ (n + 1).
Thus, we have S2 descending consecutive and S1 ascending
consecutive, allowing for the possibility that either partition
could be empty.

For t > 2, consider any pair of subsets Si and Sj, and
assume without loss of generality that j �= 1. There are two cases.
First, if i = 1, then by the above reasoning, the optimal subset
S′

j of Si ∪ Sj is descending consecutive, and the corresponding
S′

1 is ascending consecutive. Second, if i �= 1, we proceed as
in Theorems 1 and 2. Since f is convex, the symmetric score
function f is also convex, and is maximized at an extreme point
of C.2 By identical reasoning to Theorems 1 and 2, there exist
optimal consecutive partitions S′

i and S′
j whose union is Si ∪

Sj.

This generalizes the linear-time subset scanning property for
expectation-based scan statistics in the separable exponential
family (Neill 2012) from a single detected cluster (t = 2) to
multiple detected clusters (t > 2). Randomization testing
can be used to assess the statistical significance of the detected
clusters, as in Kulldorff (1997) and Neill (2012). For t = 2, the
fast subset scan approach of Neill (2012) can be used to identify
the highest-scoring subset in O(n log n) time while evaluating
only O(n) of the 2n subsets. For t > 2, a slight modification

2We note that quasi-convexity of f is sufficient for the t = 2 case (as proved
in Neill 2012) but not for t > 2, since the symmetric score function f
corresponding to a quasi-convex score function f is not necessarily quasi-
convex. Subadditivity is not necessary here, since we allow empty parti-
tions.
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Figure 3. Plot of log(F∗
t − F∗

t−1) versus log t, for data generated under the null hypothesis H0 and under the alternative hypothesis H1 (with five true partitions and
ε = 0.75), respectively. Values of t ∈ {2, 3, . . . , 11} are shown. Note the large negative residual at t = 6 in plot (b).

of the dynamic programming approach described in Section 5
can identify the highest scoring partitioning, and thus detect
multiple clusters, in O(n2) time. To do so, we compute F∗(j, t′)
as above, and F∗

clust = maxt′ maxj F∗(j, t′), for t′ ∈ {1, . . . , t − 1}
and j ∈ {1 . . . (n + 1 − t′)}.

Several alternative approaches have been proposed for
extending the spatial scan statistic to multiple cluster detec-
tion (Kulldorff 1997; Zhang, Assuncao, and Kulldorff 2010;
Li et al. 2011; Takahashi and Shimadzu 2020). Most of these
approaches work sequentially, first detecting the primary cluster
and removing it from the data before searching for significant
secondary clusters. Kulldorff ’s original spatial scan (Kulldorff
1997) compares the scores of the secondary clusters to the same
detection threshold, obtained by randomization testing, as the
primary cluster. Zhang, Assuncao, and Kulldorff (2010) note
that this approach is conservative and adjust the threshold for
more sensitive detection of secondary clusters, while Takahashi
and Shimadzu (2020) propose a generalized linear model and
information-theoretic criterion to select the number of clusters,
starting with candidate clusters identified by the sequential
method. Repeated single cluster detection is computationally
efficient, scaling linearly with the number of detected clusters,
but does not directly optimize the log-likelihood ratio statistic
for multiple clusters. In contrast, we exactly and efficiently find
the highest scoring partitioning in the unconstrained sense,
which can be thought of as maximizing the joint LLR score
corresponding to multiple detected clusters. This is most similar
to Li et al. (2011), who explicitly scan over tuples of clusters and
compute joint scores, but their approach requires a exhaustive
search that scales exponentially with the number of clusters
to be detected (and thus is typically limited to two or three
clusters), while our approach can easily scale to very large n
and t. Note that the goal of these previously proposed methods
is different from ours: they focus entirely on spatial cluster
detection (typically scanning over circular regions in space),
while our approach identifies an optimal partitioning of the
data without an explicit spatial constraint.

7. Choosing the Number of Partitions t

We now consider how to choose the number of partitions t,
in cases when the desired value of t is not known a priori. We

propose a novel, computationally efficient heuristic for finding
t, and show in our experiments below that this approach can
obtain the correct t value in practice. For a given datasetD, let F∗

t
denote the maximum score maxP={S1,...,St} F(P) for separating
D into t partitions, and assume that we wish to choose t ∈
{1, 2, . . . , tmax} for some constant tmax. Our heuristic is based on
several observations. First, as shown in Figure 3(a), we identify
a power law relationship between the average score difference
�t = F∗

t − F∗
t−1 and the value of t, for data generated under the

null hypothesis H0, such that log �t is linearly related to log t.
Second, as shown in Figure 3(b), for data generated under the
alternative hypothesis H1(P) with ttrue distinct partitions, the
relationship between log �t and log t deviates from linearity. In
this case, we observe that the point (log t, log �t) corresponding
to t = ttrue+1 partitions has a large negative residual, indicating
that the increase in score from adding partition ttrue + 1 is
less than expected given the overall trend. Intuitively, when
partitions are sufficiently distinct, the �t from separating two
true partitions, when t ≤ ttrue, will be large compared to the
�t from splitting apart a single true partition, when t > ttrue.
Finally, we note that all scores F∗

1 , . . . , F∗
tmax+1 can be obtained

efficiently from a single run of Algorithm 1, as opposed to
requiring a separate run for each t.

This suggests the following algorithmic approach:

1. Compute F∗
tmax+1 as in Algorithm 1, storing the intermediate

results F∗
1 , . . . , F∗

tmax .
2. Compute log �t = log(F∗

t − F∗
t−1) for each t ∈ {2, 3, . . . ,

tmax + 1}.
3. Fit a linear model log �t = w1(log t) + w0, and compute

residuals for each t.
4. Set topt = argmint(log �t − w1(log t) − w0) − 1.

The time complexity of this algorithm isO(n2tmax)+O(tmax) =
O(n2tmax), where the first term for the dynamic programming
dominates the second term for the linear regression.

8. Simulation Experiments

We now perform two sets of simulation experiments to compare
the partition scan to the previously proposed Kulldorff and
expectation-based Poisson scan statistics, in the risk partition-
ing and multiple cluster detection settings, respectively.
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8.1. Risk Partitioning Simulations

For the first set of simulations, we evaluate the partition scan
statistic with Poisson score function, F(P) = ∑

j=1...t f (Cj, Bj)−
f (Call, Ball), where f (x, y) = x log( x

y ). We compare t = 2, t = 3,
and t = 10 partitions, where the t = 2 case corresponds to the
original Poisson scan (Kulldorff 1997).

We consider three different simulated scenarios (2 true par-
titions, 3 true partitions, and 10 true partitions). In each case,
we generate simulated datasets each consisting of n = 2500 data
records, where each data record has baseline yi ∼ Poisson(100)

and count xi ∼ Poisson(qiyi), where qi is the relative risk for that
data record.

Each of the three scenarios is indexed by the “signal strength”
ε, where we consider values of ε ranging from 0 (no signal) to
0.5 (strongest signal). For “two true partitions,” the relative risks
qi are 1 − ε and 1 + ε for data records in the first and second
partition, respectively. For “three true partitions,” we use relative
risks of 1 − ε, 1, and 1 + ε for the three partitions. For “ten true
partitions,” the relative risks are 1 − ε, 1 − 0.8ε, 1 − 0.6ε, 1 −

0.4ε, 1 − 0.2ε, 1 + 0.2ε, 1 + 0.4ε, 1 + 0.6ε 1 + 0.8ε, and 1 + ε.
For all three scenarios, the partitions are equal in size. For each
scenario and each signal strength ε, we generated 500 simulated
datasets. For each dataset and for each parameter setting (t = 2,
t = 3, and t = 10), we compute the optimal partitioning P∗ =
arg maxP F(P) and its score F∗ = F(P∗).

The methods were evaluated based on ranking quality,
which measures how well the partitions created by the method
correspond to the true partitions used to generate the data.
To compute ranking quality, we consider the true partitions
Strue

1 , . . . , Strue
m , ordered from smallest to largest relative risk,

and the detected partitions S1, . . . , St , likewise ordered from
smallest to largest relative risk. We then compute the probability
that a pair of data records (i, j) drawn uniformly at random with
replacement, with corresponding true partitions Strue

i and Strue
j

and corresponding detected partitions Si and Sj, are ordered
correctly by the method (i.e., Si > Sj if Strue

i > Strue
j , Si < Sj if

Strue
i < Strue

j , and Si = Sj if Strue
i = Strue

j ). Ranking quality can
be calculated as

RQ =
∑m

i=1
∑t

j=1
∑m

i′=1
∑t

j′=1 NijNi′j′(1{i < i′}1{j < j′} + 1{i > i′}1{j > j′} + 1{i = i′}1{j = j′})∑m
i=1

∑t
j=1

∑m
i′=1

∑t
j′=1 NijNi′j′

,

Figure 4. Ranking quality for 2, 3, and 10 true partitions, comparing partition scans with t = 2 (solid line), t = 3 (dotted line), and t = 10 (dashed line) partitions.



12 C. A. PEHLIVANIAN AND D. B. NEILL

where Nij is the number of data records assigned
to Strue

i ∩ Sj.

8.1.1. Risk Partitioning Simulation Results
We compare the ranking quality for partition scans with t =
2, t = 3, and t = 10, for varying numbers of true partitions,
in Figure 4. For two true partitions (Figure 4(a)), we observe
that the partition scan with t = 2 converges to the two correct
partitions, while the ranking quality of the t = 3 and t = 10
partition scans is reduced because a single true partition is split

between multiple detected partitions. For three true partitions
(Figure 4(b)), we observe that the ranking quality of the three
methods is very similar for low ε values. For higher ε, the correct
number of partitions (t = 3) outperforms t = 2 and t = 10, with
near-perfect partitions for the highest ε values considered. For
10 true partitions (Figure 4(c)), we again observe substantial
improvement in ranking quality for the correct number of par-
titions (t = 10) as compared to t = 3 and t = 2.

Across these three scenarios, we observe that, when the num-
ber of partitions t is correctly specified, the partition scan con-

Figure 5. Sample confusion matrices illustrating under- and over-specification of the true number of partitions, with ε = 0.5.

Figure 6. Mean and 95% confidence interval of chosen number of partitions t for 2, 3, 5, and 7 true partitions, as a function of signal strength ε.



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 13

verges to the correct partitioning of the data as signal strength
ε increases. However, when the number of partitions t is mis-
specified, ranking quality is reduced either because a single true
partition is split across multiple partitions, or because multiple
true partitions are combined into a single partition. This is
illustrated in Figure 5, which shows sample confusion matrices
with ε = 0.5 for the t = 10 case, when two true partitions exist,
and the t = 2 case, when 10 true partitions exist.

These examples demonstrate the importance of choosing the
correct value of the number of partitions t. Thus, we evaluate
our efficient heuristic for choosing t, described in Section 7. We
compute the mean and 95% confidence interval of the chosen
t (across the 500 simulated datasets) for the cases of two, three,
five, and seven true partitions, as shown in Figure 6. We observe
that, as the signal strength ε increases, our heuristic is able to
reliably choose the correct number of partitions t. However,
the signal strength required for convergence increases with the
number of true partitions, from ε ≈ 0.2 for two true partitions,
to ε ≈ 0.9 for seven true partitions.

8.2. Multiple Cluster Detection Simulations

For the second set of simulations, we evaluate the multiple
cluster detection (MCD) scan statistic with Poisson score

function, F(P) = ∑
j=2...t f (Cj, Bj), where f (x, y) = x log( x

y ) +
y − x if x > y and 0 otherwise. We compare t = 2 and t = 3
partitions, where the t = 2 case corresponds to the expectation-
based Poisson (EBP) scan statistic (Neill 2012). We denote
the t = 2 and t = 3 cases as EBP and MCD, respectively. We
also compare performance to Kulldorff ’s Poisson scan (i.e.,
partition scan with t = 2 partitions) and the partition scan
with t = 3 partitions, which we denote as KULL and PART,
respectively.

As in the risk partitioning experiments, we generate datasets
consisting of n = 2500 data records, where each data record
has baseline yi ∼ Poisson(100) and count xi ∼ Poisson(qiyi).
We focus on the case where there are two true clusters to be
detected, a primary cluster with relative risk q1 and a secondary
cluster with relative risk q2, where q1 > q2 > 1. Each cluster
consists of 10% of the data records, while the remaining 80% of
records are generated with qi = 1. As in the risk partitioning
experiments, we consider a range of signal strengths ε, where
the primary cluster has relative risk q1 = 1 + ε. We consider
three different scenarios: in the “low” scenario, the secondary
cluster has relative risk 1 + ε

4 , in the “medium” scenario, the
secondary cluster has relative risk 1 + ε

2 , and in the “high”
scenario, the secondary cluster has relative risk 1 + 3ε

4 . For each
scenario and each signal strength ε, we generated 500 simulated

Figure 7. Multiple cluster detection with medium-strength secondary cluster. MCD (solid line) is multiple cluster detection with t = 3 partitions, PART (dotted line) is risk
partitioning with t = 3, EBP (dashed line) is cluster detection with t = 2, and KULL (dash-dotted line) is risk partitioning with t = 2.
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Figure 8. Multiple cluster detection with low-strength secondary cluster. MCD (solid line) is multiple cluster detection with t = 3 partitions, PART (dotted line) is risk
partitioning with t = 3, EBP (dashed line) is cluster detection with t = 2, and KULL (dash-dotted line) is risk partitioning with t = 2.

datasets. An additional 10,000 datasets were generated under
the null hypothesis H0 (qi = 1 for all data records), to be used
for computing detection power. For each dataset and for each
method (MCD, PART, EBP, and KULL), we compute the optimal
partitioning P∗ = arg maxP F(P) and its score F∗ = F(P∗).

The methods were evaluated based on two criteria, detection
power, which measures a method’s ability to distinguish datasets
generated under the alternative hypothesis from those generated
under the null hypothesis of no clusters, and detection accuracy,
which measures how well the clusters identified by the method
correspond to the true clusters used to generate the data. To
compute detection power, we first compute the threshold score
needed for a method to detect at a fixed false positive rate of α =
0.05. To do so, we compute the maximum scores F∗ for 10,000
datasets under the null hypothesis and use the 95th percentile
of these scores as the detection threshold. We then compute the
proportion of the 500 datasets (for a given scenario and a given
signal strength ε) for which F∗ exceeds the threshold.3 Thus,
detection power is the statistical power (1 − Type II error) at a
fixed false positive rate (Type I error) of 5%.

We compute three different pairwise measures of detection
accuracy which together give a more complete picture of each
method’s ability to identify the primary and secondary clus-

3For more accurate evaluation, we also average these detection proportions
over 1000 bootstrapped samples of the detection threshold.

ters. Consider the detected partitions S1, . . . , St , ordered from
smallest to largest relative risk. Then primary cluster detection
accuracy is defined as the probability that, for a data record i
from the primary cluster and an unaffected data record j, each
selected uniformly at random, with corresponding partitions
Si and Sj, that Si > Sj. Similarly, secondary cluster detection
accuracy is defined as the probability that Si > Sj for a
data record i from the secondary cluster and an unaffected data
record j. Finally, cluster differentiation accuracy is defined as the
probability that Si > Sj for data records i from the primary
cluster and j from the secondary cluster. For i = 1 . . . t, let
N(p)

i , N(s)
i , and N(u)

i equal the number of records in the primary
cluster, secondary cluster, and unaffected records, respectively,
that are assigned to partition i. Then primary cluster detection
accuracy is defined as

PCDA =
∑

i=2...t
∑

i′=1...(i−1) N(p)

i N(u)

i′∑
i=1...t

∑
i′=1...t N(p)

i N(u)

i′
.

Secondary cluster detection accuracy and cluster differentiation
accuracy are defined analogously. For t = 3 partitions, perfect
detection—where all unaffected records are assigned to par-
tition S1, all records in the secondary cluster are assigned to
partition S2, and all records in the primary cluster are assigned
to partition S3—would score 1 for each of these three accuracy
measures.
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Figure 9. Multiple cluster detection with high-strength secondary cluster. MCD (solid line) is multiple cluster detection with t = 3 partitions, PART (dotted line) is risk
partitioning with t = 3, EBP (dashed line) is cluster detection with t = 2, and KULL (dash-dotted line) is risk partitioning with t = 2.

8.2.1. Multiple Cluster Detection Simulation Results
We first consider the “medium” scenario, for which the
primary and secondary clusters have relative risks 1 + ε

and 1 + ε
2 , respectively. Detection power, primary cluster

detection accuracy, secondary cluster detection accuracy, and
cluster differentiation accuracy for the MCD, PART, EBP,
and KULL methods are shown in Figure 7.4 For detection
power, we observe that the cluster detection methods (MCD
and EBP) have substantially higher detection power than the
risk partitioning methods (PART and KULL). PART slightly
outperforms KULL, while MCD and EBP have very similar
detection power. For primary cluster detection accuracy, the
methods with t = 3 partitions (MCD and PART) outperform the
methods with t = 2 (EBP and KULL), and the cluster detection
methods slightly outperform the risk partitioning methods. For
secondary cluster detection accuracy, MCD and PART again
outperform EBP and KULL. MCD outperforms PART across
most of the range of ε values, while KULL slightly outperforms
EBP. Finally, for cluster differentiation accuracy, we see a clear
ordering of methods with MCD > PART > EBP > KULL.
As the signal strength ε increases, MCD and PART correctly
distinguish the primary cluster, the secondary cluster, and the

4Note the smaller x-axis ranges for Figures 7(a), 8(a), and 9(a) as compared
to the rest of Figures 7–9. All methods had perfect detection power for
ε > 0.2, so we focus on the lower signal strengths for the detection power
graphs.

remaining records, while EBP and KULL detect the primary
and secondary cluster together as a single cluster, and thus, fail
to distinguish primary from secondary.

Next we consider the “low” scenario, for which the primary
and secondary clusters have relative risks 1 + ε and 1 + ε

4 ,
respectively. Detection power, primary cluster detection accu-
racy, secondary cluster detection accuracy, and cluster differen-
tiation accuracy for the MCD, PART, EBP, and KULL methods
are shown in Figure 8. We see the same general trends in
detection power, primary cluster detection accuracy, and cluster
differentiation accuracy as in the medium case. One notable
difference is in secondary cluster detection accuracy: as signal
strength increases, the methods with t = 2 partitions (EBP and
KULL) only detect the primary cluster and fail to detect the
secondary cluster, while the methods with t = 3 (MCD and
PART) correctly distinguish the primary cluster, the secondary
cluster, and the remaining records.

Finally, we consider the “high” scenario, for which the pri-
mary and secondary clusters have relative risks 1+ε and 1+ 3ε

4 ,
respectively. Detection power, primary cluster detection accu-
racy, secondary cluster detection accuracy, and cluster differen-
tiation accuracy for the MCD, PART, EBP, and KULL methods
are shown in Figure 9. We see the same trends in detection
power and cluster detection accuracy as in the medium case.
One notable difference is in cluster differentiation accuracy. As
in the medium case, the methods with t = 2 partitions (KULL
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Figure 10. Multiple cluster detection with medium-strength secondary cluster, fixed signal strength of ε = 0.5, and varying cluster size. MCD (solid line) is multiple
cluster detection with t = 3 partitions, PART (dotted line) is risk partitioning with t = 3, EBP (dashed line) is cluster detection with t = 2, and KULL (dash-dotted line) is risk
partitioning with t = 2.

and EBP) detect the primary and secondary cluster together
as a single cluster, and thus, fail to distinguish primary from
secondary. However, the methods with t = 3 (MCD and PART)
also have difficulty distinguishing primary from secondary: for
risk partitioning with t = 3, even for high signal strengths, the
primary and secondary clusters are detected as a single cluster in
the third (highest risk) partition, while a number of unaffected
records are incorrectly detected as a “false positive” cluster in the
second (medium-risk) partition. For multiple cluster detection
with t = 3, this problem occurs for medium signal strengths
(ε ≈ 1), while for high signal strengths (ε ≈ 2), MCD is able to
correctly distinguish the primary cluster, secondary cluster, and
unaffected records.

Thus, across these three scenarios, we observe that multiple
cluster detection with t = 3 (MCD) outperforms risk partition-
ing with t = 3 (PART) as well as the methods with t = 2 (EBP
and KULL). Moving from single to multiple cluster detection
(i.e., moving from t = 2 to t = 3) consistently improves detection
accuracy and ability to differentiate between the primary and
secondary clusters, while the single cluster detection methods
will either fail to detect the secondary cluster (if its signal is
much weaker than the primary cluster) or combine the primary
and secondary clusters into a single detected cluster. Addi-
tionally, while the partition scan performs adequately for the

multiple cluster detection task, the multiple cluster detection
scan consistently outperforms PART in terms of both detection
power and detection accuracy.

To confirm these results, we perform an additional set of sim-
ulation runs, based on the “medium-strength secondary cluster”
scenario. Instead of fixing each cluster size at 10% of the data
records, and allowing the signal strength ε to vary, we fix ε = 0.5
and allow cluster sizes to vary between 1% and 20% of the data
records, as shown in Figure 10. As expected, smaller cluster
size, like weaker signal strength, reduces the performance of all
methods, while keeping the relative performance of methods
unchanged. We observe that MCD outperforms PART, EBP, and
KULL in terms of both detection power and accuracy. PART
has higher primary cluster detection accuracy, secondary cluster
detection accuracy, and cluster differentiation accuracy than
EBP and KULL, while EBP has higher detection power than
PART for small cluster sizes.

9. Empirical Study—Cancer Incidence

We apply the multiple cluster detection scan approach to iden-
tify high-risk cancer clusters in New York City, using cancer
incidence data from 2013 to 2017, grouped by census tract.
Data were obtained from the New York State Cancer Reg-
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Figure 11. New York City cancer incidence clusters by census tract, 2013–2017, using the multiple cluster detection scan with chosen numbers of partitions ((a)–(c)) and t
= 2 partitions ((d)).

istry (New York State Dept. of Health 2021), including the
observed count (number of cases) and the expected count for
the three most common cancer types (prostate, lung, and breast)
for each tract during the five-year time period. Expected counts
were population- and age-adjusted, using the statewide cancer
rate as a baseline. In this way we identify regions of high cancer
risk and possibly correlate them with a common feature: demo-
graphic, socio-economic, geographic, etc. We use the approach
described in Section 7 to choose the number of partitions t
between t = 1 and t = 20, obtaining t = 3, t = 4, and t = 5
(i.e., 2, 3, and 4 detected clusters) for lung, breast, and prostate
cancers, respectively. The results are shown in Figure 11(a)–
(c), respectively, where darker shades correspond to partitions

with higher relative risks q. We observe that all three cancer
types cluster spatially, and that much of this clustering can be
explained by neighborhood demographic characteristics. For
example, spatial clustering is most evident for prostate cancer,
which is known to afflict African–American males at a much
higher rate than white males (New York State Dept. of Health
2021). We also compare the results to single cluster detection (t =
2) for each cancer type; we show prostate cancer as an example in
Figure 11(d). We observe that the higher numbers of partitions t
provide a finer-grained (and thus, more informative) gradation
of risk as compared to the single cluster detection (t = 2) case,
distinguishing between clusters with a higher and lower degree
of elevated risk. For example, for prostate cancer, cluster relative
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risks varied from q = 1.21 to q = 2.43, as compared to q = 1.70 for
the single cluster detection approach. Additionally, as expected,
the chosen t values more closely fit the observed data than t = 2,
as measured by total log-likelihood: LL = −5095 versus -5205 for
lung cancer, −5322 versus −5441 for breast cancer, and −5580
versus −5786 for prostate cancer.

10. Conclusions

The empirical results shown above demonstrate several advan-
tages of generalizing the spatial and subset scan statistics to
multiple partitions of the data: increased detection power and
accuracy for multiple clusters, as well as the ability to accurately
capture finer-grained gradations in risk. The practical utility
of our risk partitioning and multiple cluster detection scan
statistics was enabled by three novel methodological contribu-
tions: (i) formulating these partition scan statistics as generaliza-
tions of the population-based and expectation-based scan statis-
tics, respectively; (ii) identifying sufficient conditions under
which the optimal partitioning is guaranteed to be consecutive;
and (iii) developing a new dynamic programming algorithm
for identification of the optimal consecutive partitioning in
quadratic time. Together, these contributions enable exact and
efficient solutions to large-scale risk partitioning and multiple
cluster detection problems for any partition scan statistic satis-
fying the Consecutive Partitions Property. Further, since CPP
generalizes the linear-time subset scanning property from t = 2
to t ≥ 2 partitions of the data, our novel, geometric proof of
CPP also provides a new approach to proving LTSS.

One important limitation of the present approach, which
we will believe will provide a fertile ground for future work, is
that it only solves the “best unconstrained partitioning” prob-
lem, while for real-world problems it is desirable to include
constraints, such as spatial proximity or connectivity, on the
detected subsets or partitions of the data. We believe that, just
as the LTSS property has proved to be a useful building block
for solving constrained pattern detection problems (Neill 2012;
Speakman, McFowland III, and Neill 2015), CPP will enable
scalable solutions to a variety of constrained partitioning prob-
lems. However, significant work remains in defining constraints
or penalties which encode desirable features of a partitioning
while still preserving the efficient and exact optimization guar-
anteed by CPP.

Supplementary Materials

C++ and Python code: The library contains exact solvers for partition
scan statistics (both risk partitioning and multiple clustering scans)
for score functions satisfying the Consecutive Partitions Property.
Multiple objective functions from the generalized exponential family are
supported, as is determination of the optimal partition size. The C++
routines are standalone or exposed through Python bindings. Scripts
are provided to generate synthetic data and reproduce figures from the
paper.
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Code for this article is available at https://github.com/pehlivanian/Partition
Solvers.
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