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Abstract. The classical phase retrieval problem arises in contexts ranging from speech recogni-
tion to x-ray crystallography and quantum state tomography. The generalization to matrix frames
is natural in the sense that it corresponds to quantum tomography of impure states. We provide
computable global stability bounds for the quasi-linear analysis map \beta and a path forward for un-
derstanding related problems in terms of the differential geometry of key spaces. In particular, we
manifest a Whitney stratification of the positive semidefinite matrices of low rank which allows us
to ``stratify"" the computation of the global stability bound. We show that for the impure state case
no such global stability bounds can be obtained for the nonlinear analysis map \alpha with respect to
certain natural distance metrics. Finally, our computation of the global lower Lipschitz constant for
the \beta analysis map provides novel conditions for a frame to be generalized phase retrievable.
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1. Introduction. Let H = Cn\times r with n \geq r be the Hilbert space of tall matri-
ces with complex entries, equipped with the real inner product \langle z, w\rangle R = \Re tr\{ z\ast w\} ,
where z\ast denotes the transpose complex conjugate of z (the Hermitian conjugate). We
denote by \langle z, w\rangle C = tr\{ z\ast w\} the complex inner product and by Ran(z) = \{ zu| u \in Cr\} 
the range of z as an operator z : Cr \rightarrow Cn. Let Cn\times r

\ast be the open subset of Cn\times r con-
sisting of full rank tall matrices. For p \geq 1 we denote by | | z| | p the pth Schatten norm
of z, that is to say, the lp norm of the singular values of z. The pseudoinverse of z will
be denoted by z\dagger . Let U(r) be the Lie group of r\times r matrices with entries in C satisfy-
ing U\ast U = I. We denote by Cn\times r/U(r) and Cn\times r

\ast /U(r) the set of equivalence classes
in Cn\times r and Cn\times r

\ast , respectively, under the equivalence relation z \sim w if and only if
there exists U \in U(r) such that z = wU . Let Sp,q(Cn) denote the set of symmetric
operators (Hermitian matrices) on Cn having at most p positive and q negative eigen-
values, and let \r Sp,q(Cn) be the set of symmetric operators (Hermitian matrices) on Cn

having exactly p positive and q negative eigenvalues. The set Cn\times r/U(r) may then be
identified with Sr,0(Cn) and Cn\times r

\ast /U(r) with \r Sr,0(Cn) via Cholesky decomposition.
Being a finite-dimensional space, a frame for Cn\times r is a collection \{ fj\} mj=1 \subset Cn\times r that
spans Cn\times r. In particular, \{ fj\} mj=1 is a frame if and only if there exist A,B > 0 (called

frame bounds) satisfying A| | z| | 22 \leq 
\sum m

j=1 | \langle fj , z\rangle R| 2 \leq B| | z| | 22 for all z \in Cn\times r. This

condition may also be written A| | z| | 22 \leq 
\sum m

j=1\langle Aj , zz
\ast \rangle R \leq B| | z| | 22 for all z \in Cn\times r,

where Aj = fjf
\ast 
j . Using this fact, we may extend the concept of a frame for Cn\times r to

collections of symmetric matrices \{ Aj\} mj=1 \subset Sym(Cn). Fix a frame for Cn\times r; then
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LIPSCHITZ ANALYSIS OF PHASE RETRIEVABLE FRAMES 1519

that frame is called generalized phase retrievable if the following map is injective:

\beta : Cn\times r/U(r) \rightarrow Rm,

\beta j(z) = \langle Aj , zz
\ast \rangle R, j = 1, . . . ,m.

(1.1)

This definition is in agreement with the generalized phase retrieval problem laid out
in [27] for the case r = 1. Note that if Aj = fjf

\ast 
j , then \beta j(z) = | | f\ast j z| | 22. A breadth of

literature exists on the classical phase retrieval problem where r = 1 and H = Cn or
H = Rn; see, for example, [4] for an explicit construction of Parseval phase retrievable
frames and [1] for a proof of the stability of finite-dimensional phase retrievability
under perturbation of the frame vectors. In contrast to the finite-dimensional case,
it is shown in [10] that infinite-dimensional phase retrieval is never lower-Lipschitz.
Probabilistic error bounds for the case of noisy phase retrieval may be found in [14]
for frames sampled from a sub-Gaussian distribution satisfying a so-called ``small
ball"" assumption. Efficient algorithms exist for doing classical phase retrieval (for
example, via Wirtinger flow as in [12]), as well for constructing frames with desirable
properties (nearly tight with low coherence) as in [13]. See, for example, [25] for an
analysis of the stability statistics for random frames and [21] for the interesting result
that a large class of ``nonpeaky"" vectors (so-called \mu -flat vectors) are recoverable
even when frame vectors are chosen as Bernoulli random vectors, a case in which
phase retrieval is well known to fail for arbitrary signals. Recently several advances
have been made in understanding natural generalizations of the problem to arbitrary
symmetric measurement matrices [27], unifying the problem of phase retrieval with
that of fusion frame reconstruction. Lipschitz stability questions for the generalized
phase retrieval are analyzed in [30]. The generalized phase retrieval problem in the
case r = 1 has proven amenable to efficient implementations of gradient descent [22],
and a probabilistic guarantee of global convergence of first order methods like gradient
descent has been obtained in [23] for O(n log3(n)) frame vectors. In accordance with
the classical phase retrieval we also define the \alpha map as the entrywise square root of
the beta map (here we require that each Aj \geq 0)

\alpha : Cn\times r/U(r) \rightarrow Rm,

\alpha j(z) = \langle Aj , zz
\ast \rangle 

1
2

R , j = 1, . . . ,m.
(1.2)

Note that if we write Aj = fjf
\ast 
j using Cholesky decomposition, then \alpha j(z) = | | f\ast j z| | 2.

In this paper we will study the global and local Lipschitz properties of these two maps
in the case that the frame is generalized phase retrievable. In particular, we analyze
the following (squared) global Lipschitz constants:

a0 := inf
x,y\in Cn\times r

x\not =y

| | \beta (x) - \beta (y)| | 22
| | xx\ast  - yy\ast | | 22

, b0 := sup
x,y\in Cn\times r

x\not =y

| | \beta (x) - \beta (y)| | 22
| | xx\ast  - yy\ast | | 22

,(1.3)

A0 := inf
x,y\in Cn\times r

x\not =y

| | \alpha (x) - \alpha (y)| | 22
| | (xx\ast ) 1

2  - (yy\ast )
1
2 | | 22

, B0 := sup
x,y\in Cn\times r

x\not =y

| | \alpha (x) - \alpha (y)| | 22
| | (xx\ast ) 1

2  - (yy\ast )
1
2 | | 22

.(1.4)

In doing so we will employ several distance metrics on Cn\times r/U(r) (equivalently
on Sr,0(Cn)), the relationships between which are contained in Theorem 3.7. The
Lipschitz properties of \alpha and \beta are intimately related to the geometry of Sr,0(Cn),
which is the subject of Theorem 4.5. Theorem 4.5 continues the results in [8] on the
geometry of the n \times n positive definite matrices P(n). Thus the main contributions
of this work are as follows:
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1520 RADU BALAN AND CHRIS B. DOCK

\bullet In section 3 we introduce the novel distance

d(x, y) :=
\sqrt{} 
(| | x| | 22 + | | y| | 22)2  - 4| | x\ast y| | 21(1.5)

on Cn\times r/U(r) and in Theorem 3.7 provide optimal Lipschitz constants with
respect to natural embeddings of (Cn\times r/U(r), d) into the Euclidean space
(Sym(Cn), | | \cdot | | 2). This new distance metric allows us in Theorem 5.6 to
compute local lower Lipschitz constants for the \beta map generalizing those in
Theorem 2.5 of [6]. Theorem 3.7 also provides optimal Lipschitz constants
with respect to natural embeddings of (Cn\times r/U(r), D) into (Sym(Cn), | | \cdot | | 2)
for the Bures--Wasserstein distance D(x, y) :=

\sqrt{} 
| | x| | 22 + | | y| | 22  - 2| | x\ast y| | 1.

\bullet In section 4 Theorem 4.5 generalizes Theorem 5 in [8] by providing the ge-
ometry not just of the manifold of positive definite matrices P(n) but of the
algebraic semivariety Sr,0(Cn). In particular we manifest a Whitney strati-
fication of Sr,0(Cn), obtain the Riemannian metrics of the stratifying man-
ifolds, and show that this family of metrics is compatible across the strata
in the sense that geodesics of lower strata are limiting curves of geodesics in
higher strata. In particular this proves that the geodesic in Sr,0(Cn) con-
necting two matrices of rank k < r is completely contained in \r Sk,0(Cn). This
stratification of the low rank positive-semidefinite matrices is crucial in sim-
plifying the computation of the global lower Lipschitz bounds for \beta and \alpha in
Theorems 5.6 and 5.9, respectively.

\bullet In section 5 Theorem 5.6 provides an explicit formula for the global lower
bound a0 as the minimization over U(n) of the (2nr  - r2)th eigenvalue of a
family of matrices parametrized by U(n). Theorem 5.6 also uses the distance
d to provide a generalization of Theorem 2.5 in [6] to the case r > 1 and shows
that the analogue \^Qz of \scrR (\xi ) can be used to control a0 to within a factor
of 2. We also show in Theorem 5.9 that the corresponding generalization of
Theorem 2.2 in [6] to the case r > 1 is false, namely, that A0 = 0 when r > 1.
Thus in the case r > 1 the more recently introduced \beta map (the entrywise
square of the \alpha map) is a more natural and well-behaved analysis map for
generalized phase retrieval, owing primarily to the fact that it lifts to a linear
map on the low rank positive-semidefinite matrices. It should be noted that
Theorem 5.9 does not rule out the possibility of a better distance metric with
respect to which \alpha is globally lower Lipschitz. Finally, in Theorem 5.14 we
provide novel conditions for a frame \{ Aj\} mj=1 for Cn\times r to be generalized phase
retrievable.

A motivating example for the Lipschitz analysis of \alpha and \beta is quantum tomography
of impure states. A noisy quantum system is modeled as a statistical ensemble over
pure quantum states. The standard example is unpolarized light. In such cases, all
of the measurable information in the system is contained in a density matrix which,
using bra-ket notation, has the form

\rho =
\sum 
j\in \scrI 

pj | \psi j\rangle \langle \psi j | ,(1.6)

where pj is the ensemble probability that the system is in the pure quantum state
| \psi j\rangle belonging to a Hilbert space H. If we assume the cardinality of \scrI is finite and
equal to r and that the state vectors themselves live in the Hilbert space Cn, then
\rho \in Sr,0(Cn) \cap \{ x \in Sym(Cn)| tr\{ x\} = 1\} . The expectation of a given observable A
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(a symmetric operator on Cn) is therefore

E\rho [A] =
\sum 
j\in \scrI 

pj\langle \psi j | A| \psi j\rangle =
\sum 
j\in \scrI 

pjtr\{ | \psi j\rangle \langle \psi j | A\} = tr\{ \rho A\} = \Re tr\{ \rho A\} .(1.7)

By repeatedly measuring the observable A and then allowing the quantum system to
relax one may estimate tr\{ \rho A\} (and perhaps higher moments), but the aim is to infer \rho 
itself. It was shown in [16] that sufficiently many randomly sampled Pauli observables
can be used along with methods from compressed sensing (trace minimization, matrix
Lasso) to reconstruct a low rank density matrix with high fidelity. In general, if a
suite of observables is well chosen (constitutes a generalized phase retrievable frame),
then the problem of inferring \rho from the expectation values of said observables is
subordinate to the problem of phase retrieval on Cn\times r. Asking if, for a collection of
observables \{ Aj\} mj=1, the density matrix \rho is recoverable is equivalent to asking if the
map

\~\beta : Sr,0(Cn) \cap \{ x \in Sym(Cn)| tr\{ x\} = 1\} \rightarrow Rm,

\~\beta (\rho ) =

\left[   \langle \rho ,A1\rangle R
...

\langle \rho ,Am\rangle R

\right]   (1.8)

is injective. In fact, given that we can only approximate the expectations using finitely
many measurements, we should hope that it is lower Lipschitz with respect to the
Frobenius distance. Such stability questions for phase retrievable frames for Cn (the
pure state case) are investigated in [1]. Given that \rho is positive semidefinite and rank
at most r there exists a Cholesky factor z \in Cn\times r such that \rho = zz\ast . Indeed we may
take z \in Cn\times r/U(r) since \rho is invariant under z \rightarrow zU , in which case tr\{ \rho \} = 1 if and
only if | | z| | 2 = 1. We may therefore concern ourselves with the Lipschitz properties
of \beta restricted to z \in Cn\times r/U(r) with | | z| | 2 = 1, rather than \~\beta . For the time being
we consider a Lipschitz analysis of \beta : Cn\times r/U(r) \rightarrow Rm, deferring discussion of
a possible Lipschitz retract onto the unit sphere. Thus we seek information on the
optimal global lower Lipschitz constant of the \beta map, namely,

\surd 
a0. In the above

example if a0 > 0, this means that if we can measure each E\rho [Aj ] to within error
\epsilon > 0, then we can obtain an approximation \^\rho to \rho that satisfies

| | \rho  - \^\rho | | 2 \leq \epsilon 
\surd 
m

\surd 
a0
.(1.9)

In addition to quantum state tomography, Lipschitz analysis of spaces of low rank
matrices is central in a significant number of problems in science and engineering such
as the phase retrieval problem [4, 27], source separation and inverse problems [15], as
well as the low rank matrix completion problem [11].

We caution the reader that throughout the paper the scalar product \langle \cdot , \cdot \rangle R is a
real inner product, but z\ast denotes the conjugate with respect to the complex inner
product \langle \cdot , \cdot \rangle C. We also note that the norm | | z| | p for p \geq 1 is the pth Schatten norm
of z \in Cn\times r seen as a C-linear operator from Cr to Cn. Hence the norm | | \cdot | | 2, while it
refers to the Schatten 2 norm, is equivalently given as | | z| | 2 =

\sqrt{} 
\langle z, z\rangle R =

\sqrt{} 
\langle z, z\rangle C. If

z were instead seen as an R-linear operator from Cr to Cn, then the resulting Schatten

p norm would be amplified by a factor 2
1
p since the multiplicity of each singular value

would double.
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1522 RADU BALAN AND CHRIS B. DOCK

2. A review of quantitative phase retrievability. The question of phase
retrievability criteria for frames for Rn was addressed in [4], in which it was shown that
a frame \scrF is phase retrievable if and only if it satisfies the ``complementing property,""
that is, if and only if for every subset \scrI \subset \scrF either \scrI or \scrF \setminus \scrI spans Rn. It was moreover
shown in [4] that if m < 2n  - 1, then a frame for Rn of cardinality m will not be
phase retrievable and also that a generic frame for Rn of size m \geq 2n - 1 will be phase
retrievable---that is to say, the set \{ \scrF = \{ f1, . . . , fm\} \subset Rn| \scrF is phase retrievable\} 
will be dense in the Zariski topology when m \geq 2n  - 1. The question of phase
retrievability criteria can be made quantitative by asking for which frames the analysis
maps \alpha and \beta are lower Lipschitz with respect to some natural distance metrics, and
computing their lower Lipschitz constants. Intuitively, a frame is phase retrievable
if and only if \alpha (resp., \beta ) is injective, and thus it is natural to analyze (for a given
frame) the lower Lipschitz constant of \alpha (resp., \beta ), which measures ``how"" injective
\alpha (resp., \beta ) is. In answer to this refinement it was shown in [5] that for the \alpha map
and the distance \rho (x, y) = min\{ | | x - y| | 2, | | x+ y| | 2\} we have the following.

Theorem 2.1 (see [5, Theorem 4.3]). For any index set I \subset \{ 1, . . . ,m\} let \scrF [I] =
\{ fk| k \in I\} and let \sigma 2

1 [I] = \lambda max

\bigl( \sum 
k\in I fkf

\ast 
k

\bigr) 
and \sigma 2

n[I] = \lambda min

\bigl( \sum 
k\in I fkf

\ast 
k

\bigr) 
. Then

A0 := inf
x,y\in Rn

x�y

| | \alpha (x) - \alpha (y)| | 22
\rho (x, y)2

= min
I\subset \{ 1,...,m\} 

\sigma 2
n[I] + \sigma 2

n[I
C ] .(2.1)

This result implies in particular that for a phase retrievable frame for Rn the \alpha 
map is globally lower Lipschitz. An analogous result was given in [5] for the \beta map
and the distance | | xxT  - yyT | | 1.

Theorem 2.2 (see [5, Theorem 2.1]). Let \{ fj\} mj=1 be a phase retrievable frame

for Rn and let R : Rn \rightarrow Sym(Rn) be given by R(x) =
\sum m

j=1 | \langle x, fj\rangle | 2fjfTj . Then

a0 := inf
x,y\in Rn

x�y

| | \beta (x) - \beta (y)| | 22
| | xxT  - yyT | | 21

= min
x\in Rn

| | x| | 2=1

\lambda n(R(x)) > 0 .(2.2)

Regarding the complex case the following phase retrievability criterion was ob-
tained in [7].

Theorem 2.3 (see [7, Theorem 4]). Let \{ fj\} mj=1 be a frame for Cn. For u \in Cn

denote S(u) = spanR\{ fjf\ast j u\} mj=1. Then the following are equivalent:
(i) The frame \{ fj\} mj=1 \subset Cn is phase retrievable.
(ii) dimR S(u) \geq 2n - 1 for every u \in Cn \setminus \{ 0\} .
(iii) S(u) = spanR\{ iu\} \bot for every u \in Cn \in \setminus \{ 0\} .

In connection to this paper we note that the above result is extended to the case
of generalized retrievability of frames for Cn\times r by Theorem 5.14. The quantitative
lower Lipschitz variant of Theorem 2.3 was obtained for the \beta analysis map in [6], in
which the following was proved for the beta map.

Theorem 2.4 (see [6, Theorems 2.3 and 2.5]). Let \{ fj\} mj=1 be a phase retrievable

frame for Cn. Define \scrR : R2n \rightarrow Sym(R2n) via \scrR (\xi ) =
\sum m

j=1 \Phi j\xi \xi 
T\Phi j, where

\Phi j = \phi j\phi 
T
j + J\phi j\phi 

T
j J

T , \phi j =
\bigl[ \Re fj
\Im fj

\bigr] 
, and J is the symplectic form

\bigl[ 
0  - I
I 0

\bigr] 
. Then

a0 := inf
x,y\in Cn

x�y

| | \beta (x) - \beta (y)| | 22
| | xx\ast  - yy\ast | | 21

= min
\xi \in R2n

| | \xi | | 2=1

\lambda 2n - 1(\scrR (\xi )) > 0 .(2.3)
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The connection of the above to Theorem 2.3 is that the null space of \scrR (\xi ) includes
the realification of spanR\{ i\xi \} for every \xi . Theorem 2.4 is extended to the case of
generalized phase retrievability of frames for Cn\times r by Theorem 5.6.

3. Relevant distances and Lipschitz embeddings.

Definition 3.1. We define the equivalence relation \sim on Cn\times r via

x \sim y \Leftarrow \Rightarrow \exists U \in U(r)| x = yU(3.1)

and denote by [x] the equivalence class of x \in Cn\times r, and by Cn\times r/U(r) the collection
of equivalence classes \{ [x]| x \in Cn\times r\} .

The stability analysis that follows for \beta and \alpha in Theorems 5.6 and 5.9 will rely
heavily on the following natural metrics on Cn\times r/U(r).

Definition 3.2. We define D, d : Cn\times r \times Cn\times r \rightarrow R.

D(x, y) = min
U\in U(r)

| | x - yU | | 2

=
\sqrt{} 
| | x| | 22 + | | y| | 22  - 2| | x\ast y| | 1 ,

d(x, y) = min
U\in U(r)

| | x - yU | | 2| | x+ yU | | 2

=
\sqrt{} 
(| | x| | 22 + | | y| | 22)2  - 4| | x\ast y| | 21 .

(3.2)

We note that another distance on Cn\times r/U(r) given by

D\prime (x, y) = max
U\in U(r)

| | x - yU | | 2

=
\sqrt{} 

| | x| | 22 + | | y| | 22 + 2| | x\ast y| | 1
(3.3)

was introduced and analyzed for the r = 1 case in [19]. We note merely that d = D\cdot D\prime .
This does not imply d is a metric, but in fact we have the following proposition.

Proposition 3.3. Both D and d are metrics in the usual sense on Cn\times r/U(r).

Proof. See Appendix A.1.

The proof of Proposition 3.3 relies on Lemma A.1, an apparently simple result
about the analytic geometry of parallelepipeds in R3 which may be of independent
interest.

The minimizer U can be chosen to be the same for both d and D, and is charac-
terized by the following.

Proposition 3.4. The unitary minimizer in both d and D is given by the polar
factor in x\ast yU = | x\ast y| . The minimizer will be unique so long as x\ast y is full rank.
Otherwise, the minimizer will be of the form U = U0 + U1, where U0 = V0W

\ast 
0 with

V0,W0 \in Cr\times rank(x\ast y) the matrices whose columns are the right and left singular
vectors, respectively, of the nonzero singular values of x\ast y and U1 \in Cr\times r any matrix
such that U1U

\ast 
1 = Pker(x\ast y) and U\ast 

1U1 = PRan(x\ast y)\bot .

Proof. See Appendix A.2.

The metrics d andD can be compared to the usual Euclidean distance on Sym(Cn)
modulo certain embeddings.

D
ow

nl
oa

de
d 

01
/2

0/
23

 to
 1

29
.2

.1
80

.1
03

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1524 RADU BALAN AND CHRIS B. DOCK

Definition 3.5. We define \theta , \pi , \psi : Cn\times r \rightarrow Sr,0(Cn) as

\theta (x) = (xx\ast )
1
2 ,

\pi (x) = xx\ast = \theta (x)2,

\psi (x) = | | x| | 2(xx\ast )
1
2 = | | \theta (x)| | 2\theta (x) .

(3.4)

Proposition 3.6. The embeddings \pi , \theta , and \psi are rank-preserving, surjective,
and injective modulo \sim , and thus we write \theta , \pi , \psi : Cn\times r/U(r) \lhook \rightarrow Sym(Cn).

Proof. See Appendix A.3.

Theorem 3.7. Let x, y \in Cn\times r/U(r). Then the following hold:
(i) \theta : (Cn\times r/U(r), D) \rightarrow (Sr,0(Cn), | | \cdot | | 2) is a bi-Lipschitz map. In particular,

Cn| | \theta (x) - \theta (y)| | 2 \leq D(x, y) \leq | | \theta (x) - \theta (y)| | 2 ,(3.5)

where Cn = 1 if n = 1 and Cn = 1\surd 
2
for n > 1. The constants Cn and 1 are

optimal.
(ii) \pi : (Cn\times r/U(r), d) \rightarrow (Sr,0(Cn), | | \cdot | | 1) is 1-Lipschitz and \psi  - 1 : (Sr,0(Cn), | | \cdot 

| | 2) \rightarrow (Cn\times r/U(r), d) is 2-Lipschitz for r > 2 and
\surd 
2-Lipschitz for r = 1. In

particular,

| | \pi (x) - \pi (y)| | 2 \leq | | \pi (x) - \pi (y)| | 1 \leq d(x, y) \leq cr| | \psi (x) - \psi (y)| | 2 ,(3.6)

where cr =
\surd 
2 if r = 1 and cr = 2 if r > 1. The constants 1 and cr are optimal.

(iii) For r = 1

\psi (x) = \pi (x) ,(3.7)

d(x, y) = | | \pi (x) - \pi (y)| | 1 .(3.8)

The identity (3.8) was noticed and used in [6]; its proof is included here for the
benefit of the reader.

(iv) For r > 1, there is no constant C satisfying C| | \pi (x) - \pi (y)| | 2 \geq d(x, y) for each
x, y \in Cn\times r (hence the use of the alternate embedding \psi ).

Proof. See Appendix A.4.

Remark 3.8. While d and D are evidently not Lipschitz equivalent (they scale dif-
ferently), they do generate the same topology on Cn\times r/U(r) since d(x, y) \leq D(x, y)2,
and given sufficiently small \epsilon > 0 we have d(x, y) < | | x| | 

\surd 
\epsilon =\Rightarrow D(x, y) < \epsilon .

4. Geometry of the matrix phase retrieval. It will be essential in the analy-
sis and computation of (1.3) to understand the geometry of the spaces Sr,0(Cn). In
order to do so, we will demonstrate that Sr,0(Cn) has a Whitney stratification over
the smooth Riemannian manifolds \r Si,0(Cn) for i = 0, . . . , r of real dimension 2ni - i2.
We recall the following definitions, due to John Mather and sourced from [20].

Definition 4.1. Let Vi, Vj be disjoint real manifolds embedded in Rd such that
dimVj > dimVi and Vi \cap Vj nonempty. Let x \in Vi \cap Vj. Then a triple (Vj , Vi, x) is
called a- (resp., b-)regular if the following hold:
(a) If a sequence (yn)n\geq 1 \subset Vj converges to x in Rd and Tyn(Vj) converges in the

Grassmannian GrdimVj (Rd) to a subspace \tau x of Rd, then Tx(Vi) \subset \tau x.
(b) If sequences (yn)n\geq 1 \subset Vj and (xn)n\geq 1 \subset Vi converge to x in Rd, the unit vector

(xn  - yn)/| | xn  - yn| | 2 converges to a vector v \in Rd, and Tyn
(Vj) converges in the

Grassmannian GrdimVj
(Rd) to a subspace \tau x of Rd, then v \in \tau x.
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Definition 4.2. Let V be a real semialgebraic variety. A disjoint decomposition

V =
\bigsqcup 
i\in I

Vi, Vi \cap Vj = \emptyset for i \not = j(4.1)

into smooth manifolds \{ Vi\} i\in I , termed strata, is a Whitney stratification if
(a) each point has a neighborhood intersecting only finitely many strata;
(b) the boundary sets Vj \setminus Vj of each stratum Vj are unions of other strata;
(c) every triple (Vj , Vi, x) such that x \in Vi \subset Vj is a-regular and b-regular as in

Definition 4.1.

A simple example of a semialgebraic variety that is not a manifold but admits
a Whitney stratification is the cone \scrC = \{ (x, y)| xy \geq 0\} \subset R2 consisting of the
first and third quadrants of the coordinate plane. A possible Whitney stratification
of this set is given by V0 = \{ 0\} , V1 = \{ (x, 0)| x \not = 0\} , V2 = \{ (0, y)| y \not = 0\} , and
V3 = \{ (x, y)| x \not = 0, y \not = 0\} . In this case note that condition (a) is trivially satisfied
since there are only finitely many strata, and moreover that (b) is satisfied since
V3 \setminus V3 = V0 \cup V1 \cup V2, V2 \setminus V2 = V0, V1 \setminus V1 = V0, and that V0 \setminus V0 = \phi (an empty
union of the other strata). That this stratification is both (a) and (b) regular may
be readily observed. For example, the tangent space at any point of V3 is simply
R2, and thus the Grassmannian limit of a convergent sequence of such tangent spaces
is also R2 and certainly contains the one-dimensional tangent space at any point of
V2 (identified with the y axis), the one-dimensional tangent space at any point of V1
(identified with the x axis), and the zero-dimensional tangent space associated with
V0 (identified with the origin).

We will also need the following definition.

Definition 4.3. Let \scrM and \scrN be smooth manifolds, and let \pi : \scrM \rightarrow \scrN be a
smooth map. For each x \in \scrM let

Tx(\scrM ) := \{ \gamma \prime (0)| \gamma : [ - 1, 1] \rightarrow \scrM is a smooth curve with \gamma (0) = x\} (4.2)

be the tangent space of \scrM at x. Similarly for T\pi (x)(\scrN ). Let D\pi (x) : Tx(\scrM ) \rightarrow 
T\pi (x)(\scrN ) be the differential of \pi at x, that is to say, D\pi (x)(v) := \alpha \prime (0), where \alpha =
\pi \circ \gamma , \gamma (0) = x, and \gamma \prime (0) = v (that D\pi (x) does not depend on the exact choice of
curve \gamma is an elementary result of differential geometry). Then the following hold:
(a) For each x \in \scrM define the vertical space at x as

V\pi ,x(\scrM ) \subset Tx(\scrM ) := kerD\pi (x) = \{ w \in Tx(\scrM )| D\pi (x)(w) = 0\} .(4.3)

(b) If \scrM is equipped with a Riemannian metric g : \scrM \times Tx(\scrM ) \times Tx(\scrM ) \rightarrow R,
then we may define the horizontal space at each x via the canonical orthogonal
complement of the vertical space:

H\pi ,x(\scrM ) \subset Tx(\scrM ) := V\pi ,x(\scrM )\bot = \{ v \in Tx(\scrM )| g(x, v, w) = 0\forall w \in V\pi ,x(Cn\times r
\ast )\} .

(4.4)

The following proposition will be essential both in proving the geometric results in
Theorem 4.5 and in analyzing the Lipschitz constants for \beta and \alpha set out in Theorems
5.6, 5.9, and 5.13.

Proposition 4.4. Let \pi : Cn\times r
\ast \rightarrow \r Sr,0(Cn) be as in Definition 3.5, and let

V\pi ,x(Cn\times r
\ast ) and H\pi ,x(Cn\times r

\ast ) denote the vertical and horizontal spaces as in Defi-
nition 4.3 of the manifold Cn\times r

\ast at x with respect to the embedding \pi . Here the
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Riemannian metric on Cn\times r
\ast is of course g : Cn\times r

\ast \times Cn\times r \times Cn\times r \rightarrow R given by
g(x, v, w) = \Re tr\{ z\ast w\} . Let T\pi (x)(\r S

r,0(Cn)) denote the tangent space of \r Sr,0(Cn) at
\pi (x). Then

V\pi ,x(Cn\times r
\ast ) = \{ xK| K \in Cr\times r,K\ast =  - K\} ,(4.5)

H\pi ,x(Cn\times r
\ast ) = \{ Hx+X| H \in Cn\times n, H\ast = H = PRan(x)H,(4.6)

X \in Cn\times r,PRan(x)X = 0\} ,
T\pi (x)(\r S

r,0(Cn)) = \{ W \in Sym(Cn)| PRan(x)\bot WPRan(x)\bot = 0\} (4.7)

= D\pi (x)(H\pi ,x(Cn\times r
\ast )).

Proof. See Appendix B.1.

Employing techniques similar those used in [8], but generalizing from the man-
ifold of positive-definite matrices to the semialgebraic variety Sr,0(Cn) semidefinite
matrices, we prove the following.

Theorem 4.5. Let \pi be as in Definition 3.5, and let the distance D be as in (3.2).
Then the following hold:
(i) \r Sp,q(Cn) is a real analytic manifold for each p, q \geq 0 of real dimension 2n(p +

q) - (p+ q)2.
(ii) \pi : Cn\times r

\ast \rightarrow \r Sr,0(Cn) can be made into a Riemannian submersion by choosing
the following unique Riemannian metric on \r Sr,0(Cn):

h(Z1, Z2) = tr

\biggl\{ 
Z

\| 
2

\int \infty 

0

e - uxx\ast 
Z

\| 
1e

 - uxx\ast 
du\} + \Re tr\{ Z\bot \ast 

1 Z\bot 
2 (xx\ast )\dagger 

\biggr\} 
,(4.8)

where Z1, Z2 \in T\pi (x)(\r S
r,0(Cn)), (xx\ast )\dagger denotes the pseudoinverse of xx\ast , and

Z
\| 
i = PRan(x)ZiPRan(x) , Z\bot 

i = PRan(x)\bot ZiPRan(x) .(4.9)

(iii) \r Sr,0(Cn) equipped with the metric h is a Riemannian manifold with D as its
geodesic distance.

(iv) The semialgebraic variety Sr,0(Cn) admits as an explicit Whitney stratification
(\r Si,0)ri=0.

(v) The geometry associated to h is compatible with the Whitney stratification in the
following sense: If (Ai)i\geq 1, (Bi)i\geq 1 \subset \r Sp,0 have limits A and B, respectively, in
\r Sq,0 for q < p and if \gamma i : [0, 1] \rightarrow \r Sp,0 are geodesics in \r Sp,0 connecting Ai to Bi

chosen in such a way that the limiting curve \delta : [0, 1] \rightarrow \r Sp,0 given by

\delta (t) = lim
i\rightarrow \infty 

\gamma i(t)(4.10)

exists, then the image of \delta lies in \r Sq,0 and is a geodesic curve in \r Sq,0 connecting
A to B.

Proof. See Appendix B.2.

5. Computation of Lipschitz bounds. We are primarily interested in com-
puting a0 and A0, the squared global lower Lipschitz constants for the \beta and \alpha analysis
maps, respectively. Owing to the linearity of the \beta analysis map when interpreted
as in (1.8), we will be able to show in Theorem 5.6 that the optimal global lower
Lipschitz bound a0 can be obtained via local considerations. For the \alpha analysis map

D
ow

nl
oa

de
d 

01
/2

0/
23

 to
 1

29
.2

.1
80

.1
03

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LIPSCHITZ ANALYSIS OF PHASE RETRIEVABLE FRAMES 1527

we will be able to show in Theorem 5.9 that the optimal global lower Lipschitz bound
A0 is actually zero for r > 1. Since the global lower Lipschitz bound for the \alpha analysis
map is trivial, we emphasize the analysis of the local lower Lipschitz bounds. Recall
that

a0 = inf
x,y\in Cn\times r

[x] \not =[y]

| | \beta (x) - \beta (y)| | 22
| | \pi (x) - \pi (y)| | 22

= inf
x,y\in Cn\times r

[x]\not =[y]

\sum m
j=1(\langle xx\ast , Aj\rangle R  - \langle yy\ast , Aj\rangle R)2

| | xx\ast  - yy\ast | | 22
.(5.1)

From a purely topological consideration, we may obtain the following.

Proposition 5.1. The constant a0 is strictly positive whenever the map \beta is
injective, and equivalently whenever \{ Aj\} mj=1 is a generalized phase retrievable frame
of symmetric matrices.

Proof. See Appendix C.1.

Definition 5.2. Let z \in Cn\times r have rank k. We will analyze the following four
types of local lower Lipschitz bounds for \beta , the first two with respect to the norm
induced metric and the second two with respect to the metric d:

a1(z) = lim
R\rightarrow 0

inf
x\in Cn\times r

| | \pi (x) - \pi (z)| | 2<R

| | \beta (x) - \beta (z)| | 22
| | \pi (x) - \pi (z)| | 22

,

a2(z) = lim
R\rightarrow 0

inf
x,y\in Cn\times r

| | \pi (x) - \pi (z)| | 2<R
| | \pi (y) - \pi (z)| | 2<R

(| | \beta (x) - \beta (y)| | 22
| | \pi (x) - \pi (y)| | 22

,

\^a1(z) = lim
R\rightarrow 0

inf
x\in Cn\times r

d(x,z)<R
rank(x)\leq k

| | \beta (x) - \beta (z)| | 22
d(x, z)2

,

\^a2(z) = lim
R\rightarrow 0

inf
x,y\in Cn\times r

d(x,z)<R
d(y,z)<R
rank(x)\leq k
rank(y)\leq k

| | \beta (x) - \beta (y)| | 22
d(x, y)2

.

(5.2)

Note that in the definitions of \^a1(z) and \^a2(z) we do not allow the ranks of x and y
to exceed that of z. As we shall prove, without the rank constraints these local lower
bounds would be zero.

The following two ``geometric"" local lower bounds will prove helpful in our analy-
sis.

Definition 5.3. Let z \in Cn\times r have rank k and let \^z \in Cn\times k
\ast be such that there

exists U \in U(r) with [\^z| 0]U = z. Let T\pi (\^z)(\r S
k,0(Cn)) and H\pi ,\^z(Cn\times k

\ast ) be as (4.7) and
(4.6). We define

a(z) := min
W\in T\pi (\^z)(\r S

k,0(Cn))

| | W | | 2=1

m\sum 
j=1

| \langle W,Aj\rangle R| 2 ,(5.3)

\^a(z) := min
w\in H\pi ,\^z(Cn\times k

\ast )
| | w| | 2=1

m\sum 
j=1

| \langle D\pi (\^z)(w), Aj\rangle R| 2 .(5.4)
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The following two families of matrices, Qz and \^Qz, indexed by Cn\times r, will allow
us to write the local lower Lipschitz bounds with respect to | | xx\ast  - yy\ast | | 2 and d(x, y)
as eigenvalue problems.

Definition 5.4. Given z \in Cn\times r having rank k > 0 we define a matrix Qz \in 
R(2nk - k2)\times (2nk - k2) in the following way. Let U1 \in Cn\times k be a matrix whose columns
are left singular vectors of z corresponding to nonzero singular values of z, so that
U1U

\ast 
1 = PRan(z). Let U2 \in Cn\times (n - k) be a matrix whose columns are left singular

vectors of z corresponding to the zero singular values of z, so that U2U
\ast 
2 = PRanz\bot .

Then

Qz :=
m\sum 
j=1

\biggl[ 
\tau (U\ast 

1AjU1)
\mu (U\ast 

2AjU1)

\biggr] \biggl[ 
\tau (U\ast 

1AjU1)
\mu (U\ast 

2AjU1)

\biggr] T
,(5.5)

where the isometric isomorphisms \tau and \mu are given by

\tau : Sym(Ck) \rightarrow Rk2

, \mu : Cp\times q \rightarrow R2pq ,(5.6)

\tau (X) =

\left[  D(X)\surd 
2T (\Re X)\surd 
2T (\Im X)

\right]  \mu (X) = vec

\biggl( \biggl[ 
\Re X
\Im X

\biggr] \biggr) 
,

where

D : Sym(Ck) \rightarrow Rk , T : Sym(Rk) \rightarrow R
1
2k(k - 1) ,(5.7)

D(W ) =

\left[   X11

...
Xkk

\right]   T (X) =

\left[       
X12

X13

X23

...
Xk - 1k

\right]       
and

vec : Rp\times q \rightarrow Rpq, vec(X) = vec([X1| \cdot \cdot \cdot | Xq]) =

\left[   X1

...
Xq

\right]   .(5.8)

We note that Qz depends only on Ran(z); in particular it is invariant under
(U1, U2) \rightarrow (U1P,U2Q) for P \in U(k), Q \in U(n  - k). We will also refer to Qz as
Q[U1| U2], where [U1| U2] \in U(n).

Definition 5.5. Given z \in Cn\times r having rank k > 0 we define a matrix \^Qz \in 
R2nk\times 2nk in the following way. Let Fj = Ik\times k \otimes j(Aj) \in R2nk\times 2nk, where

j : Cm\times n \rightarrow R2m\times 2n ,

j(X) =

\biggl[ 
\Re X  - \Im X
\Im X \Re X

\biggr] 
(5.9)

is an injective homomorphism. Then

\^Qz := 4
m\sum 
j=1

Fj\mu (\^z)\mu (\^z)
TFj .(5.10)
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With these definitions in mind, we will prove the following.

Theorem 5.6. Let z \in Cn\times r have rank k > 0. Then the following hold:
(i) The global lower bound a0 is given as

a0 = inf
z\in Cn\times r\setminus \{ 0\} 

a(z) .(5.11)

(ii) The local lower bounds a1(z) and a2(z) are squeezed between a0 and a(z),

a0 \leq a2(z) \leq a1(z) \leq a(z) ,(5.12)

so that in particular

a0 = inf
z\in Cn\times r\setminus \{ 0\} 

ai(z) .(5.13)

(iii) The infimization problem in a(z) may be reformulated as an eigenvalue problem.
Let Qz be the 2nk  - k2 \times 2nk  - k2 matrix given in Definition 5.4. Then

a(z) = \lambda 2nk - k2(Qz) .(5.14)

(iv) For r = 1, \^a(z) differs from a(z) by a constant factor, hence for r = 1 the
infimum infz\in Cn\times r\setminus \{ 0\} \^a(z) is nonzero. For r > 1 this infimum is zero, and hence
there is no nontrivial global lower bound \^a0 analogous to a0 for the alternate
metric d.

(v) The local lower bounds with respect to the alternate metric d satisfy

\^a1(z) = \^a2(z) =
1

4| | z| | 22
\^a(z) .(5.15)

(vi) The infimization problem in \^a(z) may be reformulated as an eigenvalue problem.
Let \^Qz be the 2nk \times 2nk matrix given in Definition 5.5. Then \^a(z) is directly
computable as

\^a(z) = \lambda 2nk - k2( \^Qz) .(5.16)

(vii) We have the following local inequality relating a(z) and \^a(z):

1

4| | z| | 22
\^a(z) \leq a(z) \leq 1

2\sigma k(z)2
\^a(z) .(5.17)

(viii) Computation of the global lower bound a0 may be reformulated as the minimiza-
tion of a continuous quantity over the compact Lie group U(n):

a0 = min
U\in U(n)

U=[U1| U2]

U1\in Cn\times r

U2\in Cn\times (n - r)

\lambda 2nr - r2(Q[U1| U2]) .(5.18)

(ix) While (iv) makes clear that a0 cannot be upper bounded by infz\in Cn\times r\setminus \{ 0\} \^a(z),
we can achieve a similar end by constraining z to have orthonormal columns.
Namely,

1

4
inf

z\in Cn\times r
\ast 

z\ast z=Ir\times r

\^a(z) \leq a0 \leq 1

2
inf

z\in Cn\times r
\ast 

z\ast z=Ir\times r

\^a(z) .(5.19)
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Proof. See Appendix C.2.

We now move on to analyzing the local lower Lipschitz bounds for the \alpha map

x \mapsto \rightarrow \langle xx\ast , Aj\rangle 
1
2

R . This was done for the case r = 1 in [6]. Recall that \theta (x) = (xx\ast )
1
2

and that

A0 = inf
x,y\in Cn\times r

[x] \not =[y]

| | \alpha (x) - \alpha (y)| | 22
| | \theta (x) - \theta (y)| | 22

= inf
x,y\in Cn\times r

[x]\not =[y]

\sum m
j=1(\langle xx\ast , Aj\rangle 

1
2

R  - \langle yy\ast , Aj\rangle 
1
2

R )
2

| | (xx\ast ) 1
2  - (yy\ast )

1
2 | | 22

.(5.20)

In analogy with Definition 5.2, we consider the local lower Lipschitz bounds for
the \alpha map.

Definition 5.7. Let z \in Cn\times r have rank k. We define

A1(z) = lim
R\rightarrow 0

inf
x\in Cn\times r

| | \theta (x) - \theta (z)| | 2\leq R
rank(x)\leq k

| | \alpha (x) - \alpha (z)| | 22
| | \theta (x) - \theta (z)| | 22

,

A2(z) = lim
R\rightarrow 0

inf
x,y\in Cn\times r

| | \theta (x) - \theta (z)| | 2\leq R
| | \theta (y) - \theta (z)| | 2\leq R

rank(x)\leq k
rank(y)\leq k

| | \alpha (x) - \alpha (y)| | 22
| | \theta (x) - \theta (y)| | 22

,

\^A1(z) = lim
R\rightarrow 0

inf
x\in Cn\times r

D(x,z)\leq R
rank(x)\leq k

| | \alpha (x) - \alpha (z)| | 22
D(x, z)2

,

\^A2(z) = lim
R\rightarrow 0

inf
x,y\in Cn\times r

D(x,z)\leq R
D(y,z)\leq R
rank(x)\leq k
rank(y)\leq k

| | \alpha (x) - \alpha (y)| | 22
D(x, y)2

.

(5.21)

Definition 5.8. Given z \in Cn\times r having rank k > 0 we define two matrices
\^Tz, \^Rz \in R2nk\times 2nk. Let I0(z) \subset \{ 1, . . . ,m\} be the indices such that \alpha j(z) = 0 (or
equivalently such that \alpha j is not differentiable) for j \in I0(z), and let I(z) = \{ 1, . . . ,m\} \setminus 
I0(z). Once again let Fj = Ik\times k \otimes j(Aj) \in R2nk\times 2nk; then define \^Tz and \^Rz via

\^Tz =
\sum 

j\in I(z)

1

\mu (\^z)TFj\mu (\^z)
Fj\mu (\^z)\mu (\^z)

TFj ,(5.22)

\^Rz =
\sum 

j\in I0(z)

Fj .(5.23)

With these definitions in mind we prove the following.

Theorem 5.9. Let z \in Cn\times r have rank k > 0. Then the following hold:
(i) For r > 1 it is the case that infz\in Cn\times r\setminus \{ 0\} Ai(z) = 0 for i = 1, 2, as such A0 = 0.

(ii) Let \^Tz and \^Rz be as in Definition 5.8. Then \^A1(z) and \^A2(z) are directly
computable as

\^A1(z) = \lambda 2nk - k2( \^Tz + \^Rz) ,(5.24)

\^A2(z) = \lambda 2nk - k2( \^Tz) .(5.25)
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(iii) We have the following inequality between Ai(z) and \^Ai(z) for i = 1, 2, which
justifies not treating them separately:

\^Ai(z) \leq Ai(z) \leq 
\surd 
2 \^Ai(z) .(5.26)

Proof. See Appendix C.3.

For the sake of completeness we also include the following theorem on the global
upper Lipschitz bounds for the \alpha and \beta analysis maps.

Definition 5.10. We define the following (squared) upper Lipschitz constants for
\beta and \alpha , respectively:

b0 := sup
x,y\in Cn\times r

[x]\not =[y]

| | \beta (x) - \beta (y)| | 22
| | xx\ast  - yy\ast | | 22

,(5.27)

B0 := sup
x,y\in Cn\times r

[x]\not =[y]

| | \alpha (x) - \alpha (y)| | 22
| | (xx\ast ) 1

2  - (yy\ast )
1
2 | | 22

.(5.28)

A somewhat simplifying alternate upper Lipschitz constant for \beta is

b0,1 := sup
x,y\in Cn\times r

[x]\not =[y]

| | \beta (x) - \beta (y)| | 22
| | xx\ast  - yy\ast | | 21

.(5.29)

Definition 5.11. The \beta map is the pullback of a linear operator acting on sym-
metric matrices which we refer to as \scrA . Specifically,

\scrA : Sym(Cn) \rightarrow Rm ,

\scrA j(X) = \langle X,Aj\rangle R .
(5.30)

Definition 5.12. When Aj \geq 0 for each j, we define the operator Tr:

Tr : Cn\times r \rightarrow (Cn\times r)m ,

Tr(x) = (A
1
2
j x)

m
j=1 .

(5.31)

In a slight abuse of notation we write for r = 1

T1 : Cn \rightarrow Cn\times m ,

T1(x) = [A
1
2
1 x| \cdot \cdot \cdot | A

1
2
mx] .

(5.32)

We compute explicitly b0, b0,1, and B0 via different norms of the operators \scrA 
and Tr, as well as providing formulas for b0 and B0 analogous to (5.18) and (5.25).
Specifically, we prove the following.

Theorem 5.13. Let b0, b0,1, B0, \scrA , and Tr be as above. Then the following hold:
(i) The global upper bound b0 is given by

b0 = max
U\in U(n)

U=[U1| U2]

U1\in Cn\times r,U2\in Cn\times n - r

\lambda 1(Q[U1| U2]) ,(5.33)

where QU is as in Definition 5.4.
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(ii) The global upper bound b0,1 is given by

b0,1 = | | \scrA | | 21\rightarrow 2 .(5.34)

Additionally if Aj \geq 0 for all j, then

b0,1 = | | Tr| | 42\rightarrow (2,4) = | | T1| | 42\rightarrow (2,4) ,(5.35)

where the | | \cdot | | 2,4 norm of a matrix is the l4 norm of the vector of l2 norms of
its columns.

(iii) The global upper bound B0 is given by

B0 = sup
z\in Cn\times r

z \not =0

\lambda 1( \^Tz) = B ,(5.36)

where \^Tz is as in Definition 5.8 and B is the optimal upper frame bound for
\{ Aj\} mj=1.

Proof. See Appendix C.4.

It turns out that Theorem 5.6 allows us to find novel algebraic conditions for a
frame for Cn\times r to be generalized phase retrievable, generalizing Theorem 4 in [7]. The
benefit of condition (vi) over the definition of phase retrievability is that they involve
checking a quantity over all n\times r matrices with orthonormal columns, that is to say,
over the Stiefel manifold of dimension 2nr  - r2, as opposed to over all pairs of n\times r
matrices.

Theorem 5.14. Let \{ Aj\} mj=1 be a frame for Cn\times r. Then the following are equiv-
alent:
(i) \{ Aj\} mj=1 is generalized phase retrievable.

(ii) For all U1 \in Cn\times r, U2 \in Cn\times (n - r) such that [U1| U2] \in U(n) the 2nr - r2\times 2nr - 
r2 matrix

Q[U1| U2] =

m\sum 
j=1

\biggl[ 
\tau (U\ast 

1AjU1)
\mu (U\ast 

2AjU1)

\biggr] \biggl[ 
\tau (U\ast 

1AjU1)
\mu (U\ast 

2AjU1)

\biggr] T
(5.37)

is invertible.
(iii) For all z \in Cn\times r such that z has orthonormal columns, the 2nr \times 2nr matrix

\^Qz = 4
m\sum 
j=1

(Ik\times k \otimes j(Aj))\mu (z)\mu (z)
T (Ik\times k \otimes j(Aj))(5.38)

has as its null space precisely the r2-dimensional \scrV z = \{ \mu (u)| u \in V\pi ,z(Cn\times r
\ast )\} .

(iv) For all U1 \in Cn\times r, U2 \in Cn\times (n - r) such that [U1| U2] \in U(n), H \in Sym(Cr),
B \in C(n - r)\times r there exist c1, . . . cm \in R such that

(5.39a) U\ast 
1

\left(  m\sum 
j=1

cjAj

\right)  U1 = H ,

(5.39b) U\ast 
2

\left(  m\sum 
j=1

cjAj

\right)  U1 = B .
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(v) For all U1 \in Cn\times r with orthonormal columns

spanR\{ AjU1\} mj=1 = \{ U1K| K \in Cr\times r,K\ast =  - K\} \bot .(5.40)

(vi) For all U1 \in Cn\times r with orthonormal columns

dim spanR\{ AjU1\} mj=1 \geq 2nr  - r2 .(5.41)

Proof. See Appendix C.5.

6. Numerical experiments. The main benefit of lower Lipschitz results like
Theorem 5.1 is that they provide quantitative control over reconstruction error in the
generalized phase retrieval problem, as opposed to the topological result in Propo-
sition 5.1 that the error is bounded whenever the matrix frame is generalized phase
retrievable (i.e., that a0 > 0). This is only true, however, if for a given frame one can
make headway in computing the lower Lipschitz constant a0. Unfortunately (5.18)
yields a0 as a nonconvex optimization problem, so for the time being we content our-
selves with examining the statistics of the local lower Lipschitz constants \^a2(z) and
a(z). We also verify numerically the result in Theorem 5.9 that \alpha is not globally lower
Lipschitz (i.e., that A0 = 0) by examining the statistics of the local lower Lipschitz
constant \^A2(z).

For each experiment we use a fixed frame set of cardinality m = 4nk  - 4k2,
noting that Theorem 2.1 in [29] implies that a generic frame for Cn\times k with cardinality
m \geq 4nk  - 4k2 will be generalized phase retrievable when 2k \leq n. The experiment
shown in Figure 1 supports the result in Theorem 5.9 that infz\in Cn\times r\setminus \{ 0\} \^A2(z) = 0
for r > 1, and thus that the \alpha analysis map is not globally lower Lipschitz with
respect to either D(x, y) or | | (xx\ast ) 1

2  - (yy\ast )
1
2 | | 2 when r > 1. This experiment also

supports the earlier result in [6] that when r = 1, infz\in Cn\times r\setminus \{ 0\} \^A2(z) > 0. The
experiment shown in Figure 2 supports the result noted in the proof of Theorem 5.6
that infz\in Cn\times r\setminus \{ 0\} \^a2(z) = 0 for r > 1, and thus that the \beta analysis map is not globally
lower Lipschitz with respect to d(x, y) when r > 1. That this quantity is nonzero when
r = 1 follows from the fact that for r = 1 we have d(x, y) = | | xx\ast  - yy\ast | | 1 (see Theorem
3.7). Finally, the experiment shown in Figure 3 supports the result in Theorem 5.6
that a0 = infz\in Cn\times r\setminus \{ 0\} a(z) > 0 even when r > 1, and thus that the \beta analysis map
is globally lower Lipschitz with respect to | | xx\ast  - yy\ast | | 2 whenever the frame (Aj)j\geq 1

is generalized phase retrievable. Code for all numerical experiments can be found at
github.com/cbartondock/LipschtizAnalysisofGenPR.

7. Conclusion. This paper extends known results about the stability of gener-
alized phase retrieval to the ``impure state"" case where the phase no longer comes
from U(1) but instead the nonabelian groups U(r), where r > 1. We showed that
the situation changes drastically in this case, both because U(r) is nonabelian and
because for r > 1 a sequence in Cn\times r

\ast /U(r) with | | xn| | 2 = 1 can come arbitrarily
close to dropping in rank. In particular, we showed that while the \beta analysis map
remains lower Lipschitz with respect to the norm induced distance on Sym(Cn) (The-
orem 5.6), the \alpha analysis map does not (Theorem 5.9). Our analysis relies on several
Lipschitz embeddings of Cn\times r/U(r) into the Euclidean space Sym(Cn) (Theorem
3.7) and a Whitney stratification of the positive semidefinite matrices into positive-
semidefinite matrices of fixed rank (Theorem 4.5). This investigation of the geometry
of positive-semidefinite matrices incidentally provided the interesting and (to the best
of our knowledge) previously unknown result that the Riemannian geometry of the
stratifying manifolds given by the Bures--Wasserstein metric is compatible with the
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Fig. 1. In all experiments \^A2(z) is computed for a fixed frame of 4nk  - 4k2 matrices in Cn\times k

for l = 104 samples of z having rank k. The entries of both z and the frame matrices are sampled
from a complex Gaussian with unit variance and zero mean. As can clearly be seen only the k = 1
case has a clear separation from zero.

Fig. 2. In all experiments \^a2(z) is computed for a fixed frame of 4nk  - 4k2 matrices in Cn\times k

for l = 104 samples of z having rank k. The entries of both z and the frame matrices are sampled
from a complex Gaussian with unit variance and zero mean. As can clearly be seen only the k = 1
case has a clear separation from zero.

stratification. In particular, geodesics of positive-semidefinite matrices with respect
to the Bures--Wasserstein metric are rank preserving and may be approximated by
geodesics of higher rank. We note that the fact that a0 > 0 and can be explicitly com-
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Fig. 3. In all experiments a(z) = \lambda 2nk - k2 (Q[U1| U2]) is computed for a fixed frame of 4nk - 4k2

matrices in Cn\times k for l = 104 samples of U \in U(n) distributed according to the uniform Haar
distribution on U(n). U1 \in Cn\times k is composed of the first k columns of U so that Q[U1| U2] \in 
C2nk - k2\times 2nk - k2

. The entries of the frame matrices are sampled from a complex Gaussian with
unit variance and zero mean. In this case an overlapping log-plot is also included, in which clear
separation from zero can be seen for k = 1, . . . , 4.

puted as in (5.18) suggests that known convergent algorithms for generalized phase
retrieval may be extended to the case r > 1. Finally, the explicit computation of the
lower Lipschitz bound for the \beta map allowed us to obtain a novel characterization of
generalized phase retrievable frames in the impure state case r > 1 (Theorem 5.14).
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Appendix A. Proofs for section 3.

A.1. Proof of Proposition 3.3.

Proof. Both d(x, y) and D(x, y) are obviously positive, and symmetry follows
from the fact that U(r) is a group. Moreover, owing to the compactness of U(r),
both D(x, y) and d(x, y) are zero if and only if there exists U0 such that x = yU0,
that is, if and only if [x] = [y]. It remains to prove the triangle inequality. For
D(x, y) the computation is straightforward and follows from the unitary invariance
of the Frobenius norm. If U1 and U2 are unitary minimizers for D(x, z) and D(z, y),
respectively, then

D(x, z) +D(y, z) = | | x - zU1| | 2 + | | z  - yU2| | 2
= | | x - zU1| | 2 + | | zU1  - yU2U1| | 2
\geq | | x - yU2U1| | 2 \geq D(x, y) .

(A.1)

We note that the above argument also holds for any unitarily invariant norm | | | \cdot | | | so
that each D| | | \cdot | | | (x, y) := minU\in U(r) | | | x  - yU | | | is a metric on Cn\times r/U(r). A similar
trick can be employed regarding d(x, y), but it requires the following lemma, which
does not readily generalize to arbitrary unitarily invariant norms or even p \not = 2.

Lemma A.1. The following triangle inequality holds for all x, y, z \in Cn\times r:

| | x - y| | 2| | x+ y| | 2 \leq | | x - z| | 2| | x+ z| | 2 + | | z  - y| | 2| | z + y| | 2 .(A.2)

Proof. This is essentially a statement about the geometry of parallelepipeds in
R3, namely, that the sum of the product of face diagonals from any two sides sharing
a vertex will always exceed the product of the two on the remaining side sharing the
vertex. The lemma follows from the observation that for x, y \in Rn

| | x - y| | 2| | x+ y| | 2 =
\sqrt{} 
(| | x| | 22 + | | y| | 22)2  - 4| \langle x, y\rangle R| 2

=
1

2

\biggl( 
| | x| | 22  - | | y| | 22 +

\sqrt{} 
(| | x| | 22 + | | y| | 22)2  - 4| \langle x, y\rangle R| 2

\biggr) 
 - 1

2

\biggl( 
| | x| | 22  - | | y| | 22  - 

\sqrt{} 
(| | x| | 22 + | | y| | 22)2  - 4| \langle x, y\rangle R| 2

\biggr) 
= \lambda +(xx

T  - yyT ) - \lambda  - (xx
T  - yyT )

= | | xxT  - yyT | | 1 .

(A.3)

See the proof of Theorem 3.7 for a direct computation of the eigenvalues of xxT  - yyT
(the theorem deals with the complex case, but the real case is identical). This identity
proves the lemma immediately since the latter obeys the triangle inequality and

| | x - y| | 2| | x+ y| | 2 = | | \mu (x) - \mu (y)| | 2| | \mu (x) + \mu (y)| | 2
= | | \mu (x)\mu (x)T  - \mu (y)\mu (y)T | | 1
\leq | | \mu (x)\mu (x)T  - \mu (z)\mu (z)T | | 1 + | | \mu (z)\mu (z)T  - \mu (y)\mu (y)T | | 1
= | | x - z| | 2| | x+ z| | 2 + | | z  - y| | 2| | z + y| | 2 ,

(A.4)

where \mu : Cn\times r \rightarrow R2nr is complex matrix vectorization.

D
ow

nl
oa

de
d 

01
/2

0/
23

 to
 1

29
.2

.1
80

.1
03

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LIPSCHITZ ANALYSIS OF PHASE RETRIEVABLE FRAMES 1537

The proposition then follows via an argument similar to (A.1), namely, if U1, U2

are the minimizers in d(x, z) and d(z, y), respectively, then

d(x, z) + d(z, y) = | | x - zU1| | 2| | x+ zU1| | 2 + | | z  - yU2| | 2| | z + yU2| | 2
(A.5)

= | | x - zU1| | 2| | x+ zU1| | 2 + | | zU1  - yU2U1| | 2| | zU1 + yU2U1| | 2
\geq | | x - yU2U1| | 2| | x+ yU2U1| | 2 \geq d(x, y) .

A.2. Proof of Proposition 3.4.

Proof. Both the trace tr\{ x\ast yU\} that appears in D and its square as it appears
in d will be maximized when x\ast yU is positive semidefinite; thus we may take the
minimizer to be the polar factor for x\ast y, the polar factor of course being the unique
unitary for which x\ast yU is nonnegative only when x\ast y is full rank. The nonuniqueness
of the minimizer arises precisely from the nonuniqueness in choice of polar factor when
x\ast y does not have full rank. Note that even if y is full rank, x\ast y will have rank less
than r whenever Ran(y) \cap Ran(x)\bot \not = 0.

A.3. Proof of Proposition 3.6.

Proof. Note that the nonzero eigenvalues of \pi (x) are precisely the squares of the
singular values of x, the nonzero eigenvalues of \theta (x) agree with the nonzero singular
values of x, and the nonzero eigenvalues values of \psi (x) differ from the nonzero singular
values of x only by a factor of | | x| | 2. This proves that the embeddings preserve rank.
It is readily checked that the embeddings are surjective and injective modulo \sim . In
particular for A \in Sr,0(Cn), we have

\pi  - 1(A) = [Cholesky(A)] ,(A.6)

\theta  - 1(A) = [Cholesky(A2)] ,(A.7)

\psi  - 1(A) = [Cholesky(A2/| | A| | 2)] ,(A.8)

where Cholesky(A) is a Cholesky decomposition of A in Cn\times r (note that the Cholesky
decomposition is unique up to equivalence class).

A.4. Proof of Theorem 3.7.

Proof. To prove (3.5) we analyze the following quantity:

Q(x, y) =
D(x, y)2

| | \theta (x) - \theta (y)| | 22
=

| | x| | 22 + | | y| | 22  - 2| | x\ast y| | 1
| | x| | 22 + | | y| | 22  - 2tr\{ (xx\ast ) 1

2 (yy\ast )
1
2 \} 
.(A.9)

We first note that | | x\ast y| | 1 = | | (xx\ast ) 1
2 (yy\ast )

1
2 | | 1 since (xx\ast )

1
2 (yy\ast )

1
2 and x\ast y have the

same nonzero singular values. Hence if we define A = \theta (x) = (xx\ast )
1
2 and B = \theta (y) =

(yy\ast )
1
2 , we can abuse notation slightly and write

Q(A,B) =
| | A| | 22 + | | B| | 22  - 2| | AB| | 1
| | A| | 22 + | | B| | 22  - 2tr\{ AB\} 

.(A.10)

Now tr\{ AB\} \leq | | AB| | 1, so we conclude that Q(x, y) \leq 1. On the other hand this
bound is achievable by any x and y for having the same left singular vectors, since in
this case A and B commute, and hence AB \geq 0 and | | AB| | 1 = tr\{ AB\} . We conclude
that the upper Lipschitz constant is 1, and in particular

sup
x,y\in Cn\times r/U(r)

x\not =y

Q(x, y) = max
x,y\in Cn\times r/U(r)

x\not =y

Q(x, y) = 1 .(A.11)
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We now turn our attention to the lower bound. It is shown in [9] that for any
unitarily invariant norm | | | \cdot | | | and positive-semidefinite matrices A and B the following
generalization of the arithmetic-geometric mean inequality holds:

4| | | AB| | | 2 \leq | | | (A+B)2| | | .(A.12)

We apply this inequality to the nuclear norm and conclude that

4| | AB| | 1 \leq | | (A+B)2| | 1
= tr\{ (A+B)2\} 
= | | A| | 22 + | | B| | 22 + 2tr\{ AB\} .

(A.13)

We employ this fact in the analysis of Q(x, y):

Q(A,B) =
1

2
\cdot 2| | A| | 

2
2 + 2| | B| | 22  - 4| | AB| | 1

| | A| | 22 + | | B| | 22  - 2tr\{ AB\} 

\geq 1

2
\cdot 2| | A| | 

2
2 + 2| | B| | 22  - (| | A| | 22 + | | B| | 22 + 2tr\{ AB\} )

| | A| | 22 + | | B| | 22  - 2tr\{ AB\} 
=

1

2
.

(A.14)

This implies a lower Lipschitz constant of at least 1\surd 
2
. For the trivial case n = r = 1

the ratio is 1. To prove the constant of 1\surd 
2
is optimal for n > 1, let e1 and e2

be any two orthogonal unit vectors in Cn, and let x = e1 and (yj)j\geq 1 be given by

yj =
\sqrt{} 

1 - 1
j2 e1 +

1
j e2. Define A = \theta (x) and Bj = \theta (yj); then both A and each Bj

have unit norm and are rank 1 and hence idempotent, so that

ABj = (xx)
1
2 (yjy

\ast 
j )

1
2 = xx\ast yjy

\ast 
j

= \langle x, yj\rangle Rxy\ast j

=

\biggl( 
1 - 1

j2

\biggr) 
e1e

\ast 
1 +

\sqrt{} 
1 - 1

j2

j
e1e

\ast 
2 .

(A.15)

Thus tr\{ ABj\} = 1  - 1
j2 . On the other hand, | | ABj | | 1 = | | x\ast yj | | 1 = | \langle x, yj\rangle R| =\sqrt{} 

1 - 1
j2 . We find

lim
j\rightarrow \infty 

Q(A,Bj) = lim
j\rightarrow \infty 

1 - | | ABj | | 1
1 - tr\{ ABj\} 

= lim
j\rightarrow \infty 

j2
\biggl( 
1 - 

\sqrt{} 
1 - 1

j2

\biggr) 
=

1

2
.

(A.16)

Thus we conclude

inf
x,y\in Cn\times r

x\not =y

Q(x, y) =
1

2
.(A.17)

We now concern ourselves with proving (3.6). To prove the lower bound, let U0 be
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the minimizer in d(x, y). Then

| | \pi (x) - \pi (y)| | 1 = | | xx\ast  - yy\ast | | 1

=

\bigm\| \bigm\| \bigm\| \bigm\| 12(x - yU0)(x+ yU0)
\ast +

1

2
(x+ yU0)(x - yU0)

\ast 
\bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq 1

2
| | (x - yU0)(x+ yU0)

\ast | | 1 +
1

2
| | (x - yU0)(x+ yU0)

\ast | | 1

\leq | | x - yU0| | 2| | x+ yU0| | 2 = d(x, y) .

(A.18)

This implies a lower Lipschitz constant of at least 1, but in fact this constant is optimal
since the two are equal for r = 1. Turning our attention to the upper bound, we will
in fact prove the following stronger inequality:

| | \psi (x) - \psi (y)| | 2 \geq 1

4
d(x, y)2+

1

4
D(x, y)4+ (| | x| | 2 - | | y| | 2)2

\biggl( 
| | x\ast y| | 1+

1

2
(| | x| | 2+| | y| | 2)2

\biggr) 
.

(A.19)

We prove (A.19) by direct computation:

| | \psi (x) - \psi (y)| | 22  - 
1

4
d(x, y)2

= | | x| | 42 + | | y| | 42  - 2| | x| | 2| | y| | 2tr\{ (xx\ast )
1
2 (yy\ast )

1
2 \}  - 1

4

\biggl( 
(| | x| | 22 + | | y| | 22)2  - 4| | x\ast y| | 21

\biggr) 
=

3

4
| | x| | 42 +

3

4
| | y| | 42 + | | x\ast y| | 21  - 

1

2
| | x| | 22| | y| | 22  - 2| | x| | 2| | y| | 2tr\{ (xx\ast )

1
2 (yy\ast )

1
2 \} 

\geq 3

4
| | x| | 42 +

3

4
| | y| | 42 + | | x\ast y| | 21  - 

1

2
| | x| | 22| | y| | 22  - 2| | x| | 2| | y| | 2| | (xx\ast )

1
2 (yy\ast )

1
2 | | 1

=
1

4
(| | x| | 22  - | | y| | 22)2 +

1

2
| | x| | 42 +

1

2
| | y| | 42 + | | x\ast y| | 21  - 2| | x| | 2| | y| | 2| | x\ast y| | 1 .

(A.20)

We then note that

1

4
D(x, y)4 =

1

4
(| | x| | 2 + | | y| | 2  - 2| | x\ast y| | 1)2

=
1

4
| | x| | 42 +

1

4
| | y| | 42 +

1

2
| | x| | 22| | y| | 22 + | | x\ast y| | 21  - (| | x| | 22 + | | y| | 22)| | x\ast y| | 1 .

(A.21)

So if we add and subtract 1
4D(x, y)4 from (A.20) we obtain the result

| | \psi (x) - \psi (y)| | 22  - 
1

4
d(x, y)2

\geq 1

2
(| | x| | 22  - | | y| | 22)2 +

1

4
D(x, y)4 + (| | x| | 2  - | | y| | 2)2| | x\ast y| | 1

=
1

4
D(x, y)4 + (| | x| | 2  - | | y| | 2)2

\biggl( 
(| | x\ast y| | 1 +

1

2
(| | x| | 2 + | | y| | 2)2

\biggr) 
.

(A.22)

This immediately proves that 2| | \psi (x)  - \psi (y)| | 2 \geq d(x, y) and hence that the upper
Lipschitz constant in (3.6) is at most 2. For r = 1, we will briefly prove claim (iii),
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implying that d(x, y) = | | \pi (x)  - \pi (y)| | 1 = | | \psi (x)  - \psi (y)| | 1; hence in this case the
optimal constant is

\surd 
2, owing to the fact that \psi (x) - \psi (y) will have rank at most 2

and in that case d(x, y) = | | \psi (x) - \psi (y)| | 1 \leq 
\surd 
2| | \psi (x) - \psi (y)| | 2. For r > 1, however,

we show that the upper Lipschitz constant of 2 is optimal by considering a sequence
of matrices in Cn\times 2. As before let e1 and e2 be any unit orthonormal vectors in Cn.

Let x = [e1| 0], (yj)j\geq 1 be given by yj = [
\sqrt{} 
1 - 1

j2 e1| 
1
j e2]. As before let A = \theta (x),

Bn = \theta (yj). We first note that A and each Bj commute and are positive semidefinite,
so that ABj is also positive semidefinite, and we have tr\{ ABj\} = | | ABj | | 1 and the
inequality in (A.20) is actually an equality. This makes clear the impediment to a
rank 1 sequence achieving the upper Lipschitz constant of 2: A and Bj could not be
made to commute without x and yj lying in the same equivalence class. Finally, we
observe that | | x| | 2 = | | yj | | 2 = 1, so the remainder term in (A.19) disappears and we
obtain

| | \psi (x) - \psi (yj)| | 22 =
1

4
d(x, y)2 +

1

4
D(x, y)4.(A.23)

We note moreover that d(x, y)2 = D(x, y)2(| | x| | 22 + | | y| | 22 + 2| | x\ast y| | 1) so that

| | \psi (x) - \psi (yj)| | 22
d(x, yj)2

=
1

4

\biggl( 
1 +

D(x, yj)
4

d(x, yj)2

\biggr) 
=

1

4

\biggl( 
1 +

1 - | | x\ast yj | | 1
1 + | | x\ast yj | | 1

\biggr) 
.

(A.24)

Now | | x\ast yj | | 1 =
\bigm\| \bigm\| \bigm\| \bigl[ e\ast 1

0

\bigr] \Bigl[ \sqrt{} 
1 - 1

j2
0

0 1
j

\Bigr] \bigl[ 
e1| e2

\bigr] \bigm\| \bigm\| \bigm\| 
1
=

\sqrt{} 
1 - 1

j2 so that

lim
j\rightarrow \infty 

| | \psi (x) - \psi (yj)| | 22
d(x, yj)2

= lim
j\rightarrow \infty 

1

4

\biggl( 
1 +

1 - 
\sqrt{} 
1 - 1

j2

1 +
\sqrt{} 
1 + 1

j2

\biggr) 
=

1

4
.(A.25)

Thus we have proven claims (i) and (ii). To prove the first claim of (iii) note that for

r = 1, (xx\ast )
1
2 = xx\ast 

| | x| | 2 . The second part of (iii) follows from direct computation of

| | xx\ast  - yy\ast | | 1 via the method of moments. Clearly xx\ast  - yy\ast will have one positive
and one negative eigenvalue, which we denote by \lambda + and \lambda  - . In this case

\lambda + + \lambda  - = tr\{ xx\ast  - yy\ast \} 
= | | x| | 22  - | | y| | 22 ,

\lambda +\lambda  - =
1

2

\biggl( 
tr\{ xx\ast  - yy\ast \} 2  - tr\{ (xx\ast  - yy\ast )2\} 

\biggr) 
= | | x| | 2| | y| | 2  - | \langle x, y\rangle R| 2 .

(A.26)

A little bit of algebra then yields

\lambda \pm =
1

2

\biggl( 
| | x| | 22  - | | y| | 22 \pm 

\sqrt{} 
(| | x| | 2 + | | y| | 2)2  - 4| \langle x, y\rangle R| 2

\biggr) 
.(A.27)

Thus we find | | xx\ast  - yy\ast | | 1 = \lambda +  - \lambda  - =
\sqrt{} 
(| | x| | 2 + | | y| | 2)2  - 4| \langle x, y\rangle R| 2 = d(x, y). It

strikes the authors that this is a minor miracle. Finally, to prove claim (iv) consider
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x and y having a common basis of singular vectors with singular values (\sigma i)
r
i=1 and

(\mu i)
r
i=1, respectively. Then

| | \pi (x) - \pi (y)| | 22 =
r\sum 

i=1

(\sigma 2
i  - \mu 2

i )
2,(A.28)

d(x, y)2 =
r\sum 

i,j=1

(\sigma i + \mu i)
2(\sigma j  - \mu j)

2.(A.29)

The latter is obviously larger, consistent with (3.6). If it were additionally the case
that d(x, y) \leq C| | \pi (x) - \pi (y)| | 2, we would have

\sum 
i\not =j

(\sigma i + \mu i)
2(\sigma j  - \mu j)

2 \leq (C  - 1)
r\sum 

i=1

(\sigma 2
i  - \mu 2

i )
2.(A.30)

In the case r = 1 the left-hand side is zero and so we may take C = 1. For r > 1, in
contradiction of the above, take \sigma 1 = \mu 1 = \delta , \sigma 2 \not = \mu 2, and all other singular values
zero. We then would obtain

4\delta 2(\sigma 2  - \mu 2)
2 \leq (C  - 1)(\sigma 2

2  - \mu 2
2)

2.(A.31)

There is evidently no such C since \delta may be chosen arbitrarily large. Thus claim (v)
is proved, justifying the use of the alternate embedding \psi in (3.6). This concludes
the proof of Theorem 3.7.

Appendix B. Proofs for section 4.

B.1. Proof of Proposition 4.4.

Proof. The proof of (4.5) is by direct computation. Namely,

V\pi ,x(Cn\times r
\ast ) = kerD\pi (x) = \{ w \in Cn\times r| xw\ast + wx\ast = 0\} .(B.1)

We would like to obtain a direct parametrization, however, and note that

w \in V\pi ,x(Cn\times r
\ast ) \Leftarrow \Rightarrow wx\ast = \~K , \~K \in Cn\times n, \~K\ast =  - \~K,PRan(x)

\~K = \~K ,

\Leftarrow \Rightarrow wx\ast = xKx\ast , K \in Cr\times r,K\ast =  - K ,

\Leftarrow \Rightarrow w = xK , K \in Cr\times r,K\ast =  - K .(B.2)

In the first line note that w is recoverable from such a \~K via w = \~Kx(x\ast x) - 1. In the
second note that K = (xx\ast )\dagger x\ast \~Kx(xx\ast )\dagger . The third ``if and only if"" is obtained by
right multiplying x(x\ast x) - 1. The horizontal space is then computable as V\pi ,x(Cn\times r

\ast )\bot :

w \in H\pi ,x(Cn\times r
\ast ) \Leftarrow \Rightarrow \Re tr\{ w\ast xK\} = 0 \forall K \in Cn\times n,K\ast =  - K ,

\Leftarrow \Rightarrow x\ast w = \~H , \~H \in Cr\times r, \~H\ast = \~H ,

\Leftarrow \Rightarrow x\ast w = x\ast Hx , H \in Cn\times n, H\ast = H,PRan(x)H = H ,

\Leftarrow \Rightarrow PRan(x)w = Hx , H \in Cn\times n, H\ast = H,PRan(x)H = H ,

\Leftarrow \Rightarrow w = Hx+X , H \in Cn\times n, H\ast = H = PRan(x)H,

X \in Cn\times r,PRan(x)X = 0 .(B.3)

The second line follows from the fact that Cn\times n decomposes orthogonally into Hermit-
ian and skew-Hermitian matrices. In the second note that H = (x\ast x) - 1x \~Hx\ast (x\ast x) - 1.
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The third follows from left multiplying by (xx\ast )\dagger x. Finally, the tangent space can be
parametrized via the horizontal space as its image through D\pi (x) as

T\pi (x)(\r S
r,0(Cn)) = D\pi (x)(H\pi ,x(Cn\times r

\ast ))

= \{ Hxx\ast + xx\ast H + xX\ast +Xx\ast | H \in Cn\times n, H\ast = H,

PRan(x)H = H,PRan(x)X = 0\} .(B.4)

This provides a direct parametrization, but for our purposes the simpler indirect de-
scription given by (4.7) will be more useful. It is clear from (B.4) that T\pi (x)(\r S

r,0(Cn)) \subset 
\{ W \in Sym(Cn)| PRan(x)\bot WPRan(x)\bot = 0\} . To prove the reverse, note that if W \in 
Sym(Cn) and PRan(x)\bot WPRan(x)\bot , thenW =W1+W2+W

\ast 
2 , where PRan(x)W1PRan(x)

= W1 and PRan(x)W2PRan(x)\bot = W2. Any such W2 is representable as xX\ast , where
X is as in the description of the horizontal space. Indeed, take X = W \ast 

2 x(x
\ast x) - 1.

Finally, the Sylvester equation xx\ast H +Hxx\ast =W1 has the unique solution

H =

\int \infty 

0

e - txx\ast 
W1e

 - txx\ast 
dt .(B.5)

B.2. Proof of Theorem 4.5.

Proof. To prove (i) in relatively short order we employ the following theorem.

Theorem B.1 (see [26] and [18, Appendix B]). Let \phi : G\times M \rightarrow M be a smooth
action of a Lie group G on a smooth manifold M . If the action is semialgebraic, then
orbits of \phi are smooth submanifolds of M .

We apply this theorem in the case of \r Sp,q(Cn). Sylvester's inertia theorem says
that A \in \r Sp,q(Cn) if and only if A = KIp,qK

\ast for some K \in GL(Cn), where Ip,q =

diag(1, . . . , 1, - 1, . . . , - 1, 0, . . . , 0) is the matrix of inertia indices. Thus \r Sp,q(Cn) is
precisely the orbit of Ip,q under the smooth Lie group action

\psi : GL(Cn)\times Cn\times n \rightarrow Cn\times n ,

\psi (K,L) = KLK\ast .
(B.6)

Noting that \psi (KJ,L) = \psi (K,\psi (J, L)) for K,J \in GL(Cn), we need to check that the
action is semialgebraic. For a fixed L \in Cn\times n the action has as its graph\biggl\{ 

(K,Y )

\bigm| \bigm| \bigm| \bigm| K \in GL(Cn), Y = KLK\ast 
\biggr\} 

=

\biggl\{ 
(kij , yij)

\bigm| \bigm| \bigm| \bigm| i, j \in 1, . . . , n,Det(kij) \not = 0, yij  - Qij(kij) = 0

\biggr\} 
,

(B.7)

where each Qij is a quadratic polynomial in (kij)
n
i,j=1 determined by L. This set is

manifestly semialgebraic, so by Theorem B.1 each \r Sp,q(Cn) is a smooth submanifold
of Cn\times n. To prove that the dimension of \r Sp,q(Cn) is given by 2n(p + q)  - (p + q)2

note that the dim \r Sp,q(Cn) = dim \r Sp+q,0 since the matrix absolute value

| \cdot | : \r Sp,q(Cn) \rightarrow \r Sp+q,0 ,

| A| = (AA\ast )
1
2

(B.8)

is surjective and injective of up to permutation of eigenvalues. The dimension of
\r Sp+q,0 can be computed from T\pi (x)(\r S

r,0(Cn)) as found in Proposition 4.4. Taking
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r = p+ q, then

dimT\pi (x)(\r S
r,0(Cn)) = n2  - (n - r)2 = 2nr  - r2 = 2n(p+ q) - (p+ q)2 .(B.9)

It remains to prove analyticity of \r Sr,0(Cn). It is proved in Lemma 3.11 of [3] that
\r S1,0(Cn) is real analytic. The proof in the general case is analogous. First note
that, owing to Sylvester's inertia theorem, GL(Cn) acts transitively on \r Sp,q(Cn) via
conjugation, since if X,Y \in \r Sp,q(Cn), then we may obtain G1, G2 \in GL(Cn) so
that G1XG

\ast 
1 = Ip,q = G2Y G

\ast 
2, and hence (G - 1

2 G1)X(G - 1
2 G1)

\ast = Y . It remains
to obtain that the stabilizer group is closed in GL(Cn) so that we can invoke the
homogeneous space construction theorem. If Z \in \r Sp,q(Cn), then Z = zIp,qz

\ast for

some z = Uz

\biggl[ 
\Lambda z

0

\biggr] 
V \ast 
z \in Cn\times r

\ast . The stabilizer group at Z is given by T \in GL(Cn)

such that Tz \in \{ zU | U \in U(p, q)\} . In a basis e1, . . . , en for Cn where e1, . . . , er span
Ran(z) and er+1, . . . , en span Ran(z)\bot , the stabilizer is therefore given by

Hr,0
Z =

\biggl\{ \biggl[ 
\Lambda zU\Lambda  - 1

z M1

0 M2

\biggr] \bigm| \bigm| \bigm| \bigm| U \in U(p, q),M1 \in Cr\times n - r,M2 \in Cr\times r, det(M2) \not = 0

\biggr\} 
.

(B.10)

It is easy to see that Hr,0
Z is a (relatively) closed subset of GL(Cn); hence by the

homogeneous space construction theorem \r Sr,0(Cn) is diffeomorphic to the analytic
manifold GL(Cn)/Hr,0

Z . This concludes the proof of (i). Claims (ii) and (iii) represent
slight generalizations over the analogous results in [8] for positive-definite matrices,
but the same key theorems apply. Namely, we employ the following.

Theorem B.2 (see [17, Proposition 2.28]). Let (M, g) be a Riemannian manifold,
and let G be a compact Lie group of isometries acting freely onM . Then let N =M/G
and \pi :M \rightarrow N be the quotient map. Then there exists a unique Riemannian metric
h on N so that \pi : (M, g) \rightarrow (N,h) is a Riemannian submersion, and in particular
that D\pi (z) : H\pi ,z \rightarrow T\pi (z)(N) is isometric for each z \in M .

Theorem B.3 (see [17, Proposition 2.109]). If \pi : (M, g) \rightarrow (N,h) is a Rie-
mannian submersion and \gamma is a geodesic in (M, g) such that \.\gamma (0) is horizontal (i.e.,
\.\gamma (0) \in H\pi ,\gamma (0)), then
(i) \.\gamma (t) is horizontal for all t;
(ii) \pi \circ \gamma is a geodesic in (N,h) of the same length as \gamma .

In our case we are interested in the geometry of Cn\times r
\ast /U(r), where Cn\times r

\ast is an
open subset of Cn\times r and is therefore a smooth Riemannian manifold of constant
metric when equipped with the standard real inner product on Cn\times r:

\langle A,B\rangle R = \Re tr\{ A\ast B\} .(B.11)

The relevant compact Lie group of isometries will be U(r), acting by matrix multipli-
cation on the right. We note that while U(r) does not act freely on Cn\times r, it does act
freely on Cn\times r

\ast since for x \in Cn\times r
\ast and W \in U(r)

x = xW \Leftarrow \Rightarrow x\ast x = x\ast xW \Leftarrow \Rightarrow (x\ast x) - 1(x\ast x) =W \Leftarrow \Rightarrow Ir\times r =W .(B.12)

Therefore by Theorem B.2 there exists a metric h on Cn\times r
\ast /U(r) such that the differ-

ential of \pi at x,

D\pi (x) : (H\pi ,x(Cn\times r
\ast ), \langle \cdot , \cdot \rangle R) \rightarrow (T\pi (x)(S

r,0(Cn)), h) ,

D\pi (x)(w) = xw\ast + wx\ast ,
(B.13)

D
ow

nl
oa

de
d 

01
/2

0/
23

 to
 1

29
.2

.1
80

.1
03

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1544 RADU BALAN AND CHRIS B. DOCK

is an isometric isomorphism. Indeed

h(Z1, Z2) = \langle D\pi (x)\dagger Z1, D\pi (x)
\dagger Z2\rangle R ,(B.14)

where D\pi (x)\dagger is the pseudoinverse of the linear operator D\pi (x). In this case, for
w1, w2 \in H\pi ,x(Cn\times r

\ast )

h(D\pi (w1), D\pi (w2)) = \langle D\pi (x)\dagger D\pi (w1), D\pi (x)
\dagger D\pi (w2)\rangle R = \langle w1, w2\rangle R .(B.15)

We now determine h explicitly. Namely, if Z1, Z2 \in T\pi (x)(\r S
r,0(Cn)) = D\pi (H\pi ,x(Cn\times r

\ast )),
then Zi = D\pi (x)(Hix+Xi), where Hi, Xi are as in (4.6). We must have

h(Z1, Z2) = \Re tr[(H1x+X1)
\ast (H2x+X2)]

= \Re tr[x\ast H1H2x] + \Re tr[X\ast 
1X2] .

(B.16)

We define Z
\| 
i := PRan(x)ZiPRan(x) = xx\ast Hi +Hixx

\ast and Z\bot 
i := PRan(x)\bot ZiPRan(x) =

Xix
\ast . Then

Hi =

\int \infty 

0

e - txx\ast 
Z

\| 
i e

 - txx\ast 
dt ,

Xi = Z\bot 
i x(x

\ast x) - 1 .

(B.17)

Plugging these expressions into (B.16) yields the expression

h(Z1, Z2) = \Re tr
\biggl\{ 
xx\ast 

\int \infty 

0

e - txx\ast 
Z

\| 
1e

 - txx\ast 
dt

\int \infty 

0

e - sxx\ast 
Z

\| 
2e

 - sxx\ast 
ds

\biggr\} 
+ \Re tr\{ Z\bot \ast 

1 Z\bot 
2 (xx\ast )\dagger \} 

:= h0(Z1, Z2) + h1(Z1, Z2) .

(B.18)

The first term in (B.18) h0(Z1, Z2) can be simplified via the change of coordinates
u = t+ s and v = t - s as

h0(Z1, Z2) =

\int \infty 

0

\int \infty 

0

\Re tr\{ e - xx\ast (t+s)Z
\| 
1e

 - xx\ast (t+s)xx\ast Z
\| 
2\} dsdt

=
1

2

\int \infty 

0

\int u

 - u

\Re tr\{ e - uxx\ast 
Z

\| 
1e

 - uxx\ast 
xx\ast Z

\| 
2\} dvdu

=

\int \infty 

0

u\Re tr\{ e - uxx\ast 
Z

\| 
1e

 - uxx\ast 
xx\ast Z

\| 
2\} du

=

\int \infty 

0

utr\{ e - uxx\ast 
Z

\| 
1e

 - uxx\ast 
xx\ast Z

\| 
2 + Z

\| 
2xx

\ast e - uxx\ast 
Z

\| 
1e

 - uxx\ast 
\} du

=  - tr\{ Z\| 
2

\int \infty 

0

u
\partial 

\partial u
e - uxx\ast 

Z
\| 
1e

 - uxx\ast 
du\} 

= tr\{ Z\| 
2

\int \infty 

0

e - uxx\ast 
Z

\| 
1e

 - uxx\ast 
du\} 

= \langle H1, Z2\rangle R = \langle Z1, H2\rangle R ,

(B.19)

where the last equality follows from cycling under the trace immediately and then
repeating the same calculation. With this metric in hand we have shown (ii), namely,
that the map

\pi : (Cn\times r
\ast , \langle \cdot , \cdot \rangle R) \rightarrow (\r Sr,0(Cn), h)(B.20)
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is a Riemannian submersion. To prove (iii), let A,B \in \r Sr,0(Cn) and let xx\ast and
yy\ast be their respective Cholesky decompositions, so that x, y \in Cn\times r

\ast . Consider the
following straight line curve in Cn\times r:

\sigma x,y : [0, 1] \rightarrow Cn\times r ,

\sigma x,y(t) = (1 - t)x+ tyU ,
(B.21)

where U is a polar factor such that x\ast yU = | x\ast y| (equivalently U is a minimizer of the
distance D, as in Proposition 3.4). The claim is that we will be able to apply Theorem
B.3 to the pushforward of \sigma x,y, proving that it is a geodesic connecting A = \pi (x) to
B = \pi (yU). Specifically, we would like to prove

\sigma x,y(t) \in Cn\times r
\ast \forall t \in [0, 1] ,(B.22)

\.\sigma x,y(0) \in H\pi ,x(Cn\times r
\ast ) .(B.23)

We first prove (B.22), namely, that \sigma x,y(t) does not drop rank as t varies from 0 to 1
even though Cn\times r

\ast is not convex. The endpoints \sigma x,y(0) = x and \sigma x,y(1) = yU are of
course full rank, so it is enough to prove it for t \in (0, 1). Consider x\ast \sigma x,y(t):

x\ast \sigma x,y(t) = (1 - t) x\ast x\underbrace{}  \underbrace{}  
\in P(r)

+ t x\ast yU\underbrace{}  \underbrace{}  
| x\ast y| \in PSD(r)

\in P(r) for t \in (0, 1) .(B.24)

This implies that \sigma x,y(t) \in Cn\times r
\ast for t \in (0, 1), so (B.22) is proved. Let v = \.\sigma x,y(0) =

yU  - x. Then

x\ast v =  - x\ast x+ x\ast yU =  - x\ast x+ (x\ast yy\ast x)
1
2 ,

PRan(x)v =  - (xx\ast )\dagger xx\ast x+ (xx\ast )\dagger x(x\ast yy\ast x)
1
2 ,

PRan(x)v = ( - PRan(x) + (xx\ast )\dagger x(x\ast yy\ast x)
1
2x\ast (xx\ast )\dagger )\underbrace{}  \underbrace{}  

H

x ,

v = Hx+X, PRan(x)X = 0, H\ast = PRan(x)H = H .

(B.25)

Hence (B.23) is proved, and so by Theorem B.3 we have that \gamma A,B := \pi \circ \sigma x,y is a

geodesic on (\r Sr,0(Cn), h) connecting A and B. We find specifically that this geodesic
is given by

\gamma A,B(t) = \pi ((1 - t)x+ tyU)

= ((1 - t)x+ tyU)((1 - t)x+ tyU)\ast 

= (1 - t)2xx\ast + t2yy\ast + t(1 - t)(xU\ast y\ast + yUx\ast ) .

(B.26)

Clearly A = xx\ast and B = yy\ast , but what about xU\ast y\ast and yUx\ast ? Fortunately, a
minor miracle occurs. Namely,

(yUx\ast )2 = yUx\ast yUx\ast = yU | x\ast y| x\ast = y(| x\ast y| U\ast )\ast x\ast = y(x\ast y)\ast x\ast = yy\ast xx\ast ,

(xU\ast y\ast )2 = xU\ast y\ast xU\ast y\ast = x(x\ast yU)\ast U\ast y\ast = x| x\ast y| U\ast y\ast = xx\ast yy\ast .

(B.27)

Thus in fact xU\ast y\ast and yUx\ast are matrix square roots (not necessarily symmetric,
but having positive nonzero eigenvalues) for BA and AB, respectively. We obtain the
following expression for the family of geodesics on \r Sr,0(Cn) connecting A and B:

\gamma A,B(t) = (1 - t)2xx\ast + t2yy\ast + t(1 - t)(xU\ast 
0 y

\ast + yU0x
\ast ) + t(1 - t)(xU\ast 

1 y
\ast + yU1x

\ast ) ,

(B.28)
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where U0 and U1 are as in Proposition 3.4. The fact that the form of this expression is
independent of r is somewhat surprising, and motivates claims (iv) and (v). In order
to prove (iv) we must first check that the collection of smooth manifolds (\r Si,0(Cn))ri=0

provides a stratification of the cone Sr,0(Cn) (conditions (a) and (b) of Definition 4.2).
Condition (a) is satisfied trivially, and for (b) we note that

\r Si,0(Cn) \setminus \r Si,0(Cn) = \{ 0\} \cup \r S1,0 \cup \cdot \cdot \cdot \cup Si - 1,0 .(B.29)

It remains to check that whenever p > q the triple (\r Sp,0(Cn),\r Sq,0(Cn), A) is a-regular

and b-regular for A \in \r Sq,0 \subset \r Sp,0. It was noted by Mather in Proposition 2.4 of
[24] that b-regularity implies a-regularity, but we will use a-regularity in our proof of
b-regularity, so we need to prove a-regularity first. Specifically, a-regularity in this
case states that if (Ai)i\geq 1 \subset \r Sp,0(Cn) converges to A \in \r Sq,0(Cn) and if TAi(

\r Sp,0(Cn))

converges in a Grassmannian sense to the vector space \tau A, then TA(\r S
q,0(Cn)) \subset \tau A.

Upon examining the form of the tangent space as given by (4.7) it becomes clear
that convergence of the tangent spaces TAi

(\r Sp,0(Cn)) is equivalent to convergence of
RanAi to a space we denote by L, so that the Grassmannian limit of the tangent
spaces is given by

\tau A = \{ W \in Sym(Cn)| PL\bot WPL\bot = 0\} .(B.30)

It is evident that L should contain as a subspace RanA, and that this would prove
that the stratification given is a-regular. Indeed, if Ai = Ui\Lambda iU

\ast 
i is the low rank

diagonalization of Ai so that \Lambda i = diag(\lambda 1, . . . , \lambda p) is the diagonal matrix of nonzero
eigenvalues of Ai and UiU

\ast 
i = PRanAi

, U\ast 
i Ui = Ip\times p, then by compactness we can

obtain a subsequence of (Ui)i\geq 1 that converges to a matrix U such that the columns
of U are precisely an orthonormal basis for L. In this case, we may write A = U\Lambda U\ast 

since A = limi\rightarrow \infty Ui\Lambda iU
\ast 
i and the sequences of eigenvalues converge (some to zero),

so that if U = [u1| \cdot \cdot \cdot | up], then

RanA = span\{ ui| \Lambda ii \not = 0\} \subset span\{ ui\} pi=1 = L .(B.31)

Thus, owing to (B.30) and the description of the tangent space in (4.7) we conclude
that TA(\r S

q,0(Cn)) \subset \tau A and our stratification is a-regular. As for b-regularity, let
(Ai)i\geq 1 \subset \r Sp,0(Cn), A \in \r Sq,0(Cn), and let \tau A be as before (specifically we assume the

Grassmannian limit defining \tau A converges) and let (Bi)i\geq 1 \subset \r Sq,0(Cn) be convergent
also to A such that the following limit exists:

Q = lim
i\rightarrow \infty 

Qi := lim
i\rightarrow \infty 

Ai  - Bi

| | Ai  - Bi| | 2
.(B.32)

We claim that Q \in \tau A. Specifically, let \Theta i = Ai  - PRan(Ai)BiPRan(Ai) and \Psi i =
PRan(Ai)BiPRan(Ai)  - Bi. Then either \Psi i = 0, in which case Qi = \Theta i/| | \Theta i| | 2, or
\Psi i \not = 0, so that

Qi =
| | \Theta i| | 2

| | Ai  - Bi| | 2
\Theta i

| | \Theta i| | 2
+

| | \Psi i| | 2
| | Ai  - Bi| | 2

\Psi i

| | \Psi i| | 2
.(B.33)

We will obtain convergent subsequences for the sequences of unit norm matrices
\Theta i/| | \Theta i| | 2 and \Psi i/| | \Psi i| | 2, but first note that

| | \Theta i| | 2
| | Ai  - Bi| | 2

=
| | PRan(Ai)(Ai  - Bi)PRan(Ai)| | 2

| | Ai  - Bi| | 2
\leq 1 .(B.34)

D
ow

nl
oa

de
d 

01
/2

0/
23

 to
 1

29
.2

.1
80

.1
03

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LIPSCHITZ ANALYSIS OF PHASE RETRIEVABLE FRAMES 1547

Hence | | \Psi i| | 2/| | Ai  - Bi| | 2 is also a bounded sequence (if it were not, Qi would fail to
converge). Next note that for i sufficiently large \Psi i = PRan(Ai)BiPRan(Ai)  - Bi is the

difference of two matrices in \r Sq,0(Cn), both converging to A. Therefore, owing to the
fact that \r Sq,0(Cn) is an analytic manifold, any convergent subsequence of \Psi i/| | \Psi i| | 2
will have its limit lying in TA(\r S

q,0(Cn)) (see, for example, Lemma 4.12 in [28]).
Owing to the already proved a-regularity we conclude that the limit of any convergent
subsequence of \Psi i/| | \Psi i| | 2 lies in \tau A. Similarly, \Theta i = PRan(Ai)(Ai  - Bi)PRan(Ai), and
hence any convergent subsequence of \Theta i/| | \Theta i| | 2 must lie in \tau A. Thus we may obtain
a subsequence such that the sequences of real numbers | | \Theta ij | | 2/| | Aij  - Bij | | 2 and
| | \Psi ij | | 2/| | Aij  - Bij | | 2 converge to some \alpha , \beta \in R and the sequences of the unit norm

matrices \Theta ij/| | \Theta ij | | 2 and \Psi ij/| | \Psi ij | | 2 converge to some \^\Theta , \^\Psi \in \tau A. Since (Qi)i\geq 1

converges, we find that

Q = \alpha \^\Theta + \beta \^\Psi \in \tau A .(B.35)

Thus the stratification (\r Si,0(Cn))ri=0 is b-regular and in particular is a Whitney strat-
ification of Sr,0(Cn).

In order to prove (v), let Ai = xix
\ast 
i and Bi = yiy

\ast 
i be Cholesky decompositions

of Ai and Bi such that xi, yi \in Cn\times p and note that we are told the following limit
exists at each t:

\delta (t) = lim
i\rightarrow \infty 

(1 - t)2xix
\ast 
i + t2yiy

\ast 
i + t(1 - t)(xiU

\ast 
i y

\ast 
i + yiUix

\ast 
i ) ,(B.36)

where Ui \in U(p) is such that x\ast i yiUi \geq 0. We note that since (Ai)i\geq 1 and (Bi)i\geq 1

converge we may obtain convergent subsequences for their Cholesky factors xi and yi
(| | xi| | 2 and | | yi| | 2 must both be bounded or else Ai and Bi would not converge). We
may also obtain a convergent subsequence for (Ui)i\geq 1 owing to the compactness of
U(p). Denote these subsequential limits by x, y, and U , respectively, and consider a
combined subsequential indexing such that each occurs. Let Vx and Vy be the matrices
of right singular vectors for x and y so that x = [\^x| 0]Vx and y = [\^y| 0]Vy for some
\^x, \^y \in Cn\times q

\ast . Then clearly

\delta (t) = (1 - t)2\^x\^x\ast + t2\^y\^y\ast + t(1 - t)(\^x \^U\ast \^y\ast + \^y \^U \^x\ast ) ,(B.37)

where \^U is the upper left q \times q block of VyUV
\ast 
x . We will prove that in fact

VyUV
\ast 
x =

\Biggl[ 
\^U 0

0 \~U

\Biggr] 
.(B.38)

In particular, this will imply that \^U \in U(q) since VyUV
\ast 
x \in U(p), and hence the upper

left q\times q blocks of (VyUV
\ast 
x )(VyUV

\ast 
x )

\ast and (VyUV
\ast 
x )

\ast (VyUV
\ast 
x ) must both be equal to

the q \times q identity matrix. In order to prove (B.38), note that U = VW \ast , where

x\ast y =W

\biggl[ 
\Sigma 0
0 0

\biggr] 
V \ast (B.39)

is a singular value decomposition of x\ast y. On the other hand if

\^x\ast \^y = P

\biggl[ 
\Lambda 0
0 0

\biggr] 
Q\ast (B.40)
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is a singular value decomposition for \^x\ast \^y, then

x\ast y = V \ast 
x

\Biggl[ 
P 0

0 \~P

\Biggr] 
\underbrace{}  \underbrace{}  

W

\left[    
\Lambda 0

0 0
0

0 0

\right]    
\Biggl[ 
Q 0

0 \~Q

\Biggr] 
Vy\underbrace{}  \underbrace{}  

V \ast 

,(B.41)

where \~P , \~Q \in U(p  - q) are in general arbitrary, but may of course be chosen in
accordance with W and V . Thus

VyUV
\ast 
x = VyVW

\ast Vx =

\biggl[ 
PQ 0

0 \~P \~Q

\biggr] 
(B.42)

is as in (B.38). The question remains whether \^x\ast \^y \^U \geq 0, but we note that

x\ast yU = V \ast 
x

\biggl[ 
\^x\ast \^y 0
0 0

\biggr] 
VyU

= V \ast 
x

\biggl[ 
\^x\ast \^y 0
0 0

\biggr] 
VyUV

\ast 
x Vx

= V \ast 
x

\biggl[ 
\^x\ast \^y 0
0 0

\biggr] \biggl[ 
\^U 0

0 \~U

\biggr] 
Vx

= V \ast 
x

\biggl[ 
\^x\ast \^y \^U 0
0 0

\biggr] 
Vx .

(B.43)

Thus x\ast yU will be positive semidefinite only if \^x\ast \^y \^U is positive semidefinite, and since
x\ast yU = limi\rightarrow \infty x\ast i yiUi = limi\rightarrow \infty | x\ast i yi| \geq 0 we conclude that \^x\ast \^y \^U \geq 0. A nearly

identical proof shows that Ux\ast y \geq 0. We conclude that \delta is a geodesic in \r Sq,0(Cn)
connecting A and B.

Appendix C. Proofs for section 5.

C.1. Proof of Proposition 5.1.

Proof. We may first note that \langle xx\ast , Aj\rangle R  - \langle yy\ast , Aj\rangle R = \langle xx\ast  - yy\ast , Aj\rangle R. The
expression (1.3) then becomes

a0 = inf
L\in Sr,r(Cn)
| | L| | 2=1

m\sum 
j=1

\langle L,Aj\rangle 2 .(C.1)

The claim follows by contradiction if Sr,r is closed. Explicitly, if Sr,r is closed, then
Sr,r \cap \{ x \in Cn\times n : | | x| | 2 = 1\} is compact. Assume a0 = 0; then there exists L0 \in 
Sr,r \cap \{ x \in Cn\times n : | | x| | 2 = 1\} so that

0 =
m\sum 
j=1

\langle L0, Aj\rangle 2 .(C.2)

This implies that the map \beta is not injective since, in particular, if xx\ast = (L0)+
and yy\ast = (L0) - , then xx\ast \not = yy\ast since | | L0| | 2 = 1 but \beta (x) = \beta (y). It remains
to show that the spaces Sp,q and in particular Sr,r are closed. Consider the map
\eta : Cn\times n \rightarrow \{ 0, . . . , n\} 2 with \eta (A) = (rank(A+), rank(A - )) taking A to its Sylvester
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indices (p, q). Then \eta is continuous with respect to the usual topology on Cn\times n and
with respect to the ``upper box"" topology \tau ub on \{ 0, . . . , n\} 2 generated by the base

\scrB ub = \{ \{ x, . . . , n\} \times \{ y, . . . , n\} | (x, y) \in \{ 0, . . . , n+ 1\} \} .(C.3)

The maps A\rightarrow A\pm are continuous, and it is well known that rank(A+B) \geq rank(A)
whenever | | B| | 2\rightarrow 2 < \sigma p+q(A), and hence \eta is continuous. Moreover \{ 0, . . . , p\} \times 
\{ 0, . . . , q\} is closed in \tau ub, and hence Sp,q, its pullback through the continuous map
\eta , is closed in Cn\times n.

C.2. Proof of Theorem 5.6.

Proof. We first prove that a0 = infz\in Cn\times r a(z). We note that

a0 = inf
x,y\in Cn\times r

xx\ast \not =yy\ast 

1

| | xx\ast  - yy\ast | | 22

m\sum 
j=1

| \langle xx\ast  - yy\ast , Aj\rangle R| 2 .(C.4)

We may change coordinates to z = 1
2 (x+ y) and w = x - y so that

a0 = inf
z,w\in Cn\times r

zw\ast +wz\ast \not =0

1

| | zw\ast + wz\ast | | 22

m\sum 
j=1

| \langle zw\ast + wz\ast , Aj\rangle R| 2 .(C.5)

Recall that z has rank k, and therefore we may take z = [\^z| 0]U for \^z \in Cn\times k
\ast and

U \in U(r). We then define \^w \in Cn\times k via the first k columns of wU\ast , then zw\ast +wz\ast =
\^z \^w\ast + \^w\^z\ast = D\pi (\^z)( \^w), so that in fact we may take \^w \in H\pi ,\^z(Cn\times k

\ast )\setminus \{ 0\} . We obtain

a0 = inf
z\in Cn\times r\setminus \{ 0\} 

inf
\^w\in H\pi ,\^z(Cn\times k

\ast )\setminus \{ 0\} 

1

| | D\pi (\^z)( \^w)| | 22

m\sum 
j=1

| \langle D\pi (\^z)( \^w), Aj\rangle R| 2

= inf
z\in Cn\times r\setminus \{ 0\} 

min
W\in T\pi (\^z)(\r S

k,0(Cn))

| | W | | 2=1

m\sum 
j=1

| \langle W,Aj\rangle R| 2

= inf
z\in Cn\times r

| | z| | 2=1

min
W\in T\pi (\^z)(\r S

k,0(Cn))

| | W | | 2=1

m\sum 
j=1

| \langle W,Aj\rangle R| 2

= inf
z\in Cn\times r

| | z| | 2=1

a(z) .

(C.6)

This proves (5.11). The first two inequalities of (5.12) are clear from the definitions
of the quantities involved, namely, a0 \leq a2(z) \leq a1(z). It remains to prove that
a1(z) \leq a(z). We will need the following families of real-linear subspaces of Cn\times r

indexed by z \in Cn\times r:

Hz=\{ Hz +X| H \in Cn\times n, H\ast = H= PRan(z)H,X\in Cn\times r,PRan(z)X = 0, XPker(z)= 0\} ,
(C.7)

\Delta z = \{ w \in Cn\times r| \exists \rho > 0 \forall | \epsilon | < \rho z\ast (z + \epsilon w) \geq 0\} ,
(C.8)

\Gamma z = \{ y \in Cn\times r| PRan(z)y = 0, yPker(z) = y\} .
(C.9)
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1550 RADU BALAN AND CHRIS B. DOCK

Lemma C.1. The space \Delta z is alternately characterized as

\Delta z = \{ w \in Cn\times r| z\ast w = w\ast z\} (C.10)

and is thus manifestly a real-linear subspace. Moreover, \Delta z decomposes orthogonally
into

\Delta z = Hz \oplus \Gamma z .(C.11)

Finally, if z = [\^z| 0]U for \^z \in Cn\times k
\ast , then

Hz =

\biggl[ 
H\pi ,\^z(Cn\times k

\ast )

\bigm| \bigm| \bigm| \bigm| 0\biggr] U .(C.12)

Proof. Clearly a necessary and sufficient condition for w \in \Delta z is that z\ast w =
w\ast z, for in this case take | \epsilon | < \sigma k(z)/| | w| | 2. We can use this condition to obtain a
parametrization for \Delta z:

w \in \Delta z \Leftarrow \Rightarrow z\ast w = w\ast z

\Leftarrow \Rightarrow z\ast w = \~H , \~H \in Cr\times r, \~H\ast = \~H = Pker(z)\bot 
\~H

\Leftarrow \Rightarrow z\ast w = z\ast Hz , H \in Cn\times n, H\ast = H = PRan(z)H

\Leftarrow \Rightarrow w = Hz +X , H\in Cn\times n, H\ast = H = PRan(z)H,X\in Cn\times r,PRan(z)X=0.

(C.13)

This proves (C.11), with orthogonality easily verified. To prove (C.12) note that if
z = [\^z| 0]U for \^z \in Cn\times k

\ast , U \in U(r), and w = Hz + X \in Hz, then the condition
XPker(z) = 0 implies X = [ \~X| 0]U for \~X \in Cn\times k and PRan(z)X = 0 if and only if

PRan(z)
\~X = 0. Thus

Hz = \{ H[\^z| 0]U + [ \~X| 0]U | H \in Cn\times n, H\ast = H = PRan(z)H, \~X \in Cn\times k,PRan(z)
\~X = 0\} 

(C.14)

= \{ [H\^z + \~X| 0]U | H \in Cn\times n, H\ast = H = PRan(\^z), \~X \in Cn\times k,PRan(\^z)
\~X = 0\} 

= [H\pi ,\^z(Cn\times k
\ast )| 0]U .

With this lemma in mind, we may transform a1(z) into a linear minimization
problem over \Delta z. Namely,

a1(z) = lim
R\rightarrow 0

inf
x\in Cn\times r

| | xx\ast  - zz\ast | | 2<R

\sum m
j=1 | \langle xx\ast  - zz\ast , Aj\rangle R| 2

| | xx\ast  - zz\ast | | 22

= lim
R\rightarrow 0

inf
x\in Cn\times r

| | xx\ast  - zz\ast | | 2<R
z\ast x\geq 0

\sum m
j=1 | \langle xx\ast  - zz\ast , Aj\rangle R| 2

| | xx\ast  - zz\ast | | 22
.

(C.15)

We can add the z\ast x \geq 0 constraint without altering the infimum since doing so
amounts to a choice of representative for x, but x only appears as \pi (x) = xx\ast . We now
show the following lemma, implying that we may instead minimize over | | x - z| | 2 < R.

Lemma C.2. For all z \in Cn\times r and \epsilon > 0 there exists \delta > 0 such that if z\ast x \geq 0
and | | zz\ast  - xx\ast | | 2 < \delta , then | | z  - x| | 2 < \epsilon .
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Proof. We begin with the fact that the operation

\zeta : PSD(n) \rightarrow PSD(n) ,

\zeta (A) =
\surd 
trA

\surd 
A

(C.16)

is continuous with respect to the topology induced by the Frobenius norm. Note that
\zeta (xx\ast ) = | | x| | 2(xx\ast )

1
2 = \psi (x) (the embedding \psi as given in Definition 3.5). Therefore,

given any z \in Cn\times r and \epsilon 1 there exists \delta such that

| | xx\ast  - zz\ast | | 2 < \delta =\Rightarrow 
\bigm\| \bigm\| | | x| | 2(xx\ast ) 1

2  - | | z| | 2(zz\ast )
1
2

\bigm\| \bigm\| 
2
< \epsilon 1 .(C.17)

The latter expression here is of course | | \psi (x) - \psi (z)| | 2, which satisfies | | \psi (x) - \psi (z)| | 2 \geq 
1
2D(x, z)2 by (A.19). If z\ast x \geq 0, then D(x, z) = | | x - z| | 2, so if we take \epsilon 1 = \epsilon 2

2 , then
the above \delta satisfies the lemma.

With this lemma in hand we may freely replace | | xx\ast  - zz\ast | | 2 by | | x - z| | 2 in the
infimization constraint for a1(z) (note that the converse of the lemma is immediate
since \pi is continuous with respect to the topology induced by the Frobenius norm).
After doing so, we change variables from x to w = x - z so that

a1(z) = lim
R\rightarrow 0

inf
x\in Cn\times r

| | x - z| | 2<R
z\ast x\geq 0

\sum m
j=1 | \langle xx\ast  - zz\ast , Aj\rangle R| 2

| | xx\ast  - zz\ast | | 22

= lim
R\rightarrow 0

inf
w\in Cn\times r

| | w| | 2<R
z\ast (z+w)\geq 0

\sum m
j=1 | \langle zw\ast + wz\ast + ww\ast , Aj\rangle R| 2

| | zw\ast + wz\ast + ww\ast | | 22

= lim
R\rightarrow 0

inf
w\in \Delta z

| | w| | 2<R

\sum m
j=1 | \langle zw\ast + wz\ast + ww\ast , Aj\rangle R| 2

| | zw\ast + wz\ast + ww\ast | | 22

\leq lim
R\rightarrow 0

inf
w\in Hz

| | w| | 2<R

\sum m
j=1 | \langle zw\ast + wz\ast + ww\ast , Aj\rangle R| 2

| | zw\ast + wz\ast + ww\ast | | 22

= lim
R\rightarrow 0

inf
w\in Hz

| | w| | 2<R

\sum m
j=1 | \langle zw\ast + wz\ast + ww\ast , Aj\rangle R| 2

| | zw\ast + wz\ast | | 22 + | | ww\ast | | 22 + 4\Re tr\{ zw\ast ww\ast \} 

\leq lim
R\rightarrow 0

inf
w\in Hz

| | w| | 2<R

\sum m
j=1 | \langle zw\ast + wz\ast + ww\ast , Aj\rangle R| 2

| | zw\ast + wz\ast | | 22(1 + 4\Re tr\{ zw\ast ww\ast \} 
| | zw\ast +wz\ast | | 22

)
.

(C.18)

We need to show that the ratio

R(w) = 4
| \Re tr\{ zw\ast ww\ast \} | 
| | zw\ast + wz\ast | | 22

(C.19)

is O(| | w| | ) when w \in Hz. We employ the parametrization of Hz given in (C.7), and
note that for w = Hz +X

| | zw\ast + wz\ast | | 22 = 2(| | z\ast Hz| | 22 + | | zz\ast H| | 22 + | | zX\ast | | 22) ,(C.20)

\Re tr\{ zw\ast ww\ast \} = \Re tr\{ z\ast H2zz\ast Hz\} + \Re tr\{ X\ast Xz\ast Hz\} .(C.21)
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1552 RADU BALAN AND CHRIS B. DOCK

Thus we find

R(w) \leq 2| \Re tr\{ z\ast H2zz\ast Hz\} | + 2| \Re tr\{ X\ast Xz\ast Hz\} | 
| | z\ast Hz| | 22 + | | zz\ast H| | 22 + | | zX\ast | | 22

\leq 2
| \Re tr\{ z\ast H2zz\ast Hz\} | 

| | z\ast Hz| | 22
+ 2

| \Re tr\{ X\ast Xz\ast Hz\} | 
| | zX\ast | | 22 + | | z\ast Hz| | 22

\leq 2
| | z\ast H2z| | 2
| | z\ast Hz| | 2

+
| | X\ast X| | 2
| | zX\ast | | 2

.

(C.22)

Up until this point we have not used the fact that HPRan(z) = H = PRan(z)H and

XPker(z) = 0. We do so now by noting that if z = U1\Lambda V
\ast for U1 \in Cn\times k such that

U1U
\ast 
1 = PRan(z), \Lambda = diag(\sigma 1(z), . . . , \sigma k(z)) is the diagonal matrix of ordered singular

values \sigma 1(z) \geq \cdot \cdot \cdot \geq \sigma k(z) > 0, and V1 \in Cr\times k such that V1V
\ast 
1 = Pker(z)\bot , then

| | z\ast H2z| | = | | \Lambda U\ast 
1H

2U1\Lambda | | 2 \leq \sigma 1(z)
2| | U\ast 

1H
2U1| | 2

= \sigma 1(z)
2
\sqrt{} 

tr\{ PRan(z)H2PRan(z)H2\} = \sigma 1(z)
2| | H2| | 2 ,

| | z\ast Hz| | = | | \Lambda U\ast 
1HU1\Lambda | | 2 \geq \sigma k(z)

2| | U\ast 
1HU1| | 2

= \sigma k(z)
2
\sqrt{} 

tr\{ PRan(z)HPRan(z)H\} = \sigma k(z)| | H | | 2 ,

| | zX\ast | | 2 = | | \Lambda V \ast 
1 X

\ast | | 2 = | | \Lambda (XV1)\ast | | 2 \geq \sigma k(z)| | XV1| | 2

= \sigma k(z)
\sqrt{} 
tr\{ XPker(z)\bot X\ast \} = \sigma k(z)| | X| | 2 .

(C.23)

Thus if \kappa (z) = \sigma 1(z)/\sigma k(z) is the condition number of z, we find

R(w) \leq 2\kappa (z)2
| | H2| | 2
| | H| | 2

+ \sigma k(z)
 - 1 | | X\ast X| | 2

| | X| | 2
\leq 2\kappa (z)2| | H| | 2 + \sigma  - 1

k (z)| | X| | 2
\leq 2\kappa (z)2\sigma k(z)

 - 1| | Hz| | 2 + \sigma  - 1
k (z)| | X| | 2

\leq 
\surd 
2max(2\kappa (z)2, 1)

\sigma k(z)

\sqrt{} 
| | Hz| | 22 + | | X| | 22

=
2
\surd 
2\kappa (z)2

\sigma k(z)\underbrace{}  \underbrace{}  
C(z)

| | w| | 2 .

(C.24)

Thus returning to a1(z) we obtain

a1(z) \leq lim
R\rightarrow 0

inf
w\in Hz

| | w| | 2<R

\sum m
j=1 | \langle zw\ast + wz\ast , Aj\rangle R| 2

| | zw\ast + wz\ast | | 22
(1 + 2C(z)| | w| | 2)

= inf
w\in Hz
w \not =0

\sum m
j=1 | \langle zw\ast + wz\ast , Aj\rangle R| 2

| | zw\ast + wz\ast | | 22

= inf
w\in H\pi ,\^z

\^w \not =0

\sum m
j=1 | \langle \^z \^w\ast + \^w\^z\ast , Aj\rangle R| 2

| | \^z \^w\ast + \^w\^z\ast | | 22

= min
W\in T\pi (\^z)(\r S

k,0(Cn))

| | W | | 2=1

m\sum 
j=1

| \langle W,Aj\rangle R| 2

= a(z) .

(C.25)
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This proves (5.12). In order to prove (5.14) we will employ an explicit parametrization
of T\pi (\^z)(\r S

k,0(Cn)) implied by (4.7). The condition on W \in Sym(Cn) in (4.7) that
PRan(z)\bot WPRan(z)\bot = 0 implies that

W \in T\pi (\^z)(\r S
k,0(Cn)) \Leftarrow \Rightarrow W =W1 +

1

2
(W2 +W \ast 

2 ) .(C.26)

For W1,W2 \in Cn\times n where PRan(z)W1 =W1 =W \ast 
1 , PRan(z)W2 = 0, and W2PRan(z) =

W2. In other words, if U1 \in Cn\times k and U2 \in Cn\times n - k are as in Definition 5.4, then

T\pi (\^z)(\r S
k,0) =

\biggl\{ 
U1AU

\ast 
1 +

1

2
(U2BU

\ast 
1 + U1B

\ast U\ast 
2 )| A \in Sym(Ck), B \in Cn - k\times k

\biggr\} 
.

(C.27)

We will now employ the fact that the maps \tau and \mu in (5.6) are isometries. Specifically,
if A,B \in Sym(Cn), then \langle A,B\rangle R = \tau (A)T \tau (B) and if X,Y \in Cn\times r, then \langle X,Y \rangle R =
\mu (X)T\mu (Y ). With this in mind, we obtain that for W \in T\pi (\^z)(\r S

k,0)

m\sum 
j=1

| \langle W,Aj\rangle R| 2 =
m\sum 
j=1

\bigm| \bigm| \bigm| \bigm| \biggl\langle U1AU
\ast 
1 +

1

2
(U2BU

\ast 
1 + U1B

\ast U\ast 
2 ), Aj

\biggr\rangle 
R

\bigm| \bigm| \bigm| \bigm| 2

=
m\sum 
j=1

| \langle U1AU
\ast 
1 , Aj\rangle R + \langle U2BU

\ast 
1 , Aj\rangle R| 2

=
m\sum 
j=1

| \langle A,U\ast 
1AjU1\rangle R + \langle B,U\ast 

2AjU1\rangle R| 2

=

m\sum 
j=1

\biggl( \biggl[ 
\tau (A)
\mu (B)

\biggr] T \biggl[ 
\tau (U\ast 

1AjU1)
\mu (U\ast 

2AjU1)

\biggr] \biggr) 2

=

\biggl[ 
\tau (A)
\mu (B)

\biggr] T\biggl( m\sum 
j=1

\biggl[ 
\tau (U\ast 

1AjU1)
\mu (U\ast 

2AjU1)

\biggr] \biggl[ 
\tau (U\ast 

1AjU1)
\mu (U\ast 

2AjU1)

\biggr] T\biggr) \biggl[ 
\tau (A)
\mu (B)

\biggr] 
= \scrW TQz\scrW ,

(C.28)

where \scrW =
\bigl[ \tau (A)
\mu (B)

\bigr] 
\in Rk2+2k(n - k) = R2nk - k2

. Meanwhile, again owing to the fact

that \tau and \mu are isometries, we find that for W \in T\pi (\^z)(\r S
k,0) we have | | W | | 2 = | | \scrW | | 2.

Thus, returning to our computation of a(z),

a(z) = min
W\in T\pi (\^z)(\r S

k,0(Cn))

| | W | | 2=1

m\sum 
j=1

| \langle W,Aj\rangle R| 2

= min
\scrW \in R2nk - k2

| | \scrW | | 2=1

\scrW TQz\scrW 

= \lambda 2nk - k2(Qz) .

(C.29)

This concludes the proof of (i)--(iii). As for (iv) and (v) note that when rank(x) \leq k
then we may find P \in U(r) such that x = [\^x| 0]P for \^x \in Cn\times k, and moreover
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d(x, z) = d(\^x, \^z) and xx\ast  - zz\ast = \^x\^x\ast  - \^z\^z\ast . Thus

\^a1(z) = lim
R\rightarrow 0

inf
x\in Cn\times r

d(z,x)<R
rank(x)\leq k

\sum m
j=1 | \langle xx\ast  - zz\ast , Aj\rangle R| 2

d(x, z)2

= lim
R\rightarrow 0

inf
\^x\in Cn\times k

d(\^x,\^z)<R

\sum m
j=1 | \langle \^x\^x\ast  - \^z\^z\ast , Aj\rangle R| 2

d(\^x, \^z)2
.

(C.30)

The constraint rank(x) \leq k is therefore equivalent to the assumption that z \in Cn\times k
\ast .

Hence, in order to avoid a plethora of hats we will assume z \in Cn\times k
\ast . This assumption

simplifies the situation considerably since in this case \Delta z = H\pi ,z. As we shall see,
if the \Gamma z component of \Delta z were to be nontrivial, the local lower bounds \^a1(z) and
\^a2(z) would be zero. We next note that d(x, z) = | | x  - z| | 2| | x + z| | 2 precisely when
x\ast z = z\ast x \geq 0, which may be achieved without loss of generality in \^a1(z) via choice
of representative for x. Thus, keeping in mind that z \in Cn\times k

\ast , we find

\^a1(z) = lim
R\rightarrow 0

inf
x\in Cn\times k

d(z,x)<R

\sum m
j=1 | \langle xx\ast  - zz\ast , Aj\rangle R| 2

d(x, z)2

= lim
R\rightarrow 0

inf
x\in Cn\times k

| | x - z| | 2\cdot | | x+z| | 2<R
x\ast z=z\ast x\geq 0

\sum m
j=1 | \langle z(x - z)\ast + (x - z)z\ast + (x - z)(x - z)\ast , Aj\rangle R| 2

| | x - z| | 22 \cdot | | x+ z| | 22
.

(C.31)

In analogy with our analysis of a1(z) we change variables from x to w = x  - z and
are thus able to linearize the infimization constraint, since for | | w| | 2 < \sigma k(z) we
have that z\ast (z + w) \geq 0 if and only if z\ast w = w\ast z, or in other words if and only
if z \in \Delta z \Leftarrow \Rightarrow z \in H\pi ,z (the vertical component of \Delta z, namely, \Gamma z, is trivial for
z \in Cn\times k

\ast ). We also exploit the fact that D and d generate the same topology and
therefore instead of | | w| | 2| | 2z + w| | 2 < R we may simply take | | w| | 2 < R:

\^a1(z) = lim
R\rightarrow 0

inf
w\in H\pi ,z

| | w| | 2<R

\sum m
j=1 | \langle zw\ast + wz\ast + ww\ast , Aj\rangle R| 2

| | w| | 22| | 2z + w| | 22

=
1

4| | z| | 22
lim
R\rightarrow 0

inf
w\in H\pi ,z

| | w| | 2<R

1

| | w| | 22

m\sum 
j=1

| \langle zw\ast + wz\ast , Aj\rangle R| 2(1 +O(| | w| | 22))

=
1

4| | z| | 22
inf

w\in H\pi ,z

| | w| | 2=1

m\sum 
j=1

| \langle zw\ast + wz\ast , Aj\rangle R| 2

=
1

4| | z| | 22
\^a(z) .

(C.32)

We now consider \^a2(z). In a manner precisely analogous to (C.30) the constraint
in \^a2(z) that rank(x) \leq k and rank(y) \leq k is equivalent to the assumption that
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z \in Cn\times k
\ast . We first employ the unitary freedom of x and y to note that

\^a2(z) = lim
R\rightarrow 0

inf
x,y\in Cn\times k

d(x,z)<R
d(y,z)<R

\sum m
j=1 | \langle xx\ast  - yy\ast , Aj\rangle R| 2

d(x, y)2

= lim
R\rightarrow 0

inf
x,y\in Cn\times k

| | x - z| | 2| | x+z| | 2<R
| | y - z| | 2| | y+z| | 2<R

x\ast z=z\ast x\geq 0
y\ast z=z\ast y\geq 0

\sum m
j=1 | \langle xx\ast  - yy\ast , Aj\rangle R| 2

d(x, y)2

= lim
R\rightarrow 0

inf
x,y\in Cn\times k

| | x - z| | 2<R
| | y - z| | 2<R
x\ast z=z\ast x
y\ast z=z\ast y

\sum m
j=1 | \langle xx\ast  - yy\ast , Aj\rangle R| 2

d(x, y)2
.

(C.33)

We now weaken the infimization constraints and obtain a lower bound. We note that
x\ast z = z\ast x and y\ast z = z\ast y taken together imply that (x  - y)\ast z = z\ast (x  - y), and
also that the denominator d(x, y)2 \leq | | x - y| | 22| | x+ y| | 22. Thus, changing variables to
\xi = x - z and \eta = y  - z we obtain

\^a2(z) \geq lim
R\rightarrow 0

inf
\xi ,\eta \in Cn\times k

| | \xi | | 2<R
| | \eta | | 2<R

z\ast (\xi  - \eta )=(\xi  - \eta )\ast z

\sum m
j=1 | \langle z(\xi  - \eta )\ast + (\xi  - \eta )z\ast + \xi \xi \ast  - \eta \eta \ast , Aj\rangle R| 2

| | \xi  - \eta | | 22| | 2z + \xi + \eta | | 22

=
1

4| | z| | 22
lim
R\rightarrow 0

inf
\xi ,\eta \in Cn\times k

| | \xi | | 2<R
| | \eta | | 2<R

z\ast (\xi  - \eta )=(\xi  - \eta )\ast z

\sum m
j=1 | \langle z(\xi  - \eta )\ast + (\xi  - \eta )z\ast , Aj\rangle R| 2

| | \xi  - \eta | | 22
(1+O(| | \xi | | 22+| | \eta | | 22))

=
1

4| | z| | 22
lim
R\rightarrow 0

inf
\xi ,\eta \in Cn\times k

| | \xi | | 2<R
| | \eta | | 2<R

z\ast (\xi  - \eta )=(\xi  - \eta )\ast z

\sum m
j=1 | \langle z(\xi  - \eta )\ast + (\xi  - \eta )z\ast , Aj\rangle R| 2

| | \xi  - \eta | | 22

=
1

4| | z| | 22
lim
R\rightarrow 0

inf
\xi ,\eta \in Cn\times k

| | \xi  - \eta | | 2<2R
z\ast (\xi  - \eta )=(\xi  - \eta )\ast z

\sum m
j=1 | \langle z(\xi  - \eta )\ast + (\xi  - \eta )z\ast , Aj\rangle R| 2

| | \xi  - \eta | | 22
.

(C.34)

The last line is an equality rather than an inequality owing to homogeneity in \xi  - \eta .
Changing variables once more to w = \xi  - \eta and using the fact that for z \in Cn\times k

\ast 
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1556 RADU BALAN AND CHRIS B. DOCK

z\ast w = w\ast z \Leftarrow \Rightarrow w \in \Delta z \Leftarrow \Rightarrow w \in H\pi ,z(Cn\times k
\ast ) gives

\^a2(z) \geq 
1

4| | z| | 22
lim
R\rightarrow 0

inf
w\in H\pi ,z(Cn\times k

\ast )
| | w| | 2<2R

\sum m
j=1 | \langle zw\ast + wz\ast , Aj\rangle R| 2

| | w| | 22

=
1

4| | z| | 22
inf

w\in H\pi ,z(Cn\times k
\ast )

| | w| | 2=1

m\sum 
j=1

| \langle zw\ast + wz\ast , Aj\rangle R| 2

= \^a(z) = \^a1(z) .

(C.35)

The reverse inequality \^a2(z) \leq \^a1(z) is immediate from the definitions of \^a1(z) and
\^a2(z), and thus (5.15) is proved. We now turn to explicit computation of \^a(z) as the
smallest nonzero eigenvalue of \^Qz. As with the computation of a(z) we rely on several
embeddings. Specifically we define

l : Cn\times k \rightarrow R2n\times k , j : Cn\times k \rightarrow R2n\times 2k ,

l(X) =

\biggl[ 
\Re X
\Im X

\biggr] 
, j(X) =

\biggl[ 
\Re X  - \Im X
\Im X \Re X

\biggr] 
.(C.36)

Note that j is an injective homomorphism and moreover that

j(X) =
\bigl[ 
l(X) Jl(X)

\bigr] 
,(C.37)

where J \in R2n\times 2n is the symplectic form

J =

\biggl[ 
0  - In\times n

In\times n 0

\biggr] 
.(C.38)

Note that Jj(X) = j(X)J for all X \in Cn\times n. The embedding l is isometric, and
the embedding j is isometric up to a constant since for X,Y \in Cn\times k we have
\langle X,Y \rangle R = \langle l(X), l(Y )\rangle R = 1

2 \langle j(X), j(Y )\rangle R. The embedding j is furthermore a
structure preserving homomorphism since for p \in Cn\times k, q \in Ck\times l we have that
j(p)l(q) = l(pq), j(pq) = j(p)j(q), and j(p\ast ) = j(p)T . We will also employ the iso-
metric embedding vec defined in the obvious way in (5.8). We will need the fact that
if A \in Rn\times k and B \in Rk\times l, then

vec(AB) = (Il\times l \otimes A)vec(B) .(C.39)

Note that this further implies that for x, y \in Rn\times k and F \in Rn\times n we have that

vec(x)T (Ik\times k \otimes F )vec(y) = vec(x)T vec(Fy) = \langle x, Fy\rangle R = tr\{ xTFy\} .(C.40)
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With this in mind we find that for z \in Cn\times k
\ast and w \in H\pi ,z(Cn\times k

\ast )

| \langle D\pi (z)(w), Aj\rangle R| 2 = 4| \langle wz\ast , Aj\rangle R| 2

= \langle j(wz\ast ), Aj\rangle 2

= \langle j(w), Ajj(z)\rangle 2

=

\biggl( 
vec(j(w))T vec(j(Aj)j(z))

\biggr) 2

=

\biggl( 
vec(j(w))T (I2k\times 2k \otimes j(Aj))vec(j(z))

\biggr) 2

= 4

\biggl( 
vec(l(w))T (Ik\times k \otimes j(Aj))vec(l(z))

\biggr) 2

= 4WTFjZZ
TFjW ,

(C.41)

whereW = \mu (w), Z = \mu (z), and Fj = Ik\times k\otimes j(Aj). This should not be too surprising
since in fact

\beta j(z) = \langle zz\ast , Aj\rangle R
= \langle z,Ajz\rangle R

=
1

2
\langle j(z), j(Aj)j(z)\rangle 

=
1

2
vec(j(z))T vec(j(Aj)j(z))

=
1

2
vec(j(z))T (I2k\times 2k \otimes j(Aj))vec(j(z))

= vec(l(z))T (Ik\times k \otimes j(Aj))vec(l(z)) = ZTFjZ .

(C.42)

Thus when \beta j is viewed as a map from R2nk to R we find that | D\beta j(Z)(W )| 2 =
4WTFjZZ

TFjW . Returning to a(z) we first note that the constraint w \in H\pi ,z(Cn\times k
\ast )

precisely avoids the ``trivial"" kernel of dimension k2 common to each FjZZ
TFj .

Specifically, we note that ZTFjV = 0 for V \in \scrV z \subset R2nk, where

\scrV z = \{ vec(Jl(z)S + l(z)A)| S \in Sym(Rk), A \in Asym(Rk)\} .(C.43)

Namely if V \in \scrV z and \eta = Jl(z)S + l(z)A \in R2n\times r for A \in Asym(Rk) and S \in 
Sym(Rk) so that V = vec(\eta ), then

ZTFjV = vec(l(z))T (Ik\times k \otimes j(Aj))vec(\eta )

= tr\{ l(z)T j(Aj)\eta \} 
= tr\{ l(z)T j(Aj)(Jl(z)S + l(z)A)\} 
= tr\{ l(z)T j(Aj)Jl(z)S\} + tr\{ l(z)T j(Aj)l(z)A\} 
= 0 .

(C.44)

The last line follows from the fact that j(Aj) is symmetric and j(Aj)J is antisymmetric
since (j(Aj)J)

\ast =  - Jj(Aj) =  - j(Aj)J . The reason that w \in H\pi ,z(Cn\times k
\ast ) avoids this

common kernel is that in fact \scrV z = \mu (V\pi ,z(Cn\times k
\ast )). Recall that

V\pi ,z(Cn\times k
\ast ) = \{ zK| K \in Asym(Ck)\} .(C.45)
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1558 RADU BALAN AND CHRIS B. DOCK

We may decompose K \in Asym(Cn) as K = A + iS, where A \in Asym(Rn) and
S \in Sym(Rn). Hence if u \in V\pi ,z(Cn\times k

\ast ), then on the one hand j(u) = [l(u)| Jl(u)] and
on the other

j(u) = j(zK) = j(z)j(K) = [l(z)| Jl(z)]
\biggl[ 
A  - S
S A

\biggr] 
= [l(z)A+ Jl(z)S|  - l(z)S + Jl(z)A],

(C.46)

from which we may clearly identify l(u) = l(z)A+ Jl(z)S, and thus

\scrV z = \{ \mu (u)| u \in V\pi ,z(Cn\times k
\ast )\} .(C.47)

The map \mu is an isometry, so if w \in H\pi ,z(Cn\times k
\ast ), then the image W = \mu (w) lies

precisely in the orthogonal complement of \scrV z. Thus

\^a(z) = min
w\in H\pi ,\^z(Cn\times k

\ast )
| | w| | 2=1

m\sum 
j=1

| \langle D\pi (\^z)(w), Aj\rangle R| 2

= min
W\in R2nk

W\bot \scrV z

| | W | | 2=1

WT

\left(  4
m\sum 
j=1

FjZZ
TFj

\right)  W

= \lambda 2nk - k2( \^Qz) .

(C.48)

Note that at this point the hats return and Z = \mu (\^z). Eigenvalues are continuous
with respect to matrix entries, and \^Qz is manifestly continuous with respect to z. As
a result of this and the fact that k \mapsto \rightarrow 2nk  - k2 is monotone increasing for k \leq n we
conclude that \^a(z) approaches zero whenever z approaches a drop in rank. Indeed,
\^a(z) jumps discontinuously to a nonzero value once the surface of lower rank is actually
reached, but this cannot prevent infz\in Cn\times r \^a(z) from being zero, and thus there is no
hope of defining a nonzero global lower bound \^a0. This concludes the proof of claims
(iv)--(vi).

Claim (vii) gives local control of a(z) in terms of \^a(z). We first prove that in-
equality (5.17) holds. To do so we consider the following operators:

\Pi 1(\^z) : (T\pi (\^z)(\r S
k,0(Cn)), | | \cdot | | 2) \rightarrow (Rm, | | \cdot | | 2) ,

\Pi 1(\^z)(W ) = (tr\{ WAj\} )mj=1 ,
(C.49)

\Pi 2(\^z) : (H\pi ,\^z(Cn\times k
\ast ), | | \cdot | | 2) \rightarrow (Rm, | | \cdot | | 2) ,

\Pi 2(\^z)(w) = (tr\{ (\^zw\ast + w\^z\ast )Aj\} )mj=1 = \Pi 1(\^z)D\pi (\^z)w .
(C.50)

Note that a(z) and \^a(z), defined respectively in (5.3) and (5.4), are expressible in
terms of the operator norms of the pseudoinverses of \Pi 1(\^z) and \Pi 2(\^z):

a(z) = | | \Pi 1(\^z)
\dagger | |  - 2

\ast ,

\^a(z) = | | \Pi 2(\^z)
\dagger | |  - 2

\ast .
(C.51)

We may therefore obtain operator-theoretic inequalities relating a(z) and \^a(z), namely,

| | \Pi 2(\^z)
\dagger | | \ast = | | D\pi (\^z) - 1\Pi 1(\^z)

\dagger | | \ast \leq | | D\pi (\^z) - 1| | \ast | | \Pi 1(\^z)
\dagger | | \ast ,

| | \Pi 1(\^z)
\dagger | | \ast = | | D\pi (\^z)\Pi 2(\^z)

\dagger | | \ast \leq | | D\pi (\^z)| | \ast | | \Pi 2(\^z)
\dagger | | \ast .

(C.52)
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Hence

| | D\pi (\^z)| |  - 2
\ast \^a(z) \leq a(z) \leq | | D\pi (\^z) - 1| | 2\ast \^a(z) .(C.53)

It remains only to compute appropriate bounds for | | D\pi (\^z)| |  - 2
\ast and | | D\pi (z) - 1| | 2\ast in

order to prove (5.17). First note that

(C.54)

| | D\pi (\^z) - 1| | 2\ast = sup
W\in T\pi (\^z)(\r Sk,0(Cn))\setminus \{ 0\} 

| | D\pi (\^z) - 1(W )| | 22
| | W | | 22

=

\biggl( 
inf

w\in H\pi ,\^z(Cn\times k
\ast )\setminus \{ 0\} 

| | \^zw\ast + w\^z\ast | | 22
| | w| | 22

\biggr)  - 1

.

Next note that for w = H\^z +X \in H\pi ,\^z(Cn\times k
\ast ) we have | | w| | 22 = | | H\^z| | 22 + | | X| | 22 and

| | \^zw\ast + w\^z| | 22 = 2(| | \^z\ast H\^z| | 22 + | | \^z\^z\ast H| | 22 + | | \^zX\ast | | 22), and thus

| | D\pi (\^z) - 1| |  - 2
\ast = inf

w\in H\pi ,\^z(Cn\times k
\ast )\setminus \{ 0\} 

| | \^zw\ast + w\^z\ast | | 22
| | w| | 22

= 2 inf
H\in Sym(Cn),PRan(\^z)H=H

X\in Cn\times k,PRan(\^z)X=0

| | \^z\ast H\^z| | 22 + | | \^z\^z\ast H| | 22 + | | \^zX\ast | | 22
| | H\^z| | 22 + | | X| | 22

\geq 2 inf
H\in Sym(Cn),PRan(\^z)H=H

X\in Cn\times k,PRan(\^z)X=0

| | \^z\ast H\^z| | 22 + | | \^zX\ast | | 22
| | H\^z| | 22 + | | X| | 22

\geq 2\sigma k(\^z)
2 inf
H\in Sym(Cn),PRan(\^z)H=H

X\in Cn\times k,PRan(\^z)X=0

| | H\^z| | 22 + | | X| | 22
| | H\^z| | 22 + | | X| | 22

= 2\sigma k(z)
2 .

(C.55)

Hence | | D\pi (\^z) - 1| | 2\ast \leq 1
2\sigma k(z)2

. For the opposing bound note that

| | D\pi (\^z)| | 2\ast = sup
w\in H\pi ,\^z(Cn\times k

\ast )\setminus \{ 0\} 

| | \^zw\ast + w\^z\ast | | 22
| | w| | 22

\leq sup
w\in H\pi ,\^z(Cn\times k

\ast )\setminus \{ 0\} 

| | \^zw\ast + w\^z\ast | | 21
| | w| | 22

\leq sup
w\in H\pi ,\^z(Cn\times k

\ast )\setminus \{ 0\} 

4| | \^zw\ast | | 21
| | w| | 22

\leq 4| | z| | 22 .

(C.56)

Hence | | D\pi (\^z)| |  - 2
\ast \geq 1

4| | z| | 22
, proving (5.17). We note that choosing w = \^z \in H\pi ,\^z(Cn\times k

\ast )

proves that in fact | | D\pi (\^z)| | 2\rightarrow 1 = 1
2| | z| | 2 . Finally, the claimed bounds in (5.17) are

tight in the case rank(z) = 1, since in this case the inequality is equivalent to the
norm inequality for W \in Cn\times n:

1\sqrt{} 
rank(W )

| | W | | 1 \leq | | W | | 2 \leq | | W | | 1 .(C.57)
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Specifically if W \in T\pi (z)(\r S
1,0(Cn)) for z \in Cn

\ast , then W = zw\ast + wz\ast for some
w \in H\pi ,z(Cn

\ast ) \subset Cn and has rank at most 2. Moreover we have that

| | W | | 1 = | | zw\ast + wz\ast | | 1 =
1

2
| | (z + w)(z + w)\ast  - (z  - w)(z  - w)\ast | | 1 .(C.58)

Recall (3.8) that for x, y \in Cn we have that | | xx\ast  - yy\ast | | 1 = d(x, y) and that d(x, y) =
| | x - y| | 2| | x+ y| | 2 when x\ast y \geq 0. Let x = z +w and y = z  - w, and note that in this
case w \in H\pi ,z(Cn

\ast ) implies x\ast y = z\ast z +w\ast z  - z\ast w - w\ast w = z\ast z  - w\ast w \geq 0 for | | w| | 2
sufficiently small. Thus for | | w| | 2 or equivalently | | W | | 2 sufficiently small,

| | W | | 1 =
1

2
| | (z + w) - (z  - w)| | 2| | (z + w) + (z  - w)| | 2 = 2| | z| | 2| | w| | 2 .(C.59)

The condition that | | W | | 2 be sufficiently small is of no issue since the ratio in a(z) is
homogeneous in | | W | | 2; hence recalling that rank(W ) \leq 2 (C.57) implies

\surd 
2| | z| | 2| | w| | 2 \leq | | W | | 2 \leq 2| | z| | 2| | w| | 2 .(C.60)

Thus for rank(z) = 1 inequality (C.57) is equivalent to

1

4| | z| | 22
\^a(z) \leq a(z) \leq 1

2| | z| | 22
\^a(z) ,(C.61)

which is recognizable as (5.17) since if rank(z) = 1, then | | z| | 22 = \sigma 1(z)
2 and hence

since (C.57) is tight, so too is (5.17). This concludes the proof of (vii).
To prove (viii) we combine (5.11) and (5.14) to obtain the following formula for

computing a0:

a0 = min
k=1,...,r

min
U\in U(n)

U=[U1| U2]

U1\in Cn\times k

U2\in Cn\times (n - k)

\lambda 2nk - k2(QU ) ,(C.62)

recalling that

Q[U1| U2] =

m\sum 
j=1

\biggl[ 
\tau (U\ast 

1AjU1)
\mu (U\ast 

2AjU1)

\biggr] \biggl[ 
\tau (U\ast 

1AjU1)
\mu (U\ast 

2AjU1)

\biggr] T
.(C.63)

Finally, we need to prove that the minimum over k in fact occurs at k = r. We may
write

a0 = min
k=1,...,r

inf
z\in Cn\times k

\ast 

min
W\in T\pi (z)(\r Sk,0(Cn))

1

| | W | | 22

m\sum 
j=1

| \langle W,Aj\rangle R| 2 .(C.64)

Then note that if \^z \in Cn\times k
\ast and \~z \in Cn\times (r - k)

\ast is such that \^z\ast \~z = 0, then z =
[\^z| \~z] \in Cn\times r

\ast and moreover, recalling the parametrization of the tangent space (4.7)
(or alternately that the stratification is a-regular), we find that T\pi (z)(\r S

r,0(Cn)) \supset 
T\pi (\^z)(\r S

k,0(Cn)) since Ran(z)\bot = Ran(\^z)\bot \cap Ran(\~z)\bot . Thus, in fact

a0 = min
U\in U(n)

U=[U1| U2]

U1\in Cn\times r

U2\in Cn\times (n - r)

\lambda 2nr - r2(QU ) .(C.65)
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We now set out to prove (ix), specifically to control a0 using an infimization of \^a(z)
rather than of a(z) by including the additional constraint that z\ast z = Ir\times r. With this
constraint we may write any w \in H\pi ,z(Cn\times r

\ast ) as w = z \~H +X, where \~H \in Sym(Cr)
and X \in Cn\times r satisfies PRan(z)X = 0 (equivalently X satisfies z\ast X = 0). We note
that for z satisfying the constraint

| | w| | 22 = | | \~H| | 22 + | | X| | 22 ,(C.66)

| | zw\ast + wz\ast | | 22 = 4| | \~H| | 22 + 2| | X| | 22 .(C.67)

Hence referring to (5.3) and (5.4) we find that for z\ast z = Ir\times r

1

4
\^a(z) \leq a(z) \leq 1

2
\^a(z) .(C.68)

Note that a direct application of (5.17) to the case where z has orthonormal columns
would lead to the lower constant being 1

4r rather than 1
4 . The form (5.18) for a0 tells

us that a(z) depends only on the range of z, and that we may obtain a0 via

a0 = inf
z\in Cn\times r

\ast 
z\ast z=Ir\times r

a(z) .(C.69)

Thus

1

4
inf

z\in Cn\times r
\ast 

z\ast z=Ir\times r

\^a(z) \leq a0 \leq 1

2
inf

z\in Cn\times r
\ast 

z\ast z=Ir\times r

\^a(z) .(C.70)

This concludes the proof of (ix) and Theorem 5.6.

Remark C.3. For r = 1 inequality (5.17) tells us that

1

4| | z| | 22
\^a(z) \leq a(z) \leq 1

2| | z| | 22
\^a(z) .(C.71)

But in fact, as was proved in [6], more is true. Namely, if the nuclear norm is used in
the definition of a0 instead of the Frobenius norm so that

a10 = inf
x,y\in Cn\times r

x\not =y

\sum m
j=1(\langle xx\ast , Aj\rangle R  - \langle yy\ast , Aj\rangle R)2

| | xx\ast  - yy\ast | | 21
,(C.72)

and similarly in the definition of a(z) so that

a1(z) = min
W\in T\pi (\^z)(\r S

k,0(Cn))

| | W | | 1=1

m\sum 
j=1

| \langle W,Aj\rangle R| 2 ,(C.73)

then

a10 = inf
z\in Cn\times r\setminus \{ 0\} 

a1(z) ,(C.74)

a1(z) =
1

4| | z| | 22
\^a(z) .(C.75)

D
ow

nl
oa

de
d 

01
/2

0/
23

 to
 1

29
.2

.1
80

.1
03

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1562 RADU BALAN AND CHRIS B. DOCK

Remark C.4. For r = 1, Qz is orthogonally equivalent to the restriction of \^Qz to
the orthogonal complement of its null space, giving a correspondence between (5.14)
and (3.5) in [2] when the frame is positive semidefinite (Aj = fjf

\ast 
j ). Specifically, if

r = 1, then we may take U1 = z
| | z| | 2 =: e1 and U2 = [e2, . . . , en], where e1, . . . , en

forms an orthonormal basis for Cn with respect to the complex inner product \langle \cdot , \cdot \rangle C.
Thus

\tau (U\ast 
1AjU1) =

| \langle z, fj\rangle C| 2

| | z| | 22
=

1

| | z| | 2
\langle e1, fj\rangle C\langle fj , z\rangle C ,

\mu (U\ast 
2AjU1) =

1

| | z| | 2
l

\left(   
\left[   \langle e2, fj\rangle C\langle fj , z\rangle C...
\langle en, fj\rangle C\langle fj , z\rangle C

\right]   
\right)   .

(C.76)

Note that \tau (U\ast 
1AjU1) is real, and hence if we insert a single 0 in the middle of

\mu (U\ast 
2AjU1) between vec(\Re (U\ast 

2AjU1)) and vec(\Im (U\ast 
2AjU1)), we obtain

(C.77)

\left[      
\tau (U\ast 

1AjU1)

vec(\Re (U\ast 
2AjU1))

0

vec(\Im (U\ast 
2AjU1))

\right]      =
1

| | z| | 2
l

\left(   
\left[   \langle e1, fj\rangle C\langle fj , z\rangle C

...
\langle en, fj\rangle C\langle fj , z\rangle C

\right]   
\right)   =

1

| | z| | 2
l(U\ast Ajz)

=
1

| | z| | 2
j(U)T j(Aj)l(z) ,

where in the last inequality the algebraic properties of l and j are employed. Thus
(up to a row and column of zeros)

Qz = j(U)T
\biggl\{ 

1

| | z| | 22

m\sum 
j=1

j(Aj)l(z)l(z)
T j(Aj)

\biggr\} 
j(U) .(C.78)

In accordance with the notation of [2] we denote \xi = l(z), \phi j = l(fj), and \Phi j =
j(Aj) = \phi j\phi 

T
j + J\phi j\phi 

T
j J

T so that the above becomes

Qz = j(U)T
\biggl\{ 

1

| | \xi | | 22

m\sum 
j=1

\Phi j\xi \xi 
T\Phi j

\biggr\} 
j(U) .(C.79)

Finally note that the column of j(U) corresponding to the row and column of zeros
on the left-hand side is Jl(z)/| | z| | 2 = J\xi /| | \xi | | 2; thus if we multiply on the left by j(U)
and on the right by j(U)T , we obtain

j(U)Qzj(U)T = (I - PJ\xi )

\biggl\{ 
1

| | \xi | | 22

m\sum 
j=1

\Phi j\xi \xi 
T\Phi j

\biggr\} 
(I - PJ\xi ) .(C.80)

C.3. Proof of Theorem 5.9.

Proof. As was the case for \^a1(z) and \^a2(z) the rank constraints in A1(z), A2(z),
\^A1(z), and \^A2(z) allow us to assume that z \in Cn\times k

\ast rather than Cn\times r. As before, this
is done because without this assumption the resulting lower bounds would be zero for
every z not full rank. We begin with the analysis of \^A1(z), the simpler of the local
lower bounds (we will show (x) that Ai(z) differ from \^Ai(z) only by a constant factor,

D
ow

nl
oa

de
d 

01
/2

0/
23

 to
 1

29
.2

.1
80

.1
03

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LIPSCHITZ ANALYSIS OF PHASE RETRIEVABLE FRAMES 1563

and hence will not analyze them separately). As we have done several times before we
will employ the right-hand unitary freedom of the variable x to require that z\ast x \geq 0,
and then make the change of variables from x to w = x - z:

\^A1(z) = lim
R\rightarrow 0

inf
x\in Cn\times k

xx\ast \not =zz\ast 

D(x,z)<R

1

D(x, z)2

m\sum 
j=1

| \langle xx\ast , Aj\rangle 
1
2  - \langle zz\ast , Aj\rangle 

1
2 | 2

= lim
R\rightarrow 0

inf
w\in Cn\times k

zw\ast +wz\ast +ww\ast \not =0
| | w| | 2<R

z\ast (z+w)\geq 0

1

| | w| | 22

m\sum 
j=1

| \langle (z + w)(z + w)\ast , Aj\rangle 
1
2  - \langle zz\ast , Aj\rangle 

1
2 | 2

= lim
R\rightarrow 0

inf
w\in Cn\times k

zw\ast +wz\ast +ww\ast \not =0
| | w| | 2<R
w\in \Delta z

1

| | w| | 22

\biggl\{ \sum 
j\in I0(z)

\langle ww\ast , Aj\rangle R

+
\sum 

j\in I(z)

| \langle zw\ast + wz\ast + ww\ast , Aj\rangle R| 2

| \langle (z + w)(z + w)\ast , Aj\rangle 
1
2 + \langle zz\ast , Aj\rangle 

1
2 | 2

\biggr\} 
,

(C.81)

where I0(z) = \{ j \in \{ 1, . . . ,m\} | \alpha j(z) = 0\} are the indices for which \alpha j is zero (and
hence not differentiable) and I(z) = \{ j \in \{ 1, . . . ,m\} | \alpha j(z) \not = 0\} are the indices
for which \alpha j is not zero (and hence is differentiable). Thus, since z is full rank we
know that \Delta z = H\pi ,z(Cn\times k

\ast ) and since zw\ast + wz\ast + ww\ast \not = 0 \Leftarrow \Rightarrow w \not = 0 for
w \in H\pi ,z(Cn\times k

\ast ) and sufficiently small in norm, we obtain

\^A1(z) = lim
R\rightarrow 0

inf
w\in H\pi ,z(Cn\times k

\ast )
0<| | w| | 2<R

1

| | w| | 22

\biggl\{ \sum 
j\in I0(z)

\langle ww\ast , Aj\rangle R

+
\sum 

j\in I(z)

| \langle zw\ast + wz\ast + ww\ast , Aj\rangle R| 2

| \langle (z + w)(z + w)\ast , Aj\rangle 
1
2 + \langle zz\ast , Aj\rangle 

1
2 | 2

\biggr\} 

= lim
R\rightarrow 0

inf
w\in H\pi ,z(Cn\times k

\ast )
0<| | w| | 2<R

1

| | w| | 22

\biggl\{ \sum 
j\in I0(z)

\langle ww\ast , Aj\rangle R

+
\sum 

j\in I(z)

| \langle zw\ast + wz\ast , Aj\rangle R| 2

4\langle zz\ast , Aj\rangle 
+O(| | w| | 3)

\biggr\} 

= min
w\in H\pi ,z(Cn\times k

\ast )
| | w| | 2=1

1

| | w| | 22

\biggl\{ \sum 
j\in I0(z)

\langle ww\ast , Aj\rangle R +
\sum 

j\in I(z)

| \langle zw\ast + wz\ast , Aj\rangle R| 2

4\langle zz\ast , Aj\rangle 

\biggr\} 
.

(C.82)

Now recall from (C.41) and (C.42), respectively, that | \langle zw\ast + wz\ast , Aj\rangle R| 2 =
| \langle D\pi (z)(w), Aj\rangle R| 2 = 4WTFjZZ

TFjW and \langle ww\ast , Aj\rangle = \beta j(w) = WTFjW . Thus
the above is

\^A1(z) = min
W\in R2nk

W\bot \scrV z

| | W | | 2=1

WT

\biggl\{ \sum 
j\in I0(z)

Fj +
\sum 

j\in I(z)

FjZZ
TFj

ZTFjZ

\biggr\} 
W .(C.83)D
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As has already been noted in (C.44) the null space of each FjZZ
TFj contains \scrV z, but

in fact so does the null space of each Fj for j \in I0(z) since in this case Fj\mu (zK) =
(Ik\times k \otimes j(Aj))vec(l(zK)) = vec(j(Aj)l(zk)) = vec(l(AjzK)) = 0. Thus we obtain
finally that

\^A1(z) = \lambda 2nk - k2

\biggl( \sum 
j\in I0(z)

Fj +
\sum 

j\in I(z)

Fj\mu (\^z)\mu (\^z)
TFj

\mu (\^z)TFj\mu (\^z)

\biggr) 
.(C.84)

Note that in addition to proving (5.24) this also proves (viii) as this form makes clear
that, owing to the continuity of eigenvalues, infimizing \^A1(z) over z will give zero
(and hence so too will infimizing \^A2(z) over z since \^A2(z) \leq \^A1(z)). Specifically the
number of possibly nonzero eigenvalues of \^Rz + \^Tz is 2nk  - k2 and is thus monotone
increasing in rank, and thus a sequence (zi)i\geq 1 \subset Cn\times r

\ast approaching a surface of lower

rank k will have \lambda 2nr - r2( \^Rz+ \^Tz) approach zero. Somewhat more remarkably, (C.84)

actually gives us \^A2(z) as an eigenvalue problem also. Specifically, we prove that the
``differentiable"" terms in \^A2(z) are equal to those in \^A1(z) and that in fact these are
the only terms which contribute to \^A2(z). We define

\^AI
2(z) = lim

R\rightarrow 0
inf

x,y\in Cn\times r

D(x,z)<R
D(y,z)<R
rank(x)\leq k
rank(y)\leq k

\sum 
k\in I(z) | \alpha k(x) - \alpha k(y)| 2

D(x, y)2
,

\^AI0
2 (z) = lim

R\rightarrow 0
inf

x,y\in Cn\times r

D(x,z)<R
D(y,z)<R
rank(x)\leq k
rank(y)\leq k

\sum 
k\in I0(z)

| \alpha k(x) - \alpha k(y)| 2

D(x, y)2
,

\^AI
1(z) = lim

R\rightarrow 0
inf

x\in Cn\times r

D(z,x)<R
rank(x)\leq k

\sum 
k\in I(z) | \alpha k(x) - \alpha k(z)| 2

D(x, z)2
,

\^AI0
1 (z) = lim

R\rightarrow 0
inf

x\in Cn\times r

D(z,x)<R
rank(x)\leq k

\sum 
k\in I0(z)

| \alpha k(x) - \alpha k(z)| 2

D(x, z)2
,

(C.85)

so that \^A2(z) \geq \^AI0
2 (z) + \^AI

2(z) \geq \^AI
2(z),

\^AI
2(z) \leq \^AI

1(z), and \^AI0
2 (z) \leq \^AI0

1 (z).
Applying the mean value theorem to the functions gk : [0, 1] \rightarrow R, gk(c) = \alpha k((1  - 
c)x + cy) for k \in I(z), we see that there exist ck \in [0, 1] so that \alpha k(y)  - \alpha k(x) =
g(1) - g(0) = g\prime (ck) = D\alpha k((1 - ck)x+ cky)(y - x) (recall that these are precisely the
k for which said differential exists, and the differential is taken with respect to the real
vector space structure). Hence, replacing the rank constraints with the assumption
that z \in Cn\times k

\ast and aligning both x and y with z so that z\ast x \geq 0 and z\ast y \geq 0, we
have

\^AI
2(z) = lim

R\rightarrow 0
inf

x,y\in Cn\times k

| | x - z| | <R
| | y - z| | <R
z\ast x\geq 0
z\ast y\geq 0

\sum 
k\in I(z) | D\alpha k((1 - ck)x+ cky)(y  - x)| 2

D(x, y)2
.(C.86)
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Using the fact that D(x, y) \leq | | y - x| | 2 and writing x = z+\xi and y = z+\eta , we obtain
that

\^AI
2(z) \geq lim

R\rightarrow 0
inf

\eta ,\xi \in \Delta z

| | \xi | | <R
| | \eta | | <R

\sum 
k\in I(z) | D\alpha k(z + (1 - ck)\xi + ck\eta )(\eta  - \xi )| 2

| | \eta  - \xi | | 22
.

(C.87)

The trick of linearizing the conic constraints here to \xi , \eta \in \Delta z is crucial since it allows
us to strictly weaken the constraints in the infimum by taking w = \eta  - \xi so that, after
using the continuity of D\alpha k (\alpha k is continuously differentiable when differentiable),

\^AI
2(z) \geq lim

R\rightarrow 0
inf

\eta ,\xi \in \Delta z

| | \xi | | 2<R
| | \eta | | 2<R

\sum 
k\in I(z) | D\alpha k(z + (1 - ck)\xi + ck\eta )(\eta  - \xi )| 2

| | \eta  - \xi | | 22

= lim
R\rightarrow 0

inf
\eta ,\xi \in \Delta z

| | \xi | | 2<R
| | \eta | | 2<R

\sum 
k\in I(z) | D\alpha k(z)(\eta  - \xi )| 2

| | \eta  - \xi | | 22
+O(| | \xi | | 22 + | | \eta | | 22)

\geq lim
R\rightarrow 0

inf
w\in \Delta z

| | w| | 2<2R

\sum 
k\in I(z) | D\alpha k(z)(w)| 2

| | w| | 22

= min
w\in H\pi ,z(Cn\times k

\ast )
| | w| | 2=1

\sum 
k\in I(z)

| D\alpha k(z)(w)| 2

= \lambda 2nk - k2

\biggl( \sum 
j\in I(z)

Fj\mu (\^z)\mu (\^z)
TFj

\mu (\^z)TFj\mu (\^z)

\biggr) 
= \^AI

1(z) .

(C.88)

We already had the reverse inequality \^AI
2(z) \leq \^AI

1(z), and hence \^AI
2(z) = \^AI

1(z).
Moreover, assuming this minimum is achieved by w0 \in H\pi ,z(Cn\times k

\ast ), then if we put

x = z+ 1
2w0 y = z - 1

2w0, we see that the \^AI0
2 (z) term vanishes and \^AI

2(z) is achieved,

and hence \^A2(z) \leq \^AI
2(z). We already had the reverse inequality, so we conclude that

\^A2(z) = \^AI
2(z) =

\^AI
1(z) and

\^AI0
2 (z) = 0. In summary

\^A2(z) = min
W\in R2nk

W\bot \scrV z

| | W | | 2=1

WT

\biggl\{ \sum 
j\in I(z)

FjZZ
TFj

ZTFjZ

\biggr\} 
W

= \lambda 2nk - k2

\biggl( \sum 
j\in I(z)

FjZZ
TFj

ZTFjZ

\biggr) 
.

(C.89)

Thus claims (i) and (ii) are proven. Claim (iii) follows immediately from inequality
(3.6). This concludes the proof of Theorem 5.9.

Remark C.5. If z were not assumed full rank in (C.81), then w \in \Delta z would
possibly have a nonzero component w\Gamma in \Gamma z \subset V\pi ,z(Cn\times k

\ast ). As a result, it would be
possible to obtain a sequence (with the horizontal space component of w converging to
zero) for which the second sum in the last line of (C.81) is eventually fourth order in
| | w| | 2, and thus A1(z) would be zero wherever \alpha is differentiable (almost everywhere
in measure). The rank constraint in the definition of \^A1(z) that rank(x) \leq k avoids
this, since it allows us to assume that z is full rank and hence that \Gamma z is trivial.
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C.4. Proof of Theorem 5.13.

Proof. The proof of (i) is essentially identical to the proof of the analogous eigen-
value formula for the lower bound a0 in Theorem 5.6. One first changes coordinates
to z = 1

2 (x+ y) and w = x - y and repeats the computation (C.6) to obtain

b0 = sup
z\in Cn\times r

max
W\in T\pi (\^z)(\r S

k,0(Cn))

| | W | | 2=1

M\sum 
j=1

| \langle W,Aj\rangle R| 2 .(C.90)

At this point we note that

b0 \leq sup
W\in Sym(Cn)

| | \scrA (W )| | 22
| | W | | 22

= | | \scrA | | 22\rightarrow 2 .(C.91)

As before we observe that it suffices to take z \in Cn\times r
\ast since if \^z \in Cn\times k

\ast and \~z \in 
Cn\times (r - k)

\ast and z = [\^z| \~z] with \~z\ast \^z = 0, then T\pi (z)(\r S
r,0(Cn)) \supset T\pi (\^z)(\r S

k,0). One then
employs the tangent space parametrization (C.27) and repeats the computation (C.28)
to obtain

b0 = sup
z\in Cn\times r

\ast 

\lambda 1(Qz) = max
U\in U(n)

U=[U1| U2]

U1\in Cn\times r,U2\in Cn\times n - r

\lambda 1(Q[U1| U2]) .(C.92)

This concludes the proof of (i). To prove (ii) we will employ the following lemma.

Lemma C.6. Let | | | \cdot | | | be any norm. Then

| | \scrA | | 1\rightarrow | | | \cdot | | | = sup
x\in Cn

| | x| | 2=1

| | | \scrA (xx\ast )| | | .(C.93)

In other words the operator norm | | \scrA | | \ast of \scrA : (Sym(Cn)(Cn), | | \cdot | | 1) \rightarrow (Rm, | | | \cdot | | | )
is achieved on a matrix of rank 1.

Proof. Let R \in Sym(Cn) be nonzero such that | | R| | 1 = 1 and | | | \scrA (R)| | | =
| | \scrA | | \ast | | R| | 1. Write R =

\sum n
j=1 rjeje

\ast 
j and note that | | R| | 1 = 1 implies

\sum n
j=1 | rj | = 1.

Then

(C.94)
| | \scrA | | \ast = | | \scrA | | \ast | | R| | 1 =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm| \bigm| \bigm| \bigm| n\sum 
j=1

rj\scrA (eje
\ast 
j )

\bigm| \bigm| \bigm| \bigm| \bigm\| \bigm\| \bigm\| \bigm\| \leq 
\biggl( n\sum 

j=1

| rj | 
\biggr) 

max
j=1,...,n

| | | \scrA (eje
\ast 
j )| | | 

= max
j=1,...,n

| | | \scrA (eje
\ast 
j )| | | .

Let x0 = ej0 , where j0 is the index that achieves the maximum. Then | | x0| | 2 = 1 and
| | A| | \ast \leq | | | \scrA (x0x

\ast 
0)| | | , but of course this bound is achievable by just plugging x0x

\ast 
0

into \scrA . Thus the operator norm of \scrA is achieved on a matrix of rank 1 and the lemma
holds.
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Next note that

b0,1 = sup
x,y\in Cn\times r

[x]\not =[y]

\sum m
j=1 | \langle xx\ast  - yy\ast , Aj\rangle R| 2

| | xx\ast  - yy\ast | | 21

= sup
z\in Cn\times r

\ast 

sup
W\in T\pi (z)(\r Sr,0(Cn))

| | \scrA (W )| | 22
| | W | | 21

\leq sup
W\in Sym(Cn)
| | W | | 1=1

| | \scrA (W )| | 22

= | | \scrA | | 21\rightarrow 2 .

(C.95)

Note that by an identical computation b0 \leq | | \scrA | | 2\rightarrow 2. By the lemma | | \scrA | | 1\rightarrow 2 =
supx\in Cn,| | x| | 2=1 | | \scrA (xx\ast )| | 22, and hence

b0,1 \leq sup
x\in Cn

| | \scrA (xx\ast )| | 22
| | xx\ast | | 21

\leq sup
x\in Cn\times r

| | \scrA (xx\ast )| | 22
| | xx\ast | | 21

=
| | \scrA (x0x

\ast 
0)| | 22

| | x0x\ast 0| | 21

\leq sup
U2\in Cn\times n - k

U\ast 
2 U2=In - k\times n - k

k=1,...,r

sup
W\in Sym(Cn)
U\ast 

2 WU2=0

| | \scrA (W )| | 22
| | W | | 21

= b0 ,

(C.96)

where in the second-to-last equality we note that it suffices to take U2 such that
U2U

\ast 
2 = PRan(x0)\bot , and in the last equality we use the implicit parametrization of the

tangent space (4.7). Thus

b0,1 = | | \scrA | | 1\rightarrow 2 = sup
x\in Cn

| | \scrA (xx\ast )| | 22
| | xx\ast | | 21

= sup
x\in Cn\times r

| | \scrA (xx\ast )| | 22
| | xx\ast | | 21

.(C.97)

We now seek an operator Tr : Cn\times r \rightarrow (Cn\times r)m, an integer q, and a norm | | | \cdot | | | so
that for x \in Cn\times r,

| | | Tr(x)| | | q = | | \scrA (xx\ast )| | 22 .(C.98)

We find that if Aj \geq 0 for all j, then

| | \scrA (xx\ast )| | 22 =
m\sum 
j=1

| \langle xx\ast , Aj\rangle R| 2 =
m\sum 
j=1

| | A
1
2
j x| | 

4
2 .(C.99)

So we let Tr be as in Definition 5.12, | | | X| | | = | | | X| | | 2,4, and q = 4 and find b0 =
| | Tr| | 42\rightarrow (2,4) = | | T1| | 42\rightarrow (2,4). This concludes the proof of (ii). To prove (iii) note that

by (3.5) | | (xx\ast ) 1
2  - (yy\ast )

1
2 | | 2 \geq D(x, y), and hence

B0 \leq sup
x,y\in Cn\times r

[x]\not =[y]

| | \alpha (x) - \alpha (y)| | 22
D(x, y)2

.(C.100)D
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Thus

B0 \leq sup
x,y\in Cn\times r

[x] \not =[y]

1

D(x, y)2

m\sum 
j=1

| \langle xx\ast , Aj\rangle 
1
2  - \langle yy\ast , Aj\rangle 

1
2 | 2

= sup
x,y\in Cn\times r

x\ast y\geq 0

1

| | x - y| | 22

m\sum 
j=1

| \langle xx\ast  - yy\ast , Aj\rangle R| 2

(\langle xx\ast , Aj\rangle 
1
2 + \langle yy\ast , Aj\rangle 

1
2 )2

.

(C.101)

We now make the change of coordinates z = 1
2 (x+ y), w = x - y so that x = z+ 1

2w,
y = z  - 1

2w. As before let I0(z) be the subset of \{ 1, . . . ,m\} for which Ajz = 0
and I(z) its complement in \{ 1, . . . ,m\} . In this case we note that if j \in I0(z), then
0\langle zw\ast + wz\ast , Aj\rangle R = \langle xx\ast  - yy\ast , Aj\rangle . Thus, employing the triangle inequality via

\langle xx\ast , Aj\rangle 
1
2 + \langle yy\ast , Aj\rangle 

1
2 = | | A

1
2
j x| | 2+ | | A

1
2
j y| | 2 \geq 2| | A

1
2
j z| | 2 = 2\langle zz\ast , Aj\rangle 

1
2 , we find that

B0 \leq sup
x,y\in Cn\times r

x\ast y\geq 0

1

| | x - y| | 22

m\sum 
j\in I(z)

| \langle xx\ast  - yy\ast , Aj\rangle R| 2

(\langle xx\ast , Aj\rangle 
1
2 + \langle yy\ast , Aj\rangle 

1
2 )2

(C.102)

\leq sup
z\in Cn\times r

z \not =0

sup
w\in Cn\times r

z\ast z - 1
4w

\ast w+ 1
2 (w

\ast z - z\ast w)\geq 0

1

| | w| | 22

\sum 
j\in I(z)

| \langle zw\ast + wz\ast , Aj\rangle R| 2

4\langle zz\ast , Aj\rangle 
.(C.103)

Next note that the condition z\ast z  - 1
4w

\ast w + 1
2 (w

\ast z  - z\ast w) \geq 0 holds if and only if
z\ast w = w\ast z and w\ast w \leq 4z\ast z. Moreover, since w only appears as w/| | w| | 2 we may
scale w so that \sigma 1(w) \leq \sigma k(z) (where z has rank k); thus the latter nonlinear criterion
becomes the linear criterion that wPker(z) = 0. Taken together, these criteria hold if
and only if w \in Hz. Thus, with reference to the computations (C.41) and (C.42) we
find that

B0 \leq sup
z\in Cn\times r

z \not =0

sup
w\in Hz

1

| | w| | 22

\sum 
j\in I(z)

| \langle zw\ast + wz\ast , Aj\rangle R| 2

4\langle zz\ast , Aj\rangle 
(C.104)

= sup
z\in Cn\times r

z \not =0

max
W\in R2nk

W\bot \scrV Z

| | W | | 2=1

WT

\biggl( \sum 
j\in I(z)

Fj\mu (\^z)\mu (\^z)
TFj

\mu (\^z)TFj\mu (\^z)

\biggr) 
W(C.105)

= sup
z\in Cn\times r

z \not =0

\lambda 1( \^Tz) .(C.106)

Moreover note that by setting y = 0 in the definition of B0 and observing that
| | (xx\ast ) 1

2 | | 2 = | | x| | 2 and that \langle xx\ast , Aj\rangle \geq 0 we obtain that

B0 \geq sup
x\in Cn\times r

1

| | x| | 22

m\sum 
j=1

\langle xx\ast , Aj\rangle = B .(C.107)

Meanwhile by Cauchy--Schwarz \langle zw\ast , Aj\rangle \leq | | A
1
2
j w| | 2| | A

1
2
j z| | 2 = \langle ww\ast , Aj\rangle 

1
2 \langle zz\ast , Aj\rangle 

1
2
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(similarly for \langle wz\ast , Aj\rangle ). Hence

B0 \leq sup
z\in Cn\times r

z \not =0

\lambda 1( \^Tz)

= sup
z\in Cn\times r

z \not =0

sup
w\in Hz

1

| | w| | 22

\sum 
j\in I(z)

| \langle zw\ast + wz\ast , Aj\rangle R| 2

4\langle zz\ast , Aj\rangle 

\leq sup
w\in Hz

1

| | w| | 22

\sum 
j\in I(z)

\langle ww\ast , Aj\rangle 

\leq sup
w\in Cn\times r

1

| | w| | 22

m\sum 
j=1

\langle ww\ast , Aj\rangle R = B .

(C.108)

Thus B \leq B0 \leq supz\in Cn\times r

z \not =0

\lambda 1( \^Tz) \leq B and hence all three are equal. This concludes

the proof of (iii) and of Theorem 5.13.

C.5. Proof of Theorem 5.14.

Proof. It is shown in Proposition 5.1 that the map \beta is injective if and only if it
is lower Lipschitz, that is, if and only if a0 > 0. This gives equivalence of (i) to (ii)
immediately since we proved in Theorem 5.6 that

a0 = min
U1\in Cn\times r

U2\in Cn\times (n - r)

[U1| U2]\in U(n)

\lambda 2nr - r2(Q[U1| U2]) .(C.109)

Similarly, it is evident from (C.70) that a0 > 0 if and only if \^a(z) > 0 whenever
z\ast z = Ir\times r. It is proved in Theorem 5.6 that \^a(z) = \lambda 2nr - r2( \^Qz), and also that the

null space of \^Qz includes the r2 dimension \scrV z. Thus the frame is generalized phase
retrievable if and only if the null space \^Qz does not extend beyond \scrV z for any z of
orthonormal columns, proving equivalence of (i) to (iii). We prove equivalence of (ii)
to (iv) by noting that Q[U1| U2] is invertible if and only if

spanR

\biggl\{ \biggl[ 
\tau (U\ast 

1AjU1)
\mu (U\ast 

2AjU1)

\biggr] \biggr\} m

j=1

= R2nr - r2 .(C.110)

Noting that \tau  - 1(Rr2) = Sym(Cr) and \mu  - 1(R2nr - 2r2) = Cn - r\times r, thus Q[U1| U2] is
invertible if and only if there exist c1, . . . , cm \in R so that (5.39a) and (5.39b) are
satisfied. To prove equivalence with (v) note that (5.39a) and (5.39b) both hold if
and only if for all U = [U1| U2] we have

spanR\{ AjU1\} =

\biggl\{ 
U

\biggl[ 
H
B

\biggr] 
| H \in Sym(Rn), B \in C(n - r)\times r

\biggr\} 
= \{ U1K| K \in Cr\times r,K\ast =  - K\} \bot .

(C.111)

Finally note that while (v) trivially implies (vi) it is also the case that \langle AjU1, U1K\rangle R =
\langle U\ast 

1AjU1,K\rangle R = 0 for every U1 and every K since U\ast 
1AjU1 is Hermitian and K

is skew-Hermitian; hence it is automatically true that spanR\{ AjU1\} \subset \{ U1K| K \in 
Cr\times r,K\ast =  - K\} \bot . Thus we also obtain that (vi) implies (v).

This concludes the proof of Theorem 5.14.
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