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Abstract. The classical phase retrieval problem arises in contexts ranging from speech recogni-
tion to x-ray crystallography and quantum state tomography. The generalization to matrix frames
is natural in the sense that it corresponds to quantum tomography of impure states. We provide
computable global stability bounds for the quasi-linear analysis map 8 and a path forward for un-
derstanding related problems in terms of the differential geometry of key spaces. In particular, we
manifest a Whitney stratification of the positive semidefinite matrices of low rank which allows us
to “stratify” the computation of the global stability bound. We show that for the impure state case
no such global stability bounds can be obtained for the nonlinear analysis map « with respect to
certain natural distance metrics. Finally, our computation of the global lower Lipschitz constant for
the B analysis map provides novel conditions for a frame to be generalized phase retrievable.
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1. Introduction. Let H = C™*" with n > r be the Hilbert space of tall matri-
ces with complex entries, equipped with the real inner product (z, w)r = Rtr{z*w},
where z* denotes the transpose complex conjugate of z (the Hermitian conjugate). We
denote by (z, w)¢c = tr{z*w} the complex inner product and by Ran(z) = {zu|u € C"}
the range of z as an operator z : C" — C". Let CI'*" be the open subset of C"*" con-
sisting of full rank tall matrices. For p > 1 we denote by [|z||, the pth Schatten norm
of z, that is to say, the l, norm of the singular values of z. The pseudoinverse of z will
be denoted by zf. Let U(r) be the Lie group of » x r matrices with entries in C satisfy-
ing U*U = I. We denote by C™*"/U(r) and C?*"/U(r) the set of equivalence classes
in C"*" and C}*", respectively, under the equivalence relation z ~ w if and only if
there exists U € U(r) such that z = wU. Let SP?(C™) denote the set of symmetric
operators (Hermitian matrices) on C™ having at most p positive and ¢ negative eigen-
values, and let $79(C™) be the set of symmetric operators (Hermitian matrices) on C™
having exactly p positive and ¢ negative eigenvalues. The set C"*" /U (r) may then be
identified with S™0(C™) and C™*"/U(r) with S™°(C") via Cholesky decomposition.
Being a finite-dimensional space, a frame for C"*" is a collection {f;}2; C C"*" that
spans C"*". In particular, { f; };”:1 is a frame if and only if there exist A, B > 0 (called
frame bounds) satisfying Al|z||3 < > |(fj,2)r|? < B||z||3 for all z € C**". This
condition may also be written Al|z]|3 < doimi(A, 2R < Bl|z||3 for all z € C™*7,
where A; = f; [ . Using this fact, we may extend the concept of a frame for C™™" to
collections of symmetric matrices {A;}72; C Sym(C"). Fix a frame for C"*"; then
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that frame is called generalized phase retrievable if the following map is injective:
p:CU(r) = R™,
ﬁj(z):<AjaZZ*>]R; j=1,...,m

This definition is in agreement with the generalized phase retrieval problem laid out
in [27] for the case r = 1. Note that if A; = f;f7, then 3;(z) = ||f7z||3. A breadth of
literature exists on the classical phase retrieval problem where » =1 and H = C" or
H = R"; see, for example, [4] for an explicit construction of Parseval phase retrievable
frames and [1] for a proof of the stability of finite-dimensional phase retrievability
under perturbation of the frame vectors. In contrast to the finite-dimensional case,
it is shown in [10] that infinite-dimensional phase retrieval is never lower-Lipschitz.
Probabilistic error bounds for the case of noisy phase retrieval may be found in [14]
for frames sampled from a sub-Gaussian distribution satisfying a so-called “small
ball” assumption. Efficient algorithms exist for doing classical phase retrieval (for
example, via Wirtinger flow as in [12]), as well for constructing frames with desirable
properties (nearly tight with low coherence) as in [13]. See, for example, [25] for an
analysis of the stability statistics for random frames and [21] for the interesting result
that a large class of “nonpeaky” vectors (so-called p-flat vectors) are recoverable
even when frame vectors are chosen as Bernoulli random vectors, a case in which
phase retrieval is well known to fail for arbitrary signals. Recently several advances
have been made in understanding natural generalizations of the problem to arbitrary
symmetric measurement matrices [27], unifying the problem of phase retrieval with
that of fusion frame reconstruction. Lipschitz stability questions for the generalized
phase retrieval are analyzed in [30]. The generalized phase retrieval problem in the
case r = 1 has proven amenable to efficient implementations of gradient descent [22],
and a probabilistic guarantee of global convergence of first order methods like gradient
descent has been obtained in [23] for O(nlog®(n)) frame vectors. In accordance with
the classical phase retrieval we also define the o map as the entrywise square root of
the beta map (here we require that each A; > 0)

a:C"/U(r) — R™,

(1.1)

(12) C
a;(z) = (A4, 22%)E, ji=1...,m

Note that if we write A; = f; f; using Cholesky decomposition, then a;(z) = || f; z||2.
In this paper we will study the global and local Lipschitz properties of these two maps
in the case that the frame is generalized phase retrievable. In particular, we analyze
the following (squared) global Lipschitz constants:

15w w V@ZBWIE 1A = AW
syecr |z —yy*|3 z,y€CmX" llzz* —yy*|[5

(14) AO = 1nf “ Ha*(xl) a( )||2 BO = sup Ha*(xl) a( )||12 5
z,yeC™ " ||(£C£L' )2 ( )2” x,yeC™*" ||(£C£L' )2 ( )2”2

In doing so we will employ several distance metrics on C**"/U(r) (equivalently
on S™0(C")), the relationships between which are contained in Theorem 3.7. The
Lipschitz properties of o and 3 are intimately related to the geometry of S™°(C"),
which is the subject of Theorem 4.5. Theorem 4.5 continues the results in [8] on the
geometry of the n X n positive definite matrices P(n). Thus the main contributions
of this work are as follows:
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e In section 3 we introduce the novel distance

(1.5) d(z,y) = \/(Hxllé +1Ill3)? — 4ll=zyllz

on C"*7/U(r) and in Theorem 3.7 provide optimal Lipschitz constants with
respect to natural embeddings of (C"*"/U(r),d) into the Euclidean space
(Sym(C™), || - ||2). This new distance metric allows us in Theorem 5.6 to
compute local lower Lipschitz constants for the S map generalizing those in
Theorem 2.5 of [6]. Theorem 3.7 also provides optimal Lipschitz constants
with respect to natural embeddings of (C™*"/U(r), D) into (Sym(C"™), || ||2)
for the Bures-Wasserstein distance D(x,y) := v/||z[[3 + [[y]|3 — 2[|z*y]|:-

e In section 4 Theorem 4.5 generalizes Theorem 5 in [8] by providing the ge-
ometry not just of the manifold of positive definite matrices P(n) but of the
algebraic semivariety S™°(C"). In particular we manifest a Whitney strati-
fication of S™°(C"), obtain the Riemannian metrics of the stratifying man-
ifolds, and show that this family of metrics is compatible across the strata
in the sense that geodesics of lower strata are limiting curves of geodesics in
higher strata. In particular this proves that the geodesic in OST’O((C") con-
necting two matrices of rank k < 7 is completely contained in S¥°(C™). This
stratification of the low rank positive-semidefinite matrices is crucial in sim-
plifying the computation of the global lower Lipschitz bounds for 8 and « in
Theorems 5.6 and 5.9, respectively.

e In section 5 Theorem 5.6 provides an explicit formula for the global lower
bound ag as the minimization over U(n) of the (2nr — ?)th eigenvalue of a
family of matrices parametrized by U(n). Theorem 5.6 also uses the distance
d to provide a generalization of Theorem 2.5 in [6] to the case r > 1 and shows
that the analogue Qz of R(&) can be used to control ay to within a factor
of 2. We also show in Theorem 5.9 that the corresponding generalization of
Theorem 2.2 in [6] to the case r > 1 is false, namely, that Ag = 0 when r > 1.
Thus in the case r > 1 the more recently introduced S map (the entrywise
square of the & map) is a more natural and well-behaved analysis map for
generalized phase retrieval, owing primarily to the fact that it lifts to a linear
map on the low rank positive-semidefinite matrices. It should be noted that
Theorem 5.9 does not rule out the possibility of a better distance metric with
respect to which « is globally lower Lipschitz. Finally, in Theorem 5.14 we
provide novel conditions for a frame {A;}7", for C"*" to be generalized phase
retrievable.

A motivating example for the Lipschitz analysis of a and § is quantum tomography
of impure states. A noisy quantum system is modeled as a statistical ensemble over
pure quantum states. The standard example is unpolarized light. In such cases, all
of the measurable information in the system is contained in a density matrix which,
using bra-ket notation, has the form

(1.6) p="> il Wl ,

JjET

where p; is the ensemble probability that the system is in the pure quantum state
|1;) belonging to a Hilbert space H. If we assume the cardinality of Z is finite and
equal to r and that the state vectors themselves live in the Hilbert space C™, then
p € S™O(C™) N {z € Sym(C")|tr{x} = 1}. The expectation of a given observable A

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/20/23 to 129.2.180.103 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

LIPSCHITZ ANALYSIS OF PHASE RETRIEVABLE FRAMES 1521

(a symmetric operator on C") is therefore

(L7) Ey[A] =Y pi(0ylAlgy) = D pyte{le) (¥4} = tr{pA} = Rer{pA} .

JET JET

By repeatedly measuring the observable A and then allowing the quantum system to
relax one may estimate tr{pA} (and perhaps higher moments), but the aim is to infer p
itself. It was shown in [16] that sufficiently many randomly sampled Pauli observables
can be used along with methods from compressed sensing (trace minimization, matrix
Lasso) to reconstruct a low rank density matrix with high fidelity. In general, if a
suite of observables is well chosen (constitutes a generalized phase retrievable frame),
then the problem of inferring p from the expectation values of said observables is
subordinate to the problem of phase retrieval on C™"*". Asking if, for a collection of
observables {A; };-”:1, the density matrix p is recoverable is equivalent to asking if the
map

B:S™0(C™) N {z € Sym(C")|tr{z} = 1} — R™,

(1.8) {p, ffll>]R

<p7Am>R

is injective. In fact, given that we can only approximate the expectations using finitely
many measurements, we should hope that it is lower Lipschitz with respect to the
Frobenius distance. Such stability questions for phase retrievable frames for C" (the
pure state case) are investigated in [1]. Given that p is positive semidefinite and rank
at most 7 there exists a Cholesky factor z € C"*" such that p = zz*. Indeed we may
take z € C"*" /U (r) since p is invariant under z — zU, in which case tr{p} = 1 if and
only if ||z]|]2 = 1. We may therefore concern ourselves with the Lipschitz properties
of 8 restricted to z € C"*"/U(r) with ||z||; = 1, rather than 3. For the time being
we consider a Lipschitz analysis of g : C"*"/U(r) — R™, deferring discussion of
a possible Lipschitz retract onto the unit sphere. Thus we seek information on the
optimal global lower Lipschitz constant of the 8 map, namely, /ag. In the above
example if ag > 0, this means that if we can measure each E,[A;] to within error
€ > 0, then we can obtain an approximation p to p that satisfies

evm
Nk

In addition to quantum state tomography, Lipschitz analysis of spaces of low rank
matrices is central in a significant number of problems in science and engineering such
as the phase retrieval problem [4, 27], source separation and inverse problems [15], as
well as the low rank matrix completion problem [11].

We caution the reader that throughout the paper the scalar product (-,)g is a
real inner product, but z* denotes the conjugate with respect to the complex inner
product (-,-)c. We also note that the norm ||z||, for p > 1 is the pth Schatten norm
of z € C"*" seen as a C-linear operator from C” to C". Hence the norm ||-||2, while it
refers to the Schatten 2 norm, is equivalently given as ||z||2 = /(z, 2)r = \/(z, 2)c. If
z were instead seen as an R-linear operator from C” to C™, then the resulting Schatten

(1.9) lp = pll2 <

p norm would be amplified by a factor 27 since the multiplicity of each singular value
would double.
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2. A review of quantitative phase retrievability. The question of phase
retrievability criteria for frames for R was addressed in [4], in which it was shown that
a frame F is phase retrievable if and only if it satisfies the “complementing property,”
that is, if and only if for every subset Z C F either Z or F\Z spans R™. It was moreover
shown in [4] that if m < 2n — 1, then a frame for R" of cardinality m will not be
phase retrievable and also that a generic frame for R™ of size m > 2n — 1 will be phase
retrievable—that is to say, the set {F = {f1,..., fm} C R"|F is phase retrievable}
will be dense in the Zariski topology when m > 2n — 1. The question of phase
retrievability criteria can be made quantitative by asking for which frames the analysis
maps « and [ are lower Lipschitz with respect to some natural distance metrics, and
computing their lower Lipschitz constants. Intuitively, a frame is phase retrievable
if and only if a (resp., 8) is injective, and thus it is natural to analyze (for a given
frame) the lower Lipschitz constant of « (resp., ), which measures “how” injective
« (resp., B) is. In answer to this refinement it was shown in [5] that for the oz map
and the distance p(z,y) = min{|[z — y|[2, ||z + y||2} we have the following.

THEOREM 2.1 (see [5, Theorem 4.3]). For any index set I C {1,...,m} let F[I] =
{felk € I} and let 03 [I] = Amax (X per fufi) and o211 = Amin (X pe fofi)- Then

_ 2
(21) Ap = inf M _ min 0’2[[] n 0_721[[0] .
1’%55" p(z,y) Ic{1,...,m}

This result implies in particular that for a phase retrievable frame for R™ the «
map is globally lower Lipschitz. An analogous result was given in [5] for the 5 map
and the distance ||zz” — yyT||;.

THEOREM 2.2 (see [5, Theorem 2.1]). Let {f;}7L, be a phase retricvable frame
for R™ and let R : R™ — Sym(R™) be given by R(x) = Z;”:l [{z, fj>|2fjij. Then

o [18() — BW)II3 .
2.2 = f — s = (R >0.
(2.2) Goi= Il T T TIE T (R(x))

Ty llz|[2=1

Regarding the complex case the following phase retrievability criterion was ob-
tained in [7].

THEOREM 2.3 (see [7, Theorem 4]). Let {f;}7L, be a frame for C*. For u € C"
denote S(u) = spang{ f;fiu}iL,. Then the following are equivalent:

(i) The frame {f;}jL, C C" is phase retrievable.
(ii) dimg S(u) > 2n —1 for every u € C™\ {0}.
(iii) S(u) = spang{iu}* for every u € C* € \{0}.

In connection to this paper we note that the above result is extended to the case
of generalized retrievability of frames for C™*" by Theorem 5.14. The quantitative
lower Lipschitz variant of Theorem 2.3 was obtained for the § analysis map in [6], in
which the following was proved for the beta map.

THEOREM 2.4 (see [6, Theorems 2.3 and 2.5]). Let {f;}72, be a phase retrievable
frame for C*. Define R : R*™ — Sym(R?*") via R(¢) = ZT:I ,66T®,;, where
;= ¢;¢; +Jp;01 T, b; = [2%], and J is the symplectic form [ ']. Then

_ 2
(2.3) a= inf P ZPWIE -y (Ree) > 0.

eyeC ||lzz* —yy*||T  cer®n
atd [1€]]2=1
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The connection of the above to Theorem 2.3 is that the null space of R(€) includes
the realification of spang{i£} for every £. Theorem 2.4 is extended to the case of
generalized phase retrievability of frames for C"*" by Theorem 5.6.

3. Relevant distances and Lipschitz embeddings.

DEFINITION 3.1. We define the equivalence relation ~ on C™*" wvia
(3.1) x~y < U eU(r)|z=yU
and denote by [x] the equivalence class of x € C"*", and by C™"*" /U(r) the collection

of equivalence classes {[x]|x € C**"}.

The stability analysis that follows for 8 and « in Theorems 5.6 and 5.9 will rely
heavily on the following natural metrics on C**"/U(r).

DEFINITION 3.2. We define D,d : C"*" x C"*" — R.

D(x,y) = U?z}?r> |z —yUll2

VIlal3+ 11113 - 2lla=ylls |

i —yU U
Jmin e = Ul + U1

= \/(I\x||§ +11ll3)* — 4llz=yll? -

We note that another distance on C"*"/U(r) given by

d(z,y)

D'(z,y) = max ||z —yU|l

UeU(r)

VIlll3 + l1yl13 + 2/l

(3.3)

was introduced and analyzed for the » = 1 case in [19]. We note merely that d = D-D’.
This does not imply d is a metric, but in fact we have the following proposition.

PROPOSITION 3.3. Both D and d are metrics in the usual sense on C"*" /U(r).
Proof. See Appendix A.1. O

The proof of Proposition 3.3 relies on Lemma A.1l, an apparently simple result
about the analytic geometry of parallelepipeds in R?® which may be of independent
interest.

The minimizer U can be chosen to be the same for both d and D, and is charac-
terized by the following.

PRrOPOSITION 3.4. The unitary minimizer in both d and D 1is given by the polar
factor in x*yU = |z*y|. The minimizer will be unique so long as x*y is full rank.
Otherwise, the minimizer will be of the form U = Uy + Uy, where Uy = VoW with
Vo, Wy € Cr*rank(=™y) the matrices whose columns are the right and left singular
vectors, respectively, of the nonzero singular values of x*y and Uy € C™" any matriz
such that UyUy = Pyer(zry) and UTUr = Prap(gey)+ -

Proof. See Appendix A.2. O

The metrics d and D can be compared to the usual Euclidean distance on Sym(C")
modulo certain embeddings.
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DEFINITION 3.5. We define 0, 7,1 : C"*" — S™0(C") as
0(x) = (a27)2,
(3.4) 7(z) = zx* = 0(x)?,
() = |Jz|2(z2*)% = [|0(x)||20(x) -

PROPOSITION 3.6. The embeddings 7, 0, and v are rank-preserving, surjective,
and injective modulo ~, and thus we write 8,mw, 1 : C"*" /U(r) < Sym(C™).

Proof. See Appendix A.3. ]

THEOREM 3.7. Let x,y € C"*" /U (r). Then the following hold:
(i) 0:(C™™"/U(r), D) — (S™O(C"),|| - ||2) is a bi-Lipschitz map. In particular,

(3.5) Cull0(z) = 0(y)ll2 < D(x,y) < [10(x) = 0(y)]l2 ,

where Cp, =1 if n =1 and C, = % for n > 1. The constants C,, and 1 are
optimal.

(i) m : (C™*"/U(r),d) — (S™O(C™),|| - ||1) is 1-Lipschitz and =1 : (S™O(C"),|]| -
ll2) = (C™*"/U(r),d) is 2-Lipschitz for v > 2 and /2-Lipschitz for r = 1. In
particular,

3:6)  |lw(z) = w()ll2 < [lw(z) — (Yl < d(z,y) < erll(@) =@l

where ¢, = /2 ifr =1 and ¢, = 2 if r > 1. The constants 1 and ¢, are optimal.
(iii) Forr=1

(3.7) Y(x) = 7(z),
(3.8) d(z,y) = ||r(z) — 7 (y)||1 .

The identity (3.8) was noticed and used in [6]; its proof is included here for the
benefit of the reader.

(iv) Forr > 1, there is no constant C satisfying C||m(xz) — w(y)||2 > d(x,y) for each
x,y € C" " (hence the use of the alternate embedding 1) ).

Proof. See Appendix A 4. ]

Remark 3.8. While d and D are evidently not Lipschitz equivalent (they scale dif-
ferently), they do generate the same topology on C™*" /U (r) since d(x,y) < D(x,y)?,
and given sufficiently small € > 0 we have d(z,y) < ||z||ve = D(z,y) < e.

4. Geometry of the matrix phase retrieval. It will be essential in the analy-
sis and computation of (1.3) to understand the geometry of the spaces S™°(C"). In
order to do so, we will demonstrate that S™0(C™) has a Whitney stratification over
the smooth Riemannian manifolds S“°(C") for i = 0,...,r of real dimension 2ni —i2.

We recall the following definitions, due to John Mather and sourced from [20].

DEFINITION 4.1. Let V;,V; be disjoint real manifolds embedded in R? such that
dimV; > dimV; and V; N'V; nonempty. Let x € V; NV;. Then a triple (V;, Vi, x) is
called a- (resp., b-)regular if the following hold:

(a) If a sequence (Yn)n>1 C V; converges to x in R? and T, (V;) converges in the

Grassmannian Graimv; (RY) to a subspace 7, of RY, then Ty (V;) C 7.

(b) If sequences (yn)n>1 C Vi and (xn)n>1 C Vi converge to x in RY, the unit vector

(Zy, — Yn)/||Tn — Ynl|2 converges to a vector v € R, and T,, (V;) converges in the

Grassmannian GTaimv; (R?) to a subspace T, of RY, then v € 7.
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DEFINITION 4.2. Let V' be a real semialgebraic variety. A disjoint decomposition

(4.1) V=||Vi. VinVi=0fori#j

i€l

into smooth manifolds {V;},cr, termed strata, is a Whitney stratification if

(a) each point has a neighborhood intersecting only finitely many strata;

(b) the boundary sets V; \ V; of each stratum V; are unions of other strata;

(c) every triple (V;,Vi,x) such that x € V; C V; is a-reqular and b-regular as in
Definition 4.1.

A simple example of a semialgebraic variety that is not a manifold but admits
a Whitney stratification is the cone C = {(z,y)|lzy > 0} C R? consisting of the
first and third quadrants of the coordinate plane. A possible Whitney stratification
of this set is given by Vo = {0}, Vi = {(z,0)|x # 0}, Vo = {(0,y)|y # 0}, and
Vs = {(z,y)|z # 0,y # 0}. In this case note that condition (a) is trivially satisfied
since there are only finitely many strata, and moreover that (b) is satisfied since
Va\Va=VoUViUVa, Vo\ Vo =Vy, V1 \ Vi = Vg, and that V5 \ Vo = ¢ (an empty
union of the other strata). That this stratification is both (a) and (b) regular may
be readily observed. For example, the tangent space at any point of V3 is simply
R?2, and thus the Grassmannian limit of a convergent sequence of such tangent spaces
is also R? and certainly contains the one-dimensional tangent space at any point of
V5 (identified with the y axis), the one-dimensional tangent space at any point of V3
(identified with the = axis), and the zero-dimensional tangent space associated with
Vo (identified with the origin).

We will also need the following definition.

DEFINITION 4.3. Let M and N be smooth manifolds, and let m : M — N be a
smooth map. For each x € M let

(4.2) Tp (M) := {7 (0)|7y: [-1,1] = M is a smooth curve with v(0) = z}

be the tangent space of M at x. Similarly for Trmy(N). Let Dr(z) : Tp(M) —
Tr(y(N) be the differential of m at x, that is to say, Dn(x)(v) := o/(0), where o =
woy, ¥(0) =z, and ' (0) = v (that Dw(x) does not depend on the exact choice of
curve v is an elementary result of differential geometry). Then the following hold:
(a) For each x € M define the vertical space at x as

(4.3) Vi w(M) C Tp(M) :=ker Drr(z) = {w € T,(M)|Dr(x)(w) = 0}.

(b) If M is equipped with a Riemannian metric g : M x Tp(M) x Tp(M) — R,
then we may define the horizontal space at each x via the canonical orthogonal
complement of the vertical space:

(4.4)
Hy (M) C Tp(M) = Vi o (M) = {v € T (M)|g(z,v,w) = OVw € Vi ,(CP*")}.

The following proposition will be essential both in proving the geometric results in
Theorem 4.5 and in analyzing the Lipschitz constants for S and « set out in Theorems
5.6, 5.9, and 5.13.

PROPOSITION 4.4. Let w : C'"*" — S’T’O((C") be as in Definition 3.5, and let
Vao(CP*") and Hy ,(C2*") denote the vertical and horizontal spaces as in Defi-
nition 4.3 of the manifold C}*" at x with respect to the embedding w. Here the
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Riemannian metric on C{*" is of course g : CI*" x C™*" x C"*" — R given by
g(z,v,w) = Rtr{z*w}. Let Tr(4)(S™°(C™)) denote the tangent space of S™°(C™) at
m(x). Then

(4.5) View(CHT) ={2K|K € C"",K* = - K},
(4.6) Hy o (C'™") = {Ha + X|H € C™", H* = H = Pran(n) H,
X € C"", Pran()X = 0},
(4.7) Tr(a) (S7(C™)) = {W € Sym(C")[Pran(z) WPRan(z)- = 0}
= Dr(x)(Hr o (CE7)).
Proof. See Appendix B.1. ]

Employing techniques similar those used in [8], but generalizing from the man-
ifold of positive-definite matrices to the semialgebraic variety S™°(C") semidefinite
matrices, we prove the following.

THEOREM 4.5. Let w be as in Definition 3.5, and let the distance D be as in (3.2).
Then the following hold:
(i) SP1(C™) is a real analytic manifold for each p,q > 0 of real dimension 2n(p +
q) - (p+q)?.
(ii) 7 : Cr*" — S™O(C") can be made into a Riemannian submersion by choosing
the following unique Riemannian metric on .SO'T’O((C"):

(4.8)  h(Zy,Zy) = tr{Z% / e_“m*lee_“m*du} + %tr{Zf*Zj(mx*)T},
0

where Z1, Zy € Tr(z) (SG’"O((C")), (zx*)" denotes the pseudoinverse of xz*, and
(49) Z7,” = IP)Ram(:c) Z’iPRan(m) s Zzl = I[Dl:tan(:J(:)J-Z’L‘IEDRan(m) .

(iii) é’T’O((C") equipped with the metric h is a Riemannian manifold with D as its
geodesic distance.

(iv) The semialgebraic variety S™°(C™) admits as an explicit Whitney stratification
(S™0)izo-

(v) The geometry associated to h is compatible with the Whitney stratification in the
following sense: If (A;)i>1, (Bi)i>1 C SP0 have limits A and B, respectively, in
§4:0 forq<pandif; :[0,1] — SPO gre geodesics in Sp:0 connecting A; to B;

chosen in such a way that the limiting curve ¢ : [0,1] — Sp0 given by

(4.10) §(t) = lim (t)

i—00

exists, then the image of § lies in S99 gnd is a geodesic curve in §a.0 connecting
A to B.

Proof. See Appendix B.2. ]

5. Computation of Lipschitz bounds. We are primarily interested in com-
puting ag and Ag, the squared global lower Lipschitz constants for the § and « analysis
maps, respectively. Owing to the linearity of the [ analysis map when interpreted
as in (1.8), we will be able to show in Theorem 5.6 that the optimal global lower
Lipschitz bound ag can be obtained via local considerations. For the a analysis map
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we will be able to show in Theorem 5.9 that the optimal global lower Lipschitz bound
Ay is actually zero for r > 1. Since the global lower Lipschitz bound for the « analysis
map is trivial, we emphasize the analysis of the local lower Lipschitz bounds. Recall
that

(5 1) ap= inf M —  inf Zgn:l(<xx*vAj>R - <Z/Z/*,Aj>]1e)2
syecnxr ||m(z) — ﬂ(y)”% o yeCn X" |z — yy*”%
[z]#[y] [=]#[y]

From a purely topological consideration, we may obtain the following.

PROPOSITION 5.1. The constant ag is strictly positive whenever the map 3 is
injective, and equivalently whenever {A; }}":1 is a generalized phase retrievable frame
of symmetric matrices.

Proof. See Appendix C.1. O

DEFINITION 5.2. Let z € C™*" have rank k. We will analyze the following four
types of local lower Lipschitz bounds for [, the first two with respect to the norm
induced metric and the second two with respect to the metric d:

ai(z) = lim inf

R0 e lr(@) —w(2)[3”
[|I7(z)—m(2)||2<R
B 2
T [ O
R=0  gyecrr ||m(z) — 7(y)|[3

|7 (z)—m(2)[|2<R
Ir(y)—mw(2)|[2<R

2
5.2 i(x) = lim  wr  1P@) =BG
o2 MO B ey
d(z,z)<R
rank(z)<k

2
) —
R—0 g yecm X d(z, y)2
d(z,z)<R
d(y,z)<R
rank(z)<k
rank(y)<k

Note that in the definitions of a1(z) and ax(z) we do not allow the ranks of x and y
to exceed that of z. As we shall prove, without the rank constraints these local lower
bounds would be zero.

The following two “geometric” local lower bounds will prove helpful in our analy-
sis.

DEFINITION 5.3. Let z € C"™" have rank k and let z € C** be such that there
exists U € U(r) with [2|0]U = z. Let Tr(z)(S*°(C™)) and Hy :(C?**) be as (4.7) and
(4.6). We define

m

5.3 a(z) = min W, ADr|?,
(5.3) (2) WeTﬂi)(gk,o(Cn));K JIR|
[IW]l2=1
(5.4) a(z):= min > |(Dr(8)(w), A;)el*.
weHy +(C1*") 121
[lw][2=1
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The following two families of matrices, @, and QZ, indexed by C™*" will allow
us to write the local lower Lipschitz bounds with respect to ||zz* — yy*||2 and d(z,y)
as eigenvalue problems.

DEFINITION 5.4. Given z € C™*" having rank k > 0 we define a matriz Q, €
R(2nk—k*)x(2nk—k*) ) the following way. Let Uy € C™** be a matriz whose columns
are left singular vectors of z corresponding to nonzero singular values of z, so that
UrU{ = Pran(z)- Let Uz € C™*(=k) be o matriz whose columns are left singular
vectors of z corresponding to the zero singular values of z, so that UsUs = Pran...
Then

& o~ S [ ]

where the isometric isomorphisms T and p are given by

(5.6) 7 : Sym(CF) — R** [ CP*9 5 R2PT
D(X) R
T(X) = |V2T(RX) w(X) = vec axl| )
V2T (SX)
where
(5.7) D : Sym(C*) — R*, T : Sym(R¥) — Rzk(k—1)
X12
Xll X13
DW) =1 : T(X)=| X2
KXk :
Xe—1k
and
X1
(5.8) vec : RP*? — RPY, vec(X) = vec([X1]--- | Xg]) = |
Xq

We note that @, depends only on Ran(z); in particular it is invariant under
(U1,Us3) — (U1 P,U2Q) for P € U(k),Q € U(n — k). We will also refer to Q. as
Q[u,|vz]» Where [U1|Us] € U(n).

DEFINITION 5.5. Given z € C" " having rank k > 0 we define a matrix Qz €
R2EX20k in the following way. Let Fj = Ly, ® j(A;) € REFX2nE - yphere

jt@mxn—)RszQH,
RX —%X}

o J(X) = {sx RX

is an injective homomorphism. Then

(5.10) Q. =4 Fju(3)u(2)"F; .

j=1
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With these definitions in mind, we will prove the following.
THEOREM 5.6. Let z € C™*" have rank k > 0. Then the following hold:
(i) The global lower bound ag is given as

5.11 = inf .
o1 = ey )

(ii) The local lower bounds a1(z) and az(z) are squeezed between ag and a(z),
(5.12) ag < az(z) < a1(z) < a(z),
so that in particular

inf a
zeCnxr\{0}
(iii) The infimization problem in a(z) may be reformulated as an eigenvalue problem.

Let Q. be the 2nk — k% x 2nk — k% matriz given in Definition 5.4. Then

(5.14) a(2) = Agnk—42(Qz) -

(iv) For r = 1, a(z) differs from a(z) by a constant factor, hence for r = 1 the
infimum inf .ccnxr (0} @(2) is nonzero. Forr > 1 this infimum is zero, and hence
there is mo nontrivial global lower bound ag analogous to ag for the alternate
metric d.

(v) The local lower bounds with respect to the alternate metric d satisfy

(5.15) i1(2) = din(2) = 4”1@&(2) .

(vi) The infimization problem in a(z) may be reformulated as an eigenvalue problem.
Let Q. be the 2nk x 2nk matriz given in Definition 5.5. Then a(z) is directly
computable as

(5.16) a(2) = Aapp—i2(Q=) -
(vii) We have the following local inequality relating a(z) and a(z):

1 1

(5.17) m&(z) <a(z) < W&(z).

(viii) Computation of the global lower bound ag may be reformulated as the minimiza-
tion of a continuous quantity over the compact Lie group U(n):

(518) ap = UIenUn(ln) Aopr—r2 (Q[U1|Uz]) :

U=[U1|Us]
U,eCc” X
U,eC™ X (n—r)

(ix) While (iv) makes clear that ag cannot be upper bounded by inf.ccnxr (o} @(2),
we can achieve a similar end by constraining z to have orthonormal columns.

Namely,
1 . . IR R
(5.19) — inf a(z) <ap< - inf a(z)
4 ecrxr 2 zecnxr
2% 2=l xr 2" 2=l xr
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Proof. See Appendix C.2. ]

We now move on to analyzing the local lower Lipschitz bounds for the o map
1
x — (xz*, Aj). This was done for the case r =1 in [6]. Recall that §(z) = (zz*)2
and that

2 . Z;n:l(@:x*)AﬁH% - <yy*’Aj>H%)2

: llo(z) — a(y)]]3
(5.20) Ag= inf ———F—2""5 = in : :
eyec<r |[0(z) =03 zyecrxr zz*)2 — (yy*)2 |13
vec vec [(zz*)z — (yy*)2 |13

In analogy with Definition 5.2, we consider the local lower Lipschitz bounds for
the a map.

DEFINITION 5.7. Let z € C™*" have rank k. We define

. . lla(z) — o(2)][3
) =Jm W e e
[10(z)—0(2)|[2<R
rank(z)<k
. . lle(z) — a(y)l]3
As(z) = lim inf g,
2(2) R0 gyectxr |0(x) —0(y)|[3

[|0(x)—0(2)||2<R
0(y)—0(2)[]2<R
rank(z)<k

rank(y)<k

(5.21) ,

i : . lla(z) — a(2)]]3
Ai(z)=lim inf ———————=
1(2) R0 gegnxr D(z,2)2 7’
D(z,z)<R
rank(z)<k
~ alxr) — o
R=0 g yecm*r  D(z,y)?
D(z,z2)<R
D(y,z)<R
rank(z)<k
rank(y)<k

DEFINITION 5.8. Given z € C™*" having rank k > 0 we define two matrices
T.,R. € R>" X2k Let [4(2) € {1,...,m} be the indices such that a;(z) = 0 (or
equivalently such that o is not differentiable) for j € Io(z), and let I(z) = {1,...,m}\
Io(2). Once again let Fj = Ty ® j(A;) € R*EX20k - 4hen define T, and R, via

R 1
(5.22) T, = ———Fiu(®)u(3)TF;,
PR e
(5.23) R.= > F;.
Jj€lo(z)

With these definitions in mind we prove the following.
THEOREM 5.9. Let z € C"*" have rank k > 0. Then the following hold:
(i) Forr > 1 itis the case that inf ccnxr\ 10y Ai(2) = 0 fori=1,2, as such Ag = 0.
(ii) Let T, and R, be as in Definition 5.8. Then Ai(z) and As(z) are directly
computable as

(524) Al(z) = )‘2nk—k2 (TZ + Rz) B
(5.25) Ag(2) = Aonp_p2(T2) .
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(iii) We have the following inequality between A;(z) and A;(z) for i = 1,2, which
justifies not treating them separately:

(5.26) Ai(2) < Ai(2) < V244(2).

Proof. See Appendix C.3. 1]

For the sake of completeness we also include the following theorem on the global
upper Lipschitz bounds for the « and 3 analysis maps.

DEFINITION 5.10. We define the following (squared) upper Lipschitz constants for
B and a, respectively:

5.27) e s 1B@ = BWIE

w,yECnXT me* - yy*”%
[x]#[y]

o) — a()|3

(5.28) By:= sup .
(e2)% — (yy*)7[[3

x,yeC"*"
[=]#[y]

A somewhat simplifying alternate upper Lipschitz constant for B is

18() — BB

(5.29) bo == sup " .
eyecnr |lzz® —yy*|3
[2][y]

DEFINITION 5.11. The 8 map is the pullback of a linear operator acting on sym-
metric matrices which we refer to as A. Specifically,

A: Sym(C") — R™,
(5.30) A (X) = (X, Aj)r -

DEFINITION 5.12. When A; > 0 for each j, we define the operator T.:
T . Cnx'f’ — (CTLXT)TVL
(5.31) 1
Tr(z) = (Afz)lL, .

In a slight abuse of notation we write for r =1
T, :C* —» C™™

(5.32) L 1
Ti(z) = [Afz|--- [Ana].

We compute explicitly by, bo,1, and By via different norms of the operators A
and T, as well as providing formulas for by and By analogous to (5.18) and (5.25).
Specifically, we prove the following.

THEOREM 5.13. Let by, bo1, Bo, A, and T). be as above. Then the following hold:
(i) The global upper bound by is given by

5.33 bo = A
(5.33) 0 prax 1Quyva) »
U=[U1|Uz]
Ul E(C’H,XT’Uze([:TLXTI,—T‘

where Qu is as in Definition 5.4.
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(ii) The global upper bound by 1 is given by
(5.34) bo.1 = || Al
Additionally if A; >0 for all j, then
(5.35) bo1 = 1Tr|l2- 2.0y = 171112 2.0)

where the || - ||2.4 morm of a matriz is the I* norm of the vector of I> norms of
its columns.
(iii) The global upper bound By is given by

(5.36) By= sup M(1.) =B,
ZECTLXT
z#0
where T, is as in Definition 5.8 and B is the optimal upper frame bound for
{Aj}gnzr
Proof. See Appendix C.4. O

It turns out that Theorem 5.6 allows us to find novel algebraic conditions for a
frame for C™*" to be generalized phase retrievable, generalizing Theorem 4 in [7]. The
benefit of condition (vi) over the definition of phase retrievability is that they involve
checking a quantity over all n x r matrices with orthonormal columns, that is to say,
over the Stiefel manifold of dimension 2nr — 12, as opposed to over all pairs of n x r
matrices.

THEOREM 5.14. Let {A;}7% be a frame for C"*". Then the following are equiv-
alent:
(i) {A;}jL, is generalized phase retrievable.
(ii) For allU, € C™*7, Uy € C"*("=") such that [U,|Us] € U(n) the 2nr —r? x 2nr —

r2 matriz

 [7(UF A;U,
(5.37) U1|U2 Z|: U2* U, ]

is tnvertible.
(i) For all z € C™*" such that z has orthonormal columns, the 2nr X 2nr matriz

(5.38) =4 (i @ (A ()pn(2)" (T @ 5(A;))

has as its null space precisely the r?-dimensional V, = {p(u)|u € Vi (C2*7)}.
(iv) For all Uy € C™ ", Uy € C™ (=) such that [U1|Us] € U(n), H € Sym(C"),
B e C=")%" there exist cq,...cm € R such that

(5.39a) Ui [ D ¢A; |Ui=H,
j=1

5.39 c;A; | U =B.

b Us A | UL =B
j=1
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(v) For all Uy € C™" " with orthonormal columns

(5.40) spang{A;U1 17, = {LK|K € C7 K™ = ~K}+.
(vi) For all Uy € C™*" with orthonormal columns

(5.41) dim spang {A;U; }72, > 2nr — r?.

Proof. See Appendix C.5. 1]

6. Numerical experiments. The main benefit of lower Lipschitz results like
Theorem 5.1 is that they provide quantitative control over reconstruction error in the
generalized phase retrieval problem, as opposed to the topological result in Propo-
sition 5.1 that the error is bounded whenever the matrix frame is generalized phase
retrievable (i.e., that ag > 0). This is only true, however, if for a given frame one can
make headway in computing the lower Lipschitz constant ag. Unfortunately (5.18)
yields ag as a nonconvex optimization problem, so for the time being we content our-
selves with examining the statistics of the local lower Lipschitz constants as(z) and
a(z). We also verify numerically the result in Theorem 5.9 that « is not globally lower
Lipschitz (i.e., that Ag = 0) by examining the statistics of the local lower Lipschitz
constant Ay (z).

For each experiment we use a fixed frame set of cardinality m = 4nk — 4k2,
noting that Theorem 2.1 in [29] implies that a generic frame for C"** with cardinality
m > 4nk — 4k? will be generalized phase retrievable when 2k < n. The experiment
shown in Figure 1 supports the result in Theorem 5.9 that inf ccnxr oy Ay(z) =0
for » > 1, and thus that the a analysis map is not globally lower Lipschitz with
respect to either D(x,y) or ||(zz*)2 — (yy*)2||» when r > 1. This experiment also
supports the earlier result in [6] that when r = 1, inf.ccnxr fo Ay(2) > 0. The
experiment shown in Figure 2 supports the result noted in the proof of Theorem 5.6
that inf_ccnxr (o} G2(2) = 0 for r > 1, and thus that the 3 analysis map is not globally
lower Lipschitz with respect to d(z,y) when r > 1. That this quantity is nonzero when
r = 1 follows from the fact that for r = 1 we have d(z,y) = ||zz* —yy*||1 (see Theorem
3.7). Finally, the experiment shown in Figure 3 supports the result in Theorem 5.6
that ag = inf_ccnxr 0y a(2) > 0 even when 7 > 1, and thus that the 3 analysis map
is globally lower Lipschitz with respect to ||zaz* — yy*||2 whenever the frame (A;);>1
is generalized phase retrievable. Code for all numerical experiments can be found at
github.com/cbartondock/LipschtizAnalysisofGenPR.

7. Conclusion. This paper extends known results about the stability of gener-
alized phase retrieval to the “impure state” case where the phase no longer comes
from U(1) but instead the nonabelian groups U(r), where r > 1. We showed that
the situation changes drastically in this case, both because U(r) is nonabelian and
because for r > 1 a sequence in C?*"/U(r) with ||z,||]2 = 1 can come arbitrarily
close to dropping in rank. In particular, we showed that while the § analysis map
remains lower Lipschitz with respect to the norm induced distance on Sym(C™) (The-
orem 5.6), the & analysis map does not (Theorem 5.9). Our analysis relies on several
Lipschitz embeddings of C"*"/U(r) into the Euclidean space Sym(C™) (Theorem
3.7) and a Whitney stratification of the positive semidefinite matrices into positive-
semidefinite matrices of fixed rank (Theorem 4.5). This investigation of the geometry
of positive-semidefinite matrices incidentally provided the interesting and (to the best
of our knowledge) previously unknown result that the Riemannian geometry of the
stratifying manifolds given by the Bures—Wasserstein metric is compatible with the
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Ay(z) for n =8, 7 = 4, and I = 10000 random z

400
300
300
I3 200 200
100 100
Q - - 0 -~

0 0.002 0004 0006

rank(z) = 1
rank(z) =2
rank(z) = 3
rank(z) = 4

0 0.1
300
200
e
100
0 o 0 e
0 00005 0001  0.0015 0 2004 4004
43(2) Ax(2)

Fic. 1. In all ezperiments Ay(z) is computed for a fized frame of Ank — 4k? matrices in C™**
for 1 = 10% samples of z having rank k. The entries of both z and the frame matrices are sampled
from a complex Gaussian with unit variance and zero mean. As can clearly be seen only the k =1
case has a clear separation from zero.

@2(z) forn = 8,r =4, and [ = 10000 random z

400

W rank(z) =1
M rank(z) =2
200 300 B rank(z) =3
M rank(z) =4

= 200

100
100

o

% 0.002 0004 0006

300
200

100

>

0 0.0005 0.001 0.0015 0 200 000 600y

!},2 (Z) &2 (Z)

FIG. 2. In all experiments az(z) is computed for a fized frame of 4nk — 4k matrices in cnxk

for 1 = 10* samples of z having rank k. The entries of both z and the frame matrices are sampled
from a complex Gaussian with unit variance and zero mean. As can clearly be seen only the k = 1
case has a clear separation from zero.

stratification. In particular, geodesics of positive-semidefinite matrices with respect
to the Bures—Wasserstein metric are rank preserving and may be approximated by
geodesics of higher rank. We note that the fact that ag > 0 and can be explicitly com-
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a(z) forn = 8, r = 4, and | = 10000 random z

B rank(z) =
200 M rank(z) =
B rank(z) =3
W rank(z) =4
2
100
a -
0 0.05 0.1 0.15
200
S
100
E N 0 -
0 0.05 0.1 0 0.02 0.04 0.06
a(z) a(2)
log(1 + a(z)) for n = 8, r = 4, and [ = 10000 random =z
B rank(z) =1
400 W rank(z) =2
W rank(z) =3
B rank(z) =4

100

)

log(1 + a(2))

FiG. 3. In all experiments a(z) = Ao, k2 (Q[u, Uy)) @5 computed for a fized frame of 4nk —4k?

matrices in C"*¥ for | = 10% samples of U € U(n) distributed according to the uniform Haar
distribution on U(n). Uy € C™** is composed of the first k columns of U so that Qu,|vs) €

C2nk—k2x2nk=k>  The entries of the frame matrices are sampled from a complex Gaussian with

unit variance and zero mean. In this case an overlapping log-plot is also included, in which clear
separation from zero can be seen for k=1,...,4.

puted as in (5.18) suggests that known convergent algorithms for generalized phase
retrieval may be extended to the case r > 1. Finally, the explicit computation of the
lower Lipschitz bound for the S map allowed us to obtain a novel characterization of
generalized phase retrievable frames in the impure state case r > 1 (Theorem 5.14).
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Appendix A. Proofs for section 3.

A.1. Proof of Proposition 3.3.

Proof. Both d(x,y) and D(z,y) are obviously positive, and symmetry follows
from the fact that U(r) is a group. Moreover, owing to the compactness of U(r),
both D(z,y) and d(z,y) are zero if and only if there exists Uy such that = yUy,
that is, if and only if [x] = [y]. It remains to prove the triangle inequality. For
D(z,y) the computation is straightforward and follows from the unitary invariance
of the Frobenius norm. If U; and U, are unitary minimizers for D(z, z) and D(z,y),
respectively, then

D(z,2) + D(y, 2) = ||z — 2U1||2 + ||z — yUs||2
(A1) = ||z — 2U1]|2 + |[2U1 — yUsUi||2
> ||z — yUaUrl|2 > D(z,y).

We note that the above argument also holds for any unitarily invariant norm ||| - ||| so
that each D). (z,y) := mingey |||z — yU||| is a metric on C**"/U(r). A similar
trick can be employed regarding d(x,y), but it requires the following lemma, which
does not readily generalize to arbitrary unitarily invariant norms or even p # 2.

LEMMA A.1. The following triangle inequality holds for all x,y,z € C"*":
(A.2) |z = yll2llz + yllz < llz — 2ll2llz + 2ll2 + |1z — yll2llz + yll2 -

Proof. This is essentially a statement about the geometry of parallelepipeds in
R3, namely, that the sum of the product of face diagonals from any two sides sharing
a vertex will always exceed the product of the two on the remaining side sharing the
vertex. The lemma follows from the observation that for x,y € R™

V2l 3+ 1y13)2 — 4/, y)zl?
5 (1l = 1+ /el + 12 = 4l )l
= 5 (Nl = 1 = /el + 117 — 4l el

= A (zz —yyT) = A_(z2” —yyT)
= |lz2” — yy”||1 .

|z = yll2lz + yll2

(A.3)

See the proof of Theorem 3.7 for a direct computation of the eigenvalues of za —yyT
(the theorem deals with the complex case, but the real case is identical). This identity
proves the lemma immediately since the latter obeys the triangle inequality and

|z = yll2llz +ylla = [[u(z) = p@)ll2llp(@) + 1(y)l]2
= [lp(@)u(@)" = py)n@)" L
(

(A4)
< lu(@)u(@)" = u(2)u(2) |+ [p()p()" = uly)uly) I
= |lz = z[l2llz + 2[l2 + [|z — yll2|lz + ¥ll2,

where p : C"*" — R2"" is complex matrix vectorization. O
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The proposition then follows via an argument similar to (A.1), namely, if Uy, Us
are the minimizers in d(z, z) and d(z,y), respectively, then

(A.5)
d(z,2) +d(z,y) = ||z — 2Uill2||z + 2Ui|]2 + |2 — yUz||2||z + yUz||2
= ||z — 2U1|]2||lz + 2U1||2 + [|2Ur — yUUr]2||2Ur + yUzUi||2
> ||z — yUsUi||2||z + yUUi|]2 > d(z,y). a

A.2. Proof of Proposition 3.4.

Proof. Both the trace tr{z*yU} that appears in D and its square as it appears
in d will be maximized when x*yU is positive semidefinite; thus we may take the
minimizer to be the polar factor for x*y, the polar factor of course being the unique
unitary for which z*yU is nonnegative only when x*y is full rank. The nonuniqueness
of the minimizer arises precisely from the nonuniqueness in choice of polar factor when
x*y does not have full rank. Note that even if y is full rank, x*y will have rank less
than r whenever Ran(y) N Ran(z)* # 0. 0

A.3. Proof of Proposition 3.6.

Proof. Note that the nonzero eigenvalues of m(x) are precisely the squares of the
singular values of z, the nonzero eigenvalues of f(x) agree with the nonzero singular
values of z, and the nonzero eigenvalues values of ¥(z) differ from the nonzero singular
values of x only by a factor of ||z||2. This proves that the embeddings preserve rank.
It is readily checked that the embeddings are surjective and injective modulo ~. In
particular for A € S™%(C"), we have

(A.6) 7~ 1(A) = [Cholesky(A)],
(A.7) 6~*(A) = [Cholesky(A4?)],
(A8) ¥(A) = [Cholesky(42/||All,)],
where Cholesky(A) is a Cholesky decomposition of A in C**" (note that the Cholesky
decomposition is unique up to equivalence class). ]

A.4. Proof of Theorem 3.7.
Proof. To prove (3.5) we analyze the following quantity:

D(a.y)? =13 + 1lyl13 — 2l
A. = = .
A9 QY = Gy Z0GE = B+ 1913 — 20iwe)} (wy )1}

We first note that ||z*y|[; = ||(z2*)% (yy*)?||1 since (zz*)? (yy*)? and z*y have the
same nonzero singular values. Hence if we define A = 6(z) = (zz*)2 and B = 0(y) =
(yy*)2, we can abuse notation slightly and write

1AI13 + |BJ3 - 2/|AB||,
(A.10) Q(A, B) = .
)= 1JAIE 711313 — 2w (AB)

Now tr{AB} < ||AB||1, so we conclude that Q(x,y) < 1. On the other hand this
bound is achievable by any x and y for having the same left singular vectors, since in
this case A and B commute, and hence AB > 0 and ||AB||; = tr{AB}. We conclude
that the upper Lipschitz constant is 1, and in particular

(A.11) sup Qz,y) = max  Q(z,y) =1.
z,y€C™ ™" /U (r) x,y€C™ X" /U (r)
zFy zFy
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We now turn our attention to the lower bound. It is shown in [9] that for any

unitarily invariant norm |||-||| and positive-semidefinite matrices A and B the following
generalization of the arithmetic-geometric mean inequality holds:

(A.12) AllIAB(|* < [[1(A+ B)?]].
We apply this inequality to the nuclear norm and conclude that

4||AB|l < [|(A+ B)*|l
(A.13) =tr{(A + B)?}
= ||All3 + 1IB][3 + 2tr{AB} .

We employ this fact in the analysis of Q(z,y):

Q(a, By = L. IAIE+2IBII; — 4|AB

(A.14) 2 ||Al[3+|BI|3 - 2tr{AB}
o 1 20lA]3 +2[BI3 — (1A]3 + [|BII3 + 2tr{AB}) _ 1
o2 [All5 + || B3 — 2tr{AB} R

This implies a lower Lipschitz constant of at least % For the trivial case n =r =1
the ratio is 1. To prove the constant of % is optimal for n > 1, let e; and eg
be any two orthogonal unit vectors in C", and let * = e; and (y;),;>1 be given by

Yy =4/1— j%el + %62. Define A = 6(z) and B; = 0(y;); then both A and each B;

have unit norm and are rank 1 and hence idempotent, so that
1 1
AB;j = (z2)? (y;97)7 = 23"y;y;
= <$7yj>ny;

_L
jz 1 j 2

Thus tr{AB;} = 1 — J% On the other hand, |[AB;|li = [|lz*y;lli = (=, yj)r] =
1— 4. We find

iz

(A.15)

_ . 1—||ABj|)x
Jm QWAL By) = lim - gy

(A.16)
—dm 21— 1-2) =t
_j—>oo'] j2 N 2"

Thus we conclude

1
(A.17) inf Qz,y)=—-.
z,yeCnxT 2
TAY

We now concern ourselves with proving (3.6). To prove the lower bound, let Uy be
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the minimizer in d(x,y). Then
Iw(z) = (W)l = llzz™ —yy™[lx

- H;(w —yUo)(z + yUo)* + %(33 +yUo)(x — yUo)”

(A.18) . 1 2
< Sl = yUo)(z + yUo)"[l1 + S lI(z — yUo) (= + yUo)"[lx

llz — yUoll2l|lz + yUs|l2 = d(x,y) .

IN

This implies a lower Lipschitz constant of at least 1, but in fact this constant is optimal
since the two are equal for » = 1. Turning our attention to the upper bound, we will
in fact prove the following stronger inequality:

(A.19)

()= vl > g+ 1D+ (lolla— ol (w3 el + 1))

We prove (A.19) by direct computation:

(A.20)
1
@) — 6wl — Sd(e)?
= ol + 111 - 2lellalltr(ea? (7)) - 1 (el + 112 - 4l
3

3 " 1 vl 4l
= llallz + Sllvllz + Nyl = SlllE]19115 = 2lllla[lyllotr{(z2")> (yy")?}

3 3 1 1 1
> lexllé + Z\Iy\lé + [yl - §|IIH§|IyH§ = 2[[z[2[lyll2l[(z2™) = (yy*) 2|1
1 1 1
= i(llx\lg —lyl3)* + §|I$H3 + §|Iy\|3 + 12y} = 2llall2lyll2l |z "yl -
We then note that

(A.21)

1 1 i
1Pyt = Z(l2” + llyl* - 2ll2"yl[1)*
1 1 1 ) i
= gz + Zllwllz + (319115 + eyl = (=3 + vl DIyl

So if we add and subtract 1D(z,y)* from (A.20) we obtain the result

(A.22)
1
[ (x) = 9 (y)ll5 - zd(ﬂs,y)Q
1 1
> §(|Ix\|§ —lyl2)* + ED(x,y)4 + (]2 = lyll2)*llz*yllx

106+ el = ol (el + 5 etk + l)? )

This immediately proves that 2||¢(x) — ¥ (y)||2 > d(z,y) and hence that the upper
Lipschitz constant in (3.6) is at most 2. For r = 1, we will briefly prove claim (iii),
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implying that d(z,y) = ||7(z) — 7(y)||1 = ||¥(x) — ¥(y)||1; hence in this case the
optimal constant is v/2, owing to the fact that ¢(x) — +(y) will have rank at most 2
and in that case d(z,y) = ||v(x) — ¥ (y)||1 < V2||[¢(x) — ¥ (y)||2. For r > 1, however,
we show that the upper Lipschitz constant of 2 is optimal by considering a sequence
of matrices in C™"*2. As before let e; and ey be any unit orthonormal vectors in C”.

Let = [e1]0], (y;);>1 be given by y; = [,/1 — ]%61‘%62}. As before let A = 6(x),
B,, = 6(y;). We first note that A and each B; commute and are positive semidefinite,
so that AB; is also positive semidefinite, and we have tr{AB;} = ||AB;||1 and the
inequality in (A.20) is actually an equality. This makes clear the impediment to a
rank 1 sequence achieving the upper Lipschitz constant of 2: A and B; could not be
made to commute without z and y; lying in the same equivalence class. Finally, we

observe that ||z||2 = ||yj||2 = 1, so the remainder term in (A.19) disappears and we
obtain

2 1 2 1 4
(A23) W) — ¥,) I3 = 7d(e9)° + 1Dl 0)"

We note moreover that d(z,y)? = D(x,y)?(||z||3 + ||y]|3 + 2||z*y||1) so that

(=) =Pyl _ 1<1 n D(fﬂ,yj)“)

d(x,y;)? 4 d(x,y;)?

_1<1+1|x:yj||1>_
4 L+ [lz*y;ll
o* 1-% 0 ~ 1-L wth
[V V] lerlea] [ = /1= 3 so that

e dl@y;)? IR 1+/1+ %

Thus we have proven claims (i) and (ii). To prove the first claim of (iii) note that for
r=1, (zz*)z = The second part of (iii) follows from direct computation of

(A.24)

Now [y |1 = |

zz™
[lz[]2 "
||zz* — yy*||1 via the method of moments. Clearly za* — yy* will have one positive
and one negative eigenvalue, which we denote by Ay and A_. In this case

Ar + Ao =tr{az® —yy*}

el [5 = T3

A = ;(tr{xx* —yy*}? — tr{(zz* — yy*)2}>

el P llyll* = [, y)=]-

(A.26)

A little bit of algebra then yields

(a2 e =3 (1l - 1B £ T+ TP = AP ).

Thus we find [[zz* —yy* |l = Ay = A= = V/([[2]]2 + [[y[[?)? — 4(z, y)r[* = d(z,y). Tt
strikes the authors that this is a minor miracle. Finally, to prove claim (iv) consider
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2 and y having a common basis of singular vectors with singular values (¢;)7_; and
(1i)7_q, respectively. Then

s

(A.28) [l (z) = 7 (y)I3 = Z(O? - i),

(A.29) d(x,y)* = Y (00 + ) (05 — )™

i,j=1

The latter is obviously larger, consistent with (3.6). If it were additionally the case
that d(x,y) < C||x(z) — 7(y)||2, we would have

r

(A.30) Z(Ui + i) (o — py)? < (C—1) Z(U? — )

i#j i=1

In the case r = 1 the left-hand side is zero and so we may take C' = 1. For r > 1, in
contradiction of the above, take o1 = p1 = 6§, 02 # uo, and all other singular values
zero. We then would obtain

(A.31) 48%(05 — p12)? < (C — 1)(03 — 1)

There is evidently no such C since ¢ may be chosen arbitrarily large. Thus claim (v)
is proved, justifying the use of the alternate embedding « in (3.6). This concludes
the proof of Theorem 3.7. 0

Appendix B. Proofs for section 4.

B.1. Proof of Proposition 4.4.

Proof. The proof of (4.5) is by direct computation. Namely,
(B.1) Vi (CH") = ker Dr(x) = {w € C"*"|zw* + wa™ = 0}.

We would like to obtain a direct parametrization, however, and note that

W € Vi o(CV7) = wz* =K, K eC" K* = —K,Prann) K = K,
— wr*=zKz*, KeC* K'=-K,
B.2 — w=1zK, KeC* K*=-K.
(

In the first line note that w is recoverable from such a K via w = Kz(z*z)~'. In the
second note that K = (zz*)Tz* Kz(xz*)T. The third “if and only if” is obtained by
right multiplying z(z*x)~!. The horizontal space is then computable as V. ,(C?*")+:

we Hy ,(CP") —= Rtr{w*zK} =0 VKecC"" K*=-K,

— z*w=H, HeC™ H*=H,

— r*w=x"Hzx, HecC"" H" = H PrapH = H,

— Pranmyw =Hz, HeC"" H" =H Prano)H=H,

— w=Hr+ X, HeCV" H" = H =Pran)H,
(B.3) X € C™ PhaneyX = 0.

The second line follows from the fact that C"*" decomposes orthogonally into Hermit-
ian and skew-Hermitian matrices. In the second note that H = (z*z) 'z Hz* (z*z) L.
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The third follows from left multiplying by (zz*)z. Finally, the tangent space can be
parametrized via the horizontal space as its image through D (x) as

Tr(@)(S™(C")) = D) (Hy o (CL*7))
={Hzz* +a2*H +2X* + Xa*|H e C"*",H* = H,
(B4) ]PRan(ac)H = H, PRan(x)X — O} .

This provides a direct parametrization, but for our purposes the simpler indirect de-

scription given by (4.7) will be more useful. It is clear from (B.4) that T} (,) (S™0(C™))
{W € Sym(C")[Pran(z)r WPRan(z)+ = 0}. To prove the reverse, note that if W €

Sym((C") and PRan(w)L W]P)Ran(ac)La then W = Wy + Wy + W5, where PRan(w)WlpRan(w)

= W1 and Pran(a)W2PRran(e)r = Wa. Any such W; is representable as xX*, where

X is as in the description of the horizontal space. Indeed, take X = Wixz(z*x)~ 1.

Finally, the Sylvester equation xz*H + Hxzxz* = W7 has the unique solution

(B.5) H= / et Wiem T gt 0
0

B.2. Proof of Theorem 4.5.
Proof. To prove (i) in relatively short order we employ the following theorem.

THEOREM B.1 (see [26] and [18, Appendix B]). Let ¢ : Gx M — M be a smooth
action of a Lie group G on a smooth manifold M. If the action is semialgebraic, then
orbits of ¢ are smooth submanifolds of M.

We apply this theorem in the case of SP9(C™). Sylvester’s inertia theorem says
that A € S»9(C") if and only if A = KI, ,K* for some K € GL(C"), where I, , =
diag(1,...,1,—=1,...,—-1,0,...,0) is the matrix of inertia indices. Thus SP4(C") is
precisely the orbit of I, ; under the smooth Lie group action

¥ GL(C") x C™X" — ¢

(B.6) (K, L) = KLK* .

Noting that ¢(KJ, L) = (K, (J, L)) for K,J € GL(C™), we need to check that the
action is semialgebraic. For a fixed L € C™*™ the action has as its graph

(B.7) {(K’Y)‘K € GL(C"),Y = KLK*}
N {(ki%yij)

i,j €1,...,n,Det(ki;) # 0,y — Qij(kij) = 0} ,

where each Q);; is a quadratic polynomial in (kij)ﬁjzl determined by L. This set is
manifestly semialgebraic, so by Theorem B.1 each Sa’p’q((C") is a smooth submanifold
of C"™*™. To prove that the dimension of SP4(C") is given by 2n(p + ¢) — (p + ¢)*
note that the dim SP4(C") = dim S+ since the matrix absolute value

|| : SP9(C) — §PH0,
(B.8) ol
Al = (A47)z

is surjective and injective of up to permutation of eigenvalues. The dimension of
SP+40 can be computed from Tﬂ(w)(ST’O((C”)) as found in Proposition 4.4. Taking

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/20/23 to 129.2.180.103 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

LIPSCHITZ ANALYSIS OF PHASE RETRIEVABLE FRAMES 1543

r =p+q, then
(B.9) dimTﬂ(I)(gr’O((C")) =n? —(n-r)=2nr—r*=2n(p+q) - (p+q?=>.

It remains to prove analyticity of S™0(C™). It is proved in Lemma 3.11 of [3] that
50’1’0(((:") is real analytic. The proof in the general case is analogous. First note
that, owing to Sylvester’s inertia theorem, GL(C") acts transitively on SP4(CM) via
conjugation, since if X,Y € SP4(C"), then we may obtain Gi,G2 € GL(C"™) so
that G1 XG5 = I,, = G2YG%, and hence (G5'G1)X(G5'G1)* = Y. Tt remains
to obtain that the stabilizer group is closed in GL(C") so that we can invoke the
homogeneous space construction theorem. If Z € So'p’q((C”), then Z = zI, 42" for

some z = UZ[ A, ]VZ* € C*". The stabilizer group at Z is given by T € GL(C")

0
such that Tz € {zU|U € U(p,q)}. In a basis ey, ...,e, for C* where ey, ..., e, span

Ran(z) and e,41,...,e, span Ran(z)*, the stabilizer is therefore given by
(B.10)
~1
H :{ [AZUOAZ ]\]‘ﬂ U € U(p,q), My € C™¥"" My, € C™", det(Msy) o} .
2

It is easy to see that H’ is a (relatively) closed subset of GL(C™); hence by the
homogeneous space construction theorem SD'T’O((C”) is diffeomorphic to the analytic
manifold GL(C™)/ H}O. This concludes the proof of (i). Claims (ii) and (iii) represent
slight generalizations over the analogous results in [8] for positive-definite matrices,
but the same key theorems apply. Namely, we employ the following.

THEOREM B.2 (see [17, Proposition 2.28)). Let (M, g) be a Riemannian manifold,
and let G be a compact Lie group of isometries acting freely on M. Thenlet N = M/G
and 7™ : M — N be the quotient map. Then there exists a unique Riemannian metric
h on N so that w: (M,g) — (N, h) is a Riemannian submersion, and in particular
that Dr(z) : Hy . — Tr(z)(N) is isometric for each z € M.

THEOREM B.3 (see [17, Proposition 2.109]). If 7 : (M,g) — (N,h) is a Rie-
mannian submersion and v is a geodesic in (M, g) such that ¥(0) is horizontal (i.e.,
4(0) € H,T_’,Y(O)), then

(i) 4(¢) is horizontal for all t;
(ii) wo~ is a geodesic in (N, h) of the same length as .

In our case we are interested in the geometry of C?*"/U(r), where C}*" is an
open subset of C"*" and is therefore a smooth Riemannian manifold of constant
metric when equipped with the standard real inner product on C™*":

(B.11) (A, B)g = Rtr{A*B} .

The relevant compact Lie group of isometries will be U(r), acting by matrix multipli-
cation on the right. We note that while U(r) does not act freely on C"*", it does act
freely on CI*" since for € C?*" and W € U(r)

(B.12) z=2W <= a*z=ga"2W < (2"z) '(2"2) =W <= Ly, =W.

Therefore by Theorem B.2 there exists a metric h on C?*" /U (r) such that the differ-
ential of 7 at =z,

Dr(x) : (Hro(C27), (¢, )r) = (Tr@) (S™(C™), h),

Dr(z)(w) = zw* + wz™,

(B.13)
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is an isometric isomorphism. Indeed
(B.14) h(Zy, Zo) = (Dr(x)" Z1, Dr(2)1 Zy)g ,

where D7 (z)" is the pseudoinverse of the linear operator D7(z). In this case, for
wy,we € Hy 5 (CFXT)

(B.15)  h(Dn(wy), Dr(wy)) = (Dn(x)! Dr(wy), Dr(x)! Dr(ws))r = (w1, wo)g .

We now determine h explicitly. Namely, if Z;, Zs € TW(I)(SQ’T’O((C")) = Dn(Hy ,(C2*7)),
then Z; = Dn(x)(H;z + X;), where H;, X; are as in (4.6). We must have
h(Zl, Zg) = %tr[(Hlx + Xl)*(HQ.'I} + XQ)]

B.16
( ) = Rtr[z* Hy Hax] + Rtr[ X Xo] .

We define Z) := Pron(e) ZiPran(e) = 22* Hi + Hyza™ and Zi = Pron(e)t ZiPran(s) =
X;x*. Then

oo . .
H; = / e~tev Zle~ter gt
(B.17) 0

X; = Zta(z*z)" L.
Plugging these expressions into (B.16) yields the expression
hZ1, Z2) = Rir {mx*/ e*t”*Zﬂe*t”*dt/ esmgﬂ*zéeszw*ds}
0 0
+ Rtr{Z{* Zy (x2*)T}
= ho(Z1, Z2) + hi(Z1, Zo) .

(B.18)

The first term in (B.18) ho(Z1, Z2) can be simplified via the change of coordinates
u=t+sandv=t—sas

hO(ZhZQ):/ / %tr{e_m*(t“)Zﬂe_m*(H's)xx*Zg}dsdt
o Jo

1 /> [ x x
5/ Rtr{e” " Zl‘e‘“” mx*Zg}dvdu
0

—Uu

o0
:/ u%Rtr{e_“”*lee_“m*mx*Zgl}du
0

(B.19)

0o
/ utr{e—ux:c* Zﬂe—uxx*mx*zgl + Zglxx*e_uxx*zﬂe_umx*}du
0
<09 . .
= —tI'{Zg/O\ uae_uwl‘ Zl‘e—uxw du}

= tr{Zg / e*“”*Zye*“”*du}
0
= (H1, Z2)r = (Z1, Ha)w

where the last equality follows from cycling under the trace immediately and then
repeating the same calculation. With this metric in hand we have shown (ii), namely,
that the map

(B.20) 7 (CPX7 () 9R) = (S70(C), h)
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is a Riemannian submersion. To prove (iii), let A, B € S™°(C") and let zz* and
yy* be their respective Cholesky decompositions, so that x,y € CI*". Consider the
following straight line curve in C™*":

Opy:[0,1] = C™*7,

(B.21) 0ey(t) =1 -tz +tyU,

where U is a polar factor such that *yU = |z*y| (equivalently U is a minimizer of the
distance D, as in Proposition 3.4). The claim is that we will be able to apply Theorem
B.3 to the pushforward of o, ,, proving that it is a geodesic connecting A = 7(x) to
B = 7t(yU). Specifically, we would like to prove

(B.22) Ozy(t) € CTXT vt € [0,1],
(B.23) O2y(0) € Hr 5 (CIT).
We first prove (B.22), namely, that o, ,(t) does not drop rank as ¢ varies from 0 to 1

even though C7*" is not convex. The endpoints o ,(0) = z and o, ,(1) = yU are of
course full rank, so it is enough to prove it for ¢t € (0,1). Consider z*o, ,(t):

(B.24) oy y(t) =1 —-t)a"e + ta*yUeP(r)forte(0,1).
€ P(r) |lz*y| € PSD(r)

This implies that o, ,(t) € CZ*" for t € (0,1), so (B.22) is proved. Let v = 6, ,(0) =
yU — z. Then
v = —z*rx+a*yU = —a"z + (x"yy*z )%
PRan(z)v = —(zz") T za*z + (za*) z(z"yy ac)%
(B25) ]PRan(;c)U = (7]P)Ran(x) + (xz*)Tx(w yy x)%x*(:m:*)f) Zz,
H
v=Hz+X, PrueX =0, H*=PrumH=H.

Hence (B.23) is proved, and so by Theorem B.3 we have that y4,p := mo0,, is a
geodesic on (§70(C™), h) connecting A and B. We find specifically that this geodesic
is given by

Ya,8(t) = 7((1 — )z + tyU)
(B.26) = (1 -tz +tyU)((1 — )z + tyU)*

= (1 —t)%z2* + 2yy* +t(1 — t)(2U*y* +yUz™).

Clearly A = zz* and B = yy*, but what about xU*y* and yUx*? Fortunately, a
minor miracle occurs. Namely,

(B.27)
(yUz*)? = yUa*yUa™ = yUla"y|z* = y(|lz*y|U") 2" = y(a™y)*a* = yy*za”,
(@U*y*)? = Uy aU"y* = oz yU) Uty* = zla*y|U*y" = cx*yy* .
Thus in fact zU*y* and yUx* are matrix square roots (not necessarily symmetric,

but having positive nonzero eigenvalues) for BA and AB, respectively. We obtain the
following expression for the family of geodesics on S™°(C") connecting A and B:

(B.28)
Ya.p(t) = (1 —t)2xx* + Pyy* +t(1 —t)(2Ugy* + yUpx™) + t(1 — t)(2Ufy* + yUra™),
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where Uy and U are as in Proposition 3.4. The fact that the form of this expression is
independent of r is somewhat surprising, and motivates claims (iv) and (v). In order
to prove (iv) we must first check that the collection of smooth manifolds (S'i’o(Cn))gzo
provides a stratification of the cone S™°(C") (conditions (a) and (b) of Definition 4.2).
Condition (a) is satisfied trivially, and for (b) we note that

(B.29) Si0(Cn)\ §H0(C™) = {0} u SO U U SITLO,

It remains to check that whenever p > ¢ the triple (S7(C™), §7:0(C"), A) is a-regular

and b-regular for A € S§40 — Sp0. It was noted by Mather in Proposition 2.4 of
[24] that b-regularity implies a-regularity, but we will use a-regularity in our proof of
b-regularity, so we need to prove a-regularity first. Specifically, a-regularity in this
case states that if (4;);>1 C SP0(C™) converges to A € S70(C") and if T4, (570 (C™))
converges in a Grassmannian sense to the vector space 74, then T4(S9°(C")) C 74.
Upon examining the form of the tangent space as given by (4.7) it becomes clear
that convergence of the tangent spaces TAi(ép’O((C")) is equivalent to convergence of
RanA; to a space we denote by L, so that the Grassmannian limit of the tangent
spaces is given by

(B.30) 74 = {W € Sym(C™")|P,. WP;. =0}.

It is evident that L should contain as a subspace RanA, and that this would prove
that the stratification given is a-regular. Indeed, if A; = U;A;U} is the low rank
diagonalization of A; so that A; = diag(A1,...,\p) is the diagonal matrix of nonzero
eigenvalues of A; and U;U; = Prana,, U;U; = L,x,, then by compactness we can
obtain a subsequence of (U;);>1 that converges to a matrix U such that the columns
of U are precisely an orthonormal basis for L. In this case, we may write A = UAU*
since A = lim;_, o U;A;U} and the sequences of eigenvalues converge (some to zero),
so that if U = [u1] - - - |up), then

(B.31) RanA = span{u;|A;; # 0} C span{u;}?_, = L.

Thus, owing to (B.30) and the description of the tangent space in (4.7) we conclude
that 'H‘A(gqa’o((C")) C 74 and our stratification is a-regular. As for b-regularity, let
(A;)i>1 C SPO(C™), A € S79(C™), and let T4 be as before (specifically we assume the
Grassmannian limit defining 74 converges) and let (B;);>1 C §20(C™) be convergent
also to A such that the following limit exists:

. . A; — B;
(B.32) @=lim Q= lim e
We claim that @ € 74. Specifically, let ©; = A; — Pran(a,)BiPrana,) and ¥; =
]P)Ran(Ai)B'L']PRan(Ai) — Bi. Then either \1/1' = 0, in which case Qz = @,/”@zHQ, or
U, # 0, so that
O]l ©; [Tl 0y

+ .
[[Ai = Bill2 [|©ill2 ~ [|Ai — Bill2 [|Will2

(B.33) Qi =

We will obtain convergent subsequences for the sequences of unit norm matrices
0,/]|0:]|2 and ¥;/[|¥;||2, but first note that

(B 34) ||@7||2 _ ||PRan(Ai)(Ai - Bi)PRan(Ai) |2 <1
' ||Ai — Bil|2 [14i = Bill2 T
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Hence ||%;||2/||A; — Bil|2 is also a bounded sequence (if it were not, @); would fail to
converge). Next note that for i sufficiently large V; = Pran(a,)BiPran(a,) — Bi is the
difference of two matrices in S9°(C™), both converging to A. Therefore, owing to the
fact that S$79(C™) is an analytic manifold, any convergent subsequence of W /|||,
will have its limit lying in T4 (S9°(C")) (see, for example, Lemma 4.12 in [28]).
Owing to the already proved a-regularity we conclude that the limit of any convergent
subsequence of W;/||W;||, lies in 74. Similarly, ©; = Pran(a,)(Ai — Bi)Pran(a,), and
hence any convergent subsequence of ©;/||0;||2 must lie in 74. Thus we may obtain
a subsequence such that the sequences of real numbers |[©;,|[2/||A;; — Bj;|]2 and
||, [l2/]|Ai;, — B,||2 converge to some «a, 3 € R and the sequences of the unit norm
matrices O;, /||, ||z and Wy, /|[¥;,||2 converge to some 6,V € 74. Since (Qi)i>1
converges, we find that

(B.35) Q=0a0+pVecry.

Thus the stratification ($%°(C™))7_, is b-regular and in particular is a Whitney strat-
ification of S™0(C").

In order to prove (v), let A; = z;27 and B; = y;y} be Cholesky decompositions
of A; and B; such that z;,y; € C™*P and note that we are told the following limit
exists at each ¢:

(B.36) o) = 1_1320(1 — 2wl + Pyiyr (1 — ) (Ul yr +ylUixl),

where U; € U(p) is such that xfy;U; > 0. We note that since (A;);>1 and (B;)i>1
converge we may obtain convergent subsequences for their Cholesky factors x; and y;
(||zi]]2 and ||y;||2 must both be bounded or else A; and B; would not converge). We
may also obtain a convergent subsequence for (U;);>1 owing to the compactness of
U(p). Denote these subsequential limits by z, y, and U, respectively, and consider a
combined subsequential indexing such that each occurs. Let V, and V,, be the matrices
of right singular vectors for « and y so that « = [£|0]V, and y = [§|0]V, for some
2,9 € CL?. Then clearly

(B.37) 5(t) = (1 —t)%2@" + 299" + t(1 — t)(@U*9" + gUi™),
where U is the upper left ¢ x ¢ block of V,UV;. We will prove that in fact

Ulo

B.38 VUV =
(B.38) f o o

In particular, this will imply that U € U (g) since VUV € U(p), and hence the upper
left ¢ x g blocks of (V,UV)(V,UV})* and (V,UV;)*(V,UV;") must both be equal to
the ¢ x ¢ identity matrix. In order to prove (B.38), note that U = VIWW*, where

(B.39) x'y=w [0 O] Vv

is a singular value decomposition of z*y. On the other hand if

(B.40) ity =P {8 8} Q"
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is a singular value decomposition for £*g, then

PO Ao of Q|0

(B.41) 'y =V} —1 [0 |0 = Vy,
ol|p| |~ 0|0

0 |0f ———
w v

where ]5,(2 € U(p — q) are in general arbitrary, but may of course be chosen in
accordance with W and V. Thus

(B.42) VUV = V,VW*V, = [ PQ 0 ]

0 PQ
is as in (B.38). The question remains whether #*gU > 0, but we note that

« « |29 0
z*yU =V, _0 0_ Vi, U
=V -j*g 0] V., UV*V,
“e oo o) v e
(B.43) e ol 1O o
e |2
=Yoo o {o U]Vz
o @gU o

Thus z*yU will be positive semidefinite only if i:*j&f] is positive semidefinite, and since
*yU = lim; o0 7y U; = lim; o0 |27y:] > 0 we conclude that i’*@f] > 0. A nearly
identical proof shows that Uz*y > 0. We conclude that § is a geodesic in S’Q’O(C")
connecting A and B. O

Appendix C. Proofs for section 5.
C.1. Proof of Proposition 5.1.

Proof. We may first note that (za*, A;)r — (yy*, 4;)r = (zz* — yy*, Aj)r. The
expression (1.3) then becomes

m

1 = inf L,Aj)?.
(C.1) ao Leslrr'lr((c")z< s Aj)
1Z]l2=1 971

The claim follows by contradiction if S™" is closed. Explicitly, if S™" is closed, then
ST N {x € C"™ : ||z||]2 = 1} is compact. Assume ag = 0; then there exists Lo €
ST {x € C*™ ¢ ||z||]2 = 1} so that

m

(C.2) 0="> (Lo, A;)*.

Jj=1

This implies that the map ( is not injective since, in particular, if za* = (Lg)4+
and yy* = (Lg)-, then za* # yy* since ||Lg|l2 = 1 but S(z) = B(y). It remains
to show that the spaces SP'? and in particular S™" are closed. Consider the map
n:C™" — {0,...,n}? with n(A) = (rank(A,),rank(A_)) taking A to its Sylvester
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indices (p,q). Then 7 is continuous with respect to the usual topology on C™**™ and
with respect to the “upper box” topology 7y, on {0,...,n}? generated by the base

(C.3) B = {{z,...,n} x{y,...,n}(z,y) €{0,...,n+1}}.

The maps A — Ay are continuous, and it is well known that rank(A 4+ B) > rank(A)
whenever ||B|la2 < 0ptq(A), and hence n is continuous. Moreover {0,...,p} X
{0,...,¢} is closed in 7yp, and hence SP9, its pullback through the continuous map
7, is closed in C™*". |

C.2. Proof of Theorem 5.6.
Proof. We first prove that ag = inf,ccnxr a(z). We note that

(C.4) ap = inf (zz* —yy*, Aj)r|?.
e | [ Z o
za* Fyy”

We may change coordinates to z = %(m +y) and w = z — y so that

C.5 ag = inf
( ) 0 ZU)EC"XT sz +’U}Z H
2w +wz*#0

Z |(zw* +wz*, A))g|*.

j=1

Recall that z has rank k, and therefore we may take z = [2|0]U for 2 € C?** and
U € U(r). We then define @ € C™*¥ via the first k columns of wU*, then zw* +wz* =

20 +102* = Dr(2)(), so that in fact we may take @ € H, :(C?*¥)\ {0}. We obtain

ag = inf inf — Dr(2)(w), 2
0 zeC"XT\{O}weHWZ(C"X’C)\{O} HDW 2)(w) ||2 Z' Aj)e

= inf min Z (W, A;)r|?

Ze(cwxr\{o} WGT-,((Z) Sk (J((Cn))

(C.6) [[W]l2=1
m

= inf min Z|<VV,A]‘>R|2
2€C™ X WET, (5 (S*0(CM)) 5
l=ll=1 " fjwi=1 77

= inf a(z2).
z€C™*"
[lzll2=1

This proves (5.11). The first two inequalities of (5.12) are clear from the definitions
of the quantities involved, namely, ag < a2(z) < a1(z). It remains to prove that
a1(z) < a(z). We will need the following families of real-linear subspaces of C™*"
indexed by z € C"*":

(C.1)
:{HZ + X|H S (Cnxn’ H'=H= PRan(z)H,XE (CnXT,]PRan(Z)X = OaXPker(z) = 0},
(C.8)
A, ={weC™ Jp>0 Vie<p z"(z+ew)> 0},
(C.9)

I, = {y € (CnXTHP)Ran(z)y =0, y]P)ker(z) = y}
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LEMMA C.1. The space A, is alternately characterized as
(C.10) A, ={we C""|z*w = w*z}

and is thus manifestly a real-linear subspace. Moreover, A, decomposes orthogonally
mto

(C.11) A, =H,oT,.

Finally, if z = [2|0)U for 2 € C*** | then

(C.12) H, = [Hﬁ,z(Cl’X’“)

0|

Proof. Clearly a necessary and sufficient condition for w € A, is that z*w =
w*z, for in this case take |¢| < o (z)/||w||2. We can use this condition to obtain a
parametrization for A,:

*

weAN, < Zrw=w"z
— *w=H, HeC™ H*=H =Py, H
— Z'w=2"Hz, HeC"" H" =H=Pgan-)H

(C.13)
— w=Hz+X, He (Cnxn’H*: H= PRan(z)H,XE (CnXT’PRan(Z)X:O_

This proves (C.11), with orthogonality easily verified. To prove (C.12) note that if
z = [2|0)U for 2 € C»*k U € U(r), and w = Hz + X € H,, then the condition
XPier(z) = 0 implies X = [X|0]U for X € C™** and Pran(z)X = 0 if and only if
]P)Ran(z)j( = 0. Thus

(C.14)

H, = {H}|0)U + [X|0JU|H € C™*", H* = H = Pran(s)H, X € C** Prop()X = 0}
={[Hz+ X|0)U|H € C™*",H* = H = Pran(z), X € C"** Pran(s)X = 0}
= [Hy :(CF)|0]U . g

With this lemma in mind, we may transform a;(z) into a linear minimization
problem over A,. Namely,

Yt {wa™ — 227, Aj)e|?

a1(z) = lim inf

1(2) R—0  geCrxr ||zz* — 22*||3

[lex* —zz"||2<R

(C.15) Zmzl (zx* — ZZ*,A]'>]R|2

= lim inf 1 5
R—0  gecnxr [|zx* — z2*||5

[lex* —zz"||2<R

z*z>0

We can add the z*z > 0 constraint without altering the infimum since doing so
amounts to a choice of representative for , but = only appears as 7(z) = zz*. We now
show the following lemma, implying that we may instead minimize over ||z —z||2 < R.

LEMMA C.2. For all z € C™*" and € > 0 there exists § > 0 such that if z*x > 0
and ||zz* — xx*||2 < 6, then ||z — z||2 < €.
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Proof. We begin with the fact that the operation

¢:PSD(n) — PSD(n),

(C.16) () — VEAVA

is continuous with respect to the topology induced by the Frobenius norm. Note that
1

C(zxz*) = ||z||2(xx*)2 = ¢p(x) (the embedding v as given in Definition 3.5). Therefore,

given any z € C"*" and €; there exists d such that

(C.17) lzz* — 22*||z < § = ||[|zlla(zz*)? — [|2]l2(22*)2]], < €1 .

The latter expression here is of course ||¢)(2)—1(2)||2, which satisfies ||¢)(z) —v(2)]|]2 >
1D(z,z)? by (A.19). If z*x > 0, then D(z,z) = ||z — z||2, so if we take €; = %, then
the above § satisfies the lemma. |

With this lemma in hand we may freely replace ||za* — zz*||2 by ||z — z||2 in the
infimization constraint for a;(z) (note that the converse of the lemma is immediate
since 7 is continuous with respect to the topology induced by the Frobenius norm).
After doing so, we change variables from z to w = x — z so that

Y we™ — 227, Aj)e|?

i f
ai(z) Rlinollwelé‘l""t}% zz* — 22%2
r—z
z*a:;O
i " ST [z w2t ww*, Aj)rl?
= lim in
R0 ﬁ,el(lcn:; l|zw* + wz* + ww*||3
w
z*(z+2w)20
b it Yoy [ew® + w2t + ww*, Aj)r?
= lim in
RS0 weA., [|zw* + wz* + ww*||3
(C.18) [lw|l2<R 2

m * * * 2
L zw* + wzt + ww*, A
< lim inf ZJ*IK )%

RS0 weH., [|zw* + wz* + ww*||3
[lwll2<R

= lim inf ijZI [(zw* +wz* + ww*,Aj)RP

R0 weH. |lzw* + wz*||3 + [[ww*||3 + 4Rtr{zw*ww*}
[lwll2<R

m * * * 2
(2wt + w2t + ww*, A
SIS v/ i

< lim  inf ; |2 Rer{zw*ww }
IIZJJH2<ZR |[zw* 4+ wz*||5(1 + 4 [lzw*+wz*[[3 )

We need to show that the ratio

tr{zw*ww
_ g IRtr{zwrww” }|

(C.19) R(w)

is O(||w|]) when w € H,. We employ the parametrization of H, given in (C.7), and
note that for w = Hz + X

(C.20) lzw” +w2"|[3 = 2(][z" Hal|3 + ||22" H|[3 + ||2X"]13),
(C.21) Rtr{zw*ww*} = Rtr{z*H>22*Hz} + Rtr{ X*X2*Hz} .
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Thus we find
R(w) < AR 222 Ha}] 4 2R { X X" H 2}
|lo* Hz[[5 + [[2z* H|J3 + []2X*|3
* 2 5 5% * *
(C.22) o IRir{e" H22 Ha)| ) [Rir (X" X))
||z H z][3 [|2X*||5 + ||2*Hz||5
<l Hl | |IXX]]o

T lzrHzlle [l X2
Up until this point we have not used the fact that HPran(.) = H = Pran.)H and
XPyer(z) = 0. We do so now by noting that if z = U AV* for U; € C™** such that
UrU; = Pran(z), A = diag(o1(2), ..., 0%(2)) is the diagonal matrix of ordered singular
values 01(z) > -+ > 0(2) > 0, and V3 € C™** such that ViV;* = Pye,(,)+, then

||2* H?2|| = [[AUT H*Ur |2 < 01(2)||UY H2Un |2
= 01(3)2\/tr{PRan(z)HQPRan(z>H2} = a1(2)?[|H?|]2,
12" Hz|| = |[AUF HUA|2 = 03 (2)21|UF HUL
(C.23) )
= 01(2)° \ /00 {Priane) HPRan() H} = 0 (2) | H ],
122 |2 = [JAVF X[l = [IACXVA) |2 = o0 (2)][ X Vil

= 01(2)y/tr{ X Pyy( - X7} = 00 (2)]| X 2.
Thus if k(z) = 01(2)/0k(2) is the condition number of z, we find

2|, XX
< 2” 1
Rlw) < 2661, T o) R,

< 26(2)?|[H ||z + o (2)]1X ]2
< 26(2)%0k(2) 7| Hzll2 + 03 (2) 1 X |2

(C.24) V2 max(2k(2)%,1)
< V2GR g + XT3

_ 2\/5/{(,2)2 ]l
o5 (2) '
—_———

C(2)

Thus returning to a;(z) we obtain

T zwt +wzt, AHr|?
a1(z) < lim inf 2=l el

R—0 weH, [|zw* + wz*||3
[lw]l2<R

(1+2C(2)[[wl]2)

Yol {ew* +wz, Aj)g|?

= inf 2
weH, [|zw* + wz*||3
w#0
(C.25) . Z?ll |(20* + 2%, Aj)r|?
= well, . |[20* + 02+][3
W0

m

— min (W, A
WeTﬂ(£><s°k’°<<C")>; !
[[W]|2=1

=a(z).
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This proves (5.12). In order to prove (5.14) we will employ an explicit parametrization
of Tﬂ(g)(Sk’O(C")) implied by (4.7). The condition on W € Sym(C™) in (4.7) that
]P)Ran(z)iW]P)Ran(Z)L =0 lmphes that

(C.26) W € T (5)(SFO(CY) <= W =W+ 2 (W2 + W),

For Wy, Wy € C™*™ where ]P)Ran(z)Wl =W, = Wl*a PRan(z)WQ =0, and WQPRan(Z) =
Ws. In other words, if U; € C™** and Uy € C™*"~* are as in Definition 5.4, then

(C.27)
Tr(5)(5*0) = {UlAU1 5 (U2BUf + ULB U;)| A € Sym(CH), B e (Cn—kxk} .

We will now employ the fact that the maps 7 and p in (5.6) are isometries. Specifically,
if A, B € Sym(C"), then (A, B)g = 7(A)T7(B) and if X,Y € Cr*", then (X,Y)r =
p(X)Tp(Y). With this in mind, we obtain that for W € T (z)(S*?)

m 2

Z (W, Ajel> =)

Jj=1

1
<U1AUf + 5 (U2BUf + UlB*U;),Aj>
R

= (U1 AUY, Aj)r + (U2 BUY, A;)el?

= AU A;U1)r + (B, U3 A;Uy )/

(C.28) =
-3 () [ ;‘iﬁﬂ)
- [ (S Fea) ) )
WwrQ.

where W = [;Eg;] € R¥*+2k(n—k) — R2nk—k*  Meanwhile, again owing to the fact

that 7 and p are isometries, we find that for W € Tw(g)(§k’0) we have ||W||2 = [|[W]|2.
Thus, returning to our computation of a(z),

a(z) = min E (W, Aj)
WeT‘lr(z)(Sk O(CW))
[IW]l2=1
= min WIQW
WeRan—kz
[Wl2=1

= )\2nk—k2 (Qz) .

(C.29)

This concludes the proof of (i)—(iii). As for (iv) and (v) note that when rank(z) < k
then we may find P € U(r) such that z = [2|0]P for £ € C"** and moreover
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d(z,z) =d(z,2) and xz* — 22" = £3* — 2%2*. Thus

b it Sy aa* — zz2*, Aj)rl?
R—0 daiecr)é;% d(z,2)?
Z,T

(030) rank(z)<k

ay(2)

T Sty (adr — 22%, Aj)gl?
R—0 di(g[;;:;a d(ﬁv? 2)2
T2

The constraint rank(z) < k is therefore equivalent to the assumption that z € C?**.
Hence, in order to avoid a plethora of hats we will assume z € C?**. This assumption
simplifies the situation considerably since in this case A, = H, .. As we shall see,
if the T', component of A, were to be nontrivial, the local lower bounds a;(z) and
a2(z) would be zero. We next note that d(z,z) = ||z — z||2||z + z||2 precisely when
x*z = z*x > 0, which may be achieved without loss of generality in G;(z) via choice
of representative for z. Thus, keeping in mind that z € C?**, we find

(C.31)

a1(z) = lim  inf Z;n:1 |(za* — z2%, Aj)r|?
1 o R—0 gecnXxk d(x’z)2
d(z,2)<R
: i Sy (z(m = 2)* + (2 — 2)2" + (2 — 2)(z — 2)*, Aj)x|?
= lim inf |

S o — 213 - [lz + 213
lle—z||2-[lz+2][2<R
¥ z=2"2>0

In analogy with our analysis of a;(z) we change variables from = to w = = — z and
are thus able to linearize the infimization constraint, since for ||w|ls < ox(z) we
have that z*(z + w) > 0 if and only if z*w = w*z, or in other words if and only
if z€ A, < z € H,, (the vertical component of A,, namely, I, is trivial for
z € C?*k). We also exploit the fact that D and d generate the same topology and
therefore instead of ||wl|2||2z + w||2 < R we may simply take ||w||2 < R:

. (zw* + wz* + ww*, A;)r|?

G1(z) = lim  inf

2

Kb well, — [lBI2E +
wi|2
o 1 . i}
= TR A o D e e, A)a (L O(ul)
(C:32) 2 ekl P =
m
- Wwehﬁ[f D l(zw” +wz", Ajel?
? |l 221 9=1
1
= a(z).
42113

We now consider Go(z). In a manner precisely analogous to (C.30) the constraint
in ao(z) that rank(z) < k and rank(y) < k is equivalent to the assumption that
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z € C™*k. We first employ the unitary freedom of = and y to note that

. o X e — gy Al
d2(z) = lim  inf
R=0g,yeCcm ¥ d(z,y)?
d(z,z)<R
d(y,z)<R

m * * 2
. . > @ —yy*, Ayl
= lim inf 5
R50 g yecnck d(z,y)
[lz—z||2||z+z2|[2<R
(C.33) lly—=llally+=ll2<R
¥ 2z=2"x>0
Yy 2=2"y>0
m * ES 2
. . > im Haa™ —yy”, Aj)r|
lim inf 5 .
R—0 z,yECnXk d(mvy)
[lz—z||2<R
[ly—z|l2<R
z¥z=z"x
Yy z=z"y

We now weaken the infimization constraints and obtain a lower bound. We note that
x*z = z*x and y*z = z*y taken together imply that (z — y)*z = 2*(z — y), and
also that the denominator d(x,y)? < ||z — y||3||z + y||3. Thus, changing variables to
£ =z — zand n =y — z we obtain

(C.34)
. , : Dy [{z(€ =) + (€ —m)z* + €& — ", Aj)el?
as(z) > lim inf 5 5
R=0  gpecnxk 1€ = nllz1[22 + € +nll3
[I€ll2<R
lInll2<R
z"(—n)=(—n)"=
1 2im [(z(€=m)" + (E—m)2", Aj)=l®
= Tz Hm inf : (L+O([ElZ+IInl13))
Af|z][5 R0 gpecn <k 1€ = nll3
lI€ll2<R
lInll2<R

2 (€=m)=(6—m)"=
S (€ =)t + (& — )2, Aprl?

= —— lim inf
4)|2]|3 B=0 g pecnxn € = nll3
l1€]l2<R
lInll2<R

2" (§=m)=(§—n)"=
3 Sjeq z(€ = m)* + (€ —n)2", Aj)w[?

= —— lim in
4)|2]]3 B—0 g pecnx € —nll3
[lE=nll2<2R

2" (E-m)=(§-n)" =

The last line is an equality rather than an inequality owing to homogeneity in £ — 7.
Changing variables once more to w = £ — n and using the fact that for z € CP**
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Zw=wz = weA, & we H, (CPF) gives

o . oI [(zw* w2, Ajel?
5 lim inf 5
4213 B=0wem, . (k) |[w|[3

[lw||2<2R

dQ(Z) 2

(C.35)

—_

m
inf Z |(zw* +w2*, Aj)g|?
WEH . (C1*F)
[lw[l2=1

(2) = ai(z).

=~

112113

Jj=1

Q>

The reverse inequality do(z) < @;(z) is immediate from the definitions of d;(z) and
a2(z), and thus (5.15) is proved. We now turn to explicit computation of a(z) as the
smallest nonzero eigenvalue of Q.. As with the computation of a(z) we rely on several
embeddings. Specifically we define

l: (Cnxk — Rank ] . (Cnxk N RQnXQk
RX ) RX -8X
ca 0= 3% =155 wrl-

Note that j is an injective homomorphism and moreover that
(C.37) Jx) = [1x) Jx)]

where J € R?™X2" is the symplectic form

_ 0 _ann
(C.38) J= {Hm 0 ]

Note that Jj(X) = j(X)J for all X € C"*". The embedding [ is isometric, and
the embedding j is isometric up to a constant since for X,Y € C"** we have
(X, V)r = ((X),I(Y))r = 3(j(X),j(Y))r. The embedding j is furthermore a
structure preserving homomorphism since for p € C***, ¢ € CF*! we have that

J(p)l(a) = 1(pa), j(pa) = j(p)j(q), and j(p*) = j(p)". We will also employ the iso-
metric embedding vec defined in the obvious way in (5.8). We will need the fact that
if A€ R"* and B € RF*!, then

(C.39) vec(AB) = (Ijx; ® A)vec(B) .
Note that this further implies that for z,y € R™**¥ and F' € R"*"™ we have that

(C.40) vee(z)T (Tyxr ® F)vec(y) = vec(z) vec(Fy) = (x, Fy)g = tr{z” Fy}.
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With this in mind we find that for z € C?"** and w € H, ,(C?*F)

(D7 (2)(w), A;)r|* = 4 (wz", Aj)p/*
= (j(wz"), 4;)?
= (j(w), 4;5(2))*

= <vec(j(w))TveC(j(Aj)j(z)))
(C.41)

2
= (VeC(j(w))T(szx% ® j(Aj))vec(j(z))>
=4 <VeC(l(’w))T(Hkxk ® j(Aj))VeC(l(Z))>
=AWTF;zZ"F;W ,

where W = p(w), Z = p(z), and Fj = I;x1®3j(A;). This should not be too surprising
since in fact

2
iy
w
S~—
|
—~
w
w

* AjRr

N
(4(2),5(A5)i(2))
vee(j(2)) " vec(j(A;)4(2))

vee(j(2))" (Takxak ® j(A;))vec(j(2))
ec(l(2))T (Txxx ® §(A;))vec(l(2)) = ZTF;Z .

I
®
.

(C.42)

N RN~ DN

|
<

Thus when j3; is viewed as a map from R?*"* to R we find that |Dg;(Z)(W)* =
AWTF; ZZT F;W. Returning to a(z) we first note that the constraint w € H, ,(C?**)
precisely avoids the “trivial” kernel of dimension k2 common to each FjZZTFj.
Specifically, we note that ZTFjV =0for V €V, Cc R* where

(C.43) V. = {vec(J1(2)S + 1(2)A)|S € Sym(R¥), A € Asym(R")}.

Namely if V € V, and n = JI(2)S + [(2)A € R*™*" for A € Asym(R¥) and S €
Sym(RF) so that V = vec(n), then
ZTEV = vec(l(2))” (Txxk @ 5(A;))vec(n)
= tr{l(2)"j(4;)n}
(C.44) =tr{l(2)7j(A;)(JI(2)S + 1(2)A)}
(2)

= tr{I(=)7J(A)TU)SY + tr{1(2)TH(A)I(2)A)

A
J(A
=0.

The last line follows from the fact that j(A;) is symmetric and j(A;)J is antisymmetric
since (j(A;)J)* = —Jj(A;) = —j(A;)J. The reason that w € H, ,(C?**) avoids this
common kernel is that in fact V, = u(V; ,(C?*¥)). Recall that

(C.45) Ve o (CF) = {2 K|K € Asym(C")}.
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We may decompose K € Asym(C") as K = A+ iS, where A € Asym(R"™) and
S € Sym(R"). Hence if u € V, ,(C?*¥), then on the one hand j(u) = [I(u)|JI(u)] and
on the other

(C.46)
i) = 3(:K) = S = WA [§ 7| =+ 7168 - 1198 + 1) 4]

from which we may clearly identify I(u) = I(2)A + JI(z)S, and thus
(C.47) Ve ={u(u)lu e VW,Z(C:Xk)}'

The map p is an isometry, so if w € H, ,(C?*¥), then the image W = u(w) lies
precisely in the orthogonal complement of V,. Thus

m

a(z)=  min > [(Dr(z)(w), Aj)el’

wWEH . (CM*F)

=1 7=
C.48 U
(C.48) = min W' (4> F2Z"F; | W
WeRan c
WLV, j=1
||W]l2=1

= Aok 12(Q.) .

Note that at this point the hats return and Z = p(2). Eigenvalues are continuous
with respect to matrix entries, and Qz is manifestly continuous with respect to z. As
a result of this and the fact that k — 2nk — k2 is monotone increasing for k < n we
conclude that a(z) approaches zero whenever z approaches a drop in rank. Indeed,
d(z) jumps discontinuously to a nonzero value once the surface of lower rank is actually
reached, but this cannot prevent inf,ccnx- a(2) from being zero, and thus there is no
hope of defining a nonzero global lower bound éag. This concludes the proof of claims
(iv)—(vi).

Claim (vii) gives local control of a(z) in terms of a(z). We first prove that in-
equality (5.17) holds. To do so we consider the following operators:

c19) 03 (2) : (T ($°(C), 1 1) = (R 11 l2)
()W) = (e {WA D,
a(2) 5 (Hr s (C29). 1] 12) = R |12)

(C.50) My (2)(w) = (tr{(Zw” +wz*)A;})i; = U1 (2) Dr(2)w.

Note that a(z) and a(z), defined respectively in (5.3) and (5.4), are expressible in
terms of the operator norms of the pseudoinverses of II; (£) and II(2):

a(z) = ML (2)]]7
C.51
(©ou a(z) = |[2(2)1] 2.

We may therefore obtain operator-theoretic inequalities relating a(z) and a(z), namely,

IH2(2) ] = ||D7(2) " T (2) || < [[Dm(2) [T (2) ]

C.52
(o I (2) ] = |D7(2)I2(2) || < [[D7(2)]]] [T2(2)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/20/23 to 129.2.180.103 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

LIPSCHITZ ANALYSIS OF PHASE RETRIEVABLE FRAMES 1559

Hence
(C.53) 1D (2)]1%a(2) < a(z) < [|Da(2)7H[2a(2) .-
It remains only to compute appropriate bounds for ||Dn(2)||;2? and ||Dn(2)7!]|? in

order to prove (5.17). First note that

|1 D7 ()~ (W)II3

D7 (2)72 = sup e
(C.54) WET (5 (5%:0(C™))\ {0} 2
' ( . [2w* +wz*||%)1
= mf T T E— .
weH, +(C**)\ {0} [[wll3

Next note that for w = HZ + X € H, :(C"**) we have ||w||3 = ||[HZ||3 + || X||3 and
||2w* +w2||3 = 2(||2*H2||3 + ||22* H||3 + ||2X*]|3), and thus

[[2w* +wz*|[3

|Dm(2)7|;% = inf
weH,. - (CTF)\{0} |[w|[3
_ inf |Z2*HZ||3 + ||122*H||3 + ||2X 3
HeSym(C"),Pran(s) H=H ||H2||§ + ||X||%

XEC™ ¥ Pran(z) X =0

(C.55) ~y i, 12" H 2|13 + 112X |13
T HeSym(C") Prane H=H |[HZ|[5 + [|X[[3
XEC™* Pran(z) X=0

I1H2]5 + 11X]13

HESym(C™) Pran(s) H=H |[HZ|[3 + [| X|[3
XEC™F Pran(z) X=0

Z 20—]@(2)2

= QO'k(Z)z .
Hence ||Dr(2)7Y]2 < m For the opposing bound note that

S0k 2% (12
|Dr(2)]|? = sup [|Zw” +wz"|]5

weH - (CP )\ {0} [|wl3
< sup w
(C.56) weH . (CP*)\ {0} ||w|[3
Al gw*|[F
< sup ——t
wEH, 5 (CE**)\{0} |[w|[3
<4||z]13.

Hence || D (2)[|,2 > W’ proving (5.17). We note that choosing w = 2 € H, ;(C?*¥)
2

proves that in fact ||D7(2)|la—1 = m Finally, the claimed bounds in (5.17) are

tight in the case rank(z) = 1, since in this case the inequality is equivalent to the

norm inequality for W € C"*™:

1

\/rank(W)

(C.57) Wi < [[Wll2 < [[W]]1.
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Specifically if W € Tﬂ(z)(gl’O(C”)) for z € C7, then W = zw* + wz* for some
w € H; ,(C}) C C™ and has rank at most 2. Moreover we have that

(C.58) Wl = [[zw” +wz"[[y = %\I(Z+w)(2+w)* —(z—w)(z—w)h-

Recall (3.8) that for z,y € C™ we have that ||zz* —yy*||1 = d(z,y) and that d(z,y) =
llz — yll2]|z + y||2 when z*y > 0. Let © = 2+ w and y = z — w, and note that in this
case w € Hy .(C?}) implies z*y = 2"z + w*z — z*w — w*w = z*z — w*w > 0 for ||w]|2
sufficiently small. Thus for ||w||z or equivalently ||[W||; sufficiently small,

(C59)  [[Wlh = %II(ZHU) = (2 = w)ll2[l(z + w) + (2 — w2 = 2[[z][2]|w]]2 -

The condition that ||W||2 be sufficiently small is of no issue since the ratio in a(z) is
homogeneous in |[W]|2; hence recalling that rank(WW) < 2 (C.57) implies

(C.60) Vall2llallwllz < [[W]l2 < 2l|2]l2][wl]2.

Thus for rank(z) = 1 inequality (C.57) is equivalent to

1 1
——a(z) <a(z) < a(z),
412113 2|l=113

(C.61)

which is recognizable as (5.17) since if rank(z) = 1, then ||z||3 = 01(2)? and hence
since (C.57) is tight, so too is (5.17). This concludes the proof of (vii).

To prove (viil) we combine (5.11) and (5.14) to obtain the following formula for
computing ag:

C.62 ap = min min Aonk—12 (Qu
( ) k=1,..,r UEU(n) " (Qu),
U=[U1]Uz]
U1€Cn><k
Uze(cnx(n—k)

recalling that

m T
T(U*A‘Ul):| |:T(U*A'U1):|
C.63 = 1% 144 .
(C.63) Qi vzl j_z:l [M(U2 A;U0) | (U3 A;Uy)
Finally, we need to prove that the minimum over k in fact occurs at k = r. We may
write
1 m

C.64 ap = min  inf min W, A)r|?.
( ) k=1,..r 2€CP*F WET, (. (§k:0(Cn)) W13 ; i i)

nx(r—k)

Then note that if 2 € C*** and z € C is such that 2*zZ = 0, then z =
[2|2] € C2*" and moreover, recalling the parametrization of the tangent space (4.
(or alternately that the stratification is a-regular), we find that Th(.)(S™"(C"))

Tﬂ(é)(é’k’o((cn)) since Ran(z)+ = Ran(2)* NRan(Z)*. Thus, in fact

C.65 ag = min Aopr—p2 .
( ) 0 pom A2 (Qu)
U=[U1|Us]
U1 EC’”XT‘
Uze(cnx(n—r)

)
>
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We now set out to prove (ix), specifically to control ag using an infimization of a(z)
rather than of a(z) by including the additional constraint that z*z = I,.5,.. With this
constraint we may write any w € Hy .(C?*") as w = zH + X, where H € Sym(C")
and X € C"*" satisfies Pran()X = 0 (equivalently X satisfies 2*X = 0). We note
that for z satisfying the constraint

(C.66) lwll = [[H113 + 11X13
(C.67) [lzw” +w2*[5 = 4] HI3 + 2||X][3 -

Hence referring to (5.3) and (5.4) we find that for z*z = I«

1, 1
(C.68) Za(z) < a(z) < ja(z).

4 2
Note that a direct application of (5.17) to the case where z has orthonormal columns
would lead to the lower constant being - rather than §. The form (5.18) for aq tells
us that a(z) depends only on the range of z, and that we may obtain ag via

(C.69) ap = inf a(z).
2€CPX"
2¥ 2=l xr

Thus
1. . 1. .
(C.70) — inf a(z)<ap <= inf a(z).
4 zecnxr 2 zecrxr
2" 2=l xr 2 z=lrxr
This concludes the proof of (ix) and Theorem 5.6. |

Remark C.3. For r =1 inequality (5.17) tells us that

1 1

(C.71) m&(z) <a(z) < B

a(z).

But in fact, as was proved in [6], more is true. Namely, if the nuclear norm is used in
the definition of ag instead of the Frobenius norm so that

xr*, AR — VA
(C.72) W= inf 2y (wr”, A e <y§/ R)?
[

b

C.73 al(z) = min (W, A;)
(7 ) WET, () ( S’“°<<C">>Z|
[W]li=1
then
(C.74) ag = zecglxlvf\{o} a'(z),
1
(C.75) al(z) = a(z) .

412113
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Remark C.4. For r =1, @), is orthogonally equivalent to the restriction of QZ to
the orthogonal complement of its null space, giving a correspondence between (5.14)
and (3.5) in [2] when the frame is positive semidefinite (A; = f;fF). Specifically, if
r = 1, then we may take U; = m =:e; and Uy = [ea,...,e,], where e1,... e,
forms an orthonormal basis for C" with respect to the complex inner product (-, -)c.
Thus

. e Sl 1 ‘ 4
T(UlAle) - ||z||% - ||Z||2 <817f]>C<f]7z>C7
(C.76) . (e2, fi)c(fy, 2)c
w(Us A;Ur) = ml :

(en, F)elfs e

Note that 7(U{A;U1) is real, and hence if we insert a single 0 in the middle of
w(Us A;Uy) between vec(R(Us A;U1)) and vec(S(Us A;U1)), we obtain

T(Ul*Ale) e
wRUAT) | 1 (e1, fi)c <fg, z)c 1 WU A2
o 0 IEIE ot - ||2H2
( ) Vec(%(UékAle)) < n7fJ>C<fJa >(C
=|QhﬂUFﬂAN@%

where in the last inequality the algebraic properties of [ and j are employed. Thus
(up to a row and column of zeros)

(©.18) QZ:ﬂUF{

In accordance with the notation of [2] we denote & = I(z), ¢; = I(f;), and ®; =
Jj(4,) = qu(bf + J(éj(b?JT so that the above becomes

(C.79) Q.= iU {MEZ¢&¢} U).

Finally note that the column of j(U) corresponding to the row and column of zeros
on the left-hand side is JI(2)/||z||2 = J&/||€||2; thus if we multiply on the left by j(U)
and on the right by j(U)”, we obtain

C.3. Proof of Theorem 5.9.

Proof. As was the case for a1(z) and ao(z) the rank constraints in A;(z), Aa(2),
A;(2), and Ay(z) allow us to assume that z € C?*¥ rather than C"*". As before, this
is done because without this assumption the resulting lower bounds would be zero for
every z not full rank. We begin with the analysis of A;(z), the simpler of the local
lower bounds (we will show (x) that A;(z) differ from A;(z) only by a constant factor,
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and hence will not analyze them separately). As we have done several times before we
will employ the right-hand unitary freedom of the variable z to require that z*z > 0,
and then make the change of variables from x to w =z — z:

(C.81)
A o “ 1 * 1.9
Ai(2) = %{1510 melél"fx’“ D) Z\ (xa™, Aj)2 — (227, Aj)2 ]|
rx*Fzz" J=1
D(z,z)<R
. . - 1 * 1 2
“hm g e A e A
2w Hwz* +ww* £0 Jj=1
[[w]l2<R
2" (z4w)>0
1
= lim inf ww*, A;
b mp{ 3 s
zw* Hwz* +ww* £0 j€lo(z)
[lw|l2<R
wWEA,
N Z |(zw* + wz* + ww*, A;)g|? }
o WG T w)+w) A + (2, A3
where Iy(z) = {j € {1,...,m}|e;(2) = 0} are the indices for which «; is zero (and

hence not differentiable) and I(z) = {j € {1,...,m}|a;(z) # 0} are the indices
for which ¢ is not zero (and hence is differentiable). Thus, since z is full rank we
know that A, = HW,Z(CZX’“) and since zw* + wz* + ww* # 0 <= w #* 0 for
w € H, ,(C?*) and sufficiently small in norm, we obtain

(C.82)
A 1
Ai1(z) = lim inf { (ww*, A;)r
et Il )
0<||wl|2<
n |(zw* + wz* + ww*, A;)g|? }
1
= lim inf { <1U1U*»A'>R
RS0 wer,. . %) [[wl[3 g‘:z) !
0<|lwll2<R J&lo
(zw* +wz AR |2 3
vy iy Ol
Jj€l(z)
. 1 [(zw* +wz*, A;)R|?
= min — (ww*, Aj)r + ! .
wEH,, . (Cr¥F) |w||§{j§0:(z) ! jezl:(z) 4(zz%, A)

[lw]]2=1

Now recall from (C.41) and (C.42), respectively, that |(zw* + wz*, A;)r|> =
(D7 (2)(w), Aj)r|? = AWTF;ZZTF;W and (ww*, A;) = B;(w) = WTF;W. Thus
the above is

i F;ZZTF;
— : T
89 A= wn wi{ 3 ope Y S
Wiy, j€lo(z) Jj€I(z)
IWl2=1
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As has already been noted in (C.44) the null space of each F;ZZT F; contains V., but
in fact so does the null space of each F} for j € Iy(2) since in this case F;u(zK) =
(Iexr ® j(A4;))vec(l(zK)) = vec(j(A;)l(zk)) = vec({(A;jzK)) = 0. Thus we obtain
finally that

(C.84) Al(z)z/\2nk_k2< S B+ Z Z)FJ)

j€Io(2) JEI(z

Note that in addition to proving (5.24) this also proves (viii

that, owing to the continuity of eigenvalues, infimizing A (z ) over z will give zero
(and hence so too will infimizing Ay (z) over z since Ay(z) < A1(2)). Specifically the
number of possibly nonzero eigenvalues of R, + T, is 2nk — k2 and is thus monotone
increasing in rank, and thus a sequence (z;);>1 C C}*" approaching a surface of lower
rank k will have Ao,z (R, +1) approach zero. Somewhat more remarkably, (C.84)
actually gives us 1212( ) as an eigenvalue problem also. Specifically, we prove that the
“differentiable” terms in As(z) are equal to those in Ay (z) and that in fact these are
the only terms which contribute to Ay(z). We define

i) as this form makes clear
1

2
N 2) 1Ck\T) — QY
e Do) —as@F
R0 5 yeCrn*r D(z,y)?
D(z,z)<R
D(y,z)<R
rank(z)<k
rank(y)<k

2
~ ap\T) — &
Al(z) = lim  inf Likero(z) |0 )2 kW) 7
R—0 x,yE(ch'rv D(.’I;, y)

D(z,z)<R
D(y, R
(C.85) rafi(zm))Zk
rank(y)<k

A Dker(z low(x) — an(2)?
I T : €l(z)
A1z) = Iglino zelélanr D(x, z)? ’
D(z,2)<R
rank(z)<k

z . . > kel (2) |ag(z) — ax(z)?
Io _ 0
Ar() = 11%1210 zelqr;lnfw D(z, 2)? ’
D(z,x)<R
rank(z)<k
so that Ay(z) > Alo(z) + Al(z) > Al(z), Al(z) < Al(z), and Al(z) < Alo(2).
Applying the mean value theorem to the functions gx : [0,1] = R, gx(c) = ax((1 —
c)x + cy) for k € I(z), we see that there exist ¢, € [0,1] so that ax(y) — ax(z) =
9(1) —g(0) = ¢'(ck) = Dag((1 — i)z + cxy)(y — x) (recall that these are precisely the
k for which said differential exists, and the differential is taken with respect to the real
vector space structure). Hence, replacing the rank constraints with the assumption
that z € C"** and aligning both x and y with z so that z*x > 0 and z*y > 0, we
have

2

(C.86) Al = tim i 2rerePosllma)rten)y — o)
. R—0 g yecn*¥ D z,y 2
IIxy—ezH<R ( )
lly—zl|<R
2*x>0
2 y>0
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Using the fact that D(z,y) < ||y — ||z and writing = z+¢ and y = z+1n, we obtain
that

Al(z) > lim  inf Lrer(s |Par(z+ (1 — )€ + cn)(n - P .

(C.87) = RS0nEeA, lln — €l13
€<
Inl| <R

The trick of linearizing the conic constraints here to £,n € A, is crucial since it allows
us to strictly weaken the constraints in the infimum by taking w = n— ¢ so that, after
using the continuity of Doy, (o is continuously differentiable when differentiable),

— _ 2
Q) > im e ker@ P+ (L a)e+ an)(n - &)l

~ R—0 n, €A, Hn—é‘\l%
[1€ll2<R
[Inll2<R

Zke[(z) | Doy, (2)(n — f)|2

= lim inf + 0 24 2
R0 n €A, Hn_gug (H€||2 ||77||2)
[€]l2<R
lInll2<R
(C.88) Y heria |Dag(2)(w)|?
> lim  inf kel(z) 5
R—0 weA, ||wH2
[lw]l2<2R

o] - kel(z)
SHCTCUANY
= Aonk—k? I ) = Al(z).
i (Z() MELTEW A

We already had the reverse inequality AZ(z) < Al(z), and hence AL(z) = Al(z).
Moreover, assuming this minimum is achieved by wg € Hy .(C2**), then if we put
T =z+4 3w y = z— fwp, we see that the Al (2) term vanishes and A%(z) is achieved,

and hence Ay(z) < Al(z). We already had the reverse inequality, so we conclude that
Ay(z) = AL(2) = Al(2) and AL (z) = 0. In summary

. F.ZZTF;
_ in w7l J i Ly
Az(z) = min { _ ZTF]Z}
WLV, JEI(2)
(C.89) Wikt

F,ZZTF,
(2 T,
JEI(2)

Thus claims (i) and (ii) are proven. Claim (iii) follows immediately from inequality
(3.6). This concludes the proof of Theorem 5.9. o

Remark C.5. If z were not assumed full rank in (C.81), then w € A, would
possibly have a nonzero component wr in I', C Vi_,(C?*¥). As a result, it would be
possible to obtain a sequence (with the horizontal space component of w converging to
zero) for which the second sum in the last line of (C.81) is eventually fourth order in
[|wl|2, and thus A;(z) would be zero wherever « is differentiable (almost everywhere
in measure). The rank constraint in the definition of A;(z) that rank(z) < k avoids
this, since it allows us to assume that z is full rank and hence that I", is trivial.
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C.4. Proof of Theorem 5.13.

Proof. The proof of (i) is essentially identical to the proof of the analogous eigen-
value formula for the lower bound ag in Theorem 5.6. One first changes coordinates
to z = 1(z +y) and w = x — y and repeats the computation (C.6) to obtain

M

(C.90) bo = sup max (W, Aj)e|?.
ZECnXT WET, (5 (S5°(C™)) JZ:; !
[[W][2=1

At this point we note that

IAW)]]3
(C.91) bo < ng = (A5 -
WeSym(Cn) H HQ
As before we observe that it suffices to take z € C?*" since if 2 € C?** and Z €
C R and z = [£|Z] with 2*Z = 0, then Tﬂ(z)(gr’o((C")) D Tﬂ(é)(bo”k’o). One then
employs the tangent space parametrization (C.27) and repeats the computation (C.28)
to obtain

(092) b() = Ssup )\1(@2) = max Al(Q[UllUQ]) .
ZECTXT UeU(n)
U=[U1|Us]

UleCan7U2€(Cn><n—r

This concludes the proof of (i). To prove (ii) we will employ the following lemma.

LEMMA C.6. Let ||| - ||| be any norm. Then
(C.93) Al = sup, [[[A(zz™)|]] -
[lz|[2=1
In other words the operator norm ||A|l« of A: (Sym(C™)(C™),||-|l1) = ®R™,|||- |}

s achieved on a matriz of rank 1.

Proof. Let R € Sym(C™) be nonzero such that ||R||; = 1 and [||A(R)]|| =
[All[|R[[1. Write R = 377, rjeje; and note that ||R|[; = 1 implies Y37, |r;| = 1.
Then

n

> rjAlejer)

j=1

Al = Al B[] =

< (It} AN

= =4

(C.94)

= max |[[lA(e;ef)][] -
j=1,....n

Let o = e;,, where jg is the index that achieves the maximum. Then [|zo||2 = 1 and
[1A]]« < ||| A(zox)||], but of course this bound is achievable by just plugging zozj
into A. Thus the operator norm of A is achieved on a matrix of rank 1 and the lemma
holds. d
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Next note that

Sty Kaw® —yy*, Aj)gl?
bo,1 = sup

z,yeC™x" ||JJ1‘* _yy*H%
[=]#[y]

w 2
o R gl
ZECT X" W ET (- (Sm0(CM)) [IWI[%

< sup  [JAW)|f3
W eSym(C™)
[[W][1=1

= [l

(C.95)

Note that by an identical computation by < ||A||22. By the lemma ||Al[12 =
SUD,ecn ((z|lo=1 | M (z2¥)|[5, and hence

*\ ]2
o < sup IAGEOIE
zeC™ ||l‘$ ||1

*\ ]2

o 1AG)IB

secnxr ||zz*|3

(C.96) _ [[A@ozp)|I2

|lwoz][?
AW)||2
< sup sup M
vpecnxn—k  wesymcry  [|WIIT
UsUz=lpn—xn—t Us WU2=0
=1,or

= bO 3
where in the second-to-last equality we note that it suffices to take U, such that

UaU3 = PRan(zy)+, and in the last equality we use the implicit parametrization of the
tangent space (4.7). Thus

*\ |2 *\[]2
A _ | A

(0.97) bo’l = HA||1 2 = Sup " "
= [

We now seek an operator T, : C"*" — (C™*")™  an integer ¢, and a norm ||| - ||| so
that for x € C"*",
(C.98) T (@)I|7 = | A(za)[5 -
We find that if A; > 0 for all j, then

m m 1
(C.99) [AG@a")|l5 = Y [(zz*, A)rl* =) ||AZall5.

j=1 j=1
So we let T). be as in Definition 5.12, |||X]||| = [||X]||2,4, and ¢ = 4 and find by =
T 15 9,4y = I 7113, (9,4y- This concludes the proof of (ii). To prove (iii) note that

by (3.5) |[(z2*)2 — (yy*)2||2 > D(z,y), and hence

o) — a3

Nl By <
(C.100) o < sup D)2

x’yECHXT‘
[x]#[y]
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Thus
1 & ) 1
Bo< sup pes 3 laat At = (" AP
7yE([:vz><7 D(J} y) jz J j
(C.101) [=]#[] .
zx” —yy A
sup
m>y€@"””x’y”2z (wz* A 24 (yy*, Ag)2)?
z*y>0

We now make the change of coordinates z = %(x +y),w=x—ysothat x = 2+ %w,
y = z — sw. As before let In(z) be the subset of {1,...,m} for which A;z = 0
and I(z) its complement in {1,...,m}. In this case we note that if j € Iy(z), then
0(zw* + wz*, Aj)r = (za* — yy*, A;). Thus, employing the triangle inequality via

1 1 1
(wa*, Aj) %+ (yy*, A% = ||AZa|la+[|AZyll2 > 2||AZ 2|2 = 2(22*, A;)%, we find that

m

1 . Awe|?
(C.102) By < sup i [(zz* —yy*, Aj)R] ]
eyecr [T =yll5 Lo ((war, A5)% + {yy*, A;)7)?

z*y>0
(zw* —|—wz AjRI?
(C.103) < sup sup
2ECnXT weCn X" || 2 E;( ZZ A>

2#0 z*z—twrw+i(wrz—2z"w)>0

Next note that the condition z*z — Jw*w + £ (w*z — z*w) > 0 holds if and only if
z*w = w*z and w*w < 4z*z. Moreover, since w only appears as w/||w||2 we may
scale w so that o1 (w) < o (2) (where z has rank k); thus the latter nonlinear criterion
becomes the linear criterion that wPye,(.) = 0. Taken together, these criteria hold if
and only if w € H,. Thus, with reference to the computations (C.41) and (C.42) we

find that

1 [(zw* + wz*, A;)g|?
(C.104) By < sup sup ” ?
seCy < well: [[wl[3 2 A(zz*, A;)
z#0
Fip(2)u(2)TF;
(C.105) = sup magckWT< Z ]’MEZ;/;(Z)AJ)W
g e N\l BTG
[Wll2=1
(C.106) = sup M\ (T%).
ZGC’VLX’V‘
z#0

Moreover note that by setting y = 0 in the definition of By and observing that
1
[|[(zz*)2||2 = ||x||2 and that (zz*, A;) > 0 we obtain that

m
(xz™, Aj)

J:1

(C.107) By > sup

me(cn)(‘r

Meanwhile by Cauchy-Schwarz (zw*, A;) < ||A]%w||2||A]%z||2 = (ww*,Ajﬁ(zz*,Ajﬁ

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/20/23 to 129.2.180.103 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

LIPSCHITZ ANALYSIS OF PHASE RETRIEVABLE FRAMES 1569
(similarly for (wz*, A;)). Hence

By < sup Al(Tz)

ZG(C’VLXT
z#0
1 |(zw* + wz*, Aj)r|?
sup sup .
s A 3D Dt e
270
(C.108) .
< sup T2 <ww*7Aj>
wer. ||[w|[3 €1(2)
1 m
< sup 5 Z(UJU)*,A]‘)]R =B.
weensr [[wl[3 4=

Thus B < By < SUp, conxr A1(T;) < B and hence all three are equal. This concludes

2#0
the proof of (iii) and of Theorem 5.13. |
C.5. Proof of Theorem 5.14.

Proof. Tt is shown in Proposition 5.1 that the map f is injective if and only if it
is lower Lipschitz, that is, if and only if ag > 0. This gives equivalence of (i) to (ii)
immediately since we proved in Theorem 5.6 that

(C].Og) ag = min ) AQ”T—T2(Q[U1|U2]) .
Ulec’llx’r
Uze(cnx(n—r)
[U1|U2]€U(n)

Similarly, it is evident from (C.70) that ag > 0 if and only if a(z) > 0 whenever
2*2 = I.«,. It is proved in Theorem 5.6 that a(z) = Aopp_s2 (Qz), and also that the
null space of Q. includes the r2 dimension V.. Thus the frame is generalized phase
retrievable if and only if the null space QZ does not extend beyond V, for any z of
orthonormal columns, proving equivalence of (i) to (iii). We prove equivalence of (ii)

to (iv) by noting that Qu,|u,) is invertible if and only if

T(U*AUl):| }m oy —r2
C.110 span 1 =R
( ) otz { |:/LL(U2 AJUl) j=1

Noting that 7-'(R”") = Sym(C") and p~'(R*"~2"") = C" ™", thus Qu,|v,] i
invertible if and only if there exist ¢1,...,¢n € R so that (5.39a) and (5.39b) are
satisfied. To prove equivalence with (v) note that (5.39a) and (5.39b) both hold if
and only if for all U = [U;|Us] we have

H
. — n (n—r)xr
(C.111) spang{A;U;} = {U {B} |H € Sym(R"),B € C }

={LK|IK ¢ C™*",K* = —K}*.

Finally note that while (v) trivially implies (vi) it is also the case that (A;U1, U1 K)gr =
(UyA;Ur, K)r = 0 for every U; and every K since U{A;U; is Hermitian and K
is skew-Hermitian; hence it is automatically true that spang{A,;U;} C {U1 K|K €
C*", K* = —K}*. Thus we also obtain that (vi) implies (v).

This concludes the proof of Theorem 5.14. O
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