
Visualizing Machine Learning in 3D
Diego Rivera

drivera13@gaels.iona.edu
Iona College

New Rochelle, NY, USA

ABSTRACT
Understanding machine learning models can be di�cult when the
models at hand have many parts to them. Having a visual model
can help aid in understanding how the model functions. A way to
visualize these models is to use a 3D (three-dimensional) game de-
velopment application. An application that will have an interactive
element allowing the users to interact with the model (rotating and
scaling it) and see changes at run-time. An interactive element will
keep the users engaged, understanding, and seeing how a machine
learning model looks and behaves. This paper describes the process
of visualizing a machine learning model in a 3D application.

CCS CONCEPTS
• Human-centered computing! Virtual reality.

KEYWORDS
Neural Networks, Transformers, Interactive

ACM Reference Format:
Diego Rivera. 2022. Visualizing Machine Learning in 3D. In 28th ACM
Symposium on Virtual Reality Software and Technology (VRST ’22), November
29-December 1, 2022, Tsukuba, Japan. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3562939.3565688

1 INTRODUCTION
Machine learning can be a scary topic for some people as many
see it as hard and advanced code that takes years to understand in
order to implement it. Machine learning is not as hard nowadays,
with many tutorials and applications dedicated to helping to create
machine and deep learning models. Virtual Reality is something
that has been in development for years, and many users seem
to enjoy the virtual applications that were created. Machine and
deep learning can be an application that will work well in virtual
reality. Creating these models and making them interactive will
allow machine learning to be open to the public and hopefully
make create a new generation of students willing to work with
machine learning. A virtual experience can provide knowledge and
experience better than textbook work. A virtual experience can
provide fun interactions to keep the user engaged.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
VRST ’22, November 29-December 1, 2022, Tsukuba, Japan
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9889-3/22/11.
https://doi.org/10.1145/3562939.3565688

2 RELATEDWORK
There was a three-dimensional interactive neural network that
was developed back in 2018. The program illustrated had a feature
that allowed the user to see changes in real-time and have limited
movement around the model. The program Stefsietz [Sietzen [n. d.],
2022] created was a CNN model that had to change parameters and
the physical appearance of the model. The model was very well
built, and the application worked as it intended. Stefsietz created
the application via Unity and Json �les which store the parameters
and weights for the model that gets created in Unity.

3 METHODOLOGY
In developing the application, Unity is the main application. In
order for the project to be compatible with virtual reality headsets,
downloading packages and tool kits are necessary to have the game
running properly. In the XR toolkit, inside toolkit, one needs to
enable XR windows and Oculus compatibility in order to have a
three-dimensional environment. In this case, the Android extension
has to be downloaded from Unity’s built-in modules. The reason
for using an Android extension in this project is for the Meta Quest
2, which is classi�ed as an Android in Unity. Barracuda is another
package necessary in order for the ONNX �le to work in this appli-
cation. Once the necessary applications are downloaded properly,
some settings need to be changed and modi�ed for the application
to run �ne in the Meta Quest.

3.1 Convolutional Neural Network Scene

Figure 1: Demo of CNN visuals

Developing the CNN scene in Unity was built with the help
of Stefsietz, who, with the help of his documentation and code, I
was able to replicate and modify to �t the current version of Unity
compared to the version of Unity Stefsietz used. Once the assets and
scripts were debugged and re-scripted to �t in the current version of
Unity, developing the environment was next. Using an action-based
and a VR camera controller was needed to have the project running.
At the start of the level, the model shown is the base model without
any inputs, weights, or desired outputs. On the right of the player,
the user interface elements will be placed that are responsive to the
controllers. The user interface elements have a separate tab where

https://doi.org/10.1145/3562939.3565688
https://doi.org/10.1145/3562939.3565688

VRST ’22, November 29-December 1, 2022, Tsukuba, Japan Diego Rivera

the actual output and predicted output are displayed. There is a
slider on the other side where the user can change the parameters
and visuals of the model. Additionally, there is a load button that
allows the user to load up their own model and .json �les to change
the base model to their desired output. The model created from
loading your own model is not as interactive as the base model.
The model is still able to rotate and scale but can not be held on
by the user. The rotation and scaling are made possible through
an input system that reads the data the controller or device sends
whenever a button, stick or touch registration is detected.

Figure 2: Demo of CNN visuals 2

3.2 Transformer Scene
Creating the Transformer model was a tedious task. I was able to
�nd a basic tutorial[you 2021] on transformers and was able to
build simple visual transformers that take photos and classify them.
Once the model was created, simple training was done where I ran
a few images into the model. In a batch of 100, only 60% of the
batch was used in the model. Once the model was trained, it was
exported using an ONNX �le. ONNX �le allows the model and its
parameters to be transferred in the same �le.

Figure 3: Demo of Transformer
After �nding a way to convert the ONNX �le to a JSON �le, it

should have been easy to implement to the CNN scene to have the
Transformer model visually present there; however, the code did
not allow the parameters, weights, and inputs from the transformer
JSON �le. In order to have a scene dedicated to the transformer
model, a small interactive scene was created. This scene asks the
user to drag a picture from the photo wall and place it on the photo
holder. Here the program receives the image and sets it up in the
ONNX model, which contains the parameters, weights, and inputs.
In this visualization scene, the user can use the keyboard or the
button to initiate the classi�cation process, and the predicted value
will be displayed on the user interface block. To have the ONNX
�le run in Unity and update during run-time, Barracuda is needed
to allow the ONNX model to work. Barracuda[Unity [n. d.]], as

stated before, is a package created by Unity to properly implement
machine learning models into Unity. Barracuda will help show that
the Transformer model does work and function properly. Once the
package is implemented, and the ONNX �le is able to run in Unity,
now the model must be loaded from ONNX to Unity.

The code needed to load and run themodel in run-timewas found
on the forum page, and other information was needed for the ONNX
�le to work properly and other tips for a better implementation of
the model.

Figure 4: Demo of Transformer 2

4 CONCLUSIONS AND FUTUREWORK
The process of creating and developing visual representations of
neural networks speci�cally a transformer model was a good chal-
lenge. Learning and understanding a deep learning model like a
transformer helped me increase my knowledge about deep learn-
ing and the marvels it can do when trained correctly. The process
of developing in unity would have been di�cult and tedious in
developing a transformer model. There are features I would have
liked to add and make possible but due to time and limited under-
standing of virtual reality and deep learning, some of these features
were not possible to make. Building the Transformer model helped
me understand more and more about deep learning and what it
takes to build a simple yet powerful model. For the CNN Scene,
the process was a little more since the model originally was in an
old Unity format, there was some cleaning up needed to do, some
adjustments and changes in order to have the application running
and interactive.

Future modi�cations that can be added or done is having the
Barracuda scene functional with a working model. The model will
behave similarly to the Stefsietz model. In addition to a working
model, a model that allows the user to see the weights, inputs, and
outputs will be displayed as a pop-up when a player looks at a
speci�c spot in the model.

ACKNOWLEDGMENTS
This work was supported in part by a grant from the National Sci-
ence Foundation, Research Experience for Undergraduates program
(Award No. 2050532, Principal Investigator - Oyewole Oyekoya)

REFERENCES
[1] 2021. Vision Transformer in Pytroch. YouTube. https://www.youtube.com/watch?

v=ovB0ddFtzzA&feature=emb_logo
[2] Stefan Sietzen. [n. d.]. CNN Visualization Tool - The conception and implementation

process of the VIS2 CNN project. Retrieved October 1, 2022 from http://visuality.at/
vis2/detail.html

[3] Stefan Sietzen. 2022. Visual Analytics for Convolutional Neural Network Robustness.
Ph. D. Dissertation. Wien.

[4] Unity. [n. d.]. Introduction to Barracuda. https://docs.unity3d.com/Packages/com.
unity.barracuda@1.0/manual/index.html

https://www.youtube.com/watch?v=ovB0ddFtzzA&feature=emb_logo
https://www.youtube.com/watch?v=ovB0ddFtzzA&feature=emb_logo
http://visuality.at/vis2/detail.html
http://visuality.at/vis2/detail.html
https://docs.unity3d.com/Packages/com.unity.barracuda@1.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.barracuda@1.0/manual/index.html

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Convolutional Neural Network Scene
	3.2 Transformer Scene

	4 Conclusions and Future Work
	Acknowledgments
	References

