
New Models for Understanding and Reasoning
about Speculative Execution Attacks

Zecheng He
Princeton University

zechengh@princeton.edu

Guangyuan Hu
Princeton University
gh9@princeton.edu

Ruby Lee
Princeton University
rblee@princeton.edu

Abstract—Spectre and Meltdown attacks and their variants
exploit hardware performance optimization features to cause
security breaches. Secret information is accessed and leaked
through covert or side channels. New attack variants keep
appearing and we do not have a systematic way to capture the
critical characteristics of these attacks and evaluate why they
succeed or fail.

In this paper, we provide a new attack-graph model for rea-
soning about speculative execution attacks. We model attacks as
ordered dependency graphs, and prove that a race condition be-
tween two nodes can occur if there is a missing dependency edge
between them. We define a new concept, “security dependency”,
between a resource access and its prior authorization operation.
We show that a missing security dependency is equivalent to a
race condition between authorization and access, which is a root
cause of speculative execution attacks. We show detailed examples
of how our attack graph models the Spectre and Meltdown
attacks, and is generalizable to all the attack variants published
so far. This attack model is also very useful for identifying
new attacks and for generalizing defense strategies. We identify
several defense strategies with different performance-security
tradeoffs. We show that the defenses proposed so far all fit under
one of our defense strategies. We also explain how attack graphs
can be constructed and point to this as promising future work
for tool designers.

Index Terms—Hardware security, speculative execution at-
tacks, graph model, security dependency, cache, side channel,
covert channel, delayed exceptions, prediction, race condition

I. INTRODUCTION

In computer systems, hardware resources like memory, buses,

caches and functional units are often shared among different

processes and threads. This sharing increases the utilization

of resources. However, preventing a secret from being leaked

via shared resources is a fundamental and challenging security

problem.

Memory isolation plays a key role in preventing information

leakage. An application should not be able to read the memory

of the kernel or another application. Memory isolation is usually

enforced by the operating system, to allow multiple applications

to run simultaneously on the shared hardware resources without

information leakage. It is also enforced by the Virtual Machine

Monitor to provide isolation between different virtual machines.

Recently, speculative execution attacks, e.g., Spectre [25],

Meltdown [29], Foreshadow [38], Foreshadow-NG [43] and

Lazy-FP [36] attacks and their variants are proposed to breach

the memory isolation by using a covert channel to exfiltrate

a secret obtained illegally under speculative execution. For

example, Spectre breaches the memory isolation provided

within a user application, while Meltdown breaches the

memory isolation between the kernel and a user application.

Foreshadow breaches the isolation of Intel SGX secure enclaves.

Foreshadow-OS and Foreshadow-VMM breach the isolation

provided by the Operating System and the Virtual Machine

Monitor, respectively. All of these attacks leverage the specu-

lative execution feature of modern processors, transferring

the security-critical information to micro-architecture state

observable by an unprivileged attacker through a covert channel.

Unfortunately, while new attack variants are continuously being

discovered, we do not have a systematic way to characterize

these attacks and reason about them. The attack graph model

we propose serves this goal.

While both industrial and academic solutions have been

proposed to defend against speculative execution attacks [10],

[17], [22], [23], [25], [28], [30], [32]–[34], [37], [42], [44],

[46], there is currently no systematic way to show if these

defenses can defeat speculative attacks, and why. We show that

our attack graph model can explain why a defense will work.

The key questions answered in this paper are: � How can

we systematically model the essential common characteristics

of speculative execution attacks and reason about them? �
What defense strategies can be derived from the new models?

� Are the recently proposed defenses effective against these

speculative attacks?

Our key contributions in this paper are:

• We define a new attack graph model to systematically

capture the critical operations in speculative execution

attacks.

• We theoretically prove that a missing edge in an attack

graph is equivalent to a race condition, which is one of

the root causes of speculative attacks.

• We define the new concept of “security dependencies”,

which must be observed by the hardware in addition to

data dependencies and control dependencies. We show that

a missing security dependency is equivalent to a missing

edge in an attack graph, capable of causing a security

breach.

• Our model shows that although attacks may look similar,

e.g. the Spectre-type and Meltdown-type attacks, they are

actually quite different in the sense that Meltdown-type

attacks have to be investigated through intra-instruction

micro-architectural dependencies, while Spectre-type at-

40

2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

978-1-6654-2235-2/21/$31.00 ©2021 IEEE
DOI 10.1109/HPCA51647.2021.00014

20
21

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
H

ig
h-

Pe
rf

or
m

an
ce

 C
om

pu
te

r A
rc

hi
te

ct
ur

e
(H

PC
A

) |
 9

78
-1

-6
65

4-
22

35
-2

/2
0/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

H
PC

A
51

64
7.

20
21

.0
00

14

Authorized licensed use limited to: Princeton University. Downloaded on January 20,2023 at 19:23:44 UTC from IEEE Xplore. Restrictions apply.

tacks only need to consider inter-instruction dependencies.

This can simplify tool development for finding attack

graphs and vulnerabilities that can be exploited in attacks.

• We derive new defense strategies from our attack graph

model. These enable us to systematically explain why

a defense will or will not work. We also show that

all currently proposed defenses, from both industry and

academia, can be modelled by our defense strategies.

• We show the benefits of our new model for future research

for tool creation, discovering new attacks and finding new

defenses.

II. BACKGROUND

A. Speculative Attacks

Speculative execution vulnerabilities affect most modern

processors. They exploit speculative execution, Out-of-Order

(OOO) execution, hardware prediction and caching – all

essential features for speeding up program execution. They

allow an unprivileged adversary to bypass the user-kernel

isolation or user-defined boundaries. In a speculative execution

attack, a speculation window is induced to allow transient

instructions that illegally access a secret, then perform some

micro-architectural state changes which essentially “send

out the secret” so that it can be observed by the attacker.

Upon detecting mis-speculation, architectural state changes are

discarded, but some micro-architectural state changes are not –

thus leaking the secret.

We give a top-down description of a speculative attack

in Section III and a detailed discussion of the Spectre and

Meltdown attacks in Section IV. We list the first 13 published

attacks and their impacts in Table I. Later, in Section V and

Table III, we also consider the newer attack variants.

B. Industry Defenses Implemented

Table II shows some industry defenses that have been

implemented to mitigate some speculative attacks.

Fences. Fences, including LFENCE and MFENCE [1], are

placed before memory operations to serialize the program

execution and prevent speculative execution.

Kernel Isolation. KAISER (Kernel Address Isolation to have

Side-channels Efficiently Removed) and its Linux implementa-

tion named Kernel Page Table Isolation (KPTI) isolate user-

space memory from kernel space to prevent Meltdown attacks,

by unmapping kernel pages from user-space [4].

Prevent Mis-training. As many Spectre variants (v1, v1.1,

v1.2, v2) leverage the mis-training of the branch predictors,

Intel, AMD and ARM have proposed defenses to prevent mis-

training, e.g., Indirect Branch Restricted Speculation (IBRS),

Single Thread Indirect Branch Prediction (STIBP) and Indirect

Branch Predictor Barrier (IBPB). Some AMD CPUs allow

invalidating branch predictor and Branch Target Buffer (BTB)

on context switches [5].

Retpoline. Retpoline is a method where indirect branches,

which use potentially poisoned BTBs, are replaced by return

instructions that use the return stack.

TABLE I: Speculative attacks and their variants.

Attack CVE Impact

Spectre v1 [25] CVE-2017-5753
Boundary check by-
pass

Spectre v1.1 [24] CVE-2018-3693
Speculative buffer
overflow

Spectre v1.2 [24] N/A
Overwrite read-only
memory

Spectre v2 [25] CVE-2017-5715
Branch target injec-
tion

Meltdown (Spectre v3)
[29]

CVE-2017-5754
Kernel content leak-
age to unprivileged
attacker

Meltdown variant1
(Spectre v3a) [2]

CVE-2018-3640

System register
value leakage
to unprivileged
attacker

Spectre v4 [3] CVE-2018-3639
Speculative store
bypass, read stale
data in memory

Spectre RSB [26] CVE-2018-15572
Return mis-predict,
execute wrong code

Foreshadow (L1 Termi-
nal Fault) [38]

CVE-2018-3615
SGX enclave mem-
ory leakage

Foreshadow-OS [43] CVE-2018-3620 OS memory leakage

Foreshadow-VMM [43] CVE-2018-3646
VMM memory leak-
age

Lazy FP [36] CVE-2018-3665 Leak of FPU state

Spoiler [21] CVE-2019-0162
Virtual-to-physical
address mapping
leakage

TABLE II: Industrial defenses against speculative attacks.

Attack Defense Strategy Defense

Spectre Serialization LFence
MFence

Meltdown Kernel Isolation KAISER
Kernel Page Table Isolation (KPTI)

Spectre variants
requiring branch
prediction
(Spectre v1, v1.1,
v1.2, v2)

Prevent mis-
training of branch
prediction

Disable branch prediction
Indirect Branch Restricted Speculation
Single Thread Indirect Branch Predictor
Indirect Branch Prediction Barrier
Invalidate branch predictor during
context switch
Retpoline

Spectre boundary
bypass
(v1, v1.1, v1.2)

Address masking Coarse masking
Data-dependent masking

Spectre v4 Serialize stores
and loads

Speculative Store Bypass Barrier
(SSBB)
Speculative Store Bypass Safe (SSBS)

Spectre RSB Prevent RSB
underfill RSB stuffing

Address Masking. To address the problem of software-defined

boundary bypass, the V8 JavaScript engine and the Linux kernel

implement software address masking by forcing the accessed

memory to be within the legal range [24].

Industrial Defenses against Other Specific Variants. ARM

implemented Speculative Store Bypass Barrier (SSBB) and

proposed Speculative Store Bypass Safe (SSBS) to avoid

speculative store bypass. Intel implemented Return Stack Buffer

(RSB) stuffing, e.g., inserting interrupts to increase call depth,

to defend against the Spectre-RSB attack. Intel also announced

a silicon-based solution, i.e., the next-generation Cascade Lake

processor [6].

41

Authorized licensed use limited to: Princeton University. Downloaded on January 20,2023 at 19:23:44 UTC from IEEE Xplore. Restrictions apply.

Academia defenses. Recent defenses against speculative

attacks have also been proposed in academia, e.g., Context-

sensitive fencing [37], Secure automatic bounds checking [30],

SpectreGuard [17], NDA [42], ConTExT [34], Specshield

[10], STT [46], DAWG [23], InvisiSpec [44], Safespec [22],

Conditional Speculation [28], Efficient invisible speculative

execution [33] and CleanupSpec [32]. We discuss and model

them in Section V.

C. Cache Timing Channels

A speculative attack usually includes a covert or side channel

attack to leak out the sensitive secret, and a cache covert-

channel is typically used. Hence, we need to understand how

cache covert channels work. Cache timing channels can be

classified, based on “hit” or “miss”, “access” or “operation”.

The access-based attacks leverage the difference in timing

between a hit and a miss to indicate whether a specific cacheline

is present or absent in the cache, based on a single memory

access. The operation based attacks leverage the time difference

for a whole operation, e.g., an encryption operation, which

depends on the cache hits or misses encountered during the

execution of the operation.

Hit and access based channel, e.g., Flush-reload channel
[45]. The initial state of the cacheline is set to absent by a

clflush instruction. Then, if the insider-sender does not use

the shared cacheline, the check by the attacker-receiver after

waiting a while, will still find the cacheline absent (indicated

by a slow cache miss). If the insider-sender does use the

cacheline, then the attacker-receiver will find the cacheline

present (indicated by a fast cache hit).

Miss and access based channel, e.g., Prime-probe channel
[19]. The attacker first loads his own data to fill the cache. After

waiting for the insider-sender to do something, the attacker

checks if the cachelines are now absent, i.e., a slow cache miss,

because the insider-sender has evicted the attacker’s cachelines.

There are also hit and operation based channels, e.g., cache

collision channel [11], and miss and operation based channels,

e.g., Evict-time channel [31].

The Flush-Reload attack is faster and less noisy than the

other cache covert channel attacks. They are used as the default

covert channels in most speculative attacks. They do require

the sender and receiver to have some shared memory.

In the rest of the paper, without loss of generality, we also

assume that the Flush-Reload cache covert channel is used in

the speculative attacks. Our models can also apply to the prime-

probe channel, and other non-cache-based covert channels, with

minor changes.

III. OVERVIEW OF SPECULATIVE ATTACKS

In speculative attacks, the micro-architectural feature at-

tacked is speculative execution, in concert with out-of-order

(OoO) execution. Out-of-order execution allows instructions

to be executed once their data operands are ready, i.e., when

their data dependencies are resolved. This does not need to

be in sequential program order. When an instruction is issued,

it is placed into a Re-Order Buffer (ROB), with the oldest

instruction at the head of the ROB and the youngest at the

tail. Once an instruction’s data dependencies are resolved, the

instruction can be executed. It is not committed (i.e., retired)

until it reaches the head of the ROB, i.e., instructions are

retired in program order. This out-of-order execution speeds

up instruction processing.

Speculative execution is a performance optimization feature

that occurs when the hardware micro-architecture predicts

that a certain execution path will be taken on a conditional

branch, or that an instruction will not cause an exception. If the

prediction is correct (which is most of the time), performance

is improved. However, if the prediction is wrong, then the

hardware rolls back the architecturally-visible state to where it

was before the speculation window started. The speculatively

executed instructions appear as if they were never executed, i.e.,

the mis-predicted instructions are aborted or squashed. While

processors implement speculation correctly as defined, the

micro-architectural state is not always rolled back completely,

as this is not supposed to be an architecturally-visible state. In

particular, caches are considered micro-architecture, and are

not rolled back.

Although the exact workflow of a speculative execution

attack may vary, on a high-level, they consist of two parts:

(A) Secret Access: A micro-architectural feature transiently
enables the illegal access of a piece of sensitive data.

(B) Secret Send or Covert Channel: The sensitive data is
transformed into micro-architectural state that can be
observed by an attacker.

Definition 1: an illegal access is a data or code access that is

performed before the required authorization is completed that

indicates that the access is allowed. The required authorization
is the operation checking if the performer is allowed to access

the data, or execute the code. Authorization can be in different

forms, e.g., a hardware privilege level check, a software array

bounds check or a store-load address dependency check.

Since our definition of “authorization” is broader than the

standard user-supervisor-hypervisor access checking, we give

examples to illustrate. In the Meltdown attack, the attacker

tries to read a memory line before the hardware page-privilege

check that indicates the performer of the memory access has

kernel privilege. In the Spectre v1 attack, the illegal access

is reading out-of-bounds memory at the user level. The array

bounds check (authorization) is the condition checking in a

conditional branch instruction. Although the memory access is

within the legal program address space, we call it an illegal

access because the software-enforced array bounds checking

has not been completed. In the Spectre v4 attack (store-load

dependency), we call the load operation an illegal access if it

reads stale data before the authorization completes that says

the load address is not the same as the address of a previous

store operation that is still sitting in the store buffer and its

contents have not been written back to the cache.

To defend against speculative attacks, one must prevent

either part A (Secret Access) or part B (Secret Send or Covert

Channel). By preventing A, the access to secrets, there are

no secrets to leak through any covert or side channel. By

42

Authorized licensed use limited to: Princeton University. Downloaded on January 20,2023 at 19:23:44 UTC from IEEE Xplore. Restrictions apply.

preventing B, any secrets present cannot be exfiltrated, nor

can secrets obtained through means other than speculation, be

leaked. However, there can be many types of covert channels,

and stopping all of them is not possible. Although computer

architecture papers have focused on preventing cache covert

channels, we believe this is only a near-term solution, since

the attacker can easily find other covert channels to leak the

secret information. We do not want to exclude these other covert

channels. Hence, in this paper, we focus on modeling the illegal

access to secrets through speculative execution, and having our

attack model capable of modeling any covert channel.

Parts A and B can be broken down into the following

finer-grained attack steps that are critical to the success of

a speculation attack. There are 5 steps for an actual attack, and

6 if we count step (0) where the attacker finds the location

of the desired secret. This is usually done earlier, before the

actual speculative attack.

• (Step 0): Know where the secret is.

• Step 1 (Setup): Receiver (a) establishes a micro-

architectural covert-channel, e.g., by flushing out cache-

lines, and (b) sets up for illegal access, e.g., by mis-training

the branch predictor.

• Step 2 (Authorization): The instruction performing the

authorization for the subsequent memory or register access

is delayed, thus triggering the start of a speculative

execution window. If the authorization turns out to be

negative, then the instructions executed speculatively are

called transient instructions since they are squashed. If

authorization turns out to be positive, then the instructions

executed speculatively are committed.

• Step 3 (Secret Access): Sender (illegally) accesses the

secret.

• Step 4 (Use Secret and Send Secret): Sender transforms

the secret into a micro-architectural state that survives

mis-speculation.

• Step 5 (Receive Secret): Receiver retrieves micro-

architecture state (the transformed secret) through the

covert-channel.

Steps 0, 1(b), 2 and 3 form part A. Steps 1(a), 4 and 5 form

part B.

IV. ATTACK GRAPH AND SECURITY DEPENDENCY

We now look at specific speculative execution attacks, and

model the flow of relevant operations that occur, to help reason

about the attacks, and identify the root causes of their success.

In Section IV-A, we model the Spectre v1 attack as a flow

graph, and confirm that it follows the five steps we identified

in Section III. This motivates us to define an attack graph in

Section IV-B, as a topological sort graph (TSG), which enables

us to formally prove necessary and sufficient conditions for a

race condition to occur, which we identify as a root cause of

the success of speculative attacks. In Section IV-C, we propose

the concept of security dependency , and equate this with

inserting a missing edge between two operations in the attack

graph that will defeat the attack. In Section IV-D, we model

the Meltdown attack with an attack graph, and in Section IV-E,

we show that our attack graph models can be extended to all

attack variants.

A. Example: Spectre v1 Attack

Spectre attacks exploit the transient instructions which

can execute during a speculative execution window. On a

mis-speculation, the transient instructions are aborted and all

architectural-level side effects are rolled back. However, not

all micro-architectural state changes are rolled back.

Listing 1 shows an example of the Spectre v1 attack,

bypassing the array bounds checking, thus reading arbitrary

content that is not allowed, then sending the transformed secret

out using a Flush-Reload cache side-channel.

1 // Establish channel by flushing shared Array_A accessible to
attacker

2 int T[256]
3 char Array_A[256*4K]
4 clflush (Array_A)
5

6 // Train the branch predictor to predict not taken
7 train_branch_predictor ()
8

9 mov rbx, Array_A
10 mov rcx, Array_Victim
11 mov rdx, Secret_Location in Array_Victim
12

13 // if (x < Array_Victim_Size)
14 // y = Array_A[Array_Victim[x] * 256];
15

16 // rdx stores the queried index x and if x >
17 // Victim_Array_Size, the branch should be taken
18 cmp rdx, Array_Victim_Size // Authorization
19 ja .BRANCH_TAKEN
20 // Speculative Execution window starts
21

22 // Illegal memory access of Secret_Location
23 mov al, byte [Array_Victim + rdx] // Access
24

25 shl rax , 0xc // Use
26 mov rbx, qword [rbx + rax] // Send
27

28 .BRANCH_TAKEN: ...
29

30 // Reload Array_A to recover the secret byte
31 for (i=0; i<256; i++){
32 T[i] = measure_access_time(Array_A + i * 4KB)
33 }
34 recovered_byte = argmin_i(T[i]) . // Receive

Listing 1: Code snippet of the Spectre v1 attack to bypass

array bounds checking, using the Flush-Reload channel.

Suppose the target victim’s secret is located at

Secret_Location. Lines 1-4 prepare the Flush-Reload

side channel by flushing the cachelines of Array_A, which

is accessible to the attacker and the victim. In line 7, the

attacker trains the branch predictor to always predict not

taken. Lines 9 and 10 put the base address of shared Array_A

and private Array_Victim into registers. Line 11 sets rdx

such that Array_Victim[rdx] points to Secret_Location. Note

that Array_Victim itself may not have sensitive data, but rdx

exceeds the length of Array_Victim_Size and refers to the

secret.

Lines 13-14 show the high-level C code of the assembly

code in lines 16-26. This is the crux of the Spectre v1 attack.

43

Authorized licensed use limited to: Princeton University. Downloaded on January 20,2023 at 19:23:44 UTC from IEEE Xplore. Restrictions apply.

Line 18 is an array bounds checking, where rdx is compared to

Array_Victim_Size. However, if getting Array_Victim_Size is

delayed, e.g., not in the cache, the branch predictor will predict

the branch in line 19 as not taken because the attacker has

mistrained the predictor in line 7. Line 23 illegally reads the

secret into the low-order byte of register rax. Line 25 transforms

the secret into an index of Array_A (where each value of secret

refers to a new page, to avoid unwanted prefetching). Line

26 exfiltrates the secret by accessing an entry at Array_A

indexed by the secret, thus changing the state of the cacheline

from absent to present for the Flush-Reload attack. When

Array_Victim_Size finally arrives and the comparison is done,

the processor realizes the mis-prediction in line 19, and discards

the values in rax and rbx. However, the cache state is not rolled

back, and the attacker can obtain the secret by checking which

entry of Array_A has been fetched (lines 30-34), since this

entry gives a cache hit.

We model the Spectre v1 attack in Figure 1. This is the first

example of an Attack Graph. Here, the nodes are instructions

and the links are data or control dependencies. The dotted

arrows represent the speculative execution path.

Figure 1 follows the program flow in Listing 1. It also follows

the five steps outlined in Section III. First, the receiver sets

up the covert channel by flushing Array_A and mis-training

the branch predictor, such that the branch prediction will

predict “not taken” (step 1). During the program execution, the

branch stalls as the branch condition has not been resolved (the

authorization operation, step 2). The branch predictor allows

the speculative load of the secret (“Load S”) to be performed

(step 3), bypassing the program-defined authorization. After the

secret is obtained, the sender exfiltrates it by fetching a secret-

related entry in Array_A (step 4). Finally, the receiver retrieves

the secret by reloading entries in Array_A and measuring the

access time (step 5). A short access time indicates that the

entry in Array_A indexed by secret has been fetched into the

cache. Some key observations and insights are:

Speculative execution window. Once the branch stalls as

the condition has not been resolved, the (possibly incorrect)

instructions are speculatively executed in a speculative window.

The speculative window is marked by the red dashed block

in Figure 1. The speculative window starts from the issue of

the first speculative (or transient) instruction until the branch

condition ultimately resolves. If mis-predicted, the speculated

instructions are squashed; otherwise, they are committed,

improving the performance.

Speculated Operations Race with the Authorization. The

speculatively executed instructions and the branch resolution

(i.e., the authorization) are performed concurrently. In particular,

whether the two memory load operations or the branch

resolution finishes first, is non-deterministic. Hence, there are

two race conditions between “Load S” (secret access), “Load

R” (micro-architecture state change) and “Branch resolution”

(software authorization).

The race condition allows unauthorized access. The mem-

ory operation “Load S” in the speculative window race

can be outside the software-defined boundary. Thus it is an

unauthorized or illegal memory access.

The race condition is due to a missing security dependency.
The race condition is because of a missing security dependency

(formally defined in Section IV-C) between branch resolution

and “Load S”. It is neither a data dependency nor a control

dependency, but a new dependency to decide when an operation

can be executed. This missing security dependency was first

pointed out by Lee [27] as the root cause of speculative

execution attacks, since the “No Access without Authorization”

security principle is violated.

B. Attack Graph and Races

We define an Attack Graph to extend and formalize the

connection between a race condition and a missing dependency.

We define an attack graph as a Topological Sort Graph (TSG), a

directed acyclic graph with edges between vertices representing

orderings.

A vertex in a TSG represents an operation, e.g., accessing

a memory line, flushing a cacheline or comparing a memory

address to a bound. Figure 2 shows an example of a TSG.

A directed edge in the TSG represents a dependency of two

vertices. If there is an edge from u to v, u happens before v.

A path is a sequence of edges that connects vertices. All paths

considered in this paper are directed paths.

An ordering of vertices in a TSG is an ordered list that

contains all vertices in the graph S = (v1,v2...vn). An ordering

of vertices in a TSG is valid, if and only if for every directed

edge (vi,v j) from vertex vi to vertex v j, vi comes before v j in

the ordering. For example, in Figure 2, S = [A,B,C,D,E,F,G]
and S′ = [A,C,E,B,D,F,G] are both valid orderings. S′′ =
[A,B,D,E,C,F,G] is not a valid ordering.

A race condition exists between vertex u and v in a TSG if

there exists two different valid orderings S1 and S2 such that u
is before v in S1, and v is before u in S2. Take Figure 2 as an

example, there is a race condition between D and E, because

S = [A,B,C,D,E,F,G] and S′ = [A,C,E,B,D,F,G], but D is

before E is S and D is after E in S′.
We prove the following theorem connecting a race condition

with a missing dependency.

Theorem 1. For any pair of vertices u and v, the two
vertices u and v do not have a race condition, if and only
if there exists a directed path that connects u and v.

We provide a formal proof in Appendix A.

Given a directed graph of operations, there are methods to

efficiently check whether there is a path between two vertices

[9], using depth-first search. If none exists, there is a race

condition between these two operations.

To build an attack graph, all branch, memory access (load

and store) and arithmetic instructions need to be included in

the graph. Data dependencies are shown as existing edges in

the attack graph. Since not all operations and race conditions

in a computation are relevant, we define four types of vertices

that must be represented in an attack graph:

44

Authorized licensed use limited to: Princeton University. Downloaded on January 20,2023 at 19:23:44 UTC from IEEE Xplore. Restrictions apply.

Flush Array_A

Reload Array_A

Measure time

Mistrain predictor

Conditional/Indirect
Branch Instruction

…

Setup

Delayed
Authorization

Receive Secret
Authorization

Resolved

Load S

Compute load address R

Load R to Cache

Speculative
window

Use Secret and
Send Secret

Branch resolution:
correct flow

Secret access

Squash or
commit

Fig. 1: Spectre v1/v2 attacks. The speculative execution window

is marked by the red dashed block. “Branch resolution” marks

the completion of the delayed authorization, initiated by the

conditional or indirect branch instruction. “Load S” (secret-

accessing) and “Load R” (secret-sending) are unauthorized

memory accesses if they bypass “Branch resolution” (software-

defined authorization).

A B

C D

E F

G

Fig. 2: An example of Topological Sort Graph (TSG).

Authorization Operations. The victim or covert sender’s

authorization operations are nodes in the attack graph, represent-

ing the permission checking and other forms of authorization,

e.g., array bounds checking by a conditional branch in the user

program.

Sender’s Secret Access Operation. The sender’s secret access

operation is a node in the attack graph, representing access

to the secret. For example, this is the out-of-bounds memory

access (Load S) in Figure 1.

Sender’s Send (Micro-architecture State Change) Oper-
ation. A node where the sender manipulates the micro-

architecture state according to the secret, e.g., the memory

access “Load R to cache” for the Flush-Reload cache covert

channel.

Receiver’s Secret Access Operation. This is a node repre-

senting the retrieval of the secret from the micro-architecture

covert-channel. For example, it is a memory read and access

time measuring operation in a cache Flush-Reload or Prime-

Probe covert channel.

C. Security Dependency

Definition 2: A security dependency of operation v on

operation u is an ordering of the two operations such that u

must be completed before v, in order to avoid security breaches.

Operation u is typically a security protection operation, which

we call an authorization operation in this paper. Operation v is

typically an illegal access of data or code.

Following the “No access without Authorization” [27]

security principle strictly means that the authorization has to be

completed before the protected data access or code execution.

This introduces a security dependency between authorization

and data access (or code execution), which prevents the race

condition that is the root cause of speculative attacks. Like the

well-studied data dependencies and control-flow dependencies,

which must be followed to ensure correct program execution,

security dependencies must be followed to enforce the security

of program execution.

However, as we will show in Section V-B, some security-

performance tradeoffs can be made that still prevent attacks

from succeeding, by making sure that even if the secret is

fetched, it is prevented from being used or exfiltrated out to

an attacker-receiver.

D. Modeling Meltdown Attacks

We show a code snippet of the Meltdown attack in Listing 2.

The front and back parts of the Meltdown attack are similar to

the Spectre v1 attack in setting up the covert channel (step 1,

lines 1-4), using and sending out the secret (step 4, lines 12-14)

and testing the covert channel (step 5, lines 16-20). The main

difference is in line 10, which accesses supervisor memory

and should cause an exception. If the exception is delayed,

a speculative window is triggered. There is a race condition

between the speculative execution of lines 10, 13-14 with the

raising of the exception in line 10.

1 // Establish the covert channel by flushing Array_A
2 int T[256]
3 char Array_A[256*4K]
4 clflush (Array_A) \\ Setup
5

6 mov rbx, Array_A
7 mov rcx, Security_Critical_Memory_Addr
8

9 // Illegal memory access
10 mov al, byte [rcx] \\ Authorize and Access
11

12 // Speculatively execute the transient instructions
13 shl rax , 0xc \\ Use
14 mov rbx, qword [rbx + rax] \\ Send
15

16 // Reload Array_A to recover the security − critical byte
17 for (i=0; i<256; i++){
18 T[i] = measure_access_time(Array_A + i * 4KB)
19 }
20 recovered_byte = argmin_i(T[i]) \\ Receive

Listing 2: A code snippet of the Meltdown attack.

Our insight is that in the Meltdown type of attacks, the
Authorization and the secret Access are actually the same
instruction - a memory load instruction. Hence, we need to
look within this instruction and model its micro-architectural
operations that may race with each other.

The attack graph of Meltdown in Figure 3 is similar to

that for Spectre in Figure 1, except that this time we show the

45

Authorized licensed use limited to: Princeton University. Downloaded on January 20,2023 at 19:23:44 UTC from IEEE Xplore. Restrictions apply.

Flush Array_A

Reload Array_A

Measure time

Load instruction

…

Compute load address R

Load R to Cache

Read S

Load exception:
Squash pipe

Speculative
window

Load Permission
Check

Authorization
Resolved

Squash or
commit

Setup

Delayed
Authorization

Use Secret and
Send Secret

Receive Secret

Secret access

Fig. 3: TSG model of the Meltdown attack.

micro-architecture operations of the load instruction in separate

nodes, rather than just a single node for a conditional branch

instruction and a separate node for a “Load S” instruction. The

delayed privilege check (authorization) triggers the start of

speculative execution, allowing the illegal access of the secret

in the “Read S” operation. It also allows the micro-architectural

change of the cacheline from absent to present in the “Load R

to cache” instruction, which results in a hit on this cacheline,

leaking the secret in the Flush-Reload cache covert channel.

E. Modeling Other Attacks

Our attack graphs can be generalized to all the speculative

attacks, and potentially other micro-architectural security

attacks. In Table III, we summarize the authorization nodes

and illegal access nodes for all the speculative attack variants,

to illustrate that our attack graph model can be generalized.

We describe these attack variants below, including the newer

attacks added at the bottom of Table III.

� The Foreshadow or “L1 terminal fault” attacks.
The Foreshadow type of attacks exploit a hardware vulner-

ability that allows the attacker, such as in Foreshadow [38]

or Foreshadow-NG [43], to read a secret from the L1 data

cache, instead of from the memory, as in the Meltdown attack.

The speculative execution of an instruction accessing a virtual

address with page table entry marked not present or the reserved

bits set, will read from L1 data cache as if the page referenced

by the address bits in the PTE is still present and accessible.

The L1 terminal fault attack can be leveraged to breach the

SGX isolation, as the speculative load bypasses the extended

page table (EPT) protection and the secure enclave protection

of SGX and reads secret data from the L1 cache.

Hence, these attacks can be modeled by the same attack

graph as for the Meltdown attack, but the attack flow goes

down the “Read from cache” branch in Figure 4 instead of the

“Read from memory” node. The permission check is performed

TABLE III: Authorization and Access Nodes of Speculative

Attacks.

Attack Authorization Illegal Access

Spectre v1 [25]
Boundary-check
branch resolution

Read out-of-bounds
memory

Spectre v1.1 [24]
Boundary-check
branch resolution

Write out-of-
bounds memory

Spectre v1.2 [24]
Page read-only bit
check

Write read-only
memory

Spectre v2 [25]
Indirect branch tar-
get resolution

Execute code not in-
tended to be exe-
cuted

Meltdown (Spectre
v3) [29]

Kernel privilege
check

Read from kernel
memory

Meltdown variant1
(Spectre v3a) [2]

RDMSR instruction
privilege check

Read system regis-
ter

Spectre v4 [3]
Store-load address
dependency resolu-
tion

Read stale data

Spectre RSB [26]
Return target resolu-
tion

Execute code not in-
tended to be exe-
cuted

Foreshadow (L1
Terminal Fault)
[38]

Page permission
check

Read enclave data
in L1 cache from
outside enclave

Foreshadow-OS
[43]

Page permission
check

Read kernel data in
cache

Foreshadow-VMM
[43]

Page permission
check

Read VMM data in
cache

Lazy FP [36] FPU owner check
Read stale FPU
state

RIDL [40] Load fault check
Forward data from
fill buffer and load
port

ZombieLoad [35] Load fault check
Forward data from
fill buffer

Fallout [12] Load fault check
Forward data from
store buffer

LVI [39] Load fault check

Forward data from
micro-architectural
buffers (L1D cache,
load port, store
buffer and line fill
buffer)

TAA [12]
TSX Asynchronous
Abort Completion

Load data from
L1D cache, store or
load buffers

Cacheout [41]
TSX Asynchronous
Abort Completion

Forward data from
fill buffer

for the present bit or the reserved bit in the page table, which

can cause the address translation to abort prematurely.

� MDS attacks (RIDL, ZombieLoad and Fallout).
The newer Micro-architectural Data Sampling (MDS) attacks,

e.g., Rogue In-Flight Data Load (RIDL) [40], ZombieLoad [35]

and Fallout attacks [12], leverage the hardware mechanisms

that allow a load that results in a fault to speculatively and

aggressively forward stale data from micro-architectural buffers.

These attacks use different micro-architectural buffers as the

source for accessing the secret, shown as different attack paths

in Figure 4: RIDL reads a secret from a load port or line

fill buffer, ZombieLoad reads a secret from a line fill buffer

and Fallout reads a secret from a store buffer. To model these

attacks in the attack graph, we also generalize the “permission

check” to include the check for hardware faults that may trigger

46

Authorized licensed use limited to: Princeton University. Downloaded on January 20,2023 at 19:23:44 UTC from IEEE Xplore. Restrictions apply.

Flush Array_A

Reload Array_A

Measure time

Load instruction

…

Read from
Cache

Compute load address R

Load R to Cache

Read from
Memory

Read from load
port

Read from line
fill buffer

Read from
store buffer

Load exception:
Squash pipe

① ② ③ Speculative
window

Load Permission
Check

④

Authorization
Resolved

Squash or
commit

Setup

Delayed
Authorization

Use Secret and
Send Secret

Receive Secret

Secret access

Fig. 4: Attack graph model for the Meltdown, Foreshadow and MDS attacks. The source of the secret can be from: the memory

(Meltdown), cache (Foreshadow), load port (RIDL), line fill buffer (RIDL and ZombieLoad) or store buffer (Fallout). The red

dotted lines indicate different defense strategies that can prevent the attacks from succeeding (discussed in Section V).

this illegal secret access.

� Special Register attacks (Spectre v3a and Lazy FP).
Another source of secrets is from the reading of special

registers, i.e., not the general-purpose registers, rather than

reading from the cache-memory system. We model these attacks

in Figure 5, where the illegal access is reading from these

registers.

The Spectre v3a (Rogue System Register Read) attack

can have a delayed authorization due to privilege checking

(for supervisor privilege) taking longer than reading the

system register. The implied hardware prediction is that the

privilege checking passes, so the system register is accessed

speculatively.

In the Lazy FP attack, the floating-point registers are not

immediately switched on a context switch, but only switched

when a floating-point instruction is actually encountered. Hence,

there is a delay in the first floating-point instruction encountered

in a new context that can result in speculatively accessing the

old values of the floating-point registers of the previous context.

We show the missing security dependency as a red arrow from

authorization to read register.

� Indirect branch attack (Spectre v2).
The Spectre v2 attack mis-trains hardware predictors, e.g.,

the branch target buffer (BTB), such that the victim specula-

tively jumps to a wrong address and executes malicious gadgets

(i.e., code) that can access and leak a secret. This attack can

also be modeled by Figure 1. The difference with Spectre v1

is that the speculative execution starts because the computation

of the target address is delayed, and so the prediction for the

target address (BTB) of the indirect branch instruction is used

instead. The “authorization” of the control flow defined by the

indirect branch instruction is completed when the real branch

Reload Array_A

Measure time

Register Access

…

Read from
Special Register

Compute load address R

Load R to Cache

Read from FPU

(Illegal Access)
Squash

Authorization
Resolved Permission

Check

Flush Array_A Setup

Delayed
Authorization

Use Secret and
Send Secret

Receive Secret

Secret access

Squash or
commit

Fig. 5: TSG model of special register triggered attacks.

target address is computed and compared with the predicted

target address.

� Memory disambiguation triggered attack (Spectre v4).
The Spectre v4 (Spectre-STL) attack speculatively reads

stale data (secret) that should be overwritten by a previous

store. During the speculative load, address disambiguation

mispredicts that the load does not depend on a previous store,

i.e., the load address is not the same as any of the addresses of

store instructions still sitting in the store buffer. We model this

attack in Figure 6. The authorization is address disambiguation

and the illegal access is “Read S”. A missing dependency is

shown as the red dashed arrow from address disambiguation

to the illegal access “Read S”.

47

Authorized licensed use limited to: Princeton University. Downloaded on January 20,2023 at 19:23:44 UTC from IEEE Xplore. Restrictions apply.

Flush Array_A

Reload Array_A

Measure time

Load instruction

…

Setup

Delayed
Authorization

Use Secret and
Send Secret

Receive Secret

Read S

Compute load address R

Load R to Cache

(Illegal Access)
Squash

Store S

Memory address
disambiguation

Secret access

Squash or
commit

Authorization
Resolved

Fig. 6: TSG model of memory disambiguation triggered attack.

Load instruction

Victim’s control or data
flow diverted by M

Read M
from Cache

Read M from
line fill buffer

Read M from
load port

Read M from
store buffer

Reload Array_A

Measure time

Compute load address R

Load R to cache

…

(Illegal Access)
Squash

Authorization
Resolved

Load permission
check

Setup

Delayed
Authorization

Use Secret and
Send Secret

Receive Secret

Secret access

Squash or
commit

Place a malicious value
M in hardware buffers Flush Array_A

Load S

Fig. 7: TSG model of Load Value Injection (LVI).

� Load Value Injection (LVI) attack.
The LVI attack injects the attacker-desired data to the

victim’s program. In this attack, the attacker attempts to leave

the data in the memory buffers. A victim’s faulting load

speculatively reads from the buffer and unintentionally uses

the attacker-controlled data for his execution. We model this

attack in Figure 7. The missing security dependency is the red

dashed arrow from the load fault handling to the access to the

malicious data M.

A few of the entries in Table III have not been specifically

described. Spectre v1.1 and Spectre v1.2 are like Spectre v1

and can be modeled by Figure 1 with a small modification.

Instead of reading an out-of-bounds memory location, Spectre

v1.1 writes an out-of-bounds memory location illegally. Spectre

v1.2 tries to write to a read-only memory location.

Spectre RSB is like Spectre v2 (indirect branch). Hence, it

can also be modeled by Figure 1. Instead of waiting for the

target address of an indirect branch instruction to be computed,

Spectre RSB waits for the return address to be determined.

The last two entries in Table III, TAA and Cacheout, are TSX-

based attacks. TSX uses transactional memory to enforce the

atomic execution of a bundle of instructions called a transaction

- either all the instructions are executed or none are executed.

Hence, TSX can also be used to speculatively access a secret

from the cache, store/load buffers or fill buffers.

V. BENEFITS OF OUR MODEL

Our new attack graph model is useful in enabling us to:

• discover new attacks (Section V-A),

• model defense strategies and consistently explain why a

specific defense works or does not work (Section V-B),

• enable tools to discover vulnerabilities and patch them

(Section V-C).

A. Finding New Attacks

Our attack graph can be generalized to model or find new

attacks. We describe three ways: by finding new sources

of secrets, new exploitable hardware features for delaying

authorization, and new covert channels.

First, as we have already illustrated in Section IV, the attack

graphs can be extended to incorporate new sources of a secret.

For instance, the micro-architectural data sampling attacks

(RIDL [40], Fallout [12], ZombieLoad [35]) use a faulting load

to read secret data that is left in micro-architectural data buffers

by previous memory accesses even from a different thread or

process. They can be identified by analyzing the hardware

implementation as the hardware designer should be able to find

a set of datapaths that read data from different data buffers and

forward the data to the faulting load. Each of these datapaths

can be added as a new node in the attack graph (see Figure 4).

Also, in the Meltdown variant1 [2] and LazyFP [36] attacks,

the unauthorized access to system registers or floating-point

registers will cause an exception, and can be modeled with the

nodes “Read from Special Register” or “Read from FPU” (see

Figure 5). Other sources of secrets can also be identified to

create new attacks.

Second, new hardware features can be exploited for delaying

the authorization while allowing the execution to proceed.

Examples include other hardware prediction mechanisms or

delayed exception mechanisms. Identifying new authorization-

related features can be achieved by analyzing processor pipeline

squash signals. Each cause of a potential pipeline squash can

be studied for its effect at the instruction (software) level.

In the example of a conditional branch, the cause of the

pipeline squash is due to the resolution of a conditional branch

prediction. Subsequent load instructions after this conditional

branch instruction can be the access of a secret, followed by

a covert send through the cache covert channel, which gives

rise to the Spectre v1 attack.

In general, any decision-making operation that can cause

speculative prediction and execution can trigger subsequent

illegal accesses through a speculatively-executed load instruc-

tion (or privileged register read). This can be a “software

authorization” node that triggers subsequent illegal accesses.

48

Authorized licensed use limited to: Princeton University. Downloaded on January 20,2023 at 19:23:44 UTC from IEEE Xplore. Restrictions apply.

①①

④

③
②

Flush Array_A

Reload Array_A

Measure time

Mistrain predictor

Conditional/Indirect
Branch Instruction

Load S

Compute load address R

Load R to Cache

…

Branch resolution:
correct flow

Authorization
Resolved

Squash or
commit

Setup

Delayed
Authorization

Receive Secret

Use Secret and
Send Secret

Secret access

Fig. 8: Four defense strategies against Spectre v1/v2 attacks:

� Add a security dependency between the “branch resolution”

(authorization) for bounds checking, and the protected memory

access, � avoid the usage of speculative data, � prevent loads

whose address depends on unauthorized data from changing

cache states, � Clear predictor on context switch.

Such decision-making actions can be expressed in any software

language.

Furthermore, speculative execution is not the only source of

transient instructions for illegally accessing secrets. Another

example of transient instructions that may be aborted is TSX,

for the atomic execution of a transaction, as also described

earlier in the last two entries of Table III.

Third, our attack graph can also be extended to various

different covert channels. For the most representative cache

covert channel, we can generalize the cacheline as a resource

whose state can be changed by the covert-sender or victim

program, and this state change can be observed by the covert-

receiver (attacker). To extend the analysis to different covert

channels such as the memory bus covert channel, functional unit

covert channel or branch target buffer (BTB) covert channel, we

can also model the covert channel state and find the instructions

that change this state and be detectable by a covert-receiver.

This method can identify more sender-receiver pairs than the

“Load R to Cache” and “Reload Array_A” pair.

The key takeaway of this framework is that any new
combination of these three dimensions of an attack gives a
new attack.

B. Identifying Defense Strategies

A major application of our attack graph model is identifying

potential defense strategies, as we illustrate by the red dashed ar-

rows in Figure 8 for the attacks triggered by branch instructions.

We illustrate potential defenses that essentially add security

dependencies to the system to defeat the attacks. We also show

that our defense strategies cover the recently proposed defenses

in industry and academia to defeat speculative execution

attacks.

Strategy �: Prevent Access before Authorization. This

prevents the illegal access of the secret, until the delayed

authorization is resolved.

LFENCE is an industry defense used to serialize the

instructions before and after it. Adding an LFENCE instruction

before the speculative load adds a new security dependency

between the “Branch resolution” (software authorization) and

“Load S” (secret access), shown as � in Figure 8. Context-

sensitive fencing [37] prevents the speculative access by

inserting fences at the micro-operation level, e.g., between

a conditional branch and a load to defeat the Spectre v1 attack.

This is done in hardware, rather than in software. Secure

automatic bounds checking (SABC) [30] serialize the branch

and the out-of-bounds access to mitigate the Spectre attack,

by inserting arithmetic instructions with data dependencies

between the branch and the access.

Strategy �: Prevent Data Usage before Authorization. This

prevents the use of the speculatively accessed secret, until the

delayed authorization is resolved.

NDA [42], SpecShield [10], SpectreGuard [17] and ConTExT

[34] prevent forwarding the speculatively loaded data to the

following instructions so that the secret cannot be used, e.g.,

to compute the address R. SpectreGuard and ConTExT further

provide the software interface for software developers to

mark memory regions containing the secret as sensitive so

the usage of non-sensitive data is allowed to reduce the

performance overhead. Equivalently, this means adding a new

security dependency between the “Branch resolution” (software

authorization) and “Compute Load Address R” (data usage),

shown as � in Figure 8.

Strategy �: Prevent Send before Authorization. This pre-

vents the micro-architectural state changes of shared hardware

resources that serve as the Send signal of the covert or side

channel, until the delayed authorization is resolved. This

defense strategy improves performance by adopting a looser

security model where the secret is allowed to be accessed

before authorization as long as it does not leak out.

This strategy adds the security dependency between “Branch

resolution” and “Load R to cache” (cache state change), shown

as � in Figure 8. Different hardware implementations have been

proposed under this strategy. STT [46] and SpecShieldERP+

[10] prevent loads whose address is based on speculative data.

Conditional Speculation [28] and Efficient Invisible Speculative

Execution [33] both allow a speculative load that hits in the

cache, because the cacheline state does not change on a hit,

but delay speculative loads that encounter a miss. They further

reduce the overhead by identifying trusted pages and predicting

data, respectively. InvisiSpec [44] and SafeSpec [22] disallow

speculative cache state modification but put the speculatively

requested cache line in the shadow buffer. If the prediction is

later found to be correct, InvisiSpec and SafeSpec reissue the

memory access to fetch the proper cache lines. CleanupSpec

[32] allows speculative cache state modification but restores

the cache state on a mis-speculation.

Strategy �: Clearing Predictions. This strategy prevents the

49

Authorized licensed use limited to: Princeton University. Downloaded on January 20,2023 at 19:23:44 UTC from IEEE Xplore. Restrictions apply.

sharing of predictor states between different contexts.

For example, the industry solution from Intel, Indirect Branch

Predictor Barrier (IBPB) [7], prevents the code before the

barrier from affecting the branch prediction after it by flushing

the Branch Target Buffer (BTB). It introduces a new operation,

i.e., “flush predictor”, to the attack graph and adds a security

dependency between “flush predictor” and the indicated branch

instruction. Context-sensitive fencing [37] also shows the

feasibility of inserting micro-ops by hardware during a privilege

change, to prevent a predictor being mistrained from a different

context.

We show that our attack graph can model not only the

defenses that work, but also the defenses that do not work.

In Figure 4, we show that a security dependency can be

added at four different places to defend against the Meltdown

attack, shown as red dashed lines. Defense strategies �, �, �
are similar to Figure 8. Typically, only one of these defense

strategies is needed.

However, sometimes a defense is not sufficient, as we now

illustrate with a hypothetical Meltdown attack coupled with an

attacker induced cache hit for the secret, like the L1 Terminal

Fault [38]. If the secret is already in the cache, the load

instruction will fetch it from the cache rather than from the

main memory. So while dependency � can defend against

the baseline Meltdown attack that speculatively loads a secret

from main-memory in Figure 4, this is insufficient when �
can no longer prevent the secret access from the cache. In

this case, an additional dependency � in Figure 4, i.e. from

“Authorization” to “Read S from cache”, has to be jointly added

with � to provide a valid defense. Hence, it is important to put

security dependencies in the correct places, otherwise we get

a false sense of security, especially when micro-architectural

performance optimizations (like load from cache on a hit)

can bypass an insecure security dependency like �. In fact,

there has to be a security dependency arrow between the

“authorization resolved” node to every node that can be a

source of the secret in Figure 4, such as load ports, line fill

buffers and store/load buffers. The number of such ports and

buffers suggests that the defense strategy “Prevent Data Usage

before Authorization” may be a solution that is not only more

efficient but also more secure.

C. Tools for Constructing Attack Graphs

A tool can be designed to construct attack graphs and find

the missing security dependencies. To achieve this, the memory

locations (with secret or sensitive data and code) to be protected

should be identified. OS and hypervisor data and code must

automatically be protected from less-privileged software. For

user-level data and code, the most secure way is for the user

to initially specify what data and code should be protected as

in [17], [34]. Then the tool can trace all direct and indirect

accesses to these protected data and code as potential secret

accesses.

Then, the tool needs to identify attack nodes as we introduced

in Section IV. By providing a threat model that specifies

the range of attacks that are to be defeated, the tool can

Fig. 9: The flow chart to generate the attack graph for different

types of speculative execution attacks. This also shows how the

vulnerability can be plugged by adding a security dependency.

recognize the authorization operation such as a prior conditional

or indirect branch instruction (software authorization), or a

load or store instruction (hardware privilege check or address

disambiguation check). A flow chart to generate the attack

graph for speculative execution attacks is shown in Figure 9.

For the control-flow misprediction attacks triggered by a

conditional or indirect branch instruction (the left side of

Figure 9), we propose a major simplification where these

misprediction-based attacks can be modeled at the instruction

level where the nodes are just instructions, and the edges are

control flow and data-flow dependencies between instructions.

This means that the tool just needs to look for subsequent

memory loads or special register access instructions after branch

(conditional or indirect) nodes as the secret access.

For the faulty memory/register access attacks where the

authorization and the secret access are done in the same

instruction, the tool needs to break down such instructions

into their micro-architectural level in the attack graph model,

as shown in Figure 4. These instructions to be broken down

are the memory load instructions, the Read Privileged Register

instructions and the instructions that Read or Write Floating-

point or SIMD registers.

After identifying the secret access and the potential covert

sending operations, the tool can automatically generate edges

by looking for existing dependencies, e.g., data dependencies,

fences and address dependencies. Missing security depen-

dencies (races) between the authorization and the secret

access instruction and its subsequent chain of data-dependent

instructions, which can be executed in the speculative execution

window, can be found by automatically searching the graph.

Such a missing security dependency between an authorization

node and a secret access node in a program shows a vulnera-

bility that can lead to a potential attack. These vulnerabilities

50

Authorized licensed use limited to: Princeton University. Downloaded on January 20,2023 at 19:23:44 UTC from IEEE Xplore. Restrictions apply.

can be flagged by the tool. The tool can also proactively insert

a security dependency, e.g., a lightweight fence, to prevent

attacks.

The main challenges for extending the above methodology to

a fully-functional tool appear to be the initial identification of

secrets in user code, and modelling at the intra-instruction level

which is different for each micro-architecture implementation.

The former can leverage the use of other tools, and we have

shown that the latter is only necessary for a few instructions

where the authorization and access are in the same instruction,

e.g., load instructions.

VI. INSIGHTS AND TAKEAWAYS

Based on our new models of speculative execution attacks,

our major new insights are:

1) The root cause of speculative attacks succeeding is a

missing edge in the attack graph between the authorization

operation and the secret access operation.

2) We define the term “security dependency”, and equate

this to a missing edge in an attack graph that enforces

the correct ordering of the authorization node before

subsequent operation nodes.

3) These security dependencies can give us “defense strate-

gies”. Each defense strategy can be implemented through

many different architectural mechanisms. More impor-

tantly, the currently proposed hardware and software

defenses all fall under one of our defense strategies.

4) Falling under one of our defense strategies also explains

why the defense works. The defense is equivalent to

implementing a missing security dependency and thus

preventing a critical attack step from succeeding. This is

the first time a reason for the success of a defense can

be systematically given.

5) A security dependency can sometimes be “relaxed” to

reduce the performance overhead (e.g., allow accessing

the secret but prevent leaking the secret) for security-

performance tradeoffs. This is illustrated in Section V-B

by our defense strategies � prevent data usage before

authorization and � prevent send before authorization.

6) Attacks that look similar, e.g., the Spectre-type and

Meltdown-type attacks are actually different, in the sense

that the Meltdown-type attacks have authorization and

access in the same instruction, while the Spectre-type

attacks do not. This results in the Meltdown-type attacks

having to be investigated through intra-instruction oper-

ations, while Spectre-type attacks only need to consider

inter-instruction operations. This makes attack graph and

tool construction simpler.

Our new attack graph is useful in finding new attacks,

identifying new defense strategies and systematically explaining

why a defense works or not, and facilitating the design of tools

to discover vulnerabilities and patch them.

VII. RELATED WORK

Speculative execution attacks have been defined, e.g., in

[8], [24]–[26], [29], [36], [38]. To model speculative execution

attacks, Disselkoen et al. [16] proposed a memory model based

on pomsets to allow speculative evaluation. However, this model

only covers speculative secret access, but does not show how

the secret is sent through a cache covert channel. Canella et al.
[13] summarized and evaluated speculative execution attacks

and some defenses. However, their work does not provide a

systematic model for attacks and defenses that provides insights

on designing and evaluating new secure defenses. On the formal

modeling side, Guarnieri et al. [18] proposed the speculative

non-interference property to verify that a program behaves the

same with and without speculation. Cheang et al. [14] proposed

trace property-dependent observational determinism (TPOD)

to verify that two traces of execution are not distinguishable.

These formal methods cannot reason about the defenses, while

we can show why defenses work and which ones will not

work.

Previous work has been proposed to evaluate caches’ re-

silience against (non-speculative) side-channel attacks. He et
al. [20] proposed the probabilistic information flow graph

(PIFG) to model the cache, attacker and victim simultaneously.

Zhang et al. [47] quantified information leakage via mutual

information. Demme et al. [15] proposed the Side-channel

Vulnerability Factor (SVF) and Zhang et al. [48] refined it

as the Cache Side-channel Vulnerability (CSV) for access-

based attacks. However, none of these past work on cache

side-channel attacks covers speculative execution attacks.

VIII. CONCLUSIONS

Information leakage due to speculative execution has been

a serious and unsolved problem. In this paper, we provide

new attack graph models for speculative execution attacks. We

identify the common characteristics of speculative attacks as

illegal access of secrets during speculative execution and covert

channel exfiltration of this secret information, and break these

down further into 5-6 critical attack steps.

We propose the attack graph as a topological sort graph

(TSG), where the critical attack steps can be identified.

Fundamentally, the speculation vulnerability is due to a race

condition, shown as a missing edge in a TSG, between

authorization and secret access nodes. In a looser security but

higher performance scenario, this missing edge can be between

the authorization node and the nodes that use or send out the

“not-yet-authorized” data. We are the first to define the concept

of a security dependency, which enforces the proper ordering

of authorization before access, or authorization before use, or

authorization before send operations. Security dependencies

prevent race conditions that lead to security breaches.

To show the effectiveness of our proposed models, we

generate attack graphs for the Spectre and Meltdown attacks,

and then generalize them to all known attack variants. From

our attack graphs, we show how to generate new attacks, how

to derive new defense strategies and why they work. In fact, all

proposed solutions from both industry and academia fall under

one of our defense strategies. We have also shown how to

design a tool that can help construct attack graphs and uncover

vulnerabilities in the software-hardware system.

51

Authorized licensed use limited to: Princeton University. Downloaded on January 20,2023 at 19:23:44 UTC from IEEE Xplore. Restrictions apply.

We have provided a generalizable framework to model and

analyze the speculative execution attacks, and hope this helps

advance more secure micro-architecture defenses and designs.

ACKNOWLEDGEMENTS

This work is supported in part by NSF SaTC #1814190, SRC

Hardware Security Task 2844.002 and a Qualcomm Faculty

Award for Prof. Lee. We thank the anonymous reviewers for

their insightful comments and feedback.

APPENDIX A

PROOF OF THEOREM 1

Proof: Necessity (<=). It can be proved by contradiction.

Assume there is not a path from u to v. Let

S = [s1,s2...sk,v,sk+1...sn] (1)

= [Sv,v,sk+1...sn] (2)

be a valid ordering sequence, where Sv = [s1,s2...sk] represents

the vertices before v in S. Split Sv into two subsequences with

the same order in S
S1 = [s1

1,s
2
1...s

k1
1] (3)

S2 = [s1
2,s

2
2...s

k2
2] (4)

where S1 contains vertices that have a path to v, S2 contains

vertices that do not have a path to v. By assumption, u does

not have a path to v, therefore u ∈ S2. Note that k1 + k2 = k.

Construct another sequence

S′ = [S1,v,S2,sk+1...sn]

= [s1
1,s

2
1...s

k1
1 ,v,s1

2,s
2
2...s

k2
2 ,sk+1...sn]

We claim that ordering S′ is also valid: For any ski
1 ∈ S1 and

s
k j
2 ∈ S2, there is not an edge (s

k j
2 , ski

1) in the graph. Otherwise,

[s
k j
2 → ski

1 → v] is a path, contradicting the definition of S2. For

the same reason, there is not an edge (s
k j
2 , v) in the graph. We

categorize any edge (z, x) into 3 cases, i.e. x ∈ S1, x = v and

x ∈ S2. We show z comes before x in S′ in all cases:

� for any edge (z, v) in the graph, z can only be in S1, and

thus z is before v in S′.
� For any edge (z, ski

1) in the graph, z can only be in

(sk1
1 , ...s

ki−1
1), and thus z is also before ski

1 in S′.
� Since S2 are moved backward and sk+1...sn are kept in the

same position from S to S′, for any edge (z, s
k j
2), z is before

the s
k j
2 .

From �,� and �, the ordering S′ is valid. Meanwhile, v is

before u ∈ S2 in S′, contradicting to u is before v in all valid

orderings. Therefore, the assumption is not true and there must

be a path connecting u and v. �
Sufficiency (=>). The sufficiency is relatively obvious.

Without loss of generality, assume there exists a directed path

from u to v, i.e. P=(u,w1, ...wk,v). Then for any valid ordering

S, u is before w1, w1 is before w2, ... ,wk is before v. Therefore

u is before v in any valid ordering. �

REFERENCES

[1] https://www.intel.com/content/www/us/en/architecture-and-
technology/64-ia-32-architectures-software-developer-system-
programming-manual-325384.html, 2016.

[2] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3640, 2018.

[3] https://msrc-blog.microsoft.com/2018/05/21/analysis-and-mitigation-of-
speculative-store-bypass-cve-2018-3639/, 2018.

[4] https://www.kernel.org/doc/html/latest/x86/pti.html, 2018.

[5] https://developer.amd.com/wp-content/resources/90343-B_
SoftwareTechniquesforManagingSpeculation_WP_7-18Update_
FNL.pdf, 2018.

[6] https://www.anandtech.com/show/13239/intel-at-hot-chips-2018-
showing-the-ankle-of-cascade-lake, 2018.

[7] https://software.intel.com/security-software-guidance/insights/deep-
dive-indirect-branch-predictor-barrier, 2018.

[8] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3639, 2018.

[9] A. Aggarwal, R. J. Anderson, and M.-Y. Kao, “Parallel depth-first search
in general directed graphs,” in ACM Symposium on Theory of Computing
(STOC), 1989.

[10] K. Barber, A. Bacha, L. Zhou, Y. Zhang, and R. Teodorescu, “Specshield:
Shielding speculative data from microarchitectural covert channels,” in
International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2019.

[11] J. Bonneau and I. Mironov, “Cache-collision timing attacks against aes,”
in International Workshop on Cryptographic Hardware and Embedded
Systems (CHES), 2006.

[12] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar et al., “Fallout: Leaking
data on meltdown-resistant cpus,” in ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2019.

[13] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. Von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic evaluation of
transient execution attacks and defenses,” in USENIX Security Symposium,
2019.

[14] K. Cheang, C. Rasmussen, S. Seshia, and P. Subramanyan, “A formal
approach to secure speculation,” in Computer Security Foundations
Symposium (CSF), 2019.

[15] J. Demme, R. Martin, A. Waksman, and S. Sethumadhavan, “Side-
channel vulnerability factor: a metric for measuring information leakage,”
in International Symposium on Computer Architecture (ISCA), 2012.

[16] C. Disselkoen, R. Jagadeesan, A. Jeffrey, and J. Riely, “The code
that never ran: Modeling attacks on speculative evaluation,” in IEEE
Symposium on Security and Privacy (SP), 2019.

[17] J. Fustos, F. Farshchi, and H. Yun, “Spectreguard: An efficient data-
centric defense mechanism against spectre attacks,” in ACM/IEEE Design
Automation Conference (DAC), 2019.

[18] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez,
“Spectector: Principled detection of speculative information flows,” in
IEEE Symposium on Security and Privacy (SP), 2020.

[19] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games–bringing access-
based cache attacks on aes to practice,” in IEEE Symposium on Security
and Privacy (SP), 2011.

[20] Z. He and R. B. Lee, “How secure is your cache against side-channel
attacks?” in ACM/IEEE International Symposium on Microarchitecture
(MICRO), 2017.

[21] S. Islam, A. Moghimi, I. Bruhns, M. Krebbel, B. Gulmezoglu, T. Eisen-
barth, and B. Sunar, “Spoiler: Speculative load hazards boost rowhammer
and cache attacks,” in Usenix Security Symposium, 2019.

[22] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Ponomarev,
and N. Abu-Ghazaleh, “Safespec: Banishing the spectre of a meltdown
with leakage-free speculation,” in ACM/IEEE Design Automation Con-
ference (DAC), 2018.

[23] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“Dawg: A defense against cache timing attacks in speculative execution
processors,” in ACM/IEEE International Symposium on Microarchitecture
(MICRO), 2018.

[24] V. Kiriansky and C. Waldspurger, “Speculative buffer overflows: Attacks
and defenses,” arXiv preprint arXiv:1807.03757, 2018.

[25] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre
attacks: Exploiting speculative execution,” in IEEE Symposium on
Security and Privacy (SP), 2019.

[26] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre returns! speculation attacks using the return stack buffer,” in
USENIX Workshop on Offensive Technologies (WOOT), 2018.

[27] R. B. Lee, “Security aware microarchitecture design,” IEEE/ACM
International Symposium on Microarchitecture (MICRO), Keynote
Speech, https://www.microarch.org/micro51/Program/keynote2/, 2018.

52

Authorized licensed use limited to: Princeton University. Downloaded on January 20,2023 at 19:23:44 UTC from IEEE Xplore. Restrictions apply.

[28] P. Li, L. Zhao, R. Hou, L. Zhang, and D. Meng, “Conditional speculation:
An effective approach to safeguard out-of-order execution against spectre
attacks,” in International Symposium on High Performance Computer
Architecture (HPCA), 2019.

[29] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in Usenix Security
Symposium, 2018.

[30] E. J. Ojogbo, M. Thottethodi, and T. Vijaykumar, “Secure automatic
bounds checking: prevention is simpler than cure,” in ACM/IEEE
International Symposium on Code Generation and Optimization (CGO),
2020.

[31] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermea-
sures: the case of aes,” in Cryptographers track at the RSA conference,
2006.

[32] G. Saileshwar and M. K. Qureshi, “Cleanupspec: An undo approach to
safe speculation,” in IEEE/ACM International Symposium on Microar-
chitecture (MICRO), 2019.

[33] C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Själander,
“Efficient invisible speculative execution through selective delay and
value prediction,” in International Symposium on Computer Architecture
(ISCA), 2019.

[34] M. Schwarz, M. Lipp, C. Canella, R. Schilling, F. Kargl, and D. Gruss,
“Context: A generic approach for mitigating spectre,” in Network and
Distributed System Security Symposium (NDSS), 2020.

[35] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina, T. Prescher,
and D. Gruss, “Zombieload: Cross-privilege-boundary data sampling,” in
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2019.

[36] J. Stecklina and T. Prescher, “Lazyfp: Leaking fpu register state using
microarchitectural side-channels,” arXiv preprint arXiv:1806.07480,
2018.

[37] M. Taram, A. Venkat, and D. Tullsen, “Context-sensitive fencing: Secur-
ing speculative execution via microcode customization,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2019.

[38] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel sgx kingdom with transient out-of-order
execution,” in Usenix Security Symposium, 2018.

[39] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin, D. Genkin,
Y. Yarom, B. Sunar, D. Gruss, and F. Piessens, “Lvi: Hijacking transient
execution through microarchitectural load value injection,” in IEEE
Symposium on Security and Privacy (SP), 2020.

[40] S. Van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “Ridl: Rogue in-flight data load,”
in IEEE Symposium on Security and Privacy (SP), 2019.

[41] S. van Schaik, M. Minkin, A. Kwong, D. Genkin, and Y. Yarom,
“Cacheout: Leaking data on intel cpus via cache evictions,” arXiv preprint
arxiv:2006.13353, 2020.

[42] O. Weisse, I. Neal, K. Loughlin, T. F. Wenisch, and B. Kasikci, “Nda:
Preventing speculative execution attacks at their source,” in ACM/IEEE
International Symposium on Microarchitecture (MICRO), 2019.

[43] O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, R. Strackx, T. F. Wenisch, and Y. Yarom, “Foreshadow-
ng: Breaking the virtual memory abstraction with transient out-of-order
execution,” Technical report, Tech. Rep., 2018.

[44] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. W. Fletcher, and J. Tor-
rellas, “Invisispec: Making speculative execution invisible in the cache
hierarchy,” in ACM/IEEE International Symposium on Microarchitecture
(MICRO), 2018.

[45] Y. Yarom and K. Falkner, “Flush+ reload: A high resolution, low noise,
l3 cache side-channel attack.” in Usenix Security Symposium, 2014.

[46] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W.
Fletcher, “Speculative taint tracking (stt) a comprehensive protection for
speculatively accessed data,” in ACM/IEEE International Symposium on
Microarchitecture (MICRO), 2019.

[47] T. Zhang and R. B. Lee, “New models of cache architectures characteriz-
ing information leakage from cache side channels,” in Annual Computer
Security Applications Conference (ACSAC), 2014.

[48] T. Zhang, F. Liu, S. Chen, and R. B. Lee, “Side channel vulnerability
metrics: the promise and the pitfalls,” in International Workshop on
Hardware and Architectural Support for Security and Privacy (HASP),
2013.

53

Authorized licensed use limited to: Princeton University. Downloaded on January 20,2023 at 19:23:44 UTC from IEEE Xplore. Restrictions apply.

