
SoK: Hardware Defenses Against Speculative
Execution Attacks

Guangyuan Hu
Princeton University
gh9@princeton.edu

Zecheng He
Princeton University

zechengh@princeton.edu

Ruby B. Lee
Princeton University
rblee@princeton.edu

Abstract—Speculative execution attacks leverage the specula-
tive and out-of-order execution features in modern computer
processors to access secret data or execute code that should
not be executed. Secret information can then be leaked through
a covert channel. While software patches can be installed for
mitigation on existing hardware, these solutions can incur big
performance overhead. Hardware mitigation is being studied
extensively by the computer architecture community. It has the
benefit of preserving software compatibility and the potential for
much smaller performance overhead than software solutions.

This paper presents a systematization of the hardware defenses
against speculative execution attacks that have been proposed. We
show that speculative execution attacks consist of 6 critical attack
steps. We propose defense strategies, each of which prevents a
critical attack step from happening, thus preventing the attack
from succeeding. We then summarize 20 hardware defenses and
overhead-reducing features that have been proposed. We show
that each defense proposed can be classified under one of our
defense strategies, which also explains why it can thwart the
attack from succeeding. We discuss the scope of the defenses, their
performance overhead, and the security-performance trade-offs
that can be made.

I. INTRODUCTION

Speculative execution attacks, also known as transient ex-

ecution attacks, are a serious security problem. They exploit

performance enhancement features in hardware to access se-

cret data and leak this secret out through microarchitectural

covert channels. This negates the confidentiality and integrity

protections provided by software isolation, and also by hard-

ware isolation features such as secure enclaves [1], [2].

In particular, Spectre [3], Meltdown [4] and Foreshadow

[5] bypass the isolation across processes and privilege levels.

The Spectre attack bypasses the memory protection provided

by software bounds checking, while the Meltdown attack

breaches the memory isolation between the kernel and a user

application. Foreshadow [5], and its variants Foreshadow-OS

and Foreshadow-VMM [6], breach the Intel SGX enclave iso-

lation, user-to-kernel memory isolation, and virtual-machine-

to-hypervisor isolation, respectively.

The severity of these attacks has resulted in many specific

fixes for specific attack variants implemented by the computer

industry. These include using instructions to serialize execu-

tion [7], [8], to flush hardware prediction states [9], to avoid

using untrusted predictions [10], and to restrict accesses to

secret information [11]–[13]. However, most of these solu-

tions require changes to the existing software. Furthermore,

Defense and Overhead-reducing Feature Conference Year
InvisiSpec [14] MICRO 2018
DAWG [15] MICRO 2018
CondSpec [16] HPCA 2019
Context-sensitive fencing (CSF) [17] ASPLOS 2019
SpectreGuard [18] DAC 2019
SafeSpec [19] DAC 2019
EfficientSpec [20] ISCA 2019
SpecShield [21] PACT 2019
STT [22] MICRO 2019
NDA [23] MICRO 2019
CleanupSpec [24] MICRO 2019
MI6 [25] MICRO 2019
IRONHIDE [26] HPCA 2020
ConTExT [27] NDSS 2020
Predictor state encryption [28] ISCA 2020
MuonTrap [29] ISCA 2020
Speculative Data-Oblivious Execution (SDO) [30] ISCA 2020
Clearing the Shadows [31] PACT 2020
InvarSpec [32] MICRO 2020

DOLMA [33]
USENIX
Security

2021

TABLE I: Hardware defenses and overhead-reducing features

against speculative execution attacks published in recent com-

puter architecture and security conferences.

they also cause significant performance overhead (at least

2X slower [11], sometimes up to 8X). Last but not least,

the software countermeasures are usually attack-specific. New

patches are required to effectively protect against the emerging

attacks, which is neither efficient nor sustainable.

In response to these attacks on hardware microarchitecture

performance optimization features, there have been proposals

of hardware defenses as well as features that reduce the

performance overhead of defenses [14]–[33], which we show

in Table I in chronological order. One key advantage is that the

hardware solution can monitor the instruction execution sta-

tus and accurately protect against speculative vulnerabilities.

Another advantage of some hardware solutions is their non-

intrusive interaction with the existing software, while inducing

low performance overhead. These hardware defenses can read

the unmodified program but delay or change the execution

of secret-leaking instructions so that the information leakage

through hardware states is eliminated. Some microarchitec-

tural defenses also allow security-performance trade-offs and

overhead-reducing features [30]–[32].

However, the working mechanisms and scope of different

hardware defenses have not been systematically described and

compared. Hence, our goal in this paper is to systematize

108

2021 International Symposium on Secure and Private Execution Environment Design (SEED)

978-1-6654-2025-9/21/$31.00 ©2021 IEEE
DOI 10.1109/SEED51797.2021.00023

20
21

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
Se

cu
re

 a
nd

 P
riv

at
e

Ex
ec

ut
io

n
En

vi
ro

nm
en

t D
es

ig
n

(S
EE

D
) |

 9
78

-1
-6

65
4-

20
25

-9
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
SE

ED
51

79
7.

20
21

.0
00

23

Authorized licensed use limited to: Princeton University. Downloaded on January 20,2023 at 19:54:54 UTC from IEEE Xplore. Restrictions apply.

the hardware defenses, to illustrate their key similarities and

differences, and to assist future researchers to more easily

understand and reason about how an existing defense works.

While the goal of this paper is not to describe all the

speculative execution attacks in detail, as there are many past

work surveying and summarizing these [34]–[37], we analyze

the critical attack steps of 23 speculative execution attacks. We

then show how the hardware defenses mitigate the attacks by

preventing these steps, connecting the attacks and defenses.

Our key contributions are:

• Producing attack taxonomies based on secret access or

secret leakage, covering 23 variants of speculative exe-

cution attacks.

• Defining new defense strategies based on preventing at

least one of the critical attack steps.

• Producing a new taxonomy of 4 hardware defense strate-

gies and lower-level categories of defenses.

• Creating a systematized view and description of 20

representative hardware defenses and overhead-reducing

features proposed to date.

• Presenting the performance overhead of the defenses, and

illustrating security-performance tradeoffs.

II. MICROARCHITECTURE AND COVERT CHANNEL

BACKGROUND

We first describe hardware performance optimization fea-

tures that can be exploited for speculative execution attacks.

Out-of-Order (OoO) execution. An Out-of-Order (OoO)

processor is a microarchitecture performance enhancement

feature used to boost the throughput of processors by allowing

instructions later in the program order to execute before the

previous instructions have completed. For example, an earlier

instruction may be waiting for one of its operands, or for

a functional unit or memory to free up, or for determining

if a branch should be taken or where to branch to. Later

instructions in an in-order processor that have no dependencies

will have to wait unnecessarily. In contrast, an Out-of-Order

processor allows the instructions with no dependencies to

execute immediately, as long as they retire in-order.

Fig. 1 shows a generic Out-of-Order (OoO) processor where

instructions are fetched in program order but executed Out-

of-Order. Instructions are forced to retire in-order to maintain

precise exceptions, i.e., if an instruction results in an exception,

the following instructions must be “squashed” as if they were

never executed. We will use this generic OoO model to explain

the defenses in a unified way in the rest of the paper.

Instructions are fetched and decoded to microarchitecture-

level operations (denoted μop’s) in program order, but after

the μop’s are dispatched to the execution stage, the hardware

scheduler can schedule any ready μop’s to different functional

units for execution. Thus, the execution of later μop’s can

complete earlier than those of previous instructions, which also

allows the results of these μop’s to be used earlier. The result

from the execution of a μop is forwarded and used by other

dependent μop’s.

An important microarchitecture structure, that we will refer

to in discussing hardware defenses, is the Re-Order Buffer
(ROB) shown in Fig. 1. The ROB records the instruction’s

or μop’s information as well as its execution status, such as

whether the instruction has finished its execution (Done = “1”

in the figure) and whether the instruction should be squashed

(Squash = “1”). The ROB guarantees that if an instruction

needs to be squashed, all the subsequent instructions are also

squashed. The ROB also acts as a FIFO queue to preserve

the program order so an instruction can only retire when it

reaches the head of the ROB.

Speculative execution. Speculative execution is a further

performance enhancement that allows instructions to be ten-

tatively (i.e., speculatively) executed, even when the control

flow has not been determined, or the data from memory has

not arrived. For instance, when the processor fetches a branch

whose operand is not available, e.g., having to be read from

memory, the address of the next instruction is predicted and

fetched so that the processor does not have to stall its pipeline.

If the prediction is found to be correct later, the speculative

execution improves the performance by executing code on the

correct path in advance. However, if the prediction is found

to be incorrect, the processor needs to flush the pipeline so

that the results of the speculatively executed instructions are

discarded. This is called a squash, where the processor restores

the architectural state, e.g., the register values visible to the

software, as if the mispredicted instructions have not executed.

Hardware predictors. From the microarchitecture perspec-

tive, speculative execution happens because hardware predic-

tors are present that allow tentative forward progress even

when an instruction has unresolved dependencies. For con-

ditional branch instructions, branch predictors predict whether

the branch will be taken or not. For indirect branches, the

Branch Target Buffer (BTB) predicts the target address. For

return instructions, the Return Stack Buffer (RSB) or Return

Address Stack (RAS) predicts the address to return to after a

procedure call.

Microarchitectural state and covert channels. Microarchi-

tectural states are the states of hardware units that are not

directly accessible to the programmer or software. Even if

invisible from the software’s view, these states can impact

the execution time of certain programs and the states can be

inferred if the processor executes these programs. If one pro-

gram modifies a certain microarchitectural state with another

monitoring it, these two programs form a microarchitectural

covert channel in which the former is the sender and the latter

is the receiver. Examples include the addresses of cache lines

in various cache levels, which we describe in detail below, and

the busy status of different hardware resources.

Cache state and covert channel. One critical microarchitec-

tural state is the cache state. A cache has many cache lines

corresponding to different addresses. Since cache hits are fast,

and cache misses are slow, cache timing attacks are possible,

leaking information through observing the cache access time.

One example exploiting a cache covert channel is the flush-

109

Authorized licensed use limited to: Princeton University. Downloaded on January 20,2023 at 19:54:54 UTC from IEEE Xplore. Restrictions apply.

Out-of-order Execution

Instruction
Fetch Decode

Scheduler

ALU, Vect, …
ALU, DIV, …

Load Buffer

Store Buffer

L1 Data Cache

Reorder Buffer (ROB)
Inst Info Done Squash

op[0] 1 0
op[1] 1 1

…
op[N] 0 1

In-order Frontend

op’s
Instruction

Cache

Branch
Prediction

Unit
…

L2 Cache

Store-to-load
Forwarding

Line Fill
buffer

In-order Retire

Load port

Result
Forwarding

Fig. 1: A block diagram of a typical out-of-order processor. The contents of the ROB show a sample situation where instruction μop[0]
executed correctly, but μop[1] to μop[N] were executed speculatively and incorrectly and had to be squased.

reload technique [38], where the sender is an insider and

the receiver an outsider attacker. During the setup phase of

the covert channel, certain cache lines are flushed out of the

cache. To send a secret out, the sender accesses a secret-

dependent address, which brings back one of the flushed lines.

The receiver will later measure the time to reload each cache

line and infer whether this cache line is fetched by the sender

by observing whether it is a cache hit. The flush-reload cache

covert channel is used in most of the speculative execution

attacks published.

There are other techniques for covert communication

through cache state. In a prime-probe [39] covert channel,

the receiver first primes the cache to fill the cache with its

own cache lines. The sender then accesses certain addresses,

evicting some of the receiver’s cache lines. The receiver

can get to know which cache lines the sender accessed by

loading each cache line and observing cache misses. In a flush-
flush [40] covert channel, the receiver keeps evicting certain

addresses by executing the flush instruction. If the sender

accesses some of these addresses and brings them into the

cache, the time to flush will be longer, so the receiver can

infer information from timing the second flush.

Many other types of covert or side channels, not using

caches, nor timing, are also possible.

III. SPECULATIVE EXECUTION ATTACKS

We first present some critical attack steps that we have

identified in existing speculative execution attacks.

A. Critical Attack Steps

Although the exact workflow of an attack may vary, we

observe that they all consist of 6 critical steps. These are shown

in the right column of Fig. 2 and described below.

Setup. The Setup step sets up the initial hardware state, e.g.,

the branch predictor state for Spectre v1, so that the processor

will enter speculative execution. It also sets up the initial state

for the covert channel, e.g., flushing the shared cache lines for

a flush-reload channel.

Authorize. The attack starts with the Authorize step. The

Authorize operation performs the authorization required for

accessing a memory location or a protected register. For

speculative attacks, the speculative execution window starts

when the authorization is delayed.

Access. When the authorization is delayed, the Access step

in a speculative attack can read a secret from the cache, the

memory, a protected register or a microarchitectural buffer that

is otherwise not allowed.

Use. The Use step uses the secret to generate a secret-

dependent operation. Examples are instructions that compute

a memory address for a later load operation.

Send. The Send step alters the microarchitectural state of

the covert channel in a secret-dependent way. Even if the

access, use and send operations will all be squashed after

the authorization fails, the microarchitectural state change may

remain and can be discovered later by the receiver.

Receive. The recovery of the secret from the covert channel

by the attacker.

B. A Spectre v1 Attack Example

For concreteness, let us first consider a particular specu-

lative attack, the Spectre v1 attack. In Fig. 2, we show the

pseudo-code of the Spectre v1 attack and the RISC assembly

instructions executed during speculative execution. Lines 1-3

set up the microarchitectural state. The cache lines containing

the shared array pointed by SHAREDPtr are flushed from

caches as the preparation for the flush-reload cache covert

channel which we described in Section II. The size of the

private array pointed to by arrayPtr is also flushed so that the

load on line 4 will take a long time to finish. Also, the branch

predictor is mistrained so that the prediction of the conditional

branch in line 5 will be “not taken”. The conditional branch,

bge, in line 5 performs the authorization for the later load byte

instruction, lbu, which accesses the secret byte in line 7. Since

the conditional branch checking is delayed by the previous

load instruction in line 4, a branch predictor is invoked. Due

to the mistraining, the branch is not taken and the secret is

illegally accessed by the lbu instruction. In line 8 and 9, the

secret is then used to calculate a memory address of the next

ld instruction in line 10. This ld instruction is a covert send

110

Authorized licensed use limited to: Princeton University. Downloaded on January 20,2023 at 19:54:54 UTC from IEEE Xplore. Restrictions apply.

Pseudo-code Critical Steps

Setup microarchitectural states:
flushArray(SHAREDPtr, 256);
flush(&array_size);
mistrainPredictor();

Spectre v1 Sender:
(r2: SHAREDPtr, r3: offset to a secret, r4: arrayPtr)
ld r5, 0(&array_size)
bge r3, r5, outside
add r6, r3, r4
lbu r7, 0(r6)
slli r7, r7, 12
add r8, r2, r7
ld r9, 0(r8)

outside:

Setup

(long-latency)
Authorize

Access
Use

Send

Receiver:
for i from 0 to 255
t[i] = TimeToReload(SHAREDPtr[i*4096]);

Find the minimal t[i]
Receive

--> if (x < array_size) {

--> y = arrayPtr[x];

--> z = SHAREDPtr[y*4096];
}

1
2
3

4
5
6
7
8
9
10

11
12
13

Fig. 2: Spectre v1 attack (bypassing array bounds checking). The
assembly code and pseudo code of the attack bypass control flow
authorization by a conditional branch to access a secret. The attack
leaks an 8-bit secret through the most commonly used flush-reload
cache covert channel by loading in a cache line in the shared array
into the cache. The code in red is the transient execution that will
be squashed. The comments after the arrows show the high-level
language equivalents of the assembly code.

instruction that leaks out the secret through the cache covert

channel. In line 11-13, the receiver measures the latency to

access the shared array to find out which memory address in

the shared array was accessed by the sender. The memory

address that hits in the cache leaks the secret.

C. Other Attacks

Table II gives a listing of the speculative attacks pub-

lished to date [3]–[6], [41]–[59]. We show their Common

Vulnerabilities and Exposures (CVE) numbers, description and

publication date. All the attack variants in Table II, except for

the last speculative interference attack, introduce a new way

to bypass authorization to access the secret. The speculative

interference attack introduces a new way to change the timing

of non-speculative instructions, which adds a new dimension

to the covert Send operation.

Hardware features for malicious speculative execution. In

Fig. 3, we show the hardware features that can be exploited

to launch malicious speculative execution attacks, especially

to access a secret.

The first major category of features causing misprediction

include the conditional branch prediction, the prediction for

branch target address and the memory disambiguation. Spectre

v1 [3] attack mistrains the conditional branch for bounds

checking to read an out-of-bounds secret. Spectre v1.1 [41]

also uses misprediction for conditional branch to bypass

bounds checking but performs an out-of-bounds write during

speculative execution. Even if the write to memory will not

become visible, the write may change a jump target, e.g., the

return address, and execute an Access-Use-Send gadget (i.e.,

Attack CVE Description Date

Spectre v1 [3] 2017-5753
Speculative boundary check
bypass for read

2018.1

Spectre v1.1 [41] 2018-3693
Speculative boundary check
bypass for write

2018.7

NetSpectre [42] 2017-5753
Remote attack performing a
bounds check bypass

2018.1

Spectre v2 [3] 2017-5715 Branch target misprediction 2018.1
Spectre RSB [43], [44] 2018-15572 Return target misprediction 2018.8

Spectre SSB [45] 2018-3639
Speculative store bypass, read
stale data in memory

2018.5

Meltdown-Reg
(Spectre v3a) [46]

2018-3640
System register value leakage
to unprivileged attacker

2018.5

Lazy FP [47] 2018-3665 Leak of FPU state 2018.6
Meltdown
(Spectre v3) [4]

2017-5754
Kernel content leakage to
unprivileged attacker

2018.1

Foreshadow (L1
Terminal Fault) [5]

2018-3615 SGX enclave memory leakage 2018.8

Foreshadow-OS [6] 2018-3620 OS memory leakage 2018.8
Foreshadow-VMM [6] 2018-3646 VMM memory leakage 2018.8

Spectre v1.2 [41] N/A
Speculative write to
read-only memory

2018.7

RIDL/MLPDS [48], [49] 2018-12127 MDS leakage from load port 2019.5
RIDL/ZombieLoad/
MFBDS [48]–[50]

2018-12130 MDS leakage from line fill buffer 2019.5

Fallout/MSBDS [49], [51] 2018-12126 MDS leakage from store buffer 2019.5
TAA [52] 2019-11135 TSX Asynchronous Abort 2019.11

RIDL/MDSUM [48], [49] 2019-11091
MDS leakage from
uncacheable memory

2019.5

VRS [53] 2020-0548 Vector Register Sampling 2020.1
CacheOut/L1DES [54], [55] 2020-0549 L1D Eviction Sampling 2020.1
CROSSTALK/
SRBDS [56], [57]

2020-0543
Special Register Buffer
Data Sampling

2020.6

LVI [58] 2020-0551
Load Value Injection causing
memory disclosure

2020.3

Speculative
Interference [59]

N/A
Speculative interference on non-
speculative instructions

2020.9

TABLE II: The Speculative (Transient) Execution Attack variants.
Date is year.month of publication.

a code snippet) as we show in lines 7-10 in Fig. 2 to read and

leak a secret. NetSpectre [42] shows that the mistraining of

the conditional branch predictor can be performed remotely.

Another control-flow misprediction based attack is the Spec-

tre v2 attack [3], which injects a malicious target into the

branch target buffer (BTB) for indirect branches. Similarly, the

Spectre RSB attack [43], [44] injects wrong return addresses

into the return stack buffer (RSB) for function returns. Both

can cause information leakage by directing the control flow to

an Access-Use-Send gadget.

Memory disambiguation checks whether the value written

by a previous store instruction, which has not yet been written

back to the cache-memory system, should be forwarded to a

later load instruction that reads from the same address. In the

Speculative Store Bypass (Spectre SSB) attack, if the store

address has not been computed and the processor predicts

that the addresses of the current load and a previous store are

different, then stale data, which can be a secret, can be loaded

from the memory system to the processor and get leaked out.

The second major category of hardware features exploited

consists of an illegal access that reads a secret and forwards

it to dependent instructions before it is squashed. We call

these ”faulty access and aggressive forwarding” attacks. The

first type of attacks transiently bypasses permission checks of

special registers and delays the exception handling. Meltdown-

Reg [46] can read the system parameter stored in a system

register while LazyFP [47] leaks the stale floating-point unit

(FPU) state of a previous domain that is not cleared until first

used in a new context.

The second type of faulty access attacks transiently violate

memory access permission checking and reads illegal data

111

Authorized licensed use limited to: Princeton University. Downloaded on January 20,2023 at 19:54:54 UTC from IEEE Xplore. Restrictions apply.

Speculative Execution Vulnerability

Faulty Access & Aggressive ForwardingMisprediction

Spectre v1 [3],
Spectre v1.1 [41],
NetSpectre [42]

Conditional
Branch

Meltdown [4],
Foreshadow [5],

Foreshadow-OS [6],
Foreshadow-VMM [6],

Spectre v1.2 [41]

Memory Permission
Bypass

Register Permission
Bypass

Meltdown-Reg [46],
LazyFP [47]

Spectre v2 [3],
Spectre RSB

[43,44]

Branch Target
Address

Spectre SSB [45]

Memory
Disambiguation

LVI [58]

Value
Injection

Illegal Forwarding from
Microarchitectural Buffer

MLPDS (RIDL) [48, 49],
MFBDS (RIDL, ZombieLoad) [48-50],

MSBDS (Fallout) [49, 51],
TAA [52], MDSUM (RIDL) [48, 49],

VRS [53], L1DES (CacheOut) [54, 55],
SRBDS (CROSSTALK) [56, 57]

Microarchitectural Data Sampling
(MDS)

Fig. 3: Taxonomy of secret access (bypassed authorization and secret access steps). The third and fourth rows show the hardware mechanisms
used to trigger the transient execution. They correspond to delayed Authorize operations that are temporarily bypassed. The last row shows
the attacks that exploit these hardware features. These are listed in the same order as in Table I, from left to right.

with a memory access instruction. Meltdown [4] reads and

leaks kernel data before the execution is squashed due to

the failed supervisor permission check of the secret access.

The Foreshadow (L1 terminal fault) attack variants [5], [6]

exploit loads which do not have a valid virtual address to

physical address mapping. The address translation will abort

prematurely by returning a partially translated address. If a

secret at this incorrect address is present in the L1 cache,

it can be speculatively accessed and leaked out. The leaked

data can be a secret in an SGX enclave (Foreshadow), in

the kernel space (Foreshadow-OS) or in the virtual machine

monitor space (Foreshadow-VMM). Spectre v1.2 attack [41]

transiently bypasses the read/write permission and writes to

a read-only address. The illegal write can trigger an Access-

Use-Send gadget to leak a secret if it is a branch target.

The more recent type of attacks (in 2019 and 2020) exploit

the hardware vulnerability that some stale data, which is

stored in microarchitectural buffers can be read by a load

that will cause a fault or invoke a microcode assist [49].

The data can belong to another security domain and can be

at a different address from the address the faulting load is

accessing. This type of attack is called a microarchitectural

data sampling (MDS) attack. In an MDS attack, the victim

program first executes and accesses a secret. The secret can

be temporarily stored in a microarchitectural buffer when it

is in-flight. However, the stale secret value can be forwarded

to a faulting or microcode-assisted load issued by the MDS

attacker which then sends it out through a covert channel.

Microarchitectural buffers that have been shown to store

stale secret values include the load port, the line fill buffer

and the store buffer, which we show in Fig. 1. The load

port temporarily stores the data when it is read by a load

operation and being written into a register. The line fill

buffer stores a memory line that missed in the L1 data cache

and is being returned from the L2 cache [49]. The store

buffer stores the data and addresses of store operations to

be written to the L1 data cache. RIDL [48] leaks the secret

stored in the load port called Microarchitectural Load Port

Data Sampling (MLPDS) [49] and the line fill buffer called

Microarchitectural Fill Buffer Data Sampling (MFBDS) [49].

ZombieLoad [50] demonstrates more variants of the line fill

buffer leakage (MFBDS), whose secret access is triggered by

a microcode assist. Fallout [51] leaks the secret stored in

the store buffer called Microarchitectural Store Buffer Data

Sampling (MSBDS) [49].

A vulerability similar to MDS is the TSX Asynchronous

Abort (TAA) [52] in Intel processors. If the Intel TSX atomic

execution is aborted, uncompleted loads in the transaction may

also read a secret from the microarchitectural buffers exploited

by MDS and leak it through a covert channel.

The MDS and TAA techniques give rise to more attacks.

Uncacheable memory accesses [48], [49] can bring data into

the buffers mentioned above, which can be accessed using

MDS or TAA technqiues and cause the Microarchitectural

Data Sampling Uncacheable Memory (MDSUM) attack. The

Vector register sampling (VRS) vulnerability [53] allows part

of the previously accessed vector register values to be sent to

the store buffer and get leaked by an MSBDS-type attacker.

The CacheOut [54] or L1D eviction sampling (L1DES) vul-

nerability [55] shows that the modified data recently evicted

from the L1 data cache can be kept in the line fill buffer, which

gives an MFBDS-type attacker the chance to read and leak it.

In the CrossTalk [56] or special register buffer data sampling

(SRBDS) attack [57], the secret value read from certain special

registers can be stored in shared buffers and later propagated

to the line fill buffer. The secret can be leaked to an MFBDS-

type attacker who can even be from a different core. We refer

to all the above MDS-related attacks as MDS attacks in Fig. 3.

The other type of microarchitectural buffer related attack,

i.e., the load value injection (LVI) attacks [58], explore inject-

ing values to the victim domain to trigger speculation. The

attacker first places his malicious data in the microarchitectural

buffers and lets the victim access the malicious value through

the MDS vulnerabilities. If the malicious value is used by the

victim as an address to read a secret or a jump address to an

Access-Use-Send gadget, the secret can be leaked.

D. Covert Channels for Send Operation

Microarchitectural covert channels are used to transmit the

secret that has been illegally accessed. In Fig. 4, we show three

112

Authorized licensed use limited to: Princeton University. Downloaded on January 20,2023 at 19:54:54 UTC from IEEE Xplore. Restrictions apply.

Covert Sending

HybridSpeculative

Cache,
AVX, port

contention…

Speculative
Interference [59]

Non-speculative

Side-channel
Attack

Fig. 4: Different ways to leak a secret through a Send operation.
The speculative interference attack [59] achieves the final covert
Send through a non-speculative instruction.

types of covert Send operations. These are through speculative

instructions, both speculative and non-speculative instructions

(hybrid), and only non-speculative instructions. Most of the

existing speculative execution attacks are in the first category,

executing a speculative Send operation to cause a secret-

dependent state change in the covert channel that can be

recovered later by the receiver. The cache covert channel is

the most commonly used channel. Examples of other covert

channels include the execution time of AVX instructions [42],

port contention [60] and the cache way predictor [61].

The recently discovered speculative interference attack [59]

leaks the secret through non-speculative instructions by chang-

ing the timing of non-speculative instructions with the spec-

ulatively executed instructions. In Fig. 4, we characterize it

as doing a hybrid two-step covert sending. In the first step,

the speculative execution causes a secret-dependent hardware

unit usage, affecting the timing of non-speculative instructions.

In the second step, the timing information of non-speculative

instructions can leak the secret. Examples include using the

speculative 1) miss status handling register (MSHR) or 2)

execution unit contention (first step) to change the timing

of a non-speculative load (second step). Essentially, the two

examples exploit two different covert channels in the first step,

rather than the commonly used flush-reload cache channel.

If the Send operation is purely non-speculative as shown

in the last case of Fig. 4, the attack becomes a side-channel

attack, especially when both Access and Send operations are

also non-speculative. This means the program has side-channel

vulnerability that allows the secret access and the operation

causing a secret-dependent microarchitectural state change,

which is beyond the scope of speculative execution attacks.

Takeaway from attack analysis. The important observation

we make is that the critical attack steps in Section III-A hold

for all speculative execution attacks, not just for the Spectre

v1 attack. Moreover, any valid combination of delayed au-
thorization, speculative secret access and a covert channel
can form a new attack variant. Based on this characterization

of speculative attacks, we propose four defense strategies that

prevent these speculative execution attacks from succeeding.

IV. DEFENSE STRATEGIES

We propose a taxonomy of defenses depending on the attack

step prevented, shown in Fig. 5. We identify four defense

strategies, each based on a security policy:

• No Setup (Section IV-A): Setup is prevented so that either

the malicious speculative execution cannot start or the

covert channel state cannot be initialized.

• No Access without Authorization (Section IV-B): Access
cannot execute before the authorization is completed.

• No Use without Authorization (Section IV-C): Access
can execute but Use of a secret is blocked before the

authorization is completed.

• No Send without Authorization (Section IV-D): Both

Access and Use can execute but no secret can be sent,

before the secret access is authorized.

The insight about No Access without Authorization is that

while Authorize and Access may not have any data de-

pendencies, they have a security dependency [37] since an

access should not be allowed until it is authorized. Hence

the No Access without Authorization security policy prevents

the security breach. Given that Access, Use and Send are

a chain of 3 data-dependent instructions, No Use without
Authorization and No Send without Authorization defense

strategies can be understood as enforcing the protection at a

later stage to try to reduce the performance overhead.

We will describe representative defense proposals for each

of these defense strategies.

A. No Setup

There are two ways to prevent the Setup step. A defense

can prevent either the preparation of the covert channel state

or the trigger for speculative execution. Both can be achieved

with an isolation-based method shown in Fig. 5.

The isolation method requires partitioning of otherwise

shared hardware resources or flushing of a hardware resource

if it is time-multiplexed. DAWG [15] partitions the cache lines

using the domain id’s and guarantees no interference through

the cache replacement state. Context-sensitive fencing [17]

implements a new micro-op to flush the branch target buffers

(BTB) or return stack buffer (RSB) state when entering a

different protection domain. MI6 [25] partitions the shared

DRAM and last-level cache (LLC) resources between trusted

enclaves and untrusted software and enables clearing any per-

core states such as branch predictors, L1 caches and TLBs,

with a new instruction. IRONHIDE [26] implements a similar

partitioning of LLC and memory resources and also a core-

level partitioning by reserving certain cores for a security-

critical program to reduce the cost of clearing per-core states.

Encryption can be applied to hardware states to implement

an obfuscation-based isolation defense. Predictor state encryp-

tion [28] encrypts the BTB or RAS state with a context-

specific secret when storing a new target address and decrypts

it for usage. This prevents the attacker in another process

from injecting malicious jump/return targets, without requiring

the clearing of microarchitectural states. Such context-specific

encryption can also be considered a form of isolation.

However, note that these No Setup defenses usually require

that the victim and the attacker come from different security

domains, as the isolation-based method uses the domain in-

formation to allocate resources and enforce access control and

113

Authorized licensed use limited to: Princeton University. Downloaded on January 20,2023 at 19:54:54 UTC from IEEE Xplore. Restrictions apply.

Hardware Defenses of Speculative Execution Attacks

No Access w/o
Authorization

No Use w/o
Authorization No Send w/o Authorization

CSF-
LFENCE[17]

CondSpec[16],
EfficientSpec

[20],
DOLMA [33]

Delay Roll-back

Cleanup-
Spec[24]

NDA[23],
SpectreGuard[18],

ConTExT[27],
SpecShieldERP[21]

Basic No Use No Sensitive
Use

SpecShield-
ERP+[21],
STT[22]

CSF-
CFENCE[17]

Prevent

InvisiSpec[14],
SafeSpec[19],

MuonTrap[29]

Shadow
Structure

No Setup

Isolation

DAWG [15],
CSF-clearing [17],

MI6 [25],
IRONHIDE[26],

Predictor state encryption [28]

Isolation

DAWG [15],
CSF-clearing [17],

MI6 [25],
IRONHIDE[26]

Performance-enhancing features for hardware defenses: SDO [30], Clearing the Shadows [31], InvarSpec [32]

Fig. 5: Taxonomy of hardware defenses. The second row shows the 4 defense strategies. The third row shows the child defense categories
under each strategy. The fourth row shows the proposed hardware defenses belonging to each defense category.

Out-of-order Execution

Scheduler

ALU…

Cache/Mem

In-order
Retire

Inst
Fetch Decode

In-order Frontend
Op’s
…

fence
ld
…

Load/Store
Buffer

older_access
…

fence
ld

Fig. 6: Inserting fences to stall the speculative execution of loads.

the encryption-based method uses the same key for a certain

domain. The same-domain attack, e.g., NetSpectre [42], cannot

be mitigated with these techniques.

B. No Access Without Authorization

To prevent a security breach, we should prevent the se-

cret Access before the authorization is completed. Software

solutions can insert memory barriers such as the lfence in

the x86 ISA to defeat speculative attacks, but they require

re-compilation or post-processing of the binary [62]. Also,

significant performance overhead is incurred with these soft-

ware fences. A hardware defense can also prevent the secret

access by automatically inserting a fence micro-op. Hardware-

inserted fences have the advantage of non-intrusive protection

and much lower overhead.

The Context-Sensitive Fencing (CSF) defense proposed

in [17] is shown in Fig. 6. It uses customizable decoding

from software instructions to hardware micro-operations to

insert hardware fences after a conditional branch instruction

before a subsequent load instruction. To defeat the Spectre v1

attack, CSF-LFENCE can place a fence between these two

instructions. As no secret data is accessed in the first place,

the No Access without Authorization defense provides strong

protection that is independent of the type of covert channel

used to exfiltrate the data.

C. No Use without Authorization

Hardware defenses can allow the secret access but prevent

its usage in subsequent execution. This improves performance

Out-of-order Execution

Inst
Fetch Decode

Scheduler
ALU…

ALU…

Load Buffer

Store Buffer

Cache/Memory

In-order RetireIn-order
Frontend ROB

Inst Info Done Squash Auth
op[0]
op[1]

…
op[N]

Load port

Result
Forwarding

Fig. 7: Hardware modification to support No Use without Authoriza-
tion.

but still blocks the Use step in a speculative attack. We call it

the No Use without Authorization defense strategy.

This strategy requires modifying the feed-forward logic

which forwards the result of a producer instruction to de-

pendent instructions so that forwarding is allowed to later

operations only when the producer instruction is completed

and authorized. This can be achieved when both the Done
and the new Auth bits are set in the ROB in Fig. 7.

There are two subclasses of defenses in this category. The

“Basic No Use” defenses simply prevent the data forwarding

to any dependent instructions. The “No Sensitive Use” de-

fenses improve the performance by only preventing the data

forwarding to sensitive instruction types such as memory load

instructions, which can be used to send cache covert channel

signals, or for other known covert channels.

Basic no use. An example of the “Basic No Use” de-

fense strategy is the NDA (Non-speculative Data Access)

defense proposal [23]. This has many variants, based on which

authorization checks and Access operations are considered.

NDA-Permissive checks the resolution of conditional branch

conditions and indirect branch addresses (first 2 columns

in Fig. 3). NDA-Permissive-BR (Bypass Restriction) checks

these and also checks memory address disambiguation (the

third column in Fig. 3). These two NDA-Permissive variants

protect accesses from the cache and memory and from special

registers like control registers.

There are also two NDA-Strict variants: NDA-Strict and

NDA-Strict-BR. These are like their NDA-Permissive coun-

terparts, except that they also prevent accesses of secrets that

114

Authorized licensed use limited to: Princeton University. Downloaded on January 20,2023 at 19:54:54 UTC from IEEE Xplore. Restrictions apply.

are already in the general-purpose registers.

The NDA-Load variant further adds hardware to prevent the

data forwarding from an Access operation until the instruction

is retired, i.e., the instruction is at the head of the ROB

queue and has its Authorization completed. This covers the

first 5 columns in Fig. 3. Since NDA was proposed before

the last two columns in Fig. 3, it is not known if it covers

the attacks that do illegal forwarding from microarchitectural

buffers. NDA-Full is the most secure variant, combining NDA-

Strict-BR with NDA-Load.

SpectreGuard [18] is another example of a “Basic No

Use” defense. While it only discusses Spectre v1, its key

contribution is providing the Linux OS interface to identify

sensitive memory pages and mark these as non-speculative.

Only data accessed from sensitive pages will not be forwarded

during speculative execution, reducing the performance over-

head. ConTExT [27] implements similar software support to

mark secret data, which should not be used in speculative

execution, as non-transient. In addition, ConTExT allows taint

propagation in the processor to also taint the values derived

from non-transient values. These tainted values cannot be used

in speculative execution that happens in the future.

SpecShield [21] also implements a “Basic No Use” defense.

It protects any secret in the memory which can be read

by load operations. SpecShieldERP prevents data forwarding

until the authorization of control flow, memory disambiguation

and memory-related permission checking is completed and no

violation is found.

No sensitive use. Another variant in [21], SpecshieldERP+,

implements a “No Sensitive Use” defense policy by consid-

ering the same authorization of control-flow, memory disam-

biguation authorization and memory permission checking as

SpecshieldERP, but only preventing the data forwarding to

sensitive instructions like loads and branches.

Speculative Taint Tracking (STT) [22] is another example

of the “No Sensitive Use” policy. STT further considers the

covert channels due to implicit information flows and marks

loads, branches, stores and data-dependent arithmetic instruc-

tions as being sensitive. To improve the performance, STT

implements an efficient taint tracking mechanism to untaint

authorized operations. STT has two variants, STT-Spectre and

STT-Future. STT-Spectre considers only the authorization of

control flow while STT-future tries to include potential future

speculative attacks by deeming a load operation safe only

when it reaches the head of the ROB or cannot be squashed.

D. No Send without Authorization

The No Send without Authorization defenses prevent send-

ing a signal on a covert channel so that the secret cannot

be recovered by the attacker, who is the receiver of the covert

channel. This signal is sent by changing the microarchitectural

state. The defenses under this strategy are usually specific to

one or multiple covert channels. Below, we describe five ways

to achieve this goal. Although related defense proposals have

considered different sets of covert channels, the cache covert

channel is the main target that is addressed by all defenses.

Hence, we consider specifically the memory load instructions,

which change the cache state, to explain these covert channels.

Delay state change. The processor can delay the execution of

a load when it needs to modify the cache state. An example is

the Conditional Speculation (CondSpec) defense [16], where

an unauthorized memory load that hits in the cache can read

the data and complete its execution. However, a load that has

a cache miss is held up to be re-issued later.

The Efficient Invisible Speculative execution (EfficientSpec)

defense [20] also implements this “delay on miss” mechanism

while adding a value predictor to provide a predicted value

upon a cache miss. This is compared with the real value after

the authorization is completed.

The DOLMA defense [33] addresses a broader scope of

covert channels including not only data caches but also TLBs,

instruction caches and hardware predictor state covert chan-

nels. It delays both explicit state changes and the changes

caused by implicit secret-dependent execution flow and by

resource contention. DOLMA considers stores as well as loads

as the Send operation.

Prevent state change. The hardware can allow a speculative

load to read the data but prevent the cache state change by

making the load uncacheable.

Context-sensitive fencing [17], with some variants imple-

menting No Access without Authorization (Section IV-B), also

provides a new type of fence, CFENCE, to implement No Send
without Authorization. A load can execute before a previous

CFENCE but it will be converted to a non-cacheable load

when it causes a cache miss. This allows the data to be read

while preventing the cache state change. The defense variant

placing a CFENCE before every load is denoted by “CSF-

CFENCE” in Fig. 5.

Store speculative state in shadow structures. Visible cache

state can be changed only on a successful authorization, by

adding a shadow structure to hold the speculatively accessed

cache lines.

InvisiSpec [14] prevents the modification of the cache state,

including the cache coherence state in the multiprocessor

system, by extending the processor with a speculative buffer

to store the speculatively accessed data. If the authorization

is completed and verified, each speculative load will issue

a second access to the same address and cause safe cache

state change. If the authorization is completed but rejected,

the load is squashed, and no modification is made to the

cache state. One InvisiSpec variant, InvisiSpec-Spectre, deems

a load unauthorized until all the control-flow predictions are

verified. The other variant, InvisiSpec-Futuristic, deems a load

unauthorized until it reaches the head of the reorder buffer

(ROB) or it cannot be squashed.

The SafeSpec defense [19] implements a similar shadow

buffer to prevent the modification of both cache and translation

lookaside buffer (TLB) states. The cache coherence state is not

protected by SafeSpec.

MuonTrap [29] adds the filter caches as the shadow buffers

for I-cache, D-cache and TLB. The speculatively accessed

115

Authorized licensed use limited to: Princeton University. Downloaded on January 20,2023 at 19:54:54 UTC from IEEE Xplore. Restrictions apply.

Feature Enhanced Defense Category Benchmark Overhead
Before After

SDO [30] STT [22] No Use SPEC2017 About 22% 10.05%
ClearShadow
[31]

Delay on miss
[20]

No Send SPEC2006
9% faster than basic
delay-on-miss

InvarSpec
[32]

fence [14] No Access
SPEC2006 199.3% 101.9%
SPEC2017 195.3% 108.2%

Delay on miss
[16], [20]

No Send
SPEC2006 46.1% 22.3%
SPEC2017 39.5% 24.4%

InvisiSpec [14] No Send
SPEC2006 18.0% 9.6%
SPEC2017 15.4% 10.9%

TABLE III: The improvement in performance overhead by ap-

plying SDO, ClearShadow and InvarSpec to existing defenses.

entries are only stored in these and get cleared upon security

domain switches. A key difference from previous work is

that MuonTrap allows non-sensitive modification to the cache

coherence state. In a MESI protocol, a speculative access

can only be fetched in shared state and any sensitive action

changing another cache line from M or E state to S or I state

is delayed until it is authorized.

Restore state change (Roll-back). The hardware can allow

the cache state change during speculative execution but restore

the old cache state if the authorization fails.

CleanupSpec [24] prevents a speculative execution attack

from modifying the cache state by restoring the cache state

when the speculation is found to be wrong. Before the au-

thorization is completed, CleanupSpec allows bringing new

cache lines into the cache during speculative execution, but

extends each memory request with its side-effect fields to track

which cache line is fetched into the cache and which cache

line is evicted from the L1 data cache, due to this unauthorized

request. If a memory request needs to be squashed, a request is

sent to invalidate any new cache line fetched during speculative

execution, and bring back any cache line evicted speculatively

from the L1 data cache. The L2 and last-level caches in

CleanupSpec implement address encryption [63] to prevent

eviction-based information leakage.

Isolation of states between security domains. Assuming

that the sender and the receiver are from different security

domains, some isolation-based defenses that prevent Setup can

also prevent the attacker from receiving the covert signaling.

For example, the clearing of the branch predictor state can

prevent mistraining in the Setup phase and also prevent the

leakage through covert sending [64]. Hence, a defense can

prevent two steps as a No Setup defense and a No Send without
Authorization defense.

E. Reducing Overhead of Defenses

Techniques have been proposed to reduce the performance

overhead of defenses described earlier. Table III shows the

performance improvements they achieve.

Speculative Data-Oblivious Execution (SDO) [30] allows

an instruction, which may depend on a secret, to execute. For

instance, a speculative load can access certain cache levels

without making any state changes and the performance is

improved if the data is found. SDO can be integrated with

STT [22].

Clearing the Shadows (ClearShadow) [31] improves the per-

formance by accelerating the computation of branch conditions

Strategy Defense Platform
Performance
Overhead (%)

No Setup &
No Send

DAWG [15] Zsim [65] 0 ∼15
MI6 [25] RiscyOO [66] 16.4

IRONHIDE [26]
Tilera Tile-Gx72
processor [67]

-20
(Compared to an
SGX-like baseline)

No Access CSF-LFENCE [17] GEM5 [68] 48

No Use

NDA [23] GEM5 [68] 10.7 ∼125
SpectreGuard [18] GEM5 [68] 8, 20

ConTExT [27]
Software approximation
on Intel processor

0.1 ∼71.1

SpecShieldERP(+) [21] GEM5 [68] 10, 21
STT [22] GEM5 [68] 8.5, 14.5, 24, 27

No Send

CondSpec [16] GEM5 [68] 6.8, 12.8, 53.6
EfficientSpec [20] GEM5 [68] 11 (IPC loss)
DOLMA [33] GEM5 [68] 10.2 ∼42.2
CSF-CFENCE [17] GEM5 [68] 7.7, 21
InvisiSpec [14], [69] GEM5 [68] 5, 17
SafeSpec [19] MARSSx86 [70] -3
MuonTrap [29] GEM5 [68] -5, 4
CleanupSpec [24] GEM5 [68] 5.1

TABLE IV: Performance numbers reported by existing work.

The numbers may not be directly comparable as they are

measured in different configurations. Numbers separated by

commas are for different defense variants or benchmarks.

and memory addresses so that Authorize can finish earlier.

ClearShadow moves the instructions that Authorize depends

on to the front to shorten or remove the speculation window.

ClearShadow has been used to improve a “delay-on-miss”

defense [20].

InvarSpec [32] allows some sensitive instructions to execute

earlier without protection. InvarSpec software identifies the

safe set (SS) of an instruction I which contains instructions

that are older than I but do not affect I’s input and execution.

InvarSpec hardware extension reads the SS and allows I to be

issued even if some SS instructions are not resolved. InvarSpec

can be applied to the fence-based defense, the delay-on-miss

defense and the InvisiSpec defense as we show in Table III.

F. Software-hardware Co-design

Some hardware defenses require software support. One

way is changing the application software as described above

for ClearShadow [31] and InvarSpec [32]. Another way is

modifying the system software. DAWG [15] needs the system

software to assign a proper domain ID to the protected

program so that the domain ID is not shared with any

potential attackers. Context-sensitive fencing [17] has a set

of model-specific registers (MSRs) to specify the fence type

and the insertion strategy. SpectreGuard [18] and ConTExT

[27] enable marking secret data as non-transient by using a

bit in the page table entry, which requires both compiler and

OS software modifications.

V. UNDERSTANDING PERFORMANCE OVERHEAD

A. Performance Overhead Reported by Defense Papers

TABLE IV shows the performance overhead reported by

some hardware defenses, listed according to the hardware

defense taxonomy we presented in Fig. 5. The same gem5

cycle-accurate processor simulator [68] is used by most of

the hardware defense papers. The overhead of isolation-

based defenses to prevent cross-domain Setup and Send is

mainly due to the clearing of microarchitectural states and

the partitioning of hardware resources. CSF-LFENCE [17]

116

Authorized licensed use limited to: Princeton University. Downloaded on January 20,2023 at 19:54:54 UTC from IEEE Xplore. Restrictions apply.

HW Defense

No Use w/o Auth.

NDA

Permissive Permissive+BR Strict Strict+BR Load Full

Perf. Overhead 10.7% 22.3% 36.1% 45% 100% 125%

HW Defense

No Send w/o Auth.

InvisiSpec

Spectre Futuristic

Perf. Overhead 5% 17%

HW Defense

No Use w/o Auth.

SpecShield

SpecShieldERP SpecShieldERP+

Perf. Overhead 21% 10%

(a) Performance overhead with different Authorization and Access types

(b) Different Authorization types (c) Restricting potential covert channels

TABLE V: Security-performance trade-offs of different variants
within the same work.

inserts lfence for only kernel loads but already incurs an

overhead of 48%. The No Use without Authorization defenses

differ a lot in their performance overhead as they may cover

different types of authorization (NDA), protect certain data

region (SpectreGuard), be emulated with software (ConTExT),

and prevent certain sensitive Use’s (SpecShield and STT). The

No Send without Authorization defenses generally have lower

perfromance overhead as they only address certain covert

channels, especially the cache covert channel.

We illustrate how some of the defenses trade off security

and performance. For increased security, more attacks and

vulnerabilities can be covered, and more covert channels

mitigated, but at increased performance overhead.

Increased overhead for covering more attacks. Table V(a)

shows the increase in performance overhead for the NDA [23]

defense variants to prevent more types of attacks. The “Per-

missive” variant considers the control flow authorization only

(the first two columns in Fig. 3). The “Permissive+BR (Bypass

Restriction)” variant further considers memory disambiguation

authorization (the third column in Fig. 3). “Load” (NDA-Load)

considers the first five columns in Fig. 3 by not deeming an

Access operation authorized until it is retired. A fair compar-

ison of performance overhead is from “Permissive” (10.7%),

to “Permissive+BR” (22.3%), then to “Load” (100%), since

they all protect secrets in memory and special registers.

InvisiSpec [14] provides two variants: InvisiSpec-Spectre

defends against control-flow misprediction based attacks and

InvisiSpec-Futuristic tries to defend against future attacks,

where any speculative load may pose a threat. The latter one

is more secure but has more performance overhead (17% vs.

InvisiSpec-Spectre’s 5% in Table V (b)) [69].

Access type vs. Performance trade-off. TABLE V(a) also

shows that as more types of Access are considered, the

performance overhead increases. The variant “Strict+BR” con-

siders the accesses to general-purpose registers (GPRs) in

addition to special registers and memory, which are considered

by “Permissive+BR”. The overhead increases from 22.3%

(Permissive+BR) to 45% (Strict+BR) due to the GPR access

consideration.

Mitigated covert channels vs. Performance trade-off. In

Table V (c) which compares two SpecShield [21] variants,

SpecShieldERP disallows the forwarding from a speculative

load to all instructions while SpecShieldERP+ only disallows

the forwarding to sensitive loads and branch instructions,

Fig. 8: Performance analysis of different speculative execution

defense strategies on a fast access (a) and a slow access (b).

which may be covert Send’s. SpecShieldERP+ relaxes some

of the security guarantees to reduce the performance impact

of SpecShieldERP from 21% to 10%.

B. Security-Performance Tradeoffs Considering Our Defense
Strategies

We now consider the theoretical performance overhead

reductions that might be expected, as we relax the secu-

rity policy from No Access without Authorization to No
Use without Authorization to No Send without Authorization.

These correspond to the three main categories in our defense

strategies in Fig. 5. Since speculative attacks are rare, our

goal is to compare the impact of these defense strategies on

normal (benign) speculative execution. We consider an exam-

ple benign program containing a branch instruction, a first

load instruction, an arithmetic instruction and a second load

instruction, that is data dependent on the arithmetic instruction

which is data dependent on the first load instruction. While

there may be an arbitrary number of instructions between

these 3 instructions, we show them as sequential (in Fig. 8),

to simplify the discussion. To help correlate this code with a

speculative execution attack, e.g., Spectre v1 in Fig. 2, these

4 instructions correspond to the Authorize, Access, Use and

Send operations.

We illustrate the timelines of the Authorize, Access, Use and

Send operations in Fig. 8. We consider two scenarios: a fast

secret access (Fig. 8(a)), e.g., the first load has a cache hit,

and a slow secret access (Fig. 8(b)), e.g., the first load has a

cache miss. In each scenario, we present 1) an insecure OoO

processor allowing any speculation (Unconstrained Specula-
tion); 2) a No Send without Authorization defense; 3) a No
Use without Authorization defense; 4) a No Access without
Authorization defense; and 5) a processor disabling speculation

(No Speculation).

The Access, Use and Send are a chain of three data-

dependent instructions. Therefore the Access, Use and

Send operations cannot run together. In Fig. 8(a)), the No Send
without Authorization, the No Use without Authorization, and

the No Access without Authorization strategies delay the Send,

Use and Access operations, respectively, till after the Autho-

rization is resolved. Hence they have increasing performance

overhead, showing the intrinsic performance overhead in these

117

Authorized licensed use limited to: Princeton University. Downloaded on January 20,2023 at 19:54:54 UTC from IEEE Xplore. Restrictions apply.

defense strategies. The slowest but most rigorous security

policy, No Access without Authorization, is as slow as No
Speculation, if the first load instruction (Access) immediately

follows the branch instruction, and there are no other non-

dependent instructions that can be executed in the speculation

window.

In Fig. 8(b), the slow Access (cache miss) may not be

fully covered by the delay in the Authorize operation. The

No Speculation defense still causes the longest delay, same

as the No Access without Authorization defense strategy.

The No Use without Authorization and the No Send without
Authorization defense strategies introduce shorter delay, and

can achieve the fastest performance like the Unconstrained
Speculation case.

Takeaway: In general, the No Speculation and Unconstrained
Speculation cases give the upper and lower bounds, respec-

tively, for the total execution time. The overheads of the three

defense strategies decrease from the strict security policy of

No Access without Authorization, to the more relaxed but still

secure No Use without Authorization, to the No Send without
Authorization strategies, with not much difference in overhead

between the last two strategies.

VI. PROBLEMS FOR SOME DEFENSES

Problem scenarios for isolation-based defenses The

isolation-based defenses can be used to either prevent the

Setup step (Section IV-A) or the covert Send step (Sec-

tion IV-D). These defenses can prevent the attack when the

victim and the attacker are from different security domains.

However, the mis-training can happen in the same domain

[35], [42]. The sender and the receiver of covert channel com-

munication can also be from the same domain. For instance,

in a Meltdown attack demo [71] where the secret is in the

kernel space, the sender instructions that read the secret and

send it out are in a user-level process, which also executes the

receiver’s code to reveal the secret. These special cases can

make the isolation-based defenses ineffective. For instance,

the DAWG [15] cache uses the domain ID to parition the

cache resouces and therefore, it cannot prevent the same-

domain attack where the sender and the receiver are in the

same process and have the same domain ID. Other No Send
without Authorizationdefenses may also have to be applied,

e.g., defenses following Delay, Prevent, Shadow Structure or

Roll-back in Section IV-D.

Problem with covert channel blocking defenses. The issue

with the No Send without Authorization defenses is that they

only protect against one or a few covert channels. However,

they do not restrict how secrets are illegally accessed and can

protect against new speculative execution or other attacks - but

only for the specific covert channels considered in the defense.

VII. RECOMMENDATIONS AND FUTURE WORK

Recommendation of defense strategies. From a security

perspective, preventing the Access and Use of a secret is more

critical, since all covert channels requiring secret-dependent

usage are eliminated. Between these two strategies, the No Use
without Authorization has better performance as some long-

latency loads can be performed under speculative execution,

reducing the performance overhead in benign situations.

Mitigating the aggressive forwarding of faulty access. The

faulty access attacks can read data that the current program

does not have the permission to access. Some defenses pre-

vent [17], [23] these attacks by blocking the execution or

completion of an Access operation until it is at the head

of the reorder buffer (ROB) so that any exception will be

immediately handled. We argue that for the faulty access that

violates the permission check of memory or special registers,

delaying the forwarding to any dependent instructions until its

permission check is finished is enough, i.e., a No Use without
Authorization policy.

For the illegal forwarding from microarchitectural buffers,

our suggestion is to disallow the forwarding to any faulting

memory accesses, or return a dummy value and disallow its

usage. Simply returning a dummy value without preventing its

usage is not enough. For instance, returning a dummy value

of 0 may cause the leakage of the data at address 0 if the

dummy value is speculatively used as an address.

VIII. CONCLUSIONS

In this paper, we first show how speculative execution

attacks can be classified according to what hardware features

are exploited to bypass security checks, that we call authoriza-
tions. We then show a new attack characterization based on

the critical attack steps common to all speculative execution

attacks, namely, Setup, Authorize, Access, Use, Send and Re-
ceive. We observe that the root cause of the attacks succeeding

is the bypassing of the Authorize step during speculative

execution. This attack characterization enables us to propose

the first taxonomy of defense strategies, where each strategy

prevents one of the critical attack steps of Setup, Access, Use
and Send. We show that the 20 defense proposals considered

in this paper can be categorized under at least one of these

four defense strategies, or as an overhead-reducing feature. We

describe important features in these defenses and some of their

key hardware modifications. Security-performance tradeoffs

are also discussed for defenses that propose multiple variants.

We discuss the scope of these hardware defense strategies and

show their relative performance overhead.

Future work can consider new attacks and defenses, using

and adding to our taxonomies of attacks and defenses. New

defenses can be proposed to reduce the performance overhead

and/or cover more attack types. For fair comparisons, new

defenses should compare their performance with those that

target the same set of exploited vulnerabilities, secret accesses

and covert channels.

Acknowledgements. This work was supported in part by

NSF SaTC #1814190, SRC Hardware Security #2844 and a

Qualcomm Faculty Award for Prof. Lee. We thank Shuwen

Deng and Jakub Szefer for help with initial performance

numbers.

118

Authorized licensed use limited to: Princeton University. Downloaded on January 20,2023 at 19:54:54 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] “Intel SGX,” https://software.intel.com/content/www/us/en/develop/
documentation/sgx-developer-guide/top.html.

[2] “Arm tee,” https://www.arm.com/why-arm/technologies/
trustzone-for-cortex-a/tee-reference-documentation.

[3] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher et al., “Spectre attacks: Exploit-
ing speculative execution,” in 2019 IEEE Symposium on Security and
Privacy (SP), 2019.

[4] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and
M. Hamburg, “Meltdown: Reading kernel memory from user space,”
in 27th USENIX Security Symposium, 2018. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp

[5] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the Intel SGX kingdom with transient out-of-order
execution,” in 27th USENIX Security Symposium, 2018.

[6] O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, R. Strackx, T. F. Wenisch, and Y. Yarom, “Foreshadow-
NG: Breaking the virtual memory abstraction with transient out-of-order
execution,” Technical report, 2018, see also USENIX Security paper
Foreshadow [5].

[7] “Intel analysis of speculative execution side channels,”
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/
Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf, 2018.

[8] “Arm cache speculation side-channels,” https://developer.arm.com/
support/arm-security-updates/speculative-processor-vulnerability/
download-the-whitepaper, 2018.

[9] “Deep dive: Indirect branch restricted speculation,” https:
//software.intel.com/security-software-guidance/deep-dives/
deep-dive-indirect-branch-restricted-speculation, 2018.

[10] “Retpoline: A branch target injection mitigation,” https:
//software.intel.com/security-software-guidance/api-app/sites/default/
files/Retpoline-A-Branch-Target-Injection-Mitigation.pdf?source=
techstories.org, 2018.

[11] “A year with spectre: a v8 perspective,” https://v8.dev/blog/spectre,
2019.

[12] “What spectre and meltdown mean for webkit,” https://webkit.org/blog/
8048/what-spectre-and-meltdown-mean-for-webkit/, 2018.

[13] “The chromium projects: Mitigating side-channel attacks,” https://www.
chromium.org/Home/chromium-security/ssca, 2018.

[14] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Tor-
rellas, “Invisispec: Making speculative execution invisible in the cache
hierarchy,” in The 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2018.

[15] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“Dawg: A defense against cache timing attacks in speculative execution
processors,” in The 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2018.

[16] P. Li, L. Zhao, R. Hou, L. Zhang, and D. Meng, “Conditional spec-
ulation: An effective approach to safeguard out-of-order execution
against spectre attacks,” in 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2019.

[17] M. Taram, A. Venkat, and D. Tullsen, “Context-sensitive fencing:
Securing speculative execution via microcode customization,” in The
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019. [Online]. Available: https:
//doi.org/10.1145/3297858.3304060

[18] J. Fustos, F. Farshchi, and H. Yun, “Spectreguard: An efficient
data-centric defense mechanism against spectre attacks,” in The 56th
Design Automation Conference (DAC), 2019. [Online]. Available:
https://doi.org/10.1145/3316781.3317914

[19] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Pono-
marev, and N. Abu-Ghazaleh, “Safespec: Banishing the spectre of a
meltdown with leakage-free speculation,” in The 56th Design Automa-
tion Conference (DAC), 2019.

[20] C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Själander,
“Efficient invisible speculative execution through selective delay
and value prediction,” in The 46th International Symposium on
Computer Architecture (ISCA), 2019. [Online]. Available: https:
//doi.org/10.1145/3307650.3322216

[21] K. Barber, A. Bacha, L. Zhou, Y. Zhang, and R. Teodorescu, “Spec-
shield: Shielding speculative data from microarchitectural covert chan-
nels,” in The 28th International Conference on Parallel Architectures
and Compilation Techniques (PACT), 2019.

[22] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and
C. W. Fletcher, “Speculative taint tracking (stt): A comprehensive
protection for speculatively accessed data,” in The 52nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2019. [Online]. Available: https://doi.org/10.1145/3352460.3358274

[23] O. Weisse, I. Neal, K. Loughlin, T. F. Wenisch, and B. Kasikci,
“Nda: Preventing speculative execution attacks at their source,” in The
52nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2019. [Online]. Available: https://doi.org/10.1145/3352460.
3358306

[24] G. Saileshwar and M. K. Qureshi, “Cleanupspec: An ”undo” approach
to safe speculation,” in The 52nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2019. [Online]. Available:
https://doi.org/10.1145/3352460.3358314

[25] T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, Arvind, and S. Devadas,
“Mi6: Secure enclaves in a speculative out-of-order processor,” in The
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
2019. [Online]. Available: https://doi.org/10.1145/3352460.3358310

[26] H. Omar and O. Khan, “Ironhide: A secure multicore that efficiently
mitigates microarchitecture state attacks for interactive applications,” in
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2020.

[27] M. Schwarz, M. Lipp, C. Canella, R. Schilling, F. Kargl, and D. Gruss,
“Context: A generic approach for mitigating spectre,” in The 27th Annual
Network and Distributed System Security Symposium (NDSS’20), San
Diego, CA, USA, 2020.

[28] B. Grayson, J. Rupley, G. Z. Zuraski, E. Quinnell, D. A. Jimnez,
T. Nakra, P. Kitchin, R. Hensley, E. Brekelbaum, V. Sinha, and
A. Ghiya, “Evolution of the samsung exynos cpu microarchitecture,”
in The ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), 2020.

[29] S. Ainsworth and T. M. Jones, “Muontrap: Preventing cross-domain
spectre-like attacks by capturing speculative state,” in The ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA),
2020.

[30] J. Yu, N. Mantri, J. Torrellas, A. Morrison, and C. W. Fletcher,
“Speculative data-oblivious execution: Mobilizing safe prediction for
safe and efficient speculative execution,” in The ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA), 2020.

[31] K.-A. Tran, C. Sakalis, M. Själander, A. Ros, S. Kaxiras, and
A. Jimborean, “Clearing the shadows: Recovering lost performance
for invisible speculative execution through hw/sw co-design,” in
The ACM International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2020. [Online]. Available: https:
//doi.org/10.1145/3410463.3414640

[32] Z. N. Zhao, H. Ji, M. Yan, J. Yu, C. W. Fletcher, A. Morrison, D. Mari-
nov, and J. Torrellas, “Speculation invariance (invarspec): Faster safe
execution through program analysis,” in The 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2020.

[33] K. Loughlin, I. Neal, J. Ma, E. Tsai, O. Weisse, S. Narayanasamy,
and B. Kasikci, “DOLMA: Securing speculation with the principle
of transient non-observability,” in 30th USENIX Security Symposium
(USENIX Security 21), 2021. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity21/presentation/loughlin

[34] “Consumption of speculative data bar-
rier,” https://msrc-blog.microsoft.com/2018/03/15/
mitigating-speculative-execution-side-channel-hardware-vulnerabilities.

[35] C. Canella, J. V. Bulck, M. Schwarz, M. Lipp, B. von Berg,
P. Ortner, F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic
evaluation of transient execution attacks and defenses,” in 28th
USENIX Security Symposium, 2019. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity19/presentation/canella

[36] W. Xiong and J. Szefer, “Survey of transient execution attacks and their
mitigations,” ACM Computing Surveys, 2021.

[37] Z. He, G. Hu, and R. Lee, “New models for understanding and rea-
soning about speculative execution attacks,” in 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), 2021.

[38] Y. Yarom and K. Falkner, “Flush+reload: A high resolution,
low noise, l3 cache side-channel attack,” in 23rd USENIX

119

Authorized licensed use limited to: Princeton University. Downloaded on January 20,2023 at 19:54:54 UTC from IEEE Xplore. Restrictions apply.

Security Symposium, 2014. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity14/technical-sessions/presentation/yarom

[39] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and counter-
measures: The case of aes,” in Topics in Cryptology – CT-RSA 2006,
D. Pointcheval, Ed., 2006.

[40] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+flush: A fast
and stealthy cache attack,” in Detection of Intrusions and Malware, and
Vulnerability Assessment, J. Caballero, U. Zurutuza, and R. J. Rodrı́guez,
Eds., 2016.

[41] V. Kiriansky and C. Waldspurger, “Speculative buffer overflows: Attacks
and defenses,” arXiv preprint arXiv:1807.03757, 2018.

[42] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss, “Net-
spectre: Read arbitrary memory over network,” in European Symposium
on Research in Computer Security, 2019.

[43] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre returns! speculation attacks using the return stack buffer,”
in 12th USENIX Workshop on Offensive Technologies (WOOT 18),
2018. [Online]. Available: https://www.usenix.org/conference/woot18/
presentation/koruyeh

[44] G. Maisuradze and C. Rossow, “Ret2spec: Speculative execution using
return stack buffers,” in The 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018. [Online]. Available:
https://doi.org/10.1145/3243734.3243761

[45] J. Horn, “Speculative execution, variant 4: Speculative store
bypass, 2018,” URl: https://bugs.chromium.org/p/project-
zero/issues/detail?id=1528, 2018.

[46] “Spectre v3a (rsre),” https://www.intel.com/content/www/us/en/
security-center/advisory/intel-sa-00115.html, 2018.

[47] “Lazy fp,” https://www.intel.com/content/www/us/en/security-center/
advisory/intel-sa-00145.html, 2018.

[48] S. Van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “Ridl: Rogue in-flight data load,”
in 2019 IEEE Symposium on Security and Privacy (SP), 2019.

[49] “Microarchitectural data sampling,” https://
software.intel.com/content/www/us/en/develop/articles/
software-security-guidance/technical-documentation/
intel-analysis-microarchitectural-data-sampling.html, 2019.

[50] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “Zombieload: Cross-privilege-boundary data
sampling,” in The 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019.

[51] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar et al., “Fallout: Leaking
data on meltdown-resistant cpus,” in The 2019 ACM SIGSAC Conference
on Computer and Communications Security, 2019.

[52] “TAA,” https://software.intel.com/content/www/us/en/
develop/articles/software-security-guidance/advisory-guidance/
intel-tsx-asynchronous-abort.html, 2019.

[53] “VRS,” https://software.intel.com/content/www/us/en/develop/articles/
software-security-guidance/advisory-guidance/vector-register-sampling.
html, 2020.

[54] S. van Schaik, M. Minkin, A. Kwong, D. Genkin, and Y. Yarom,
“Cacheout: Leaking data on intel cpus via cache evictions,” in 2021
IEEE Symposium on Security and Privacy (SP), 2021.

[55] “L1d eviction sampling,” https://software.intel.com/content/www/
us/en/develop/articles/software-security-guidance/advisory-guidance/
l1d-eviction-sampling.html, 2020.

[56] H. Ragab, A. Milburn, K. Razavi, H. Bos, and C. Giuffrida, “Crosstalk:
Speculative data leaks across cores are real,” in 2021 IEEE Symposium
on Security and Privacy (SP), 2021.

[57] “Special register buffer data sampling,” https://software.intel.com/
content/www/us/en/develop/articles/software-security-guidance/
technical-documentation/special-register-buffer-data-sampling.html,
2020.

[58] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lippi, M. Minkin,
D. Genkin, Y. Yarom, B. Sunar, D. Gruss, and F. Piessens, “Lvi:
Hijacking transient execution through microarchitectural load value
injection,” in 2020 IEEE Symposium on Security and Privacy (SP), 2020.

[59] M. Behnia, P. Sahu, R. Paccagnella, J. Yu, Z. N. Zhao, X. Zou,
T. Unterluggauer, J. Torrellas, C. Rozas, A. Morrison et al., “Specu-
lative interference attacks: Breaking invisible speculation schemes,” in
The 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2021.

[60] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
B. Falsafi, M. Payer, and A. Kurmus, “Smotherspectre: exploiting spec-
ulative execution through port contention,” in The 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019.

[61] M. Lipp, V. Hažić, M. Schwarz, A. Perais, C. Maurice, and
D. Gruss, “Take a way: Exploring the security implications of
amd’s cache way predictors,” in The 15th ACM Asia Conference on
Computer and Communications Security, 2020. [Online]. Available:
https://doi.org/10.1145/3320269.3384746

[62] “Speculative execution side channel mitigations,” https:
//software.intel.com/content/dam/develop/external/us/en/documents/
336996-speculative-execution-side-channel-mitigations.pdf, 2018.

[63] M. K. Qureshi, “Ceaser: Mitigating conflict-based cache attacks via
encrypted-address and remapping,” in The 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2018.

[64] D. Evtyushkin, R. Riley, N. Abu-Ghazaleh, and D. Ponomarev,
“Branchscope: A new side-channel attack on directional branch pre-
dictor,” in The Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems, 2018.
[Online]. Available: https://doi.org/10.1145/3173162.3173204

[65] D. Sanchez and C. Kozyrakis, “Zsim: Fast and accurate
microarchitectural simulation of thousand-core systems,” in The 40th
Annual International Symposium on Computer Architecture (ISCA),
2013. [Online]. Available: https://doi.org/10.1145/2485922.2485963

[66] S. Zhang, A. Wright, T. Bourgeat, and A. Arvind, “Composable building
blocks to open up processor design,” in The 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2018.

[67] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. Brown III, and A. Agarwal, “On-chip
interconnection architecture of the tile processor,” IEEE Micro, vol. 27,
no. 5, 2007.

[68] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, 2011.
[Online]. Available: https://doi.org/10.1145/2024716.2024718

[69] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. W. Fletcher, and
J. Torrellas, “Correction: Invisispec: Making speculative execution
invisible in the cache hierarchy,” 2019. [Online]. Available: https:
//iacoma.cs.uiuc.edu/iacoma-papers/corrected micro18.pdf

[70] A. Patel, F. Afram, and K. Ghose, “Marss-x86: A qemu-based micro-
architectural and systems simulator for x86 multicore processors,” in 1st
International Qemu Users’ Forum, 2011.

[71] “Meltdown proof-of-concept,” https://github.com/IAIK/meltdown, 2019.

120

Authorized licensed use limited to: Princeton University. Downloaded on January 20,2023 at 19:54:54 UTC from IEEE Xplore. Restrictions apply.

