An Analysis of Protists in Pacific Oxygen Deficient Zones: Implications 1 2 for *Prochlorococcus* and N₂ producing bacteria 3 Clara A. Fuchsman^{1*}, Luca Cherubini², Matthew D. Hays¹ 4 5 1) University of Maryland Center for Environmental Science Horn Point Laboratory, Cambridge MD 21613 6 7 2) Maryland Sea Grant College, College Park, MD 20740 8 9 10 *Corresponding author: Clara A. Fuchsman 11 University of Maryland Center for Environmental Science Horn Point Laboratory, 12 13 2020 Horns Point Rd 14 Cambridge MD 21613 cfuchsman@umces.edu 15 (410) 221-8382 (office) 16 17 Running title: Protists in Pacific Oxygen Deficient Zones 18 19

Originality-Significance Statement

We use non-primer based methods to examine the composition and relative abundance of protists in metagenomes from the Eastern Tropical North Pacific and Eastern Tropical South Pacific Oxygen Deficient Zones. We compare this data to an oxic North Pacific station (Hawaii Ocean Time-series or HOT). It is not possible to tell from amplicon techniques if the total numbers of protists decreased in the ODZ as the results are the relative abundance of a particular 18S rDNA gene within all 18S rDNA genes. Common primers also do not amplify many important groups of protists. Our non-primer based metagenomic read placement onto phylogenetic tree method allows us to include all protists and to normalize by total reads which includes all the bacterial and archaeal genomes in its total. The goal of this work is to identify potential predators of ODZ *Prochlorococcus* and ODZ N cycling bacteria and quantify these protists in proportion to the total microbial community. We see a large drop in abundance of protists in the oxygen deficient zones and identify potential predators present there.

Abstract (200 words)

Ocean oxygen deficient zones (ODZs) host 30-50% of marine N_2 production. Cyanobacteria photosynthesizing in the ODZ create a secondary chlorophyll maximum and provide organic matter to N_2 producing bacteria. This chlorophyll maximum is thought to occur due to reduced grazing in anoxic waters. We first examine ODZ protists with long amplicon reads. We then use non-primer-based methods to examine the composition and relative abundance of protists in metagenomes from the Eastern Tropical North and South Pacific ODZs and compare these data to the oxic Hawaii Ocean Time-series in the North Pacific. We identify and quantify protists in proportion to the total microbial community. From metagenomic data, we see a large drop in abundance of fungi and protists such as choanoflagellates, radiolarians, cercozoa and ciliates in the ODZs but not in the oxic mesopelagic at HOT. Diplonemid euglenozoa were the only protists that increased in the ODZ. Dinoflagellates and foraminifera reads were also present in the ODZ though less abundant compared to oxic waters. Denitrification has been found in foraminifera but not yet in dinoflagellates. DNA techniques cannot separate dinoflagellate cells and cysts. Metagenomic analysis found taxonomic groups missed by amplicon sequencing and identified trends in abundance.

Introduction

52 Ocean oxygen deficient zones (ODZs), defined as water with <10 nM O₂ and without 53 measurable sulfide, host 30-50% of marine fixed-N loss through N₂ production (DeVries et al., 54 2013). There are two oceanic ODZs in the Pacific: the Eastern Tropical North Pacific oxygen 55 deficient zone (ETNP ODZ) offshore from Mexico and the Eastern Tropical South Pacific 56 oxygen deficient zone (ETSP ODZ) offshore from Peru and Chile. Populations of the 57 cyanobacterium *Prochlorococcus* have been found photosynthesizing in the ETNP and ETSP 58 ODZs (Goericke et al., 2000; Lavin et al., 2010; Garcia-Robledo et al., 2017; Fuchsman et al., 59 2019; Márquez-Artavia et al., 2019) creating a secondary chlorophyll a maximum whenever the 60 1% of the deeply penetrating blue irradiance overlaps with the ODZ (Cepeda-Morales et al., 61 2009). Production by these ODZ *Prochlorococcus* could provide up to 40% of the organic matter 62 to the heterotrophic community in the upper ODZ (Fuchsman et al., 2019). Experiments in the 63 coastal ETSP found higher cyanobacterial growth rates than consumption rates by 64 nanoflagellates under putatively anoxic conditions (Cuevas and Morales, 2006), and models 65 indicate that a reduction in predation in anoxic waters could allow the creation of the secondary 66 chlorophyll maximum (Zakem et al., 2020). The theory that the secondary chlorophyll maximum is due to reduced grazing rather than increased growth rates is logical given the low growth rates 67 68 of *Prochlorococcus* at these light levels (Vaulot et al., 1995; Johnson et al., 1999). A reduction 69 in predation in anoxic waters also would affect bacteria and archaea mediating N cycling in the 70 ODZ, including N₂ producers. The goal of this work is to identify potential predators of ODZ 71 *Prochlorococcus* and ODZ N cycling bacteria and quantify them in proportion to the total 72 microbial community. 73 Previous work has provided a few estimates of grazing under suboxic and anoxic 74 conditions. At a coastal station on the Chilean coast, heterotrophic nanoflagellates preyed on 75 cyanobacteria in waters with oxygen below the detection limit of the CTD sensors (Cuevas and 76 Morales, 2006). Unfortunately, it is impossible to know if these waters were truly anoxic. 77 Grazing rates per heterotrophic nanoflagellate were the same in oxic and putatively anoxic 78 waters. However, the number of heterotrophic nanoflagellates were much reduced in the 79 putatively anoxic waters, so the total cyanobacterial consumption rates were lower (Cuevas and 80 Morales, 2006). Cyanobacterial growth was balanced by grazing in oxic waters, but 81 cyanobacterial growth was 4x higher than grazing in putatively anoxic waters (Cuevas and

82 Morales, 2006). Additionally, in situ fluorescent labeled bacteria grazing experiments in the Eastern Tropical South Pacific found that grazing rates were twice as high in suboxic water (5 83 84 μM O₂) compared to anoxic (non-sulfidic) water at 150m at different stations, where 28% of 85 bacteria were grazed in suboxic water and 13% of bacteria were grazed in the anoxic water 86 (Medina et al., 2017). With the same in situ technique, grazing experiments in the Mediterranean 87 indicated similar grazing rates at 3 µM O₂ and fully oxic waters (Pachiadaki et al., 2016). Thus 88 full anoxia seems to affect predation differently than low oxygen. Altogether previous work indicates reduced but active grazing in anoxic ODZs. 89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

The majority of studies of anaerobic protists have been in sulfidic waters and the suboxic/anoxic waters overlaying them (Zuendorf et al., 2006; Behnke et al., 2010; Edgcomb, Orsi, et al., 2011; Orsi et al., 2011, 2012; Wylezich et al., 2018). Oxygen, sulfide and methane are some of the strongest variables structuring protist communities (Fenchel et al., 1995; Orsi et al., 2012; Pasulka et al., 2016). However, oxygen deficient zones contain high concentrations of nitrate and are underlain by oxic waters. Oxygen deficient zones are defined as <10 nM oxygen due to the detection limits of the STOX sensor in the environment (Revsbech et al., 2009), and thus it is difficult to determine where there is complete anoxia. Some bacteria can utilize oxygen at concentration < 10 nM (Stolper et al., 2010; Tiano et al., 2014; Bristow et al., 2016), and it is unknown if any protists can do so. Offshore ODZs are not sulfidic and do not have influxes of sulfide or other reduced chemical species, though sulfate reduction may occur in particles (Saunders et al., 2019; Raven et al., 2021). ODZs on shallow coastal shelves may have sulfide fluxes from the sediments, but these are a special case not examined here (Schunck et al., 2013; Callbeck et al., 2018; Schlosser et al., 2018). Thus, functionally anoxic ODZs are at a different redox state than sulfidic basins and are even fundamentally different from the suboxic/anoxic zones above sulfidic basins that are hugely influenced by fluxes of reduced species (manganese, ammonium, methane, reduced S) from sulfidic waters (Lam et al., 2007; Fuchsman et al., 2008, 2011, 2012; Kirkpatrick et al., 2018). Decreased grazing rates in the ODZ are in contrast to grazing experiments at sulfide boundaries, where chemoautotrophy of reduced S cause numbers of prokaryotes and also protists and grazing to be increased (Anderson et al., 2012; Pachiadaki et al., 2014). Fermentation and endosymbiont methanogenesis are processes favored by protists under sulfidic conditions (Fenchel and Finlay, 1991; Boxma et al., 2005; De Graaf et al., 2011). It would be more energetically favorable for protists living in an ODZ to utilize nitrate in a

113 dissimilatory fashion than to utilize fermentative processes. Few marine dissimilatory nitrate-114 reducing protists have been documented (Kamp et al., 2015), but some benthic foraminifera can 115 undergo denitrification or denitrification and fermentation simultaneously (Risgaard-Petersen et 116 al., 2006; Gomaa et al., 2021), some fungi and diatoms can utilize dissimilatory nitrate reduction 117 to ammonium (Stief et al., 2014; Kamp et al., 2016), and some Euglenzoa have nitrate reducing 118 endosymbionts (Edgcomb, Breglia, et al., 2011). 119 The protists of ODZs have previously been investigated with 18S rDNA short amplicon 120 sequencing (Parris et al., 2014; Duret et al., 2015; Jing et al., 2015; De La Iglesia et al., 2020). In 121 the ETNP ODZ short amplicon sequencing found Acantharea, Polycystinea radiolarians, 122 Gymnodiniales dinoflagellates, cercozoan and parasitic protists, Syndiniales and Perkinsidae, 123 (Duret et al., 2015). In the ETSP ODZ, Acantharea and Polycystinea radiolarians, 124 dinoflagellates, Syndiniales parasites, and Euglenozoa were found (Parris et al., 2014). The 125 diversity of protists has been found to be reduced under anoxic conditions (Orsi et al., 2011, 126 2012; Jing et al., 2015). Since amplicons are analyzed using relative abundance of a particular 127 18S rDNA gene within all 18S rDNA genes, it is not possible to tell if the total numbers of 128 protists decreased in the ODZ from this technique. The use of primers can bias results both 129 because some organisms are missed due to primer mismatches and because of amplification bias 130 where some species amplify more readily and thus look more abundant (Elbrecht and Leese, 131 2015). Additionally, the 18S rRNA gene is not a single copy core gene (Zhu et al., 2005; Galluzzi 132 et al., 2010; Kudryavtsev and Gladkikh, 2017; Gong and Marchetti, 2019), but it is the most 133 broadly sequenced gene used to identify protists (Guillou et al., 2013). Here, we start by forming 134 OTUs with long amplicon reads (~1600 bp) of 18S rRNA gene from the ETNP and combined 135 them with known reference sequences from the curated Protist Ribosome Database PR2 (Guillou 136 et al., 2013) to create a phylogenetic tree of protists. Then we use previously published 137 metagenomic samples from the ETNP ODZ in April 2012 (Fuchsman et al., 2017), newly 138 sequenced metagenomic samples from the offshore ETSP ODZ in July 2013 and published 139 metagenomes from Hawaii Ocean Time-series (HOT) (Luo et al., 2020) to place metagenomic 140 reads on this 18S rRNA gene phylogenetic tree in a non-primer biased manner. While our 141 analysis still provides relative abundance, we normalize by total reads, which includes all the 142 bacterial and archaeal genomes in its total. Here we identify and quantify protists found in the 143 ODZ and consider potential predators of ODZ *Prochlorococcus* and ODZ N cycling bacteria.

144	
145	Methods
146	Long read amplicon sequencing
147	Bulk water samples were collected for long read amplicon sequencing from ETNP station
148	161 (15.9°N -107.9°W) (Figure S1) at 12 depths (75m-300m) in April 2012 aboard the R/V
149	Thompson TN278 using 10 L Niskin bottles on a CTD-rosette. A Seabird SBE-43 dissolved
150	oxygen sensor and a WETLabs ECO Chlorophyll Fluorometer and a STOX sensor (Revsbech et
151	al., 2009) were attached to the rosette. Two liters of Niskin water were vacuum filtered onto a
152	0.2 μm SUPOR filter. DNA was extracted from filters using freeze thaw followed by incubation
153	with lysozyme and proteinase K and phenol/chloroform extraction as in Fuchsman et al (2017).
154	Nutrients and N ₂ gas measurements for this station and cast are previously published in
155	(Fuchsman et al., 2018). Hydrographic and nutrient data from this cruise are deposited at
156	http://data.nodc.noaa.gov/accession/0109846.
157	Extracted DNA was sent to the company Mr. DNA (www.mrdnalab.com, Shallowater
158	TX, USA) where long reads amplicon sequences were amplified using 18S rDNA primers
159	designed for anoxic protists (EK-82F (GAAACTGCG AATGGCTC) combined with 25F (5'-
160	CATATGCTTGTCTCAAAGATTAAGCCA-3') and 18S-1630Rev (5'-CGA CGG GCG GTG
161	TGT ACA A-3')) and PCR methodology from (Wylezich and Jürgens, 2011) except that
162	HotStarTaq Plus Master Mix (Qiagen, USA) was used. PCR products were purified using
163	Ampure PB beads (Pacific Biosciences). SMRTbell libraries (Pacific Biosciences) were prepared
164	following manufacturer's guidelines and sequenced using a Pac Bio Sequel. After completion of
165	initial DNA sequencing, each library underwent Circular Consensus sequencing using PacBio's
166	CCS algorithm where the forward and reverse reads from each template were aligned to identify
167	stochastic errors. Five thousand amplicons were sequenced per sample. Amplicon sequences
168	were then processed using the Mr. DNA analysis pipeline. In this pipeline, barcodes were
169	trimmed and sequences with ambiguous bases or chimeras were removed, then operational
170	taxonomic units (OTUs) were created by clustering at 97% similarity. OTUs were identified
171	using BLASTn against the PR2 database (Guillou et al., 2013). We note that several OTUs were
172	not 18S rRNA. After quality control, 332 OTUs contained >10 amplicons. These OTUs
173	represent 14,492 individual amplicons (Table S2). These OTU consensus sequences are
174	submitted to NCRI Genbank Accession numbers MW695537-MW695844

175 176 Extraction of DNA for metagenomic sequencing 177 Bulk water samples were collected from ETSP Station 9 cast 32 (13°S and 82.2°W) at 16 178 depths (80-400m) and ETSP Station 17 cast 40 (16.7°S and 79°W) at 14 depths (110m-1000m) in 179 July 2013 (Figure S1) aboard the R/V Nathaniel B. Palmer using 12 L Niskin bottles on a CTD-180 rosette. Water was sampled with a focus on the oxycline (hypoxic waters above the ODZ) and 181 the ODZ and no fully oxygenated samples were obtained. A Seabird SBE-43 dissolved oxygen 182 sensor and a WETLabs ECO Chlorophyll Fluorometer and a STOX sensor (Revsbech et al., 183 2009) were attached to the rosette. Four liters of Niskin water were filtered onto a 0.2 µm 184 SUPOR filter using a peristaltic pump. DNA was extracted from filters using freeze thaw 185 followed by incubation with lysozyme and proteinase K and phenol/chloroform extraction as in 186 Fuchsman et al (2017). Libraries were created and run on a 300 cycle NovaSeq S1 flowcell at the 187 Northwest Genomics Center (Seattle, WA). Nutrients and N₂ gas measurements for this station 188 are previously published in (Peters et al., 2018). Hydrographic and nutrient data from this cruise 189 are deposited at http://data.nodc.noaa.gov/accession/0128141. The Bioproject containing this 190 data is PRJNA704804 and individual accession numbers can be seen in Table S1 along with 191 oxygen, nitrite and nitrate concentrations. 192 Previously published ETNP metagenomes from bulk water samples (2-4 L) were 193 collected onto 0.2 µm SUPOR in April 2012 at Station 136 (17.04 °N, 106.54 °W) on R/V 194 Thompson TN278 as indicated in (Fuchsman et al., 2017). Nutrients and N₂ gas measurements 195 for this station and cast are previously published in (Fuchsman et al., 2017, 2018). These 196 sequences can be found at Bioproject PRJN350692. Previously published HOT metagenomes 197 were sampled at (22°45'N and 158°W) from bulk seawater (2-4 L) onto 0.2 µm SUPOR at 12 198 depths (5-500m) in May, August, and November 2015 (Luo et al., 2020) and can be found at 199 Bioproject PRJNA352737. Nutrient and CTD measurements for these cruises can be found in 200 (Luo et al., 2020). 201 202 Phylogenetic trees and metagenomic read placement 203 A representative of each family in the Protist Ribosomal Database PR2 version 4.14.0 204 (Guillou et al., 2013) were obtained and combined with the consensus long read amplicons for 205 each 18S rDNA OTUs with ≥10 amplicons from the ETNP St 161 and their close relatives

(Figure 3, Figure S4A). These combined full length sequences were aligned using MUSCLE (Edgar, 2004) in order to construct a nucleotide maximum likelihood phylogenetic tree with bootstrap analysis (n=100) using the General Time Reversible (GTR) nucleotide substitution model under a Gamma rate heterogeneity model with RaxML-ng (Kozlov *et al.*, 2019). Groups within the phylogenetic trees were then labeled based on the Order of the references within that group. We note that to really understand the evolution of eukaryotic protists, concatenation of multiple genes should be used. However, this 18S rRNA gene tree produced coherent phylogenetic groups which could be used for read placement. Foraminifera did not align well with the other protists, so we made a separate foraminifera tree (Figures S4B) using all the foraminifera sequences in PR2 (Guillou *et al.*, 2013).

The sequences making up the tree were then BLASTed (blastn) very broadly (evalue=10^-5) against an ETNP, ETSP, and HOT metagenomic read databases. The short reads were then aligned to the reference tree using PaPaRa Parsimony-based Phylogeny-Aware Read Alignment program 2.0 (Berger and Stamatakis, 2011). Non-overlapping paired end reads were then combined into one aligned sequence and placed on the tree by EPA-ng (Barbera et al., 2019). Placed reads have a pendant length indicating the similarity between a query read and the location it places on the tree. Previously it was determined that reads with a pendant length greater than 2 were different from the gene under examination (Fuchsman et al., 2017). Reads that placed with a pendant length greater than 2 were removed (4 reads total for the ETNP, 2 reads for the ETSP, and 1 read for the HOT samples). The remaining reads were enumerated for each taxonomic group using the assign subcommand of gappa (Czech et al., 2020). Taxonomic read counts were normalized using the method previously described (Fuchsman et al., 2019) where normalization factors for each sample were determined by dividing the number of good quality reads in a sample by the 100 m ETNP sample. The read counts were multiplied by the sample normalization factor, divided by the length of gene (1700 bp for 18S rRNA), and then multiplied by 100 in order to make visualization easier. We list both the original numbers of reads placed and the normalized reads for each taxonomic group in Table S3.

We note that we attempted to use this analysis with BioGeotraces metagenomic data (Biller *et al.*, 2018). However, not enough protist reads were present. We believe this could be because BioGeotraces metagenomes were created from 200 mL of water (Biller *et al.*, 2018), so not enough protists were sampled.

The 18S rRNA gene is not a single copy core gene. Single cell eukaryotes are known to often have multiple copies of the 18S rRNA gene (Zhu *et al.*, 2005; Galluzzi *et al.*, 2010; Kudryavtsev and Gladkikh, 2017; Gong and Marchetti, 2019). However, it is the gene with the most comprehensive protist dataset (Guillou *et al.*, 2013). Additionally, some protists, such as dinoflagellates, can have multiple copies of their entire genome (Lin, 2011). We assume in this paper that copy number within a group is fairly consistent with depth though this is more likely to be true in more narrowly-defined taxonomic groups. However, the changes between oxic and anoxic water are so large that 18S rRNA gene copy number, though important to keep in mind, does not determine our big picture conclusions.

The phylogenetic trees used to obtain hydrazine oxidoreductase (*hzo*) to represent anammox bacteria and nitrous oxide reductase (*nosZ*) to represent denitrifying bacteria abundances in the ETSP were identical to previously published trees for the ETNP (Fuchsman *et al.*, 2017). Phylogenetic read placement was used for *hzo* and *nosZ* as described above. ETNP placement results for these genes were previously successfully compared to ETNP rate and lipid abundance data (Fuchsman *et al.*, 2017).

Results and Discussion

We examined the protist community in three systems: the Eastern Tropical North Pacific oxygen deficient zone (ETNP ODZ), the Eastern Tropical South Pacific oxygen deficient zone (ETSP ODZ), and Hawaii Ocean Time-series (HOT), a long-term monitoring station representing the oxic North Pacific Ocean. For ETNP and ETSP stations, a STOX sensor was used to verify the functional anoxia of the Oxygen Deficient Zone (Tiano *et al.*, 2014; Garcia-Robledo and Revsbech, unpublished data). In the ETNP, station 161, used for long-read amplicons, and station 136, used for metagenomics, were 160 km apart (Figure S1), had similar hydrographic profiles, with the ODZ starting ~100m and remaining functionally anoxic until 750m, and both stations had a large secondary chlorophyll maximum in the upper ODZ (Figure S2). At ETNP station 136, the cyanobacteria *Prochlorococcus* was the dominant photosynthesizer in the ODZ (Fuchsman *et al.*, 2019) and oxygen production by this cyanobacteria in the ODZ was inferred from transient measurable oxygen concentrations at the secondary chlorophyll maximum (Tiano *et al.*, 2014). Nitrite had a maximum of 4.5 μM from 140m-160m (Figure 1B; Table S1). Anammox and denitrifying N₂ producing bacteria had depth

profiles offset from each other (Fuchsman et al., 2017) with anammox bacteria, as measured by phylogenetic read placement of hydrazine oxidoreductase (hzo), having a maximum at 160m and denitrifiers, as measured by phylogenetic read placement of nitrous oxide reductase (nosZ), having a maximum from 100-120m (Figure 1B). Depth profiles for all the genes in the dissimilatory N cycle in the ETNP and their various phylotypes are found in (Fuchsman et al., 2017). ETSP station 9 contained a small secondary chlorophyll maximum (Figure 1C). The ODZ in the ETSP was less thick, corresponding to 108m to 350m (Figure 1C). Thus, in the ETSP station 9, our metagenomic samples spanned the entire ODZ. Nitrite had two maxima in the ETSP St 9 ODZ corresponding to 130m (8 μM) and 260m (6 μM) (Figure 1D; Table S1; (Peters et al., 2018)). Normalized reads for anammox bacteria (hzo) had a maximum from 160m-260m and denitrifiers (nosZ) had a maximum from 110m-150m (Figure 1D). For ETSP St 17, the ODZ spanned from 140m to 350m and no secondary chlorophyll maximum was found (Figure 1E). Nitrite had a single maximum of 4 µM at 210m (Figure 1F; Table S1). Normalized reads for anammox bacteria were only found in the ODZ, but denitrifiers were found at depths with <30 μM oxygen (Figure 1F). In all three ODZs, nitrate concentrations were >10 μM (Table S1). The HOT station has a single chlorophyll maximum at 150m in May 2015, 125m in August 2015 and at 100m in November 2015 and oxygen remained >100 µM in the top 500m (Figure S3). The HOT station serves as our oxic comparison. With the goal of identifying grazers in oxygen deficient waters, we examined the protist community in offshore ETNP, offshore ETSP and oxic HOT station.

288 289

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

ETNP Long amplicon reads

290291

292

293

294

295

296

297

298

Long read amplicons were sequenced from samples from ETNP St 161 in 2012. The top of the ODZ at this station was 100 m and the secondary chlorophyll max ranged from 95-120m (Figure S2). The number amplicons of each OTU sequence found at each depth can be found in Table S2. To reduce the possibility of including sequences with errors, we only examine OTUs with >10 total amplicons and thus we are missing rare taxa. Long read amplicons indicated more Polycistinea radiolarians and sister clade Acantherea in the hypoxic oxycline and the upper ODZ than in the deep ODZ (Figure 2). Large (up to 250 μ m) mixotrophic protists such as Polycystinea radiolarians (Spumellarida and Nassalarida), known for their silica shells, and Acantharea, their

300

301

302

303

304

305

306

307

308

309

sister phyla with strontium shells can have photosynthetic endosymbionts that range from dinoflagellates to prymnesiophyte algae, to cyanobacteria (Michaels, 1991). Another dominant group of amplicons in both oxic and anoxic waters in the system was the Gymnodiniales order of dinoflagellate. This dinoflagellate group was equally important at all depths including oxic waters (Table S2). In both oxic waters and at depths in the ODZ below the secondary chlorophyll maximum, amplicons for parasitic Syndiniales and Eugregarinorida Apicomplexa were abundant (Figure 2). We remind the reader that these abundances are relative to total protist amplicons, so if total protists are reduced in the deep ODZ, as we might expect, the relative abundance of groups of protists may increase without their actual numbers increasing. All these groups have been previously found in the ETNP using short read amplicons (Duret *et al.*, 2015). We further use representatives of these long-read amplicons as reference sequences in a 18S rRNA gene phylogenetic tree (Figure 2 and S4).

310311

Depth profiles of protists from placement of metagenomic reads

312313314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

Metagenomic reads from ETNP station 136 in the and ETSP stations 9 and 17 were placed on the 18S rRNA gene phylogenetic tree, and normalized based on sequencing depth, which quantified them in proportion to the total microbial community. Fungi and the vast majority of protists, including algae Chlorophyta, Cryptophyta, Haptophyta and Stramenopiles, and heterotrophs chaonoflagellates, telonemia, radiolarians, and Acantharea had a maximum in normalized read abundance under oxygenated conditions, which then decreased sharply in anoxic waters (Figures 3 and 4 and Table S3). We remind the reader that 18S rRNA is not a single copy core gene (Zhu et al., 2005; Galluzzi et al., 2010; Kudryavtsev and Gladkikh, 2017; Gong and Marchetti, 2019). However large changes in the abundance of normalized reads likely reflect changes in abundance in any given taxa. Fungi in ETNP metagenomes have been examined in detail elsewhere (Peng and Valentine, 2021). Amoebozoa, ciliates, and cercozoan were still found at low levels in the upper ETNP ODZ, coincident with the secondary chlorophyll maximum, where oxygen is produced by photosynthesis (Tiano et al., 2014; Garcia-Robledo et al., 2017) but were nearly absent from ETSP ODZ samples. This sharp decrease in protist normalized reads in the mesopelagic is not seen at HOT, where oxygen was >100 μM (Figure 6, S3 and S5 and Table S3). In fact, in the ETSP, abundance of chaonoflagellates, fungi, and ciliate

330 reads increased again below the ODZ (Figure 5). We will focus below on those organisms who 331 were present in the ODZ. 332 From metagenomic reads, dinoflagellates appear to be reduced but still present in the 333 ODZ (Figures 4 and 5 and Table S3). However, as dinoflagellates can have a very large range of 334 copy numbers for 18S rRNA genes (Galluzzi et al., 2010), it is particularly difficult to interpret 335 these results. The Dinophycea part of our phylogenetic tree contains many dinoflagellate orders 336 without clear separation (Figure S4). Dinoflagellates in the ODZ are dominated by 337 Gymnodiniales in our long read amplicon data (Table S2) which is consistent with previous 338 amplicon data (Parris et al., 2014; Duret et al., 2015; Jing et al., 2015). However, Gymnodiniales 339 dinoflagellate amplicons also dominate in oxic waters above the ODZ (Table S2). Our 340 techniques cannot differentiate between live, dead or resting cells. Gymnodiniales dinoflagellates 341 can form cysts to survive low oxygen conditions and it has been suggested that these cysts would 342 explain their presence in the ODZ (Morquecho and Lechuga-Devéze, 2003; Jing et al., 2015; 343 More et al., 2018). Dinoflagellates cysts have been documented sinking into anoxic waters 344 (Bringué et al., 2018). No dinoflagellates have been found to utilize dissimilatory nitrate 345 reduction (Kamp et al., 2015), which would be the most energetic pathway to function in the 346 ODZ. However, that does not mean that no dinoflagellates can do so. 347 From metagenomic reads, Syndiniales parasites are also present in the ETNP and ETSP 348 ODZs (Figures 4 and 5 and Table S3). However, their read abundance also decreased in the ODZ 349 and increases again below the ODZ (Figures 4 and 5). This decrease in reads was not seen in 350 oxic waters at HOT (Figure 6). These parasites are common in previously published amplicons 351 in low oxygen, anoxic and sulfidic waters (Guillou et al., 2008; Parris et al., 2014; Duret et al., 352 2015; Torres-Beltrán et al., 2018) as well as in fully oxic waters at HOT (Ollison et al., 2021). 353 We also find low levels of Icthyospora and Apicomplexa parasites with our metagenomic data 354 (Figures 4-6, S5). All these parasites prey on both multicellular and single-cell eukaryotes 355 (Jephcott et al., 2016; Zamora-Terol et al., 2020), not on cyanobacteria or other bacteria. 356 Foraminifera are present in ETNP and ETSP ODZs, but are reduced compared to oxic 357 waters (Figures 4 and 5 and Table S3). Previous microscopic work on calciferous foraminifera 358 identified Globigerinacea in the ETNP ODZ (Davis et al., 2021). We also find Globigerinacea in 359 the ETNP ODZ and it represents the majority of the class Globothalamea (calciferous

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

387

388

389

390

foraminifera) there (Figure 4). Similar to our data, microscopic counts indicated that calciferous foraminifera decreased greatly in the ETNP ODZ (Davis et al., 2021). However, we also find soft walled Monothalamid foraminifera. These Monothalamid foraminifera have been previously studied at the oxic/anoxic transition in the Black Sea (Sergeeva et al., 2019), but have not previously been examined in ODZs. In the Black Sea redox transition zone, Monothalamid forams were more abundant that calciferous foraminifera (Sergeeva et al., 2019), which is similar to what we see here in the ODZs (Figure 4 and S6). Some benthic foraminifera can undergo denitrification (Risgaard-Petersen et al., 2006; Høgslund et al., 2008). It is assumed that foraminifera in ODZs also undergo denitrification (Davis et al., 2021). Euglenozoa are the only protists that increased in read abundance in the ODZ (Figures 4, 5), but also increased in read abundance at depth in the oxic mesopelagic at HOT (Figure 6, S5) and below the ETSP ODZ (Figure 5). The Diplonemid subgroup was the dominant euglenozoan (Figures 4, 6, S7). Marine Diplonemids are understudied heterotrophic flagellates that are common in the mesopelagic ocean (Flegontova et al., 2016) and in deep sea sediments (Schoenle et al., 2021). However, their ecological function, as bacterivores or parasites, is unknown (Flegontova et al., 2016). Many better studied Euglenozoa appear to harbor bacterial endosymbionts. A sulfidic Euglenozoa has been shown to have nitrate reducing (S-oxidizing) bacterial endosymbionts (Edgcomb, Breglia, et al., 2011) and other Euglenozoa have been found to have unidentified bacterial endosymbionts in low oxygen water (Simpson et al., 1997; Bernhard et al., 2000; Buck et al., 2000; Leander and Farmer, 2000). Endosymbiotic bacteria are certainly an evolutionary adaption of protists to sulfidic waters (Bernhard et al., 2000), and could also be an adaption to anoxic nitrate-containing waters. Further microscopic work is needed to identify if Euglenozoa in the ODZ have endosymbionts. Euglenozoa are potential predators functioning in the ODZ. Amoebozoa are understudied due to the fact that they are destroyed by commonly used 385 field collection techniques and are difficult to visualize microscopically once collected (Juhl and 386 Anderson, 2014). Additionally, common primers for amplicon sequencing do not amplify Amoebozoa (Juhl and Anderson, 2014; Parris et al., 2014; Duret et al., 2015). Nevertheless, planktonic naked amoebas have been found to be important bacterivores in other aquatic systems (Murzov and Caron, 1996; Rogerson et al., 2003; Lesen et al., 2010). Planktonic amoebas are associated with particles (Caron et al., 1982; Rogerson et al., 2003; Anderson, 2011) probably

because the amoebas cannot feed properly in their suspended form (Pickup *et al.*, 2007). Thus amoebas are unlikely and potentially unable to feed on free-living bacteria (Pickup *et al.*, 2007). The Amoebozoa found in the ODZ are likely entering the ODZ on sinking particles. Amoebozoa, ciliates, and Cercozoa have almost identical normalized read profiles from metagenomic data (Figures 4 and 5). Ciliates and Cercozoa reads were abundant on deep sinking particles at HOT (Boeuf *et al.*, 2019). We hypothesize that all three of these groups are falling into the ODZ on particles and thus may not be active.

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

391

392

393

394

395

396

397

Comparison between amplicons and metagenomic reads

The use of phylogenetic placement of metagenomic reads has added to our understanding of marine protists. Amplicon sequencing has indicated that the diversity of protists is reduced under anoxic conditions (Orsi et al., 2011, 2012; Jing et al., 2015). Altogether, the read placement method indicated a general decrease in abundance of protists in ODZ, which could not be seen by traditional amplicon methods. Placement of metagenomic reads avoided primer bias and thus allowed us to examine groups missed from the long read amplicons, such as chaonoflagellates, marine fungi, Amoebozoa, Euglenozoa, and foraminifera. All these groups appear to be important in the offshore ETNP (Figure 4). Additionally, Acantherea and radiolarians did not seem to be abundant in the ODZ by metagenomic methods, indicating that primers may overly amplify some members of these groups. However, the primer set used here for long amplicons is not typically used by the scientific community. Instead short read amplicon primer sets have been developed. Short amplicons from the V4 18S rRNA region were recently published from HOT in August 2015 (Ollison et al., 2021). We examine metagenomes from HOT in August 2015 and thus can directly compare (Figure 6). Profiles of protists amplified by the V4 primers and detected by metagenomic read placement are qualitatively similar for some groups. For example, the Stramenopile orders match between V4 amplicons and in the metagenomic profiles (Figure 6, S8) though our long read amplicons do a worse job for Stramenopile groups (Figure 2, 4). However, the short read amplicons miss Amoebozoa, Euglenozoa, and foraminifera (Ollison et al., 2021), all important members of the protist community (Figure 6). While Euglenozoa and foraminifera feature prominently in all our ODZ datasets, they are missed or undercounted from published ODZ amplicon data (Parris et al., 2014; Duret et al., 2015; Jing et al., 2015; De La Iglesia et al., 2020). Both long read and short

read amplicon methods appear to under count Polycystinea radiolarians (Figure 2, 4, 6) (Ollison *et al.*, 2021). Upon closer examination the amplicon methods appear to specifically under count Spumellarida, which is the most abundant radiolarians in these systems (Figure 4, 6, S9, Table S2, (Ollison *et al.*, 2021)).

Ciliates

Ciliates are phagotrophic protists that are covered with cilia that allow them to move and to eat and that choose their prey selectively by size with the prey size range varying between ciliates (Fenchel, 1980). Though also present under oxic conditions, ciliates are a dominant protist taxon under sulfidic conditions (Orsi *et al.*, 2012) with the type of ciliate varying greatly between oxic and sulfidic conditions (Forster *et al.*, 2012). In sulfidic waters, instead of having mitochondria which create ATP utilizing oxygen, ciliates often have degenerative mitochondria such as hydrogenosomes, anaerobic organelles which use protons as an electron acceptor and produce hydrogen via fermentation and ATP from substrate level phosphorylation (Boxma *et al.*, 2005; De Graaf *et al.*, 2011). Anaerobic ciliates also can have methanogenic archaea endosymbionts that utilize the H₂ created by the hydrogenosome to produce methane and biomass and these methanogens in turn provide organic matter to the host (Fenchel and Finlay, 1991). Other anoxic (sulfidic) protists have similar organelles to hydrogenosomes (De Graaf *et al.*, 2011). However, fermentation and methanogenesis are processes favored under sulfidic or equally reducing conditions, not in nitrate replete waters.

Ciliates have not been found to be abundant in ODZs by amplicon sequencing (Parris *et al.*, 2014; Duret *et al.*, 2015; De La Iglesia *et al.*, 2020; Figure 2), and were not found to be abundant here by non-primer biased methods (Figures 4, 5). ODZs contain high concentrations of nitrate (Table S1; see (Fuchsman *et al.*, 2018; Peters *et al.*, 2018)) and are not sulfidic. Thus, functionally anoxic ODZs are at a different redox state than sulfidic basins. It would be more energetically favorable for protists living in an ODZ to utilize nitrate in a dissimilatory fashion than to utilize fermentative processes. In support of this, dissimilatory nitrate reduction is the dominant metabolism among the bacterial community in ODZs (Lam *et al.*, 2009; Fuchsman *et al.*, 2017). However, only one freshwater ciliate, *Loxodes*, has been found to utilize dissimilatory nitrate reduction (Finlay *et al.*, 1983). Thus, we hypothesize that the low numbers of ciliates in the ODZ has to do with the adaption of most anoxic ciliates to more reduced conditions.

Predation on ODZ Prochlorococcus and N_2 producing bacteria

454

482

483

484

455 A secondary chlorophyll maximum in the ODZ that is dominated by Low Light V 456 Prochlorococcus is found at many stations in the ETNP and some stations in the ETSP (Lavin et 457 al., 2010; Garcia-Robledo et al., 2017; Fuchsman et al., 2019). Models indicate that a large 458 reduction of predation in anoxic waters allows the creation of a secondary chlorophyll maximum 459 in ODZs assuming nutrient availability (Zakem et al., 2020) despite the low growth rates of 460 Prochlorococcus at these depths and light levels (Vaulot et al., 1995; Johnson et al., 1999). The 461 data available support this theory. In the coastal ETSP, cyanobacterial growth was 4x higher than 462 grazing by heterotrophic nanoflagellates in putatively anoxic waters (Cuevas and Morales, 2006) 463 and in general grazing was reduced from suboxic to anoxic conditions (Medina et al., 2017). 464 Reduced grazing could also allow N cycling bacteria in the ODZ to have higher abundance and 465 perhaps higher N transformation rates. We saw that normalized reads for a large number of 466 bacterivore predators, such as chaonoflagellates, radiolarians, ciliates are much reduced in anoxic 467 waters (Figures 4 and 5). According to our phylogenetic read placement analysis, groups known 468 to include bacterivore predators that were found in the ODZ include dinoflagellates, Euglenozoa, 469 and foraminifera. Each of these potential predators has unknowns associated with them. 470 Dinoflagellates can have thousands of copies of the 18S rRNA gene, thus enumerating them with 471 18S rRNA is not possible (Galluzzi et al., 2010). Dinoflagellates also can form resting cysts 472 under low oxygen conditions that could sink into anoxic water (Jing et al., 2015; Bringué et al., 473 2018; More et al., 2018). Thus, the numbers of active dinoflagellates in the ODZ cannot be 474 determined by these methods. Euglenzoa of the diplonemid group remain likely bacterivore 475 predators in the ODZ. Other Euglenzoa have even been shown to have nitrate reducing 476 endosymbionts (Edgcomb, Breglia, et al., 2011). However, Flegontova et al (2016) point out that 477 we do not know if marine Diplonemids are parasites or bacterivores. Foraminifera likely can use 478 denitrification to prey on bacteria in the ODZ (Davis et al., 2021). Thus, the potential predators 479 of ODZ bacteria offshore have been identified but questions remain. 480 An alternative source of death for the ODZ *Prochlorococcus* and N₂ producing bacteria is 481 viruses. Abundant cyanophage have been found in cellular and particulate fractions in the ETNP

ODZ (Fuchsman et al., 2019, 2021). Additionally, viruses infecting N cycling bacteria in the

ODZ have also been identified in the ETSP ODZ (Gazitúa et al., 2021). Grazing causes the

organic carbon to move up the food chain, while viral lysis makes the cell's organic carbon

available to heterotrophic bacteria (Fuhrman, 1999). As *Prochlorococcus* is an important source of organic C to the upper ODZ (Fuchsman *et al.*, 2019), its mode of death can have a profound effect on biogeochemical cycling. To further understand if dinoflagellates, foraminifera and diplonemid euglenozoa are preying on ODZ *Prochlorococcus* and N cycling bacteria in the ODZ, we believe that visual examination by microscopy and grazing studies that quantify ingested prey are necessary.

Acknowledgements

We would like to thank the captain and the crew of the RV *Thompson* and RV *Palmer* as well as chief scientist A.H. Devol. These cruises on which these samples were obtained were funded by OCE-1046017 to A.H. Devol. L. Cherubini was funded by the Maryland Sea Grant REU program which in turn was funded by NSF grant OCE-1756244. This work was funded by Horn Point Laboratory.

499	Figure Captions
500	Figure 1. Setting the scene. A) Oxygen and chlorophyll a profiles for ETNP St 136 in April
501	2012. B) ETNP St 136 nitrite concentrations and normalized metagenomics reads for genes for
502	denitrification (nitrous oxide reductase; nosZ) and anammox (hydrazine oxidoreductase; hzo). C)
503	Oxygen and chlorophyll a profiles for ETSP St 9 in July 2013. D) ETSP St 9 nitrite
504	concentrations and normalized metagenomics reads for genes for denitrification and anammox.
505	E) Oxygen and chlorophyll a profiles for ETSP St 17 in July 2013, and F) ETSP St 17 nitrite
506	concentrations and genes for denitrification and anammox. Dashed lined indicate the top and
507 508	bottom of the ODZ.
509	Figure 2. 18S rRNA long read amplicons from ETNP St 161. Depths are labeled by Hypoxic
510 511	$(<60 \mu M O_2)$ or ODZ
512	Figure 3. Protist 18S rRNA bootstrapped phylogenetic tree. Colored bars indicate the labeled
513	group. Stars indicate ETNP long read amplicon OTUs. Bootstrap strength are indicated by
514	branch color where $red = >75$. An expanded version of the tree can be seen in Supplemental
515	Figure 4.
516	
517	Figure 4. 18S rRNA normalized metagenomic read depth profiles from ETNP St 136 for A)
518	protists found in oxic waters, B) protists found in oxic and anoxic waters, C) algae, and D)
519	protist parasites. Depth profiles at the level of order for E) Radiolarians, F) Euglenozoa, G)
520	Stramenopiles, and H) Foraminifera. Globigerinacea is an order in the class Globothalamea and
521	thus is a subset of Globothalamea. The dashed line indicates the top of the ODZ. Radiolarians
522	and Acantharea have a separate horizontal axis in panel A, and Spumellarida have a separate
523 524	horizontal axis in panel E.
525	Figure 5. 18S rRNA normalized metagenomic read depth profiles from ETSP stations 17 (A-D)
526	and 9 (E-H) for A&E) protists found in oxic waters, B&F) protists found in oxic and anoxic
527	waters, C&G) algae, and D&H) protist parasites. The dashed line indicates the top and bottom of
528 529	the ODZ. Radiolarians and Acantharea have a separate horizontal axis in panels A and E.
530	Figure 6. 18S rRNA normalized metagenomic read depth profiles from HOT 275 in August 2015
531	for A) protists found in oxic waters, B) protists found in oxic and anoxic waters, C) algae, and D)

533

534

535

536537

protist parasites. Depth profiles at the level of order for E) Radiolarians, F) Euglenozoa, G) Stramenopiles, and H) Foraminifera. Globigerinacea is an order in the class Globothalamea and thus is a subset of Globothalamea. Radiolarians and Acantharea have a separate horizontal axis in panel A. TO PER PRION ONL

538	References
718	References

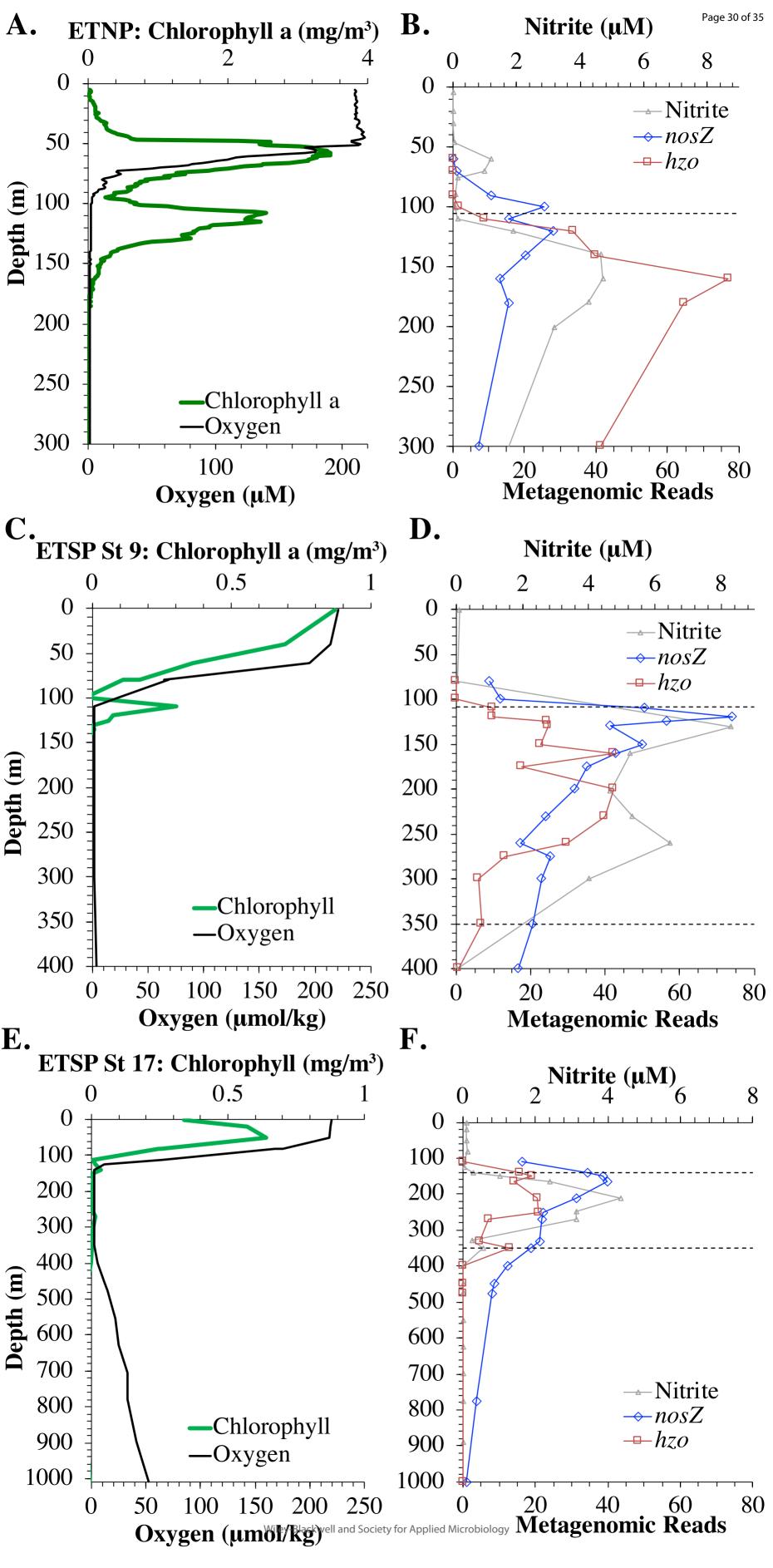
- Anderson, O.R. (2011) Particle-associated planktonic naked amoebae in the Hudson Estuary:
- Size-fraction related densities, cell sizes and estimated carbon content. *Acta Protozool* **50**:
- 541 15–22.
- Anderson, R., Winter, C., and Jürgens, K. (2012) Protist grazing and viral lysis as prokaryotic
- mortality factors at Baltic Sea oxic anoxic interfaces. *Mar Ecol Prog Ser* **467**: 1–14.
- Barbera, P., Kozlov, A.M., Czech, L., Morel, B., Darriba, D., Flouri, T., and Stamatakis, A.
- 545 (2019) EPA-ng: Massively Parallel Evolutionary Placement of Genetic Sequences. Syst Biol
- **68**: 365–369.
- Behnke, A., Barger, K.J., Bunge, J., and Stoeck, T. (2010) Spatio-temporal variations in protistan
- communities along an O₂/H₂S gradient in the anoxic Framvaren Fjord (Norway). *FEMS*
- 549 *Microbiol Ecol* **72**: 89–102.
- Berger, S.A. and Stamatakis, A. (2011) Aligning short reads to reference alignments and trees.
- *Bioinformatics* **27**: 2068–2075.
- Bernhard, J.M., Buck, K.R., Farmer, M.A., and Bowser, S.S. (2000) The Santa Barbara Basin is
- 553 a symbiosis oasis. *Nature* **403**: 77–80.
- Biller, S.J., Berube, P.M., Dooley, K., Williams, M., Satinsky, B.M., Hackl, T., et al. (2018)
- Data descriptor: Marine microbial metagenomes sampled across space and time. *Sci Data* 5:
- 556 180176.
- Boeuf, D., Edwards, B.R., Eppley, J.M., Hu, S.K., Poff, K.E., Romano, A.E., et al. (2019)
- Biological composition and microbial dynamics of sinking particulate organic matter at
- abyssal depths in the oligotrophic open ocean. *Proc Natl Acad Sci U S A* **116**: 11824–
- 560 11832.
- Boxma, B., De Graaf, R.M., Van Der Staay, G.W.M., Van Alen, T.A., Ricard, G., Gabaldón, T.,
- et al. (2005) An anaerobic mitochondrion that produces hydrogen. *Nature* **434**: 74–79.
- Bringué, M., Thunell, R.C., Pospelova, V., Pinckney, J.L., Romero, O.E., and Tappa, E.J. (2018)
- Physico-chemical and biological factors influencing dinoflagellate cyst production in the
- 565 Cariaco Basin. *Biogeosciences* **15**: 2325–2348.
- Bristow, L.A., Dalsgaard, T., Tiano, L., Mills, D.B., Bertagnolli, A.D., Wright, J.J., et al. (2016)
- Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum
- zone waters. *Proc Natl Acad Sci USA* **113**: 10601–6.

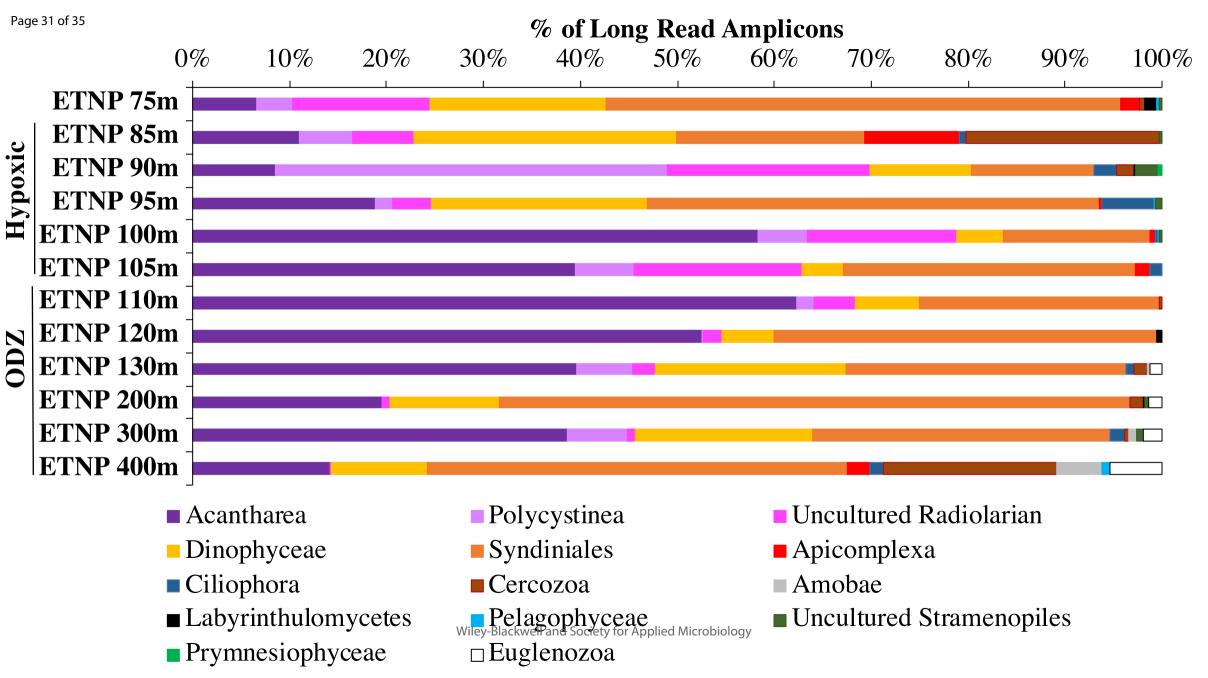
- Buck, K.R., Barry, J.P., and Simpson, A.G.B. (2000) Monterey Bay cold seep biota: Euglenozoa
- with chemoautotrophic bacterial epibionts. *Eur J Protistol* **36**: 117–126.
- Callbeck, C.M., Lavik, G., Ferdelman, T.G., Fuchs, B., Gruber-Vodicka, H.R., Hach, P.F., et al.
- 572 (2018) Oxygen minimum zone cryptic sulfur cycling sustained by offshore transport of key
- sulfur oxidizing bacteria. *Nat Commun* **9**: 1729.
- Caron, D.A., Davis, P.G., Madin, L.P., and Sieburth, J.M. (1982) Heterotrophic Bacteria and
- Bacterivorous Protozoa in Oceanic Macroaggregates. *Science* (80-) **218**: 795–797.
- 576 Cepeda-Morales, J., Beier, J., Gaxiola-Castro, G., Lavin, M.F., and Godinez, V.M. (2009) Effect
- of the oxygen minimum zone on the second chlorophyll maximum in the Eastern Tropical
- Pacific off Mexico. *Ciencias Mar* **35**: 389–403.
- 579 Cuevas, L.A. and Morales, C.E. (2006) Nanoheterotroph grazing on bacteria and cyanobacteria
- in oxic and suboxic waters in coastal upwelling areas off northern Chile. *J Plankton Res* 28:
- 581 385–397.
- Czech, L., Barbera, P., and Stamatakis, A. (2020) Genesis and Gappa: processing, analyzing and
- visualizing phylogenetic (placement) data. *Bioinformatics* **36**: 3263–3265.
- Davis, C., Wishner, K., Renema, W., and Hull, P. (2021) Vertical distribution of planktic
- foraminifera through an Oxygen Minimum Zone: how assemblages and shell morphology
- reflect oxygen concentrations. *Biogeosciences* **18**: 977–992.
- DeVries, T., Deutsch, C., Rafter, P.A., and Primeau, F. (2013) Marine denitrification rates
- determined from a global 3-D inverse model. *Biogeosciences* **10**: 2481–2496.
- Duret, M.T., Pachiadaki, M.G., Stewart, F.J., Sarode, N., Christaki, U., Monchy, S., et al. (2015)
- Size-fractionated diversity of eukaryotic microbial communities in the Eastern Tropical
- North Pacific oxygen minimum zone. *FEMS Microbiol Ecol* **91**: fiv037.
- Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high
- throughput. *Nucleic Acids Res* **32**: 1792–1797.
- 594 Edgcomb, V.P., Breglia, S.A., Yubuki, N., Beaudoin, D., Patterson, D.J., Leander, B.S., and
- Bernhard, J.M. (2011) Identity of epibiotic bacteria on symbiontid euglenozoans in O₂-
- depleted marine sediments: Evidence for symbiont and host co-evolution. *ISME J* 5: 231–
- 597 243.
- 598 Edgcomb, V.P., Orsi, W., Bunge, J., Jeon, S., Christen, R., Leslin, C., et al. (2011) Protistan
- 599 microbial observatory in the Cariaco Basin, Caribbean. I. Pyrosequencing vs Sanger

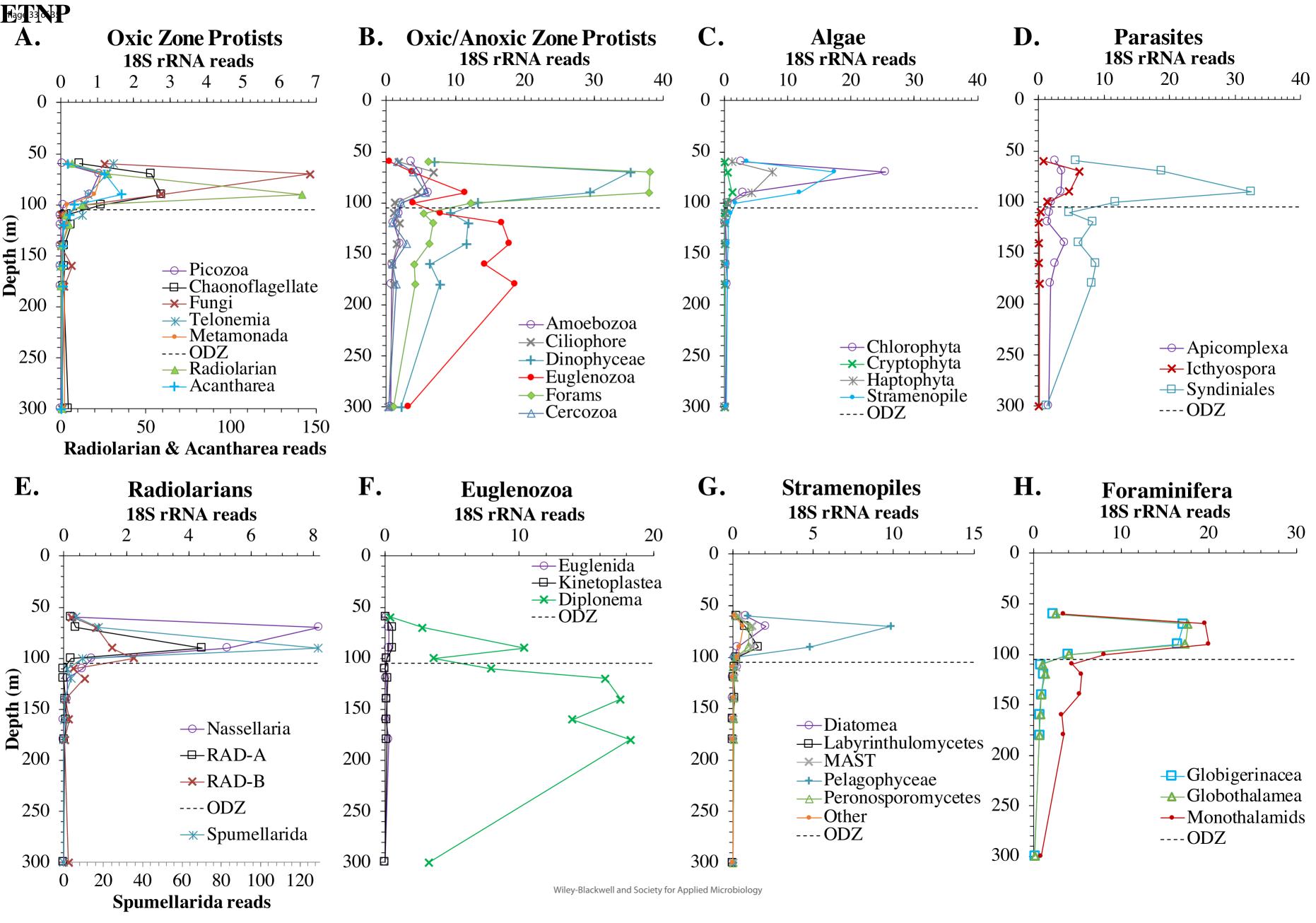
- insights into species richness. *ISME J* **5**: 1344–1356.
- Elbrecht, V. and Leese, F. (2015) Can DNA-based ecosystem assessments quantify species
- abundance? Testing primer bias and biomass-sequence relationships with an innovative
- metabarcoding protocol. *PLoS One* **10**: e0130324.
- Fenchel, T. (1980) Suspension feeding in ciliated protozoa: Functional response and particle size
- selection. *Microb Ecol* **6**: 1–11.
- 606 Fenchel, T., Bernard, C., Esteban, G., Finlay, B.J., Hansen, P.J., and Iversen, N. (1995)
- Microbial diversity and activity in a Danish Fjord with anoxic deep water. *Ophelia* **43**: 45–
- 608 100.
- 609 Fenchel, T. and Finlay, B.J. (1991) Endosymbiotic Methanogenic Bacteria In Anaerobic Ciliates:
- Significance For the Growth Efficiency of the Host. *J Protozool* **38**: 18–22.
- Finlay, B.J., Span, A.S.W., and Harman, J.M.P. (1983) Nitrate respiration in primitive
- eukaryotes. *Nature* **303**: 333–336.
- Flegontova, O., Flegontov, P., Malviya, S., Audic, S., Wincker, P., de Vargas, C., et al. (2016)
- Extreme Diversity of Diplonemid Eukaryotes in the Ocean. *Curr Biol* **26**: 3060–3065.
- Forster, D., Behnke, A., and Stoeck, T. (2012) Meta-analyses of environmental sequence data
- 616 identify anoxia and salinity as parameters shaping ciliate communities. Syst Biodivers 10:
- 617 277–288.
- Fuchsman, C.A., Carlson, M.C.G., Garcia Prieto, D., Hays, M.D., and Rocap, G. (2021)
- Cyanophage host-derived genes reflect contrasting selective pressures with depth in the oxic
- and anoxic water column of the Eastern Tropical North Pacific. *Environ Microbiol* 23:
- 621 2782–2800.
- Fuchsman, C.A., Devol, A.H., Casciotti, K.L., Buchwald, C., Chang, B.X., and Horak, R.E.A.
- 623 (2018) An N isotopic mass balance of the Eastern Tropical North Pacific oxygen deficient
- 524 zone. Deep Res Part II Top Stud Oceanogr **156**: 137–142.
- Fuchsman, C.A., Devol, A.H., Saunders, J.K., McKay, C., and Rocap, G. (2017) Niche
- Partitioning of the N cycling microbial community of an offshore Oxygen Deficient Zone.
- 627 Front Microbiol 8: 2384.
- 628 Fuchsman, C.A., Kirkpatrick, J.B., Brazelton, W.J., Murray, J.W., and Staley, J.T. (2011)
- Metabolic strategies of free-living and aggregate-associated bacterial communities inferred
- from biologic and chemical profiles in the Black Sea suboxic zone. FEMS Microbiol Ecol

- **78**: 586–603.
- Fuchsman, C.A., Murray, J.W., and Konovalov, S.K. (2008) Concentration and natural stable
- isotope profiles of nitrogen species in the Black Sea. *Mar Chem* **111**: 90–105.
- Fuchsman, C.A., Palevsky, H.I., Widner, B., Duffy, M., Carlson, M.C.G., Neibauer, J.A., et al.
- 635 (2019) Cyanobacteria and cyanophage contributions to carbon and nitrogen cycling in an
- oligotrophic oxygen-deficent zone. *ISME J* **13**: 2714–2726.
- Fuchsman, C.A., Staley, J.T., Oakley, B.B., Kirkpatrick, J.B., and Murray, J.W. (2012) Free-
- living and aggregate-associated Planctomycetes in the Black Sea. *FEMS Microbiol Ecol* **80**:
- 639 402–416.
- Fuhrman, J.A. (1999) Marine viruses and their biogeochemical and ecological effects. *Nature*
- **399**: 541–548.
- 642 Galluzzi, L., Bertozzini, E., Penna, A., Perini, F., Garcés, E., and Magnani, M. (2010) Analysis
- of rRNA gene content in the Mediterranean dinoflagellate Alexandrium catenella and
- 644 Alexandrium taylori: Implications for the quantitative real-time PCR-based monitoring
- 645 methods. *J Appl Phycol* **22**: 1–9.
- Garcia-Robledo, E., Padilla, C.C., Aldunate, M., Stewart, F.J., Ulloa, O., Paulmier, A., et al.
- 647 (2017) Cryptic oxygen cycling in anoxic marine zones. *Proc Natl Acad Sci* **114**: 8319–
- 648 8324.
- 649 Gazitúa, M.C., Vik, D.R., Roux, S., Gregory, A.C., Bolduc, B., Widner, B., et al. (2021)
- Potential virus-mediated nitrogen cycling in oxygen-depleted oceanic waters. *ISME J* 15:
- 651 981–988.
- Goericke, R., Olson, R.J., and Shalapyonok, A. (2000) A novel niche for *Prochlorococcus* sp. in
- low-light suboxic environments in the Arabian Sea and the Eastern Tropical North Pacific.
- 654 Deep Sea Res Part I 47: 1183–1205.
- 655 Gomaa, F., Utter, D.R., Powers, C., Beaudoin, D.J., Edgcomb, V.P., Filipsson, H.L., et al. (2021)
- Multiple integrated metabolic strategies allow foraminiferan protists to thrive in anoxic
- marine sediments. *Sci Adv* 7: eabf1586.
- 658 Gong, W. and Marchetti, A. (2019) Estimation of 18S gene copy number in marine eukaryotic
- plankton using a next-generation sequencing approach. Front Mar Sci 6: 219.
- De Graaf, R.M., Ricard, G., Van Alen, T.A., Duarte, I., Dutilh, B.E., Burgtorf, C., et al. (2011)
- The organellar genome and metabolic potential of the hydrogen-producing mitochondrion

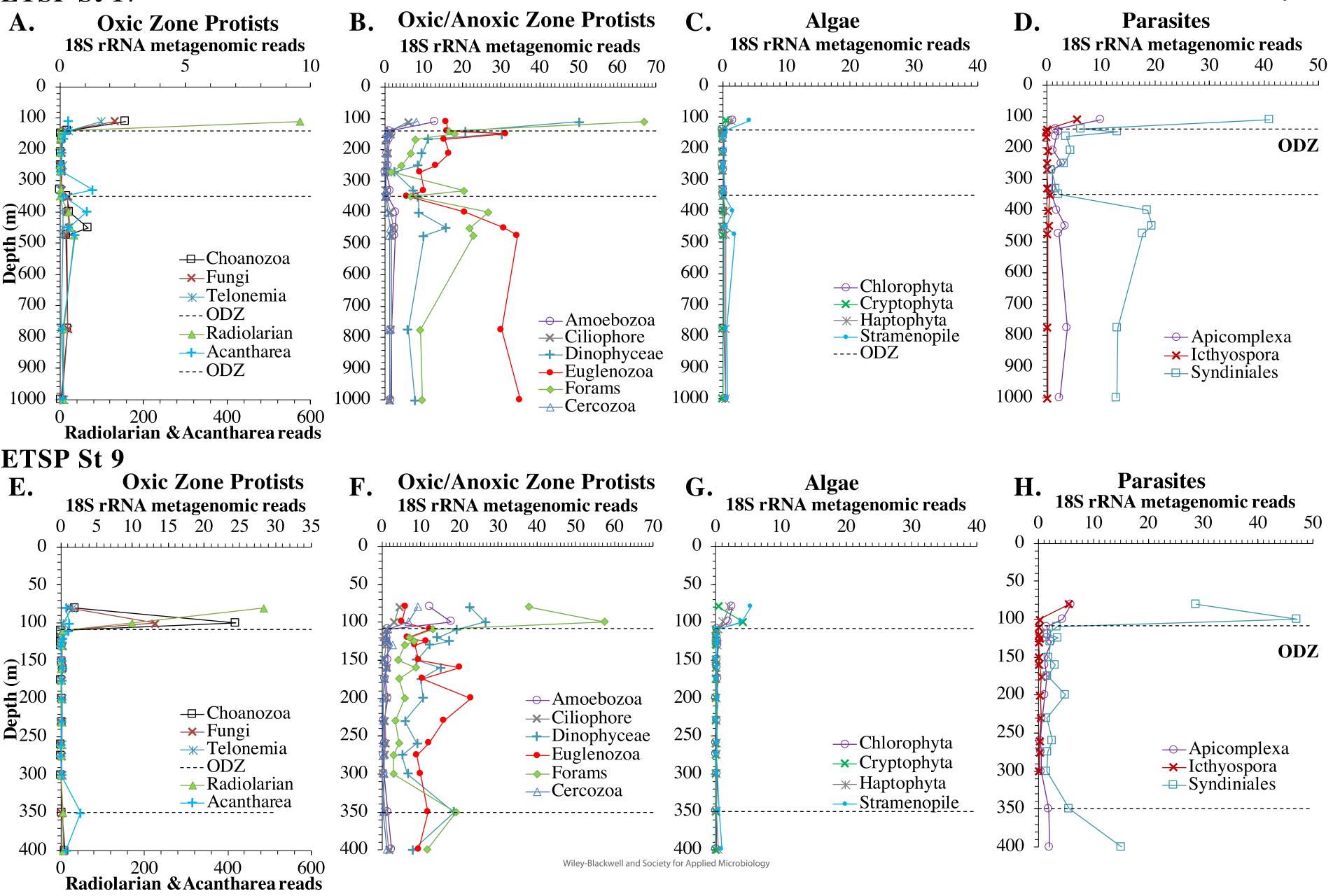
- of Nyctotherus ovalis. Mol Biol Evol 28: 2379–2391.
- 663 Guillou, L., Bachar, D., Audic, S., Bass, D., Berney, C., Bittner, L., et al. (2013) The Protist
- Ribosomal Reference database (PR2): A catalog of unicellular eukaryote Small Sub-Unit
- rRNA sequences with curated taxonomy. *Nucleic Acids Res* **41**: 597–604.
- 666 Guillou, L., Viprey, M., Chambouvet, A., Welsh, R.M., Kirkham, A.R., Massana, R., et al.
- (2008) Widespread occurrence and genetic diversity of marine parasitoids belonging to
- 668 Syndiniales (Alveolata). *Environ Microbiol* **10**: 3349–3365.
- Høgslund, S., Revsbech, N.P., Cedhagen, T., Nielsen, L.P., and Gallardo, V.A. (2008)
- Denitrification, nitrate turnover, and aerobic respiration by benthic foraminiferans in the
- oxygen minimum zone off Chile. *J Exp Mar Bio Ecol* **359**: 85–91.
- Jephcott, T.G., Alves-de-Souza, C., Gleason, F.H., van Ogtrop, F.F., Sime-Ngando, T., Karpov,
- S.A., and Guillou, L. (2016) Ecological impacts of parasitic chytrids, syndiniales and
- perkinsids on populations of marine photosynthetic dinoflagellates. Fungal Ecol 19: 47–58.
- Jing, H., Rocke, E., Kong, L., Xia, X., Liu, H., and Landry, M.R. (2015) Protist communities in a
- marine oxygen minimum zone off Costa Rica by 454 pyrosequencing. *Biogeosciences*
- 677 Discuss 12: 13483–13509.
- Johnson, Z., Landry, M.L., Bidigare, R.R., Brown, S.L., Campbell, L., Gunderson, J., et al.
- 679 (1999) Energetics and growth kinetics of a deep *Prochlorococcus* spp. population in the
- 680 Arabian Sea. *Deep Res II* **46**: 1719–1743.
- Juhl, A.R. and Anderson, O.R. (2014) Geographic variability in amoeboid protists and other
- microbial groups in the water column of the lower Hudson River Estuary (New York,
- 683 USA). Estuar Coast Shelf Sci 151: 45–53.
- Kamp, A., Høgslund, S., Risgaard-Petersen, N., and Stief, P. (2015) Nitrate storage and
- dissimilatory nitrate reduction by eukaryotic microbes. *Front Microbiol* **6**: 1492.
- Kamp, A., Stief, P., Bristow, L.A., Thamdrup, B., and Glud, R.N. (2016) Intracellular nitrate of
- marine diatoms as a driver of anaerobic nitrogen cycling in sinking aggregates. Front
- 688 *Microbiol* 7: 1669.
- Kirkpatrick, J.B., Fuchsman, C.A., Yakushev, E. V., Egorov, A. V., Staley, J.T., and Murray,
- J.W. (2018) Dark N₂ fixation: *nifH* expression in the redoxcline of the Black Sea. *Aquat*
- 691 *Microb Ecol* **82**: 43–58.
- Kozlov, A.M., Darriba, D., Flouri, T., Morel, B., and Stramatakis, A. (2019) RAxML-ng: a fast,


- scalable and user-friendly tool for maximum likelihood phylogenetic inference.
- 694 *Bioinformatics* **35**: 4453–4455.
- Kudryavtsev, A. and Gladkikh, A. (2017) Two new species of *Ripella* (Amoebozoa, Vannellida)
- and unusual intragenomic variability in the SSU rRNA gene of this genus. *Eur J Protistol*
- **61**: 92–106.
- De La Iglesia, R., Echenique-Subiabre, I., Rodríguez-Marconi, S., Espinoza, J.P., Von Dassow,
- P., Ulloa, O., and Trefault, N. (2020) Distinct oxygen environments shape picoeukaryote
- assemblages thriving oxygen minimum zone waters off central Chile. *J Plankton Res* **42**:
- 701 514–529.
- Lam, P., Jensen, M.M., Lavik, G., McGinnis, D.F., Muller, B., Schubert, C.J., et al. (2007)
- Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. *Proc Natl*
- 704 *Acad Sci* **104**: 7104–7109.
- Lam, P., Lavik, G., Jensen, M.M., van de Vossenberg, J., Schmid, M., Woebken, D., et al. (2009)
- Revising the nitrogen cycle in the Peruvian oxygen minimum zone. *Proc Natl Acad Sci U S*
- 707 *A* **106**: 4752–4757.
- Lavin, P., González, B., Santibáñez, J.F., Scanlan, D.J., and Ulloa, O. (2010) Novel lineages of
- 709 *Prochlorococcus* thrive within. *Environ Microbiol Rep* **2**: 728–738.
- Leander, B.S. and Farmer, M.A. (2000) Epibiotic bacteria and a novel pattern of strip reduction
- on the pellicle of Euglena helicoideus (Bernard) Lemmermann. Eur J Protistol **36**: 405–
- 712 413.
- Lesen, A.E., Juhl, A.R., and Anderson, O.R. (2010) Heterotrophic microplankton in the lower
- Hudson River Estuary: Potential importance of naked, planktonic amebas for bacterivory
- and carbon flux. *Aguat Microb Ecol* **61**: 45–56.
- 716 Lin, S. (2011) Genomic understanding of dinoflagellates. *Res Microbiol* **162**: 551–569.
- Luo, E., Eppley, J.M., Romano, A.E., Mende, D.R., and DeLong, E.F. (2020) Double-stranded
- DNA virioplankton dynamics and reproductive strategies in the oligotrophic open ocean
- 719 water column. *ISME J* **14**: 1304–1315.
- 720 Márquez-Artavia, A., Sánchez-Velasco, L., Barton, E.D., Paulmier, A., Santamaría-Del-Ángel,
- E., and Beier, E. (2019) A suboxic chlorophyll-a maximum persists within the Pacific
- oxygen minimum zone off Mexico. Deep Res Part II Top Stud Oceanogr 169–170: 104686.
- Medina, L.E., Taylor, C.D., Pachiadaki, M.G., Henríquez-Castillo, C., Ulloa, O., and Edgcomb,


- V.P. (2017) A review of protist grazing below the photic zone emphasizing studies of
- oxygen-depleted water columns and recent applications of in situ approaches. Front Mar
- 726 *Sci* **4**: 105.
- 727 Michaels, A.F. (1991) Acantharian abundance and symbiont productivity at the VERTEX
- seasonal station. *J Plankton Res* **13**: 399–418.
- 729 More, K.D., Orsi, W.D., Galy, V., Giosan, L., He, L., Grice, K., and Coolen, M.J.L. (2018) A 43
- kyr record of protist communities and their response to oxygen minimum zone variability in
- the Northeastern Arabian Sea. *Earth Planet Sci Lett* **496**: 248–256.
- Morquecho, L. and Lechuga-Devéze, C.H. (2003) Dinoflagellate cysts in recent sediments from
- Bahía Concepción, Gulf of California. *Bot Mar* **46**: 132–141.
- Murzov, S.A. and Caron, D.A. (1996) Sporadic high abundances of naked amoebae in Black Sea
- 735 plankton. *Aquat Microb Ecol* **11**: 161–169.
- Ollison, G.A., Hu, S.K., Mesrop, L.Y., DeLong, E.F., and Caron, D.A. (2021) Come rain or
- shine: Depth not season shapes the active protistan community at station ALOHA in the
- North Pacific Subtropical Gyre. Deep Res Part I Oceanogr Res Pap 170: 103494.
- Orsi, W., Edgcomb, V.P., Jeon, S., Leslin, C., Bunge, J., Taylor, G.T., et al. (2011) Protistan
- microbial observatory in the Cariaco Basin, Caribbean. II. Habitat specialization. *ISME J* 5:
- 741 1357–1373.
- Orsi, W., Song, Y.C., Hallam, S., and Edgcomb, V.P. (2012) Effect of oxygen minimum zone
- formation on communities of marine protists. *ISME J* **6**: 1586–1601.
- Pachiadaki, M.G., Taylor, C., Oikonomou, A., Yakimov, M.M., Stoeck, T., and Edgcomb, V.P.
- 745 (2016) In situ grazing experiments apply new technology to gain insights into deep-sea
- microbial food webs. *Deep Res Part II Top Stud Oceanogr* **129**: 223–231.
- Pachiadaki, M.G., Yakimov, M.M., Lacono, V., Leadbetter, E., and Edgcomb, V.P. (2014)
- Unveiling microbial activities along the halocline of Thetis, a deep-sea hypersaline anoxic
- 749 basin. *ISME J* **8**: 2478–2489.
- Parris, D.J., Ganesh, S., Edgcomb, V.P., DeLong, E.F., and Stewart, F.J. (2014) Microbial
- eukaryote diversity in the marine oxygen minimum zone off northern Chile. Front
- 752 *Microbiol* **5**: 534.
- Pasulka, A.L., Levin, L.A., Steele, J.A., Case, D.H., Landry, M.R., and Orphan, V.J. (2016)
- Microbial eukaryotic distributions and diversity patterns in a deep-sea methane seep


- 755 ecosystem. *Environ Microbiol* **18**: 3022–3043.
- Peng, X. and Valentine, D.L. (2021) Diversity and N₂O production potential of fungi in an
- oceanic oxygen minimum zone. *J Fungi* 7: 218.
- Peters, B., Horak, R., Devol, A.H., Fuchsman, C.A., Forbes, M., Mordy, C.W., and Casciotti,
- 759 K.L. (2018) Estimating fixed nitrogen loss and associated isotope effects using
- concentration and isotope measurements of NO₃-, NO₂-, and N₂ from the Eastern Tropical
- South Pacific oxygen deficient zone. *Deep Res Part II Top Stud Oceanogr* **156**: 121–136.
- Pickup, Z.L., Pickup, R., and Parry, J.D. (2007) A comparison of the growth and starvation
- responses of Acanthamoeba castellanii and Hartmannella vermiformis in the presence of
- suspended and attached *Escherichia coli K12*. *FEMS Microbiol Ecol* **59**: 556–563.
- Raven, M.R., Keil, R.G., and Webb, S.M. (2021) Microbial sulfate reduction and organic sulfur
- formation in sinking marine particles. *Science* (80-) **3**: 178–181.
- Revsbech, N.P., Larsen, L.H., Gundersen, J., Dalsgaard, T., Ulloa, O., and Thamdrup, B. (2009)
- Determination of ultra-low oxygen concentrations in oxygen minimum zones by the STOX
- 769 sensor. *Limnol Oceanogr* **7**: 371–381.
- Risgaard-Petersen, N., Langezaal, A.M., Ingvardsen, S., Schmid, M.C., Jetten, M.S.M., Op Den
- Camp, H.J.M., et al. (2006) Evidence for complete denitrification in a benthic foraminifer.
- 772 *Nature* **443**: 93–96.
- Rogerson, A., Anderson, O.R., and Vogel, C. (2003) Are planktonic naked amoebae
- predominately floc associated or free in the water column? *J Plankton Res* **25**: 1359–1365.
- Saunders, J.K., Fuchsman, C.A., Mckay, C., and Rocap, G. (2019) Complete arsenic-based
- respiratory cycle in the marine microbial communities of pelagic oxygen-deficient zones.
- 777 *Proc Natl Acad Sci U S A* **116**: 9925–9930.
- Schlosser, C., Streu, P., Frank, M., Lavik, G., Croot, P.L., Dengler, M., and Achterberg, E.P.
- 779 (2018) H₂S events in the Peruvian oxygen minimum zone facilitate enhanced dissolved Fe
- 780 concentrations. Sci Rep 8: 12642.
- Schoenle, A., Hohlfeld, M., Hermanns, K., Mahé, F., de Vargas, C., Nitsche, F., and Arndt, H.
- 782 (2021) High and specific diversity of protists in the deep-sea basins dominated by
- diplonemids, kinetoplastids, ciliates and foraminiferans. Commun Biol 4: 501.
- Schunck, H., Lavik, G., Desai, D.K., Großkopf, T., Kalvelage, T., Löscher, C.R., et al. (2013)
- Giant Hydrogen Sulfide Plume in the Oxygen Minimum Zone off Peru Supports

- 786 Chemolithoautotrophy. *PLoS One* **8**: e68661.
- Sergeeva, N.G., Anikeeva, O. V, and Gooday, A.J. (2019) Soft-shelled, monothalamous
- foraminifers from the oxic/anoxic interface (NW Black Sea). *Micropaleontology* **56**: 393–
- 789 407.
- 790 Simpson, A.G.B., Van Den Hopp, J., Bernard, C., Burton, H.R., and Patterson, D.J. (1997) The
- 791 ultrastructure and systematic position of the euglenozoon *Postgaardi mariagerensis*. Arch
- 792 *fur Protistenkd* **147**: 213–225.
- 793 Stief, P., Fuchs-Ocklenburg, S., Kamp, A., Manohar, C.S., Houbraken, J., Boekhout, T., et al.
- 794 (2014) Dissimilatory nitrate reduction by *Aspergillus terreus* isolated from the seasonal
- oxygen minimum zone in the Arabian Sea. *BMC Microbiol* **14**: 35.
- 796 Stolper, D.A., Revsbech, N.P., and Canfield, D.E. (2010) Aerobic growth at nanomolar oxygen
- 797 concentrations. *Proc Natl Acad Sci U S A* **107**: 18755–18760.
- Tiano, L., Garcia-Robledo, E., Dalsgaard, T., Devol, A.H., Ward, B.B., Ulloa, O., et al. (2014)
- Oxygen distribution and aerobic respiration in the north and south eastern tropical Pacific
- oxygen minimum zones. Deep Sea Res Part I Oceanogr Res Pap 94: 173–183.
- Torres-Beltrán, M., Sehein, T., Pachiadaki, M.G., Hallam, S.J., and Edgcomb, V.P. (2018)
- Protistan parasites along oxygen gradients in a seasonally anoxic fjord: A network approach
- to assessing potential host-parasite interactions. Deep Res Part II Top Stud Oceanogr 156:
- 804 97–110.
- Vaulot, D., Marie, D., Olson, R.J., and Chisholm, S.W. (1995) Growth of *Prochlorococcus*, a
- Photosynthetic Prokaryote, in the Equatorial Pacific Ocean. *Science* (80-) **268**: 1480–1482.
- Wylezich, C., Herlemann, D.P.R., and Jürgens, K. (2018) Improved 18S rDNA amplification
- protocol for assessing protist diversity in oxygen-deficient marine systems. *Aquat Microb*
- 809 *Ecol* **81**: 83–94.
- Wylezich, C. and Jürgens, K. (2011) Protist diversity in suboxic and sulfidic waters of the Black
- 811 Sea. *Environ Microbiol* **13**: 2939–2956.
- Zakem, E.J., Mahadevan, A., Lauderdale, J.M., and Follows, M.J. (2020) Stable aerobic and
- anaerobic coexistence in anoxic marine zones. *ISME J* **14**: 288–301.
- Zamora-Terol, S., Novotny, A., and Winder, M. (2020) Molecular evidence of host-parasite
- interactions between zooplankton and Syndiniales. *Aguat Ecol* **55**: 125–134.
- 816 Zhu, F., Massana, R., Not, F., Marie, D., and Vaulot, D. (2005) Mapping of picoeucaryotes in


817 marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol Ecol 52: 79–92. 818 819 Zuendorf, A., Bunge, J., Behnke, A., Barger, K.J.A., and Stoeck, T. (2006) Diversity estimates of 820 microeukaryotes below the chemocline of the anoxic Mariager Fjord, Denmark. FEMS 76–491 821 *Microbiol Ecol* **58**: 476–491. 822

ETSP St 17

H93 of 275 D. **A. B.** Oxic/Anoxic Zone Protists C. Algae **Parasites Oxic Zone Protists** 18S rRNA reads 18S rRNA reads 18S rRNA reads 18S rRNA reads 20 30 40 50 60 70 80 -Apicomplexa **×** Icthyospora **—**Syndiniales **E** 200 250 300 --- Amoebozoa **—**Choanozoa **—**Ciliophore **×**Fungi +Dinophyceae -- Chlorophyta Euglenozoa *Telonemia **--** Cryptophyta → Forams → Radiolarian *Haptophyta ---Cercozoa +Acantharea -- Stramenopile 500 🍁 500 ⅓ Radiolarian & Acantharea reads **Stramenopiles Foraminifera** Euglenozoa E. **Radiolarians** F. G. H. 18S rRNA reads 18S rRNA reads 18S rRNA reads 18S rRNA reads → Euglenida **→** Kinetoplastea *****Diplomenea **Each** 200 300 300 -Diatomea **—**Labyrinthulomycetes → Nassellaria \rightarrow MAST **-**RAD-A -- Pelagophyceae Globigerinacea **-**×RAD-B *Spumellarida Peronosporomycetes ▲ Globothalamea → Collodaria Wiley-Blackwell and Society for Other → Monothalamids