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Originality-Significance Statement

We use non-primer based methods to examine the composition and relative abundance of
protists in metagenomes from the Eastern Tropical North Pacific and Eastern Tropical South
Pacific Oxygen Deficient Zones. We compare this data to an oxic North Pacific station (Hawaii
Ocean Time-series or HOT). It is not possible to tell from amplicon techniques if the total
numbers of protists decreased in the ODZ as the results are the relative abundance of a particular
18S rDNA gene within all 18S rDNA genes. Common primers also do not amplify many
important groups of protists. Our non-primer based metagenomic read placement onto
phylogenetic tree method allows us to include all protists and to normalize by total reads which
includes all the bacterial and archaeal genomes in its total. The goal of this work is to identify
potential predators of ODZ Prochlorococcus and ODZ N cycling bacteria and quantify these
protists in proportion to the total microbial community. We see a large drop in abundance of

protists in the oxygen deficient zones and identify potential predators present there.

Abstract (200 words)

Ocean oxygen deficient zones (ODZs) host 30-50% of marine N, production.
Cyanobacteria photosynthesizing in the ODZ create a secondary chlorophyll maximum and
provide organic matter to N, producing bacteria. This chlorophyll maximum is thought to occur
due to reduced grazing in anoxic waters. We first examine ODZ protists with long amplicon
reads. We then use non-primer-based methods to examine the composition and relative
abundance of protists in metagenomes from the Eastern Tropical North and South Pacific ODZs
and compare these data to the oxic Hawaii Ocean Time-series in the North Pacific. We identify
and quantify protists in proportion to the total microbial community. From metagenomic data,
we see a large drop in abundance of fungi and protists such as choanoflagellates, radiolarians,
cercozoa and ciliates in the ODZs but not in the oxic mesopelagic at HOT. Diplonemid
euglenozoa were the only protists that increased in the ODZ. Dinoflagellates and foraminifera
reads were also present in the ODZ though less abundant compared to oxic waters.
Denitrification has been found in foraminifera but not yet in dinoflagellates. DNA techniques
cannot separate dinoflagellate cells and cysts. Metagenomic analysis found taxonomic groups

missed by amplicon sequencing and identified trends in abundance.
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Introduction

Ocean oxygen deficient zones (ODZs), defined as water with <10 nM O, and without
measurable sulfide, host 30-50% of marine fixed-N loss through N, production (DeVries et al.,
2013). There are two oceanic ODZs in the Pacific: the Eastern Tropical North Pacific oxygen
deficient zone (ETNP ODZ) offshore from Mexico and the Eastern Tropical South Pacific
oxygen deficient zone (ETSP ODZ) offshore from Peru and Chile. Populations of the
cyanobacterium Prochlorococcus have been found photosynthesizing in the ETNP and ETSP
ODZs (Goericke et al., 2000; Lavin et al., 2010; Garcia-Robledo ef al., 2017; Fuchsman et al.,
2019; Marquez-Artavia et al., 2019) creating a secondary chlorophyll @ maximum whenever the
1% of the deeply penetrating blue irradiance overlaps with the ODZ (Cepeda-Morales et al.,
2009). Production by these ODZ Prochlorococcus could provide up to 40% of the organic matter
to the heterotrophic community in the upper ODZ (Fuchsman et al., 2019). Experiments in the
coastal ETSP found higher cyanobacterial growth rates than consumption rates by
nanoflagellates under putatively anoxic conditions (Cuevas and Morales, 2006), and models
indicate that a reduction in predation in anoxic waters could allow the creation of the secondary
chlorophyll maximum (Zakem et al., 2020). The theory that the secondary chlorophyll maximum
is due to reduced grazing rather than increased growth rates is logical given the low growth rates
of Prochlorococcus at these light levels (Vaulot et al., 1995; Johnson et al., 1999). A reduction
in predation in anoxic waters also would affect bacteria and archaea mediating N cycling in the
ODZ, including N, producers. The goal of this work is to identify potential predators of ODZ
Prochlorococcus and ODZ N cycling bacteria and quantify them in proportion to the total
microbial community.

Previous work has provided a few estimates of grazing under suboxic and anoxic
conditions. At a coastal station on the Chilean coast, heterotrophic nanoflagellates preyed on
cyanobacteria in waters with oxygen below the detection limit of the CTD sensors (Cuevas and
Morales, 2006). Unfortunately, it is impossible to know if these waters were truly anoxic.
Grazing rates per heterotrophic nanoflagellate were the same in oxic and putatively anoxic
waters. However, the number of heterotrophic nanoflagellates were much reduced in the
putatively anoxic waters, so the total cyanobacterial consumption rates were lower (Cuevas and
Morales, 2006). Cyanobacterial growth was balanced by grazing in oxic waters, but

cyanobacterial growth was 4x higher than grazing in putatively anoxic waters (Cuevas and
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82  Morales, 2006). Additionally, in situ fluorescent labeled bacteria grazing experiments in the

83  Eastern Tropical South Pacific found that grazing rates were twice as high in suboxic water (5

84  uM O,) compared to anoxic (non-sulfidic) water at 150m at different stations, where 28% of

85  bacteria were grazed in suboxic water and 13% of bacteria were grazed in the anoxic water

86  (Medina et al., 2017). With the same in situ technique, grazing experiments in the Mediterranean

87  indicated similar grazing rates at 3 uM O, and fully oxic waters (Pachiadaki et al., 2016). Thus

88  full anoxia seems to affect predation differently than low oxygen. Altogether previous work

89  indicates reduced but active grazing in anoxic ODZs.

90 The majority of studies of anaerobic protists have been in sulfidic waters and the

91  suboxic/anoxic waters overlaying them (Zuendorf et al., 2006; Behnke et al., 2010; Edgcomb,

92 Orsi,etal.,2011;Orsietal,2011,2012; Wylezich et al., 2018). Oxygen, sulfide and methane

93  are some of the strongest variables structuring protist communities (Fenchel ez al., 1995; Orsi et

94  al., 2012; Pasulka et al., 2016). However, oxygen deficient zones contain high concentrations of

95  nitrate and are underlain by oxic waters. Oxygen deficient zones are defined as <10 nM oxygen

96  due to the detection limits of the STOX sensor in the environment (Revsbech et al., 2009), and

97  thus it is difficult to determine where there is complete anoxia. Some bacteria can utilize oxygen

98  at concentration < 10 nM (Stolper et al., 2010; Tiano et al., 2014; Bristow et al., 2016), and it is

99  unknown if any protists can do so. Offshore ODZs are not sulfidic and do not have influxes of
100  sulfide or other reduced chemical species, though sulfate reduction may occur in particles
101  (Saunders et al., 2019; Raven et al., 2021). ODZs on shallow coastal shelves may have sulfide
102 fluxes from the sediments, but these are a special case not examined here (Schunck et al., 2013;
103 Callbeck et al., 2018; Schlosser ef al., 2018). Thus, functionally anoxic ODZs are at a different
104  redox state than sulfidic basins and are even fundamentally different from the suboxic/anoxic
105  zones above sulfidic basins that are hugely influenced by fluxes of reduced species (manganese,
106  ammonium, methane, reduced S) from sulfidic waters (Lam et al., 2007; Fuchsman et al., 2008,
107 2011, 2012; Kirkpatrick ef al., 2018). Decreased grazing rates in the ODZ are in contrast to
108  grazing experiments at sulfide boundaries, where chemoautotrophy of reduced S cause numbers
109  of prokaryotes and also protists and grazing to be increased (Anderson et al., 2012; Pachiadaki et
110  al., 2014). Fermentation and endosymbiont methanogenesis are processes favored by protists
111 under sulfidic conditions (Fenchel and Finlay, 1991; Boxma ef al., 2005; De Graaf et al., 2011).

112 It would be more energetically favorable for protists living in an ODZ to utilize nitrate in a
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dissimilatory fashion than to utilize fermentative processes. Few marine dissimilatory nitrate-
reducing protists have been documented (Kamp et al., 2015), but some benthic foraminifera can
undergo denitrification or denitrification and fermentation simultaneously (Risgaard-Petersen et
al.,2006; Gomaa et al., 2021), some fungi and diatoms can utilize dissimilatory nitrate reduction
to ammonium (Stief et al., 2014; Kamp et al., 2016), and some Euglenzoa have nitrate reducing
endosymbionts (Edgcomb, Breglia, ef al., 2011).

The protists of ODZs have previously been investigated with 18S rDNA short amplicon
sequencing (Parris ef al., 2014; Duret et al., 2015; Jing et al., 2015; De La Iglesia et al., 2020). In
the ETNP ODZ short amplicon sequencing found Acantharea, Polycystinea radiolarians,
Gymnodiniales dinoflagellates, cercozoan and parasitic protists, Syndiniales and Perkinsidae,
(Duret et al., 2015). In the ETSP ODZ, Acantharea and Polycystinea radiolarians,
dinoflagellates, Syndiniales parasites, and Euglenozoa were found (Parris et al., 2014). The
diversity of protists has been found to be reduced under anoxic conditions (Orsi et al., 2011,
2012; Jing et al., 2015). Since amplicons are analyzed using relative abundance of a particular
18S rDNA gene within all 18S rDNA genes, it is not possible to tell if the total numbers of
protists decreased in the ODZ from this technique. The use of primers can bias results both
because some organisms are missed due to primer mismatches and because of amplification bias
where some species amplify more readily and thus look more abundant (Elbrecht and Leese,
2015). Additionally, thel18S rRNA gene is not a single copy core gene (Zhu et al., 2005; Galluzzi
et al., 2010; Kudryavtsev and Gladkikh, 2017; Gong and Marchetti, 2019), but it is the most
broadly sequenced gene used to identify protists (Guillou et al., 2013). Here, we start by forming
OTUs with long amplicon reads (~1600 bp) of 18S rRNA gene from the ETNP and combined
them with known reference sequences from the curated Protist Ribosome Database PR2 (Guillou
et al., 2013) to create a phylogenetic tree of protists. Then we use previously published
metagenomic samples from the ETNP ODZ in April 2012 (Fuchsman et al., 2017), newly
sequenced metagenomic samples from the offshore ETSP ODZ in July 2013 and published
metagenomes from Hawaii Ocean Time-series (HOT) (Luo et al., 2020) to place metagenomic
reads on this 18S rRNA gene phylogenetic tree in a non-primer biased manner. While our
analysis still provides relative abundance, we normalize by total reads, which includes all the
bacterial and archaeal genomes in its total. Here we identify and quantify protists found in the

ODZ and consider potential predators of ODZ Prochlorococcus and ODZ N cycling bacteria.
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Methods
Long read amplicon sequencing

Bulk water samples were collected for long read amplicon sequencing from ETNP station
161 (15.9°N -107.9°W) (Figure S1) at 12 depths (75m-300m) in April 2012 aboard the R/V
Thompson TN278 using 10 L Niskin bottles on a CTD-rosette. A Seabird SBE-43 dissolved
oxygen sensor and a WETLabs ECO Chlorophyll Fluorometer and a STOX sensor (Revsbech et
al., 2009) were attached to the rosette. Two liters of Niskin water were vacuum filtered onto a
0.2 um SUPOR filter. DNA was extracted from filters using freeze thaw followed by incubation
with lysozyme and proteinase K and phenol/chloroform extraction as in Fuchsman et al (2017).
Nutrients and N, gas measurements for this station and cast are previously published in
(Fuchsman et al., 2018). Hydrographic and nutrient data from this cruise are deposited at

http://data.nodc.noaa.gov/accession/0109846.

Extracted DNA was sent to the company Mr. DNA (www.mrdnalab.com, Shallowater

TX, USA) where long reads amplicon sequences were amplified using 18S rDNA primers
designed for anoxic protists (EK-82F (GAAACTGCG AATGGCTC) combined with 25F (5'-
CATATGCTTGTCTCAAAGATTAAGCCA-3") and 18S-1630Rev (5-CGA CGG GCG GTG
TGT ACA A-3")) and PCR methodology from (Wylezich and Jiirgens, 2011) except that
HotStarTaq Plus Master Mix (Qiagen, USA) was used. PCR products were purified using
Ampure PB beads (Pacific Biosciences). SMRTbell libraries (Pacific Biosciences) were prepared
following manufacturer’s guidelines and sequenced using a Pac Bio Sequel. After completion of
initial DNA sequencing, each library underwent Circular Consensus sequencing using PacBio’s
CCS algorithm where the forward and reverse reads from each template were aligned to identify
stochastic errors. Five thousand amplicons were sequenced per sample. Amplicon sequences
were then processed using the Mr. DNA analysis pipeline. In this pipeline, barcodes were
trimmed and sequences with ambiguous bases or chimeras were removed, then operational
taxonomic units (OTUs) were created by clustering at 97% similarity. OTUs were identified
using BLASTn against the PR2 database (Guillou et al., 2013). We note that several OTUs were
not 18S rRNA. After quality control, 332 OTUs contained >10 amplicons. These OTUs
represent 14,492 individual amplicons (Table S2). These OTU consensus sequences are

submitted to NCBI Genbank Accession numbers MW695537-MW695844.

Wiley-Blackwell and Society for Applied Microbiology
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Extraction of DNA for metagenomic sequencing

Bulk water samples were collected from ETSP Station 9 cast 32 (13°S and 82.2°W) at 16
depths (80-400m) and ETSP Station 17 cast 40 (16.7°S and 79°W) at 14 depths (110m-1000m) in
July 2013 (Figure S1) aboard the R/V Nathaniel B. Palmer using 12 L Niskin bottles on a CTD-
rosette. Water was sampled with a focus on the oxycline (hypoxic waters above the ODZ) and
the ODZ and no fully oxygenated samples were obtained. A Seabird SBE-43 dissolved oxygen
sensor and a WETLabs ECO Chlorophyll Fluorometer and a STOX sensor (Revsbech et al.,
2009) were attached to the rosette. Four liters of Niskin water were filtered onto a 0.2 pm
SUPOR filter using a peristaltic pump. DNA was extracted from filters using freeze thaw
followed by incubation with lysozyme and proteinase K and phenol/chloroform extraction as in
Fuchsman et al (2017). Libraries were created and run on a 300 cycle NovaSeq S1 flowcell at the
Northwest Genomics Center (Seattle, WA). Nutrients and N, gas measurements for this station
are previously published in (Peters ef al., 2018). Hydrographic and nutrient data from this cruise
are deposited at http://data.nodc.noaa.gov/accession/0128141. The Bioproject containing this
data 1s PRINA704804 and individual accession numbers can be seen in Table S1 along with
oxygen, nitrite and nitrate concentrations.

Previously published ETNP metagenomes from bulk water samples (2-4 L) were
collected onto 0.2 um SUPOR in April 2012 at Station 136 (17.04 °N, 106.54 °W) on R/V
Thompson TN278 as indicated in (Fuchsman ef al., 2017). Nutrients and N, gas measurements
for this station and cast are previously published in (Fuchsman et al., 2017, 2018). These
sequences can be found at Bioproject PRIN350692. Previously published HOT metagenomes
were sampled at (22°45°N and 158°W) from bulk seawater (2-4 L) onto 0.2 pum SUPOR at 12
depths (5-500m) in May, August, and November 2015 (Luo et al., 2020) and can be found at
Bioproject PRINA352737. Nutrient and CTD measurements for these cruises can be found in
(Luo et al., 2020).

Phylogenetic trees and metagenomic read placement
A representative of each family in the Protist Ribosomal Database PR2 version 4.14.0
(Guillou et al., 2013) were obtained and combined with the consensus long read amplicons for

each 18S rDNA OTUs with >10 amplicons from the ETNP St 161 and their close relatives

Wiley-Blackwell and Society for Applied Microbiology
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(Figure 3, Figure S4A). These combined full length sequences were aligned using MUSCLE
(Edgar, 2004) in order to construct a nucleotide maximum likelihood phylogenetic tree with
bootstrap analysis (n=100) using the General Time Reversible (GTR) nucleotide substitution
model under a Gamma rate heterogeneity model with RaxML-ng (Kozlov et al., 2019). Groups
within the phylogenetic trees were then labeled based on the Order of the references within that
group. We note that to really understand the evolution of eukaryotic protists, concatenation of
multiple genes should be used. However, this 18S rRNA gene tree produced coherent
phylogenetic groups which could be used for read placement. Foraminifera did not align well
with the other protists, so we made a separate foraminifera tree (Figures S4B) using all the
foraminifera sequences in PR2 (Guillou et al., 2013).

The sequences making up the tree were then BLASTed (blastn) very broadly (e-
value=107-5) against an ETNP, ETSP, and HOT metagenomic read databases. The short reads
were then aligned to the reference tree using PaPaRa Parsimony-based Phylogeny-Aware Read
Alignment program 2.0 (Berger and Stamatakis, 2011). Non-overlapping paired end reads were
then combined into one aligned sequence and placed on the tree by EPA-ng (Barbera ef al.,
2019). Placed reads have a pendant length indicating the similarity between a query read and the
location it places on the tree. Previously it was determined that reads with a pendant length
greater than 2 were different from the gene under examination (Fuchsman et al., 2017). Reads
that placed with a pendant length greater than 2 were removed (4 reads total for the ETNP, 2
reads for the ETSP, and 1 read for the HOT samples). The remaining reads were enumerated for
each taxonomic group using the assign subcommand of gappa (Czech et al., 2020). Taxonomic
read counts were normalized using the method previously described (Fuchsman ef al., 2019)
where normalization factors for each sample were determined by dividing the number of good
quality reads in a sample by the 100 m ETNP sample. The read counts were multiplied by the
sample normalization factor, divided by the length of gene (1700 bp for 18S rRNA), and then
multiplied by 100 in order to make visualization easier. We list both the original numbers of
reads placed and the normalized reads for each taxonomic group in Table S3.

We note that we attempted to use this analysis with BioGeotraces metagenomic data
(Biller et al., 2018). However, not enough protist reads were present. We believe this could be
because BioGeotraces metagenomes were created from 200 mL of water (Biller ef al., 2018), so

not enough protists were sampled.

Wiley-Blackwell and Society for Applied Microbiology
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The 18S rRNA gene is not a single copy core gene. Single cell eukaryotes are known to
often have multiple copies of the 18S rRNA gene (Zhu et al., 2005; Galluzzi et al., 2010;
Kudryavtsev and Gladkikh, 2017; Gong and Marchetti, 2019). However, it is the gene with the
most comprehensive protist dataset (Guillou ef al., 2013). Additionally, some protists, such as
dinoflagellates, can have multiple copies of their entire genome (Lin, 2011). We assume in this
paper that copy number within a group is fairly consistent with depth though this is more likely
to be true in more narrowly-defined taxonomic groups. However, the changes between oxic and
anoxic water are so large that 18S rRNA gene copy number, though important to keep in mind,

does not determine our big picture conclusions.

The phylogenetic trees used to obtain hydrazine oxidoreductase (4zo) to represent

anammoxXx bacteria and nitrous oxide reductase (nosZ) to represent denitrifying bacteria

abundances in the ETSP were identical to previously published trees for the ETNP (Fuchsman et
al., 2017). Phylogenetic read placement was used for 4zo and nosZ as described above. ETNP
placement results for these genes were previously successfully compared to ETNP rate and lipid

abundance data (Fuchsman et al., 2017).

Results and Discussion

We examined the protist community in three systems: the Eastern Tropical North Pacific
oxygen deficient zone (ETNP ODZ), the Eastern Tropical South Pacific oxygen deficient zone
(ETSP ODZ), and Hawaii Ocean Time-series (HOT), a long-term monitoring station
representing the oxic North Pacific Ocean. For ETNP and ETSP stations, a STOX sensor was
used to verify the functional anoxia of the Oxygen Deficient Zone (Tiano ef al., 2014; Garcia-
Robledo and Revsbech, unpublished data). In the ETNP, station 161, used for long-read
amplicons, and station 136, used for metagenomics, were 160 km apart (Figure S1), had similar
hydrographic profiles, with the ODZ starting ~100m and remaining functionally anoxic until
750m, and both stations had a large secondary chlorophyll maximum in the upper ODZ (Figure
S2). At ETNP station 136, the cyanobacteria Prochlorococcus was the dominant
photosynthesizer in the ODZ (Fuchsman ef al., 2019) and oxygen production by this
cyanobacteria in the ODZ was inferred from transient measurable oxygen concentrations at the
secondary chlorophyll maximum (Tiano ef al., 2014). Nitrite had a maximum of 4.5 uM from

140m-160m (Figure 1B; Table S1). Anammox and denitrifying N, producing bacteria had depth

Wiley-Blackwell and Society for Applied Microbiology
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profiles offset from each other (Fuchsman et al., 2017) with anammox bacteria, as measured by

phylogenetic read placement of hydrazine oxidoreductase (4zo), having a maximum at 160m and

denitrifiers, as measured by phylogenetic read placement of nitrous oxide reductase (nosZ2),

having a maximum from 100-120m (Figure 1B). Depth profiles for all the genes in the
dissimilatory N cycle in the ETNP and their various phylotypes are found in (Fuchsman et al.,
2017). ETSP station 9 contained a small secondary chlorophyll maximum (Figure 1C). The ODZ
in the ETSP was less thick, corresponding to 108m to 350m (Figure 1C). Thus, in the ETSP
station 9, our metagenomic samples spanned the entire ODZ. Nitrite had two maxima in the
ETSP St 9 ODZ corresponding to 130m (8 uM) and 260m (6 uM) (Figure 1D; Table S1; (Peters
et al., 2018)). Normalized reads for anammox bacteria (4zo) had a maximum from 160m-260m
and denitrifiers (nosZ) had a maximum from 110m-150m (Figure 1D). For ETSP St 17, the ODZ
spanned from 140m to 350m and no secondary chlorophyll maximum was found (Figure 1E).
Nitrite had a single maximum of 4 uM at 210m (Figure 1F; Table S1). Normalized reads for
anammox bacteria were only found in the ODZ, but denitrifiers were found at depths with <30
uM oxygen (Figure 1F). In all three ODZs, nitrate concentrations were >10 uM (Table S1). The
HOT station has a single chlorophyll maximum at 150m in May 2015, 125m in August 2015 and
at 100m in November 2015 and oxygen remained >100 uM in the top 500m (Figure S3). The
HOT station serves as our oxic comparison. With the goal of identifying grazers in oxygen
deficient waters, we examined the protist community in offshore ETNP, offshore ETSP and oxic

HOT station.

ETNP Long amplicon reads

Long read amplicons were sequenced from samples from ETNP St 161 in 2012. The top
of the ODZ at this station was 100 m and the secondary chlorophyll max ranged from 95-120m
(Figure S2). The number amplicons of each OTU sequence found at each depth can be found in
Table S2. To reduce the possibility of including sequences with errors, we only examine OTUs
with >10 total amplicons and thus we are missing rare taxa. Long read amplicons indicated more
Polycistinea radiolarians and sister clade Acantherea in the hypoxic oxycline and the upper ODZ
than in the deep ODZ (Figure 2). Large (up to 250 pm) mixotrophic protists such as Polycystinea

radiolarians (Spumellarida and Nassalarida), known for their silica shells, and Acantharea, their

1
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sister phyla with strontium shells can have photosynthetic endosymbionts that range from
dinoflagellates to prymnesiophyte algae, to cyanobacteria (Michaels, 1991). Another dominant
group of amplicons in both oxic and anoxic waters in the system was the Gymnodiniales order of
dinoflagellate. This dinoflagellate group was equally important at all depths including oxic
waters (Table S2). In both oxic waters and at depths in the ODZ below the secondary chlorophyll
maximum, amplicons for parasitic Syndiniales and Eugregarinorida Apicomplexa were abundant
(Figure 2). We remind the reader that these abundances are relative to total protist amplicons, so
if total protists are reduced in the deep ODZ, as we might expect, the relative abundance of
groups of protists may increase without their actual numbers increasing. All these groups have
been previously found in the ETNP using short read amplicons (Duret ef al., 2015). We further
use representatives of these long-read amplicons as reference sequences in a 18S rRNA gene

phylogenetic tree (Figure 2 and S4).

Depth profiles of protists from placement of metagenomic reads

Metagenomic reads from ETNP station 136 in the and ETSP stations 9 and 17 were
placed on the 18S rRNA gene phylogenetic tree, and normalized based on sequencing depth,
which quantified them in proportion to the total microbial community. Fungi and the vast
majority of protists, including algae Chlorophyta, Cryptophyta, Haptophyta and Stramenopiles,
and heterotrophs chaonoflagellates, telonemia, radiolarians, and Acantharea had a maximum in
normalized read abundance under oxygenated conditions, which then decreased sharply in
anoxic waters (Figures 3 and 4 and Table S3). We remind the reader that 18S rRNA is not a
single copy core gene (Zhu et al., 2005; Galluzzi et al., 2010; Kudryavtsev and Gladkikh, 2017;
Gong and Marchetti, 2019). However large changes in the abundance of normalized reads likely
reflect changes in abundance in any given taxa. Fungi in ETNP metagenomes have been
examined in detail elsewhere (Peng and Valentine, 2021). Amoebozoa, ciliates, and cercozoan
were still found at low levels in the upper ETNP ODZ, coincident with the secondary chlorophyll
maximum, where oxygen is produced by photosynthesis (Tiano ef al., 2014; Garcia-Robledo et
al., 2017) but were nearly absent from ETSP ODZ samples. This sharp decrease in protist
normalized reads in the mesopelagic is not seen at HOT, where oxygen was >100 uM (Figure 6,

S3 and S5 and Table S3). In fact, in the ETSP, abundance of chaonoflagellates, fungi, and ciliate

11
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reads increased again below the ODZ (Figure 5). We will focus below on those organisms who
were present in the ODZ.

From metagenomic reads, dinoflagellates appear to be reduced but still present in the
ODZ (Figures 4 and 5 and Table S3). However, as dinoflagellates can have a very large range of
copy numbers for 18S rRNA genes (Galluzzi et al., 2010), it is particularly difficult to interpret
these results. The Dinophycea part of our phylogenetic tree contains many dinoflagellate orders
without clear separation (Figure S4). Dinoflagellates in the ODZ are dominated by
Gymnodiniales in our long read amplicon data (Table S2) which is consistent with previous
amplicon data (Parris et al., 2014; Duret et al., 2015; Jing et al., 2015). However, Gymnodiniales
dinoflagellate amplicons also dominate in oxic waters above the ODZ (Table S2). Our
techniques cannot differentiate between live, dead or resting cells. Gymnodiniales dinoflagellates
can form cysts to survive low oxygen conditions and it has been suggested that these cysts would
explain their presence in the ODZ (Morquecho and Lechuga-Devéze, 2003; Jing et al., 2015;
More et al., 2018). Dinoflagellates cysts have been documented sinking into anoxic waters
(Bringué et al., 2018). No dinoflagellates have been found to utilize dissimilatory nitrate
reduction (Kamp et al., 2015), which would be the most energetic pathway to function in the
ODZ. However, that does not mean that no dinoflagellates can do so.

From metagenomic reads, Syndiniales parasites are also present in the ETNP and ETSP
ODZs (Figures 4 and 5 and Table S3). However, their read abundance also decreased in the ODZ
and increases again below the ODZ (Figures 4 and 5). This decrease in reads was not seen in
oxic waters at HOT (Figure 6). These parasites are common in previously published amplicons
in low oxygen, anoxic and sulfidic waters (Guillou et al., 2008; Parris et al., 2014; Duret et al.,
2015; Torres-Beltran et al., 2018) as well as in fully oxic waters at HOT (Ollison et al., 2021).
We also find low levels of Icthyospora and Apicomplexa parasites with our metagenomic data
(Figures 4-6, S5). All these parasites prey on both multicellular and single-cell eukaryotes
(Jephcott et al., 2016; Zamora-Terol et al., 2020), not on cyanobacteria or other bacteria.

Foraminifera are present in ETNP and ETSP ODZs, but are reduced compared to oxic
waters (Figures 4 and 5 and Table S3). Previous microscopic work on calciferous foraminifera

identified Globigerinacea in the ETNP ODZ (Davis et al., 2021). We also find Globigerinacea in

the ETNP ODZ and it represents the majority of the class Globothalamea (calciferous
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foraminifera) there (Figure 4). Similar to our data, microscopic counts indicated that calciferous

foraminifera decreased greatly in the ETNP ODZ (Davis et al., 2021). However, we also find
soft walled Monothalamid foraminifera. These Monothalamid foraminifera have been previously
studied at the oxic/anoxic transition in the Black Sea (Sergeeva et al., 2019), but have not
previously been examined in ODZs. In the Black Sea redox transition zone, Monothalamid
forams were more abundant that calciferous foraminifera (Sergeeva et al., 2019), which is
similar to what we see here in the ODZs (Figure 4 and S6). Some benthic foraminifera can
undergo denitrification (Risgaard-Petersen et al., 2006; Hogslund et al., 2008). It is assumed that
foraminifera in ODZs also undergo denitrification (Davis et al., 2021).

Euglenozoa are the only protists that increased in read abundance in the ODZ (Figures 4,
5), but also increased in read abundance at depth in the oxic mesopelagic at HOT (Figure 6, S5)
and below the ETSP ODZ (Figure 5). The Diplonemid subgroup was the dominant euglenozoan
(Figures 4, 6, S7). Marine Diplonemids are understudied heterotrophic flagellates that are
common in the mesopelagic ocean (Flegontova ef al., 2016) and in deep sea sediments (Schoenle
et al., 2021). However, their ecological function, as bacterivores or parasites, is unknown
(Flegontova et al., 2016). Many better studied Euglenozoa appear to harbor bacterial
endosymbionts. A sulfidic Euglenozoa has been shown to have nitrate reducing (S-oxidizing)
bacterial endosymbionts (Edgcomb, Breglia, et al., 2011) and other Euglenozoa have been found
to have unidentified bacterial endosymbionts in low oxygen water (Simpson et al., 1997,
Bernhard et al., 2000; Buck et al., 2000; Leander and Farmer, 2000). Endosymbiotic bacteria are
certainly an evolutionary adaption of protists to sulfidic waters (Bernhard et al., 2000), and could
also be an adaption to anoxic nitrate-containing waters. Further microscopic work is needed to
identify if Euglenozoa in the ODZ have endosymbionts. Euglenozoa are potential predators
functioning in the ODZ.

Amoebozoa are understudied due to the fact that they are destroyed by commonly used
field collection techniques and are difficult to visualize microscopically once collected (Juhl and
Anderson, 2014). Additionally, common primers for amplicon sequencing do not amplify
Amoebozoa (Juhl and Anderson, 2014; Parris et al., 2014; Duret et al., 2015). Nevertheless,
planktonic naked amoebas have been found to be important bacterivores in other aquatic systems
(Murzov and Caron, 1996; Rogerson et al., 2003; Lesen et al., 2010). Planktonic amoebas are
associated with particles (Caron ef al., 1982; Rogerson et al., 2003; Anderson, 2011) probably
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because the amoebas cannot feed properly in their suspended form (Pickup et al., 2007). Thus
amoebas are unlikely and potentially unable to feed on free-living bacteria (Pickup et al., 2007).
The Amoebozoa found in the ODZ are likely entering the ODZ on sinking particles. Amoebozoa,
ciliates, and Cercozoa have almost identical normalized read profiles from metagenomic data
(Figures 4 and 5). Ciliates and Cercozoa reads were abundant on deep sinking particles at HOT
(Boeufet al., 2019). We hypothesize that all three of these groups are falling into the ODZ on

particles and thus may not be active.

Comparison between amplicons and metagenomic reads

The use of phylogenetic placement of metagenomic reads has added to our understanding
of marine protists. Amplicon sequencing has indicated that the diversity of protists is reduced
under anoxic conditions (Orsi et al., 2011, 2012; Jing et al., 2015). Altogether, the read
placement method indicated a general decrease in abundance of protists in ODZ, which could not
be seen by traditional amplicon methods. Placement of metagenomic reads avoided primer bias
and thus allowed us to examine groups missed from the long read amplicons, such as
chaonoflagellates, marine fungi, Amoebozoa, Euglenozoa, and foraminifera. All these groups
appear to be important in the offshore ETNP (Figure 4). Additionally, Acantherea and
radiolarians did not seem to be abundant in the ODZ by metagenomic methods, indicating that
primers may overly amplify some members of these groups. However, the primer set used here
for long amplicons is not typically used by the scientific community. Instead short read amplicon
primer sets have been developed. Short amplicons from the V4 18S rRNA region were recently
published from HOT in August 2015 (Ollison ef al., 2021). We examine metagenomes from
HOT in August 2015 and thus can directly compare (Figure 6). Profiles of protists amplified by
the V4 primers and detected by metagenomic read placement are qualitatively similar for some
groups. For example, the Stramenopile orders match between V4 amplicons and in the
metagenomic profiles (Figure 6, S8) though our long read amplicons do a worse job for
Stramenopile groups (Figure 2, 4). However, the short read amplicons miss Amoebozoa,
Euglenozoa, and foraminifera (Ollison et al., 2021), all important members of the protist
community (Figure 6). While Euglenozoa and foraminifera feature prominently in all our ODZ
datasets, they are missed or undercounted from published ODZ amplicon data (Parris ef al.,

2014; Duret et al., 2015; Jing et al., 2015; De La Iglesia et al., 2020). Both long read and short
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read amplicon methods appear to under count Polycystinea radiolarians (Figure 2, 4, 6) (Ollison
et al.,2021). Upon closer examination the amplicon methods appear to specifically under count
Spumellarida, which is the most abundant radiolarians in these systems (Figure 4, 6, S9, Table

S2, (Ollison et al., 2021)).

Ciliates
Ciliates are phagotrophic protists that are covered with cilia that allow them to move and

to eat and that choose their prey selectively by size with the prey size range varying between
ciliates (Fenchel, 1980). Though also present under oxic conditions, ciliates are a dominant
protist taxon under sulfidic conditions (Orsi ef al., 2012) with the type of ciliate varying greatly
between oxic and sulfidic conditions (Forster ef al., 2012). In sulfidic waters, instead of having
mitochondria which create ATP utilizing oxygen, ciliates often have degenerative mitochondria
such as hydrogenosomes, anaerobic organelles which use protons as an electron acceptor and
produce hydrogen via fermentation and ATP from substrate level phosphorylation (Boxma et al.,
2005; De Graaf et al., 2011). Anaerobic ciliates also can have methanogenic archaea
endosymbionts that utilize the H, created by the hydrogenosome to produce methane and
biomass and these methanogens in turn provide organic matter to the host (Fenchel and Finlay,
1991). Other anoxic (sulfidic) protists have similar organelles to hydrogenosomes (De Graaf et
al.,2011). However, fermentation and methanogenesis are processes favored under sulfidic or
equally reducing conditions, not in nitrate replete waters.

Ciliates have not been found to be abundant in ODZs by amplicon sequencing (Parris et
al., 2014; Duret et al., 2015; De La Iglesia et al., 2020; Figure 2), and were not found to be
abundant here by non-primer biased methods (Figures 4, 5). ODZs contain high concentrations
of nitrate (Table S1; see (Fuchsman et al., 2018; Peters et al., 2018)) and are not sulfidic. Thus,
functionally anoxic ODZs are at a different redox state than sulfidic basins. It would be more
energetically favorable for protists living in an ODZ to utilize nitrate in a dissimilatory fashion
than to utilize fermentative processes. In support of this, dissimilatory nitrate reduction is the
dominant metabolism among the bacterial community in ODZs (Lam et al., 2009; Fuchsman et
al., 2017). However, only one freshwater ciliate, Loxodes, has been found to utilize dissimilatory
nitrate reduction (Finlay ef al., 1983). Thus, we hypothesize that the low numbers of ciliates in

the ODZ has to do with the adaption of most anoxic ciliates to more reduced conditions.
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Predation on ODZ Prochlorococcus and N, producing bacteria

A secondary chlorophyll maximum in the ODZ that is dominated by Low Light V
Prochlorococcus is found at many stations in the ETNP and some stations in the ETSP (Lavin et
al., 2010; Garcia-Robledo et al., 2017; Fuchsman et al., 2019). Models indicate that a large
reduction of predation in anoxic waters allows the creation of a secondary chlorophyll maximum
in ODZs assuming nutrient availability (Zakem et al., 2020) despite the low growth rates of
Prochlorococcus at these depths and light levels (Vaulot ef al., 1995; Johnson et al., 1999). The
data available support this theory. In the coastal ETSP, cyanobacterial growth was 4x higher than
grazing by heterotrophic nanoflagellates in putatively anoxic waters (Cuevas and Morales, 2006)
and in general grazing was reduced from suboxic to anoxic conditions (Medina et al., 2017).
Reduced grazing could also allow N cycling bacteria in the ODZ to have higher abundance and
perhaps higher N transformation rates. We saw that normalized reads for a large number of
bacterivore predators, such as chaonoflagellates, radiolarians, ciliates are much reduced in anoxic
waters (Figures 4 and 5). According to our phylogenetic read placement analysis, groups known
to include bacterivore predators that were found in the ODZ include dinoflagellates, Euglenozoa,
and foraminifera. Each of these potential predators has unknowns associated with them.
Dinoflagellates can have thousands of copies of the 18S rRNA gene, thus enumerating them with
18S rRNA is not possible (Galluzzi et al., 2010). Dinoflagellates also can form resting cysts
under low oxygen conditions that could sink into anoxic water (Jing et al., 2015; Bringué et al.,
2018; More et al., 2018). Thus, the numbers of active dinoflagellates in the ODZ cannot be
determined by these methods. Euglenzoa of the diplonemid group remain likely bacterivore
predators in the ODZ. Other Euglenzoa have even been shown to have nitrate reducing
endosymbionts (Edgcomb, Breglia, et al., 2011). However, Flegontova et al (2016) point out that
we do not know if marine Diplonemids are parasites or bacterivores. Foraminifera likely can use
denitrification to prey on bacteria in the ODZ (Davis ef al., 2021). Thus, the potential predators
of ODZ bacteria offshore have been identified but questions remain.

An alternative source of death for the ODZ Prochlorococcus and N, producing bacteria is
viruses. Abundant cyanophage have been found in cellular and particulate fractions in the ETNP
ODZ (Fuchsman et al., 2019, 2021). Additionally, viruses infecting N cycling bacteria in the
ODZ have also been identified in the ETSP ODZ (Gazitta ef al., 2021). Grazing causes the

organic carbon to move up the food chain, while viral lysis makes the cell’s organic carbon
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available to heterotrophic bacteria (Fuhrman, 1999). As Prochlorococcus is an important source
of organic C to the upper ODZ (Fuchsman ef al., 2019), its mode of death can have a profound
effect on biogeochemical cycling. To further understand if dinoflagellates, foraminifera and
diplonemid euglenozoa are preying on ODZ Prochlorococcus and N cycling bacteria in the
ODZ, we believe that visual examination by microscopy and grazing studies that quantify

ingested prey are necessary.
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Figure Captions

Figure 1. Setting the scene. A) Oxygen and chlorophyll a profiles for ETNP St 136 in April
2012. B) ETNP St 136 nitrite concentrations and normalized metagenomics reads for genes for
denitrification (nitrous oxide reductase; nosZ) and anammox (hydrazine oxidoreductase; /4z0). C)
Oxygen and chlorophyll a profiles for ETSP St 9 in July 2013. D) ETSP St 9 nitrite
concentrations and normalized metagenomics reads for genes for denitrification and anammox.
E) Oxygen and chlorophyll a profiles for ETSP St 17 in July 2013, and F) ETSP St 17 nitrite
concentrations and genes for denitrification and anammox. Dashed lined indicate the top and

bottom of the ODZ.

Figure 2. 18S rRNA long read amplicons from ETNP St 161. Depths are labeled by Hypoxic
(<60 uM O,) or ODZ

Figure 3. Protist 18S rRNA bootstrapped phylogenetic tree. Colored bars indicate the labeled
group. Stars indicate ETNP long read amplicon OTUs. Bootstrap strength are indicated by
branch color where red = >75. An expanded version of the tree can be seen in Supplemental

Figure 4.

Figure 4. 18S rRNA normalized metagenomic read depth profiles from ETNP St 136 for A)
protists found in oxic waters, B) protists found in oxic and anoxic waters, C) algae, and D)
protist parasites. Depth profiles at the level of order for E) Radiolarians, F) Euglenozoa, G)
Stramenopiles, and H) Foraminifera. Globigerinacea is an order in the class Globothalamea and
thus is a subset of Globothalamea. The dashed line indicates the top of the ODZ. Radiolarians
and Acantharea have a separate horizontal axis in panel A, and Spumellarida have a separate

horizontal axis in panel E.

Figure 5. 18S rRNA normalized metagenomic read depth profiles from ETSP stations 17 (A-D)
and 9 (E-H) for A&E) protists found in oxic waters, B&F) protists found in oxic and anoxic
waters, C&GQG) algae, and D&H) protist parasites. The dashed line indicates the top and bottom of

the ODZ. Radiolarians and Acantharea have a separate horizontal axis in panels A and E.
Figure 6. 18S rRNA normalized metagenomic read depth profiles from HOT 275 in August 2015

for A) protists found in oxic waters, B) protists found in oxic and anoxic waters, C) algae, and D)

1
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