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ABSTRACT: MetPy is an open-source, Python-based package for meteorology, providing domain-
specific functionality built extensively on top of the robust scientific Python software stack, which 
includes libraries like NumPy, SciPy, Matplotlib, and xarray. The goal of the project is to bring the 
weather analysis capabilities of GEMPAK (and similar software tools) into a modern computing 
paradigm. MetPy strives to employ best practices in its development, including software tests, 
continuous integration, and automated publishing of web-based documentation. As such, MetPy 
represents a sustainable, long-term project that fills a need for the meteorological community. 
MetPy’s development is substantially driven by its user community, both through feedback on a 
variety of open, public forums like Stack Overflow, and through code contributions facilitated by 
the GitHub collaborative software development platform. MetPy has recently seen the release of 
version 1.0, with robust functionality for analyzing and visualizing meteorological datasets. While 
previous versions of MetPy have already seen extensive use, the 1.0 release represents a significant 
milestone in terms of completeness and a commitment to long-term support for the programming 
interfaces. This article provides an overview of MetPy’s suite of capabilities, including its use of 
labeled arrays and physical unit information as its core data model, unit-aware calculations, cross 
sections, skew T and GEMPAK-like plotting, station model plots, and support for parsing a variety 
of meteorological data formats. The general road map for future planned development for MetPy 
is also discussed.
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M
eteorology and atmospheric science have long had a strong reliance on data 

visualization and especially map analysis. From the mid 1980s through the early 

2000s, this meant widespread use of software tools like Read Interpolate Plot version 

4 (RIP4; Stoelinga 2018), NCAR Command Language (NCL; NCAR 2019), General Meteorology 

Package (GEMPAK; Unidata 2019), and Grid Analysis and Display System (GrADS; George 

Mason University 2018). Tools like these achieved favor because they promoted a scripting 

workflow, where users make small data analysis programs that also display and save images 

of the results. In these “scripting” workflows, the tight loop between making changes to the 

program and seeing results promotes interrogation of the data. On the other hand, these tools 

were implemented in low-level languages such as C and Java, making them harder for scientists 

without significant software development experience to extend beyond their original scope. 

Furthermore, these packages seldom sought to leverage similarities across scientific disciplines 

and instead took a singular and problem-specific approach to workflow and data formats.

In parallel, general-purpose array-based scientific computing packages such as IDL and 

MATLAB also became widely utilized through the mid-2000s, though these packages lacked 

an open-source library of meteorology-specific calculations and visualization functionality. 

Around this time, the Python language grew in prominence in scientific programming 

contexts, becoming a viable replacement for general-purpose scientific computing and 

visualization, while also having the advantage of being a modern, full-featured programming 

language with wide use in system scripting and web server development. Python is now, 

as of December 2021, the most popular programming language according to the TIOBE 

Index (TIOBE 2021) for programming languages, and has been adopted within a variety 

of scientific disciplines—including meteorology and atmospheric science. Among the  

features that have led to this adoption are Python’s generally readable syntax and its  

“batteries included” nature, wherein many useful tools are included in the language’s own 

standard library. MetPy fills gaps in the Python ecosystem in the areas of map analysis 

and meteorological calculations, while aligning with ongoing, active development in the 

wider Python ecosystem. The MetPy package has already seen use in atmospheric sci-

ence journal articles to create publication quality graphics (e.g., Wade and Parker 2021; 

Schueth et al. 2021; McDonald and Weiss 2021). MetPy joins other recent efforts to build 

Python tools for atmospheric science, and geoscience applications in general [e.g., Pytroll 

(Raspaud et al. 2018), SHARPpy (Blumberg et al. 2017)].

Software design philosophy

One of the goals of the MetPy project is to help the atmospheric science community modernize 

its software toolset by bringing the best features of GEMPAK and tools like it to the scientific 
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Python ecosystem. This allows MetPy to take advantage of scientific Python’s extensive 

community-driven, cross-discipline development.

MetPy builds on a core of scientific Python libraries that have grown and reached maturity 

over the previous decade, including NumPy (numeric arrays for fast computation; Harris et al. 

2020), SciPy (scientific algorithms; Virtanen et al. 2020), Matplotlib (publication-quality 

plotting; Hunter 2007), pandas (data structures and algorithms for tabular data; Pandas 

Development Team 2022; McKinney 2010), and xarray (multidimensional numeric arrays 

with named coordinate dimensions and metadata; Hoyer and Hamman 2017). These robust 

and widely used libraries have helped fuel the explosive growth of Python in the sciences. 

This software “stack” has continued to grow with more recent additions, such as Dask (Dask 

Development Team 2022) for distributed computing and Cartopy (Met Office 2021) for map-

based plotting. Together, these libraries form a shared foundation that can be leveraged to 

build more domain-specific tools without the need to build core numerical and algorithmic 

functionality from the ground up.

Since MetPy is built on the rich interdisciplinary scientific computing ecosystem that has 

developed around Python, we have purposely tried to restrict the scope of development to 

meteorology-specific pieces not readily available elsewhere. As appropriate, we have contributed 

general-purpose functionality to MetPy’s upstream dependencies, helping to benefit the broader 

ecosystem—an approach that pays dividends in an Earth system science framework (Leemans et al. 

2009; Reid et al. 2010) that routinely crosses the disciplinary boundaries of the twentieth century.

Another foundational development principle includes building a collection of pieces that 

can be joined together to suit the problem at hand. Users may bring data from their existing 

Python workflows in one of the standard Python numerical data formats and hand those off 

to MetPy’s calculation functions. These functions are intentionally small such that they are 

composable, i.e., easily combined to create more complex functions. For plotting, MetPy’s 

utilities directly extend Matplotlib so that users can leverage their prior expertise. This 

approach also means that MetPy can serve as an introduction to skills with broader application 

across the Python ecosystem. This philosophy of creating small and composable functions 

has enabled smooth development of new functionality, such as the declarative plotting syntax 

described below.

At the core of the interoperability between these pieces is MetPy’s data model, which is chiefly 

built upon the xarray package. Xarray is based on the successful netCDF data model, consisting 

of regular arrays of data with shared named dimensions and attached metadata, stored in a self-

describing fashion. The netCDF data model has been enormously successful as a portable binary 

data format, with use across many disciplines (Unidata 2021). The xarray package improves 

on prior Python interfaces to the netCDF data model by automating access to dimensionally  

consistent coordinate information and metadata. In this way, xarray more fully realizes the promise  

of self-describing data by automating what the computer can automate, giving the data more  

human immediacy. The rapid adoption of xarray across the Python data science ecosystem points 

to the success of meteorology’s netCDF data model in addressing a fundamental data science 

challenge. Another benefit of using xarray is its support for a variety of data formats beyond 

netCDF, including remote access protocols like OPeNDAP, pluggable custom storage backends 

such as the cloud-native Zarr (Zarr Developers 2021), and flexible array types.

By building on these broadly accepted xarray and numpy data models, MetPy functions 

can operate on any dataset that can be transformed into xarray data structures or NumPy 

arrays. This allows compatibility with file formats that can be read using other Python 

libraries in the scientific computing ecosystem. For instance, the domain specific file format 

GRIB can be read with cfgrib to obtain xarray data structures or pygrib to obtain numpy 

arrays. More general file formats like HDF5 can be read using h5py and the data can be 

subsequently converted to numpy arrays. The existence of these community-developed 
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packages lessens, or even completely eliminates, the need to implement support for these 

formats directly within MetPy.

Along with xarray, MetPy leverages the Pint (Grecco et al. 2021) library to track and auto-

matically reconcile unit information on data through various operations and calculations. 

We chose to make unit awareness a key part of the data model to simplify documentation 

and eliminate a common source of (silent) user mistakes. Automatically checking unit 

correctness can help users identify potential problems with their use of a calculation function, 

since the library can provide error messages if the dimensionality of provided data are not as 

expected. By explicitly including unit information as part of the data model, we also enable 

more automated conversions to take place, allowing users to readily switch data sources in 

their code without the need to manually audit the physical units of the new data—provided 

that the data have proper unit metadata stored in a machine-readable format. In cases where 

the data do not have such metadata, users are still able to add the necessary unit information.

MetPy and the core stack of Python libraries are released under permissive open source 

licenses, usually either Berkeley Software Distribution (BSD) 3-Clause or MIT license 

(Open Source Initiative 2022). These licenses impose minimal requirements for the use 

of the tools and redistribution of code using them (so-called derived works). This means 

that, from an intellectual property standpoint, MetPy and the scientific Python stack 

are suitable for a wide range of uses across the education, research, and commercial 

application sectors. The permissive licensing also encourages code reuse and helps facilitate 

downstream development.

MetPy’s overall development workflow strives to build a robust and sustainable project. 

Everything from documentation and code style to testing and deployment is handled via 

modern, automated processes. By automating many development tasks using the GitHub 

Actions service, and taking advantage of other externally provided services, the MetPy pipeline 

of development, documentation, testing, and deployment has been designed to be robust, 

resilient, and sustainable. A detailed contributor’s guide equips prospective contributors to 

propose changes to the codebase (known as a “pull request”). The full suite of documenta-

tion, built using the popular Sphinx Python documentation framework (Sphinx Team 2022), 

guides users with a mix of narrative text, a thorough gallery of examples and tutorials, helpful 

theming, and automatic generation of function reference documentation across all of MetPy’s 

functionality. User documentation is automatically published online with every release, and 

development documentation snapshots are published with every accepted contribution to 

the MetPy repository.

Beyond the sustainability of the project, MetPy has a focus on being a trustworthy part of 

its users’ computing stack and providing a stable user experience. This starts with the require-

ment that every calculation cites primary sources for its implementation. By joining scientific 

citation practices to software development, the software becomes a part of the scientific 

record and provides the user ample resources to understand how and why a calculation was 

implemented. Undertaking the often challenging journey to track down the source material 

also reflects a commitment to having scientific software development follow scholarly norms, 

instead of treating software as an implementation detail. Beyond the source material, every 

part of the MetPy code base contains software tests that ensure code continues to work as 

expected. Tests are automatically run with every proposed and accepted contribution; 

currently these tests exercise 95% of the lines of code in MetPy. Not only does the coverage of 

automated tests free developers to make modifications without fear of introducing unknown 

breakage, it helps the project manage the constant change in the ecosystem around it. The 

MetPy project pledges not to change user-level interfaces in a way that would cause existing 

programs to fail during the lifespan of a major release—this means that any code written us-

ing MetPy version 1.x should work for any later version 1.y.
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Installation of MetPy is as straightforward as the installation of any other Python package. 

MetPy is available on the Python Package Index (PyPI) and can be installed using the standard 

“pip” tool as “pip install metpy.” MetPy is also available for the Conda package manager using 

the community conda-forge channel with “conda install -c conda-forge metpy.”

Capabilities

MetPy encapsulates a wide breadth of tools across functionality like calculations, file reading, 

plotting, and interpolation. (Writing data files is done using other libraries like xarray.) 

Through the modularity and interoperability of the Python ecosystem, users can choose to 

pull out individual pieces and mold MetPy around their existing workflows, and can integrate 

different parts of the MetPy toolbox with each other to create brand new workflows altogether.

An early feature of MetPy was implementation of a skew T–logp diagram that has long been 

used in the field to display the vertical profile of the atmosphere from radiosonde balloon 

observations and model simulations thereof (Fig. 1). In addition to being able to plot observed 

or gridded profiles, MetPy’s calculation suite includes the ability to calculate many sounding 

parameters, a capability which exceeds those of GEMPAK. MetPy also features the ability to 

plot a hodograph of wind components, which frequently is used alongside such plots.

A limiting factor in moving away from GEMPAK to Python for many years was the inability 

to plot surface and upper-air observational data using a station model. MetPy has the ability to 

produce station plots and includes a domain-specific font to plot current weather symbols—a 

Fig. 1. Vertical profile of the atmosphere, valid 1200 UTC 22 May 2011 from Topeka (TOP), present-

ed on a skew T–logp diagram. Shown are observed temperature (red line), dewpoint temperature 

(green line), calculated parcel profile trace (black line), 0°C isotherm (cyan line, dashed), and wind 

barbs (right axis; kt; 1 kt ≈ 0.51 m s−1), with shaded areas for CIN (blue shaded) and CAPE (red 

shaded). Calculated indices are inset at the bottom left, and a hodograph is presented in the top 

right, colored by altitude.
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must for any surface map. With the modular implementation of the different plotting ele-

ments, it is easy to layer different elements together to create more complex figures that help 

reveal atmospheric phenomena. For example, a set of surface observations can be overlaid on 

visible satellite imagery with contours of analyzed equivalent potential temperature (Fig. 2).

MetPy’s unit-aware calculation suite covers a wide range of the most commonly used me-

teorological calculations. The large majority of calculations that are a part of GEMPAK’s scalar 

functions have been implemented in MetPy. Many of the calculations work on data ranging 

from single values, to one-dimensional arrays, to multidimensional arrays—especially for the 

dynamic and kinematic functions. Currently, the implementation of a number of key sounding 

calculations, such as convective available potential energy (CAPE), can only be used with 

one-dimensional data due to their iterative nature, which precludes fast calculations on a 

gridded dataset until they are optimized using compiled routines.

MetPy also has support for interpolation of data, both for producing arbitrary cross sections 

(Fig. 3) from three-dimensional datasets and for creating regular grids of data from irregularly 

spaced observations, like those seen in surface and upper air observations. In the case of 

gridding irregular observations, this includes wrapping interpolation functions from the 

SciPy library, as well as support for natural neighbor interpolation and the Cressman- and 

Barnes-style interpolation traditionally used in meteorology.

While the netCDF data model and data stored in netCDF format are core to the design of 

MetPy and its interoperability with other tools, meteorological and atmospheric data are 

often stored in domain-specific formats. This is especially true when it comes to historical 

archives, which are crucial for many education and research applications. To facilitate the 

use of these data in Python, MetPy has support for many important domain-specific formats 

for data, including NEXRAD level 2, NEXRAD level 3, GINI, METAR, and GEMPAK. Reading 

data in these formats produces a pandas DataFrame or an xarray Dataset as appropriate; 

Fig. 2. Map of the continental United States with background GOES-16 channel 02 imagery valid 1926 UTC 27 Jun 2022, 

overlayed with contours of equivalent potential temperature calculated from Real-Time Mesoscale Analysis (RTMA) 

output and station models of surface observations from a collection of surface observation METARs.
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an exception is MetPy’s NEXRAD readers, which return custom data structures. Other file 

formats, such as GRIB and HDF5, can be read by existing libraries in the Python ecosystem 

(see “Software design philosophy” section).

One key element of MetPy is a simplified interface for creating useful data visualizations 

without the need for deep knowledge of the Python stack. This interface is known within the 

package as the declarative syntax and allows the user to create a plot by specifying a small 

number of plot and data attributes, which MetPy will interpret into a plot with a “sensible” 

default presentation. The sensible defaults were chosen to create a low barrier to being able 

to produce a quality visible representation of a set of data for the CONUS. Producing a similar 

analysis using a traditional procedural syntax may require nearly twice as many lines of code 

(Fig. 4) to produce an identical plot (Fig. 5). However, the declarative interface is optimized 

for common use cases and relies heavily on proper metadata attached to the data, a trade-off 

for some users and workflows.

As of Metpy version 1.1, the declarative syntax has the capability to produce map-based 

plots using observations from either surface or upper-air data in the form of station models 

or wind barbs. Additionally, scalar gridded output (e.g., GFS, NAM, GOES-16/17) can be con-

toured, color filled, or image plotted, and vector gridded data can be plotted as wind barbs 

(Fig. 5). The declarative syntax can also plot shapefile geometries; this allows for easy plot-

ting of data sources like Storm Prediction Center Convective Outlooks (Fig. 6) and National 

Hurricane Center storm forecasts.

By offering these user-friendly Python tools for atmospheric scientists, like the declarative 

syntax, MetPy is uniquely equipped to support educators in the field. Since Python has been 

increasingly adopted by individuals across all sectors of the atmospheric science community, 

educators need to prepare graduates for success in any of these sectors through integration 

Fig. 3. Vertical cross section of relative humidity (shaded; dimensionless), potential temperature (contours; K), and wind 

components (barbs; kt) tangential and normal to the plane of the cross section. Latitude, longitude coordinates along the 

cross-section path are provided along the x axis; vertical pressure levels are provided along the y axis. The top-left corner 

inset is a map of the trace of the cross section and contours of 500-hPa geopotential height. Data from North American 

Regional Reanalysis (NARR) valid 1800 UTC 4 Apr 1987.
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of Python in coursework. Historically, there were substantial barriers to the adoption of sci-

entific Python due to the complex package management and the sheer number of packages 

needed to accomplish many tasks. With tools like the declarative syntax, MetPy and its suite 

of functionality lowers the barrier to entry for using Python to analyze and visualize a wide 

variety of weather data and model output. This means that it can be used very early in an 

educational journey (e.g., in a freshman undergraduate course), and then be built upon in 

subsequent educational and research-based experiences by delving deeper into the scien-

tific Python stack. The use of MetPy and Python within the education community creates 

a smoother transition to computing in research, operations, and other private sector work, 

where these tools are extensively used.

Fig. 4. Example Python code to produce Fig. 5. (left) Manual creation of figure and map through 

Matplotlib and Cartopy. (right) Simplified code using MetPy’s declarative plotting syntax.
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Community

MetPy is built first and foremost to serve the scientific needs of the meteorological and atmo-

spheric science communities. As such, we place an emphasis on interacting with our com-

munity to improve the software, build trust, and help people learn. MetPy’s code is hosted 

on the popular GitHub code collaboration platform. As mentioned previously, MetPy is a 

permissively licensed open source project, so users are free to browse the code to understand 

how various portions of the library work and see how calculations are implemented. With the 

support of Unidata, workshops are held regularly to engage with the community and teach 

users about MetPy and the broader Python scientific ecosystem.

Through the use of GitHub, MetPy users have a variety of channels for interacting with 

developers and other community members. Users are encouraged to ask questions using 

GitHub discussions and to report any problems, suggestions for improvement, and feature 

requests using GitHub’s issue tracker. We supplement these channels with Stack Overflow 

(a public question and answer site) and Gitter (synchronous web-based chat). We believe this set 

of channels is critical so that users are able to get the help and guidance they need for using 

MetPy. The focus on public channels encourages participation in this process by community 

members, and allows users to see answers to questions that have already been asked.

Fig. 5. Geopotential heights (contoured; m), wind speed (filled contours; kt), and wind barbs (kt) from Global Forecast 

System output valid at 1200 UTC 31 Oct 2010. Example analysis produced using MetPy’s declarative plotting syntax 

demonstrated in Fig. 4.
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As an open source, community-driven project, MetPy actively encourages and solicits con-

tributions from the community. This is one of the chief benefits of being part of the scientific 

Python ecosystem: users of the library generally possess the baseline programming knowledge 

needed to modify the library. Contributions to MetPy make use of GitHub’s “pull request” feature, 

whereby any user can request project maintainers “pull in” a suggested set of changes. During 

this process developers review the submission, provide feedback, and request changes, and 

ensure that automated tests and style checks pass. This process is iterated until the contribu-

tor and maintainers are satisfied with the changes, at which point the contribution is merged 

into the project source code repository. This open contribution process empowers users to add 

desired features to MetPy and fix any issues that they have discovered in the code.

The contribution process outlined above applies to all contributions and modifications to 

the project, even those from the core development team. This is done to help encourage par-

ticipation as well as producing a historical record of discussions and feedback surrounding 

changes. MetPy has a public development road map hosted in the documentation, and we 

have regular virtual developer meetings that are open to the community.

At this point, MetPy represents the collective code contributions of 60 different authors, as 

well as numerous other users who have contributed to the improvement of the library through 

their bug reports, feature requests, and support questions asked through a variety of venues. 

On GitHub alone, 277 users have interacted with the project since 2015. In terms of more 

general usage, MetPy was downloaded over 208,000 times in 2021 from the conda-forge and 

Python Package Index repositories; during this time MetPy’s documentation averaged just 

under 35,000 page views per month.

Fig. 6. NOAA/NWS/Storm Prediction Center (SPC) 1200 UTC 17 Mar 2021 Day 1 Convective Outlook recreated using 

MetPy’s declarative plotting interface. Data from SPC GeoJSON archive.
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The MetPy development effort receives significant support from the Unidata Program. 

The Unidata Program Center (UPC) is a community data and software facility sponsored 

primarily by the National Science Foundation’s Division of Atmospheric and Geospace 

Sciences (AGS), with a mission to help transform the conduct of research and education in 

the atmospheric and related sciences by providing well integrated data services and tools 

that address the entire scientific data life cycle. Several of the primary MetPy developers 

are now or have previously been based at the UPC; other developers are now or have been 

involved with Unidata’s community governance mechanisms. In addition to providing direct 

support for UPC software engineers’ MetPy work, Unidata supports the MetPy community’s 

open development model and community contribution process by providing infrastructure 

(the MetPy repository takes advantage of Unidata’s organizational GitHub account) and 

training resources.

Future plans

The needs and feedback of the community have set the course for MetPy’s continued devel-

opment. One of the foremost user requests has been performant calculation of parcel-related 

calculations like CAPE on gridded datasets, which is inefficient in current versions of MetPy. 

To move past the present inefficiencies in these iteration-based calculations, we will be 

addressing bottlenecks in the current implementations through the use of Python tools like 

Numba and Cython for creating optimized, compiled routines.

Another performance-related area for improvement in MetPy involves integration with the 

Dask Python library. Dask enables larger-than-memory and distributed-memory calcula-

tions across large datasets (Dask Development Team 2022). Native support for data provided 

in Dask arrays will allow MetPy users to much more readily analyze large datasets, such 

as ensemble and climate model output. This support will necessarily entail comprehensive 

testing of the calculation library across the wide array of supported data types. Supporting 

Dask arrays will allow MetPy users to optimize their calculations on large datasets as they see 

fit. We plan to implement support by testing against this data type, but deliberately making 

sure that Dask is not a required dependency. Other plans for the future include continuing 

to add supported data formats (e.g., BUFR, McIDAS area files) and adding to the collection of 

calculations as requests from the community come in. We also plan to continue to investigate 

ways of integrating with other new related Python projects, such as PyART for radar data and 

xgcm for climate models.

Learn more

To learn more about MetPy, visit the web documentation at https://unidata.github.io/MetPy/. 

The GitHub repository with issue tracker, pull requests, and discussions can be found at 

https://github.com/Unidata/MetPy.
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