
A M E R I C A N M E T E O R O L O G I C A L S O C I E T Y O C TO B E R 2 0 2 2 E2273

Article

MetPy
A Meteorological Python Library for Data Analysis and Visualization

Ryan M. May, Kevin H. Goebbert, Jonathan E. Thielen, John R. Leeman,
M. Drew Camron, Zachary Bruick, Eric C. Bruning, Russell P. Manser,
Sean C. Arms, and Patrick T. Marsh

ABSTRACT: MetPy is an open-source, Python-based package for meteorology, providing domain-
specific functionality built extensively on top of the robust scientific Python software stack, which
includes libraries like NumPy, SciPy, Matplotlib, and xarray. The goal of the project is to bring the
weather analysis capabilities of GEMPAK (and similar software tools) into a modern computing
paradigm. MetPy strives to employ best practices in its development, including software tests,
continuous integration, and automated publishing of web-based documentation. As such, MetPy
represents a sustainable, long-term project that fills a need for the meteorological community.
MetPy’s development is substantially driven by its user community, both through feedback on a
variety of open, public forums like Stack Overflow, and through code contributions facilitated by
the GitHub collaborative software development platform. MetPy has recently seen the release of
version 1.0, with robust functionality for analyzing and visualizing meteorological datasets. While
previous versions of MetPy have already seen extensive use, the 1.0 release represents a significant
milestone in terms of completeness and a commitment to long-term support for the programming
interfaces. This article provides an overview of MetPy’s suite of capabilities, including its use of
labeled arrays and physical unit information as its core data model, unit-aware calculations, cross
sections, skew T and GEMPAK-like plotting, station model plots, and support for parsing a variety
of meteorological data formats. The general road map for future planned development for MetPy
is also discussed.

KEYWORDS: Atmosphere; Algorithms; Data processing/distribution; Software

https://doi.org/10.1175/BAMS-D-21-0125.1
Corresponding author: Ryan M. May, rmay@ucar.edu
In final form 6 July 2022

©2022 American Meteorological Society

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy.

Unauthenticated | Downloaded 01/20/23 09:41 PM UTC

A M E R I C A N M E T E O R O L O G I C A L S O C I E T Y O C TO B E R 2 0 2 2 E2274

M
eteorology and atmospheric science have long had a strong reliance on data

visualization and especially map analysis. From the mid 1980s through the early

2000s, this meant widespread use of software tools like Read Interpolate Plot version

4 (RIP4; Stoelinga 2018), NCAR Command Language (NCL; NCAR 2019), General Meteorology

Package (GEMPAK; Unidata 2019), and Grid Analysis and Display System (GrADS; George

Mason University 2018). Tools like these achieved favor because they promoted a scripting

workflow, where users make small data analysis programs that also display and save images

of the results. In these “scripting” workflows, the tight loop between making changes to the

program and seeing results promotes interrogation of the data. On the other hand, these tools

were implemented in low-level languages such as C and Java, making them harder for scientists

without significant software development experience to extend beyond their original scope.

Furthermore, these packages seldom sought to leverage similarities across scientific disciplines

and instead took a singular and problem-specific approach to workflow and data formats.

In parallel, general-purpose array-based scientific computing packages such as IDL and

MATLAB also became widely utilized through the mid-2000s, though these packages lacked

an open-source library of meteorology-specific calculations and visualization functionality.

Around this time, the Python language grew in prominence in scientific programming

contexts, becoming a viable replacement for general-purpose scientific computing and

visualization, while also having the advantage of being a modern, full-featured programming

language with wide use in system scripting and web server development. Python is now,

as of December 2021, the most popular programming language according to the TIOBE

Index (TIOBE 2021) for programming languages, and has been adopted within a variety

of scientific disciplines—including meteorology and atmospheric science. Among the

features that have led to this adoption are Python’s generally readable syntax and its

“batteries included” nature, wherein many useful tools are included in the language’s own

standard library. MetPy fills gaps in the Python ecosystem in the areas of map analysis

and meteorological calculations, while aligning with ongoing, active development in the

wider Python ecosystem. The MetPy package has already seen use in atmospheric sci-

ence journal articles to create publication quality graphics (e.g., Wade and Parker 2021;

Schueth et al. 2021; McDonald and Weiss 2021). MetPy joins other recent efforts to build

Python tools for atmospheric science, and geoscience applications in general [e.g., Pytroll

(Raspaud et al. 2018), SHARPpy (Blumberg et al. 2017)].

Software design philosophy

One of the goals of the MetPy project is to help the atmospheric science community modernize

its software toolset by bringing the best features of GEMPAK and tools like it to the scientific

AFFILIATIONS: May and Camron—Unidata, University Corporation for Atmospheric Research, Boulder,

Colorado; Goebbert—Valparaiso University, Valparaiso, Indiana; Thielen—Colorado State University,

Fort Collins, Colorado; Leeman*—Leeman Geophysical LLC, Siloam Springs, Arkansas; Bruick*—McKinsey

and Company, Denver, Colorado; Bruning and Manser—Texas Tech University, Lubbock, Texas;

Arms*—Longmont, Colorado; Marsh—NOAA/Storm Prediction Center, Norman, Oklahoma

*FORMER AFFILIATION: Leeman, Bruick, and Arms—Unidata, University Corporation for Atmospheric

Research, Boulder, Colorado

Unauthenticated | Downloaded 01/20/23 09:41 PM UTC

A M E R I C A N M E T E O R O L O G I C A L S O C I E T Y O C TO B E R 2 0 2 2 E2275

Python ecosystem. This allows MetPy to take advantage of scientific Python’s extensive

community-driven, cross-discipline development.

MetPy builds on a core of scientific Python libraries that have grown and reached maturity

over the previous decade, including NumPy (numeric arrays for fast computation; Harris et al.

2020), SciPy (scientific algorithms; Virtanen et al. 2020), Matplotlib (publication-quality

plotting; Hunter 2007), pandas (data structures and algorithms for tabular data; Pandas

Development Team 2022; McKinney 2010), and xarray (multidimensional numeric arrays

with named coordinate dimensions and metadata; Hoyer and Hamman 2017). These robust

and widely used libraries have helped fuel the explosive growth of Python in the sciences.

This software “stack” has continued to grow with more recent additions, such as Dask (Dask

Development Team 2022) for distributed computing and Cartopy (Met Office 2021) for map-

based plotting. Together, these libraries form a shared foundation that can be leveraged to

build more domain-specific tools without the need to build core numerical and algorithmic

functionality from the ground up.

Since MetPy is built on the rich interdisciplinary scientific computing ecosystem that has

developed around Python, we have purposely tried to restrict the scope of development to

meteorology-specific pieces not readily available elsewhere. As appropriate, we have contributed

general-purpose functionality to MetPy’s upstream dependencies, helping to benefit the broader

ecosystem—an approach that pays dividends in an Earth system science framework (Leemans et al.

2009; Reid et al. 2010) that routinely crosses the disciplinary boundaries of the twentieth century.

Another foundational development principle includes building a collection of pieces that

can be joined together to suit the problem at hand. Users may bring data from their existing

Python workflows in one of the standard Python numerical data formats and hand those off

to MetPy’s calculation functions. These functions are intentionally small such that they are

composable, i.e., easily combined to create more complex functions. For plotting, MetPy’s

utilities directly extend Matplotlib so that users can leverage their prior expertise. This

approach also means that MetPy can serve as an introduction to skills with broader application

across the Python ecosystem. This philosophy of creating small and composable functions

has enabled smooth development of new functionality, such as the declarative plotting syntax

described below.

At the core of the interoperability between these pieces is MetPy’s data model, which is chiefly

built upon the xarray package. Xarray is based on the successful netCDF data model, consisting

of regular arrays of data with shared named dimensions and attached metadata, stored in a self-

describing fashion. The netCDF data model has been enormously successful as a portable binary

data format, with use across many disciplines (Unidata 2021). The xarray package improves

on prior Python interfaces to the netCDF data model by automating access to dimensionally

consistent coordinate information and metadata. In this way, xarray more fully realizes the promise

of self-describing data by automating what the computer can automate, giving the data more

human immediacy. The rapid adoption of xarray across the Python data science ecosystem points

to the success of meteorology’s netCDF data model in addressing a fundamental data science

challenge. Another benefit of using xarray is its support for a variety of data formats beyond

netCDF, including remote access protocols like OPeNDAP, pluggable custom storage backends

such as the cloud-native Zarr (Zarr Developers 2021), and flexible array types.

By building on these broadly accepted xarray and numpy data models, MetPy functions

can operate on any dataset that can be transformed into xarray data structures or NumPy

arrays. This allows compatibility with file formats that can be read using other Python

libraries in the scientific computing ecosystem. For instance, the domain specific file format

GRIB can be read with cfgrib to obtain xarray data structures or pygrib to obtain numpy

arrays. More general file formats like HDF5 can be read using h5py and the data can be

subsequently converted to numpy arrays. The existence of these community-developed

Unauthenticated | Downloaded 01/20/23 09:41 PM UTC

A M E R I C A N M E T E O R O L O G I C A L S O C I E T Y O C TO B E R 2 0 2 2 E2276

packages lessens, or even completely eliminates, the need to implement support for these

formats directly within MetPy.

Along with xarray, MetPy leverages the Pint (Grecco et al. 2021) library to track and auto-

matically reconcile unit information on data through various operations and calculations.

We chose to make unit awareness a key part of the data model to simplify documentation

and eliminate a common source of (silent) user mistakes. Automatically checking unit

correctness can help users identify potential problems with their use of a calculation function,

since the library can provide error messages if the dimensionality of provided data are not as

expected. By explicitly including unit information as part of the data model, we also enable

more automated conversions to take place, allowing users to readily switch data sources in

their code without the need to manually audit the physical units of the new data—provided

that the data have proper unit metadata stored in a machine-readable format. In cases where

the data do not have such metadata, users are still able to add the necessary unit information.

MetPy and the core stack of Python libraries are released under permissive open source

licenses, usually either Berkeley Software Distribution (BSD) 3-Clause or MIT license

(Open Source Initiative 2022). These licenses impose minimal requirements for the use

of the tools and redistribution of code using them (so-called derived works). This means

that, from an intellectual property standpoint, MetPy and the scientific Python stack

are suitable for a wide range of uses across the education, research, and commercial

application sectors. The permissive licensing also encourages code reuse and helps facilitate

downstream development.

MetPy’s overall development workflow strives to build a robust and sustainable project.

Everything from documentation and code style to testing and deployment is handled via

modern, automated processes. By automating many development tasks using the GitHub

Actions service, and taking advantage of other externally provided services, the MetPy pipeline

of development, documentation, testing, and deployment has been designed to be robust,

resilient, and sustainable. A detailed contributor’s guide equips prospective contributors to

propose changes to the codebase (known as a “pull request”). The full suite of documenta-

tion, built using the popular Sphinx Python documentation framework (Sphinx Team 2022),

guides users with a mix of narrative text, a thorough gallery of examples and tutorials, helpful

theming, and automatic generation of function reference documentation across all of MetPy’s

functionality. User documentation is automatically published online with every release, and

development documentation snapshots are published with every accepted contribution to

the MetPy repository.

Beyond the sustainability of the project, MetPy has a focus on being a trustworthy part of

its users’ computing stack and providing a stable user experience. This starts with the require-

ment that every calculation cites primary sources for its implementation. By joining scientific

citation practices to software development, the software becomes a part of the scientific

record and provides the user ample resources to understand how and why a calculation was

implemented. Undertaking the often challenging journey to track down the source material

also reflects a commitment to having scientific software development follow scholarly norms,

instead of treating software as an implementation detail. Beyond the source material, every

part of the MetPy code base contains software tests that ensure code continues to work as

expected. Tests are automatically run with every proposed and accepted contribution;

currently these tests exercise 95% of the lines of code in MetPy. Not only does the coverage of

automated tests free developers to make modifications without fear of introducing unknown

breakage, it helps the project manage the constant change in the ecosystem around it. The

MetPy project pledges not to change user-level interfaces in a way that would cause existing

programs to fail during the lifespan of a major release—this means that any code written us-

ing MetPy version 1.x should work for any later version 1.y.

Unauthenticated | Downloaded 01/20/23 09:41 PM UTC

A M E R I C A N M E T E O R O L O G I C A L S O C I E T Y O C TO B E R 2 0 2 2 E2277

Installation of MetPy is as straightforward as the installation of any other Python package.

MetPy is available on the Python Package Index (PyPI) and can be installed using the standard

“pip” tool as “pip install metpy.” MetPy is also available for the Conda package manager using

the community conda-forge channel with “conda install -c conda-forge metpy.”

Capabilities

MetPy encapsulates a wide breadth of tools across functionality like calculations, file reading,

plotting, and interpolation. (Writing data files is done using other libraries like xarray.)

Through the modularity and interoperability of the Python ecosystem, users can choose to

pull out individual pieces and mold MetPy around their existing workflows, and can integrate

different parts of the MetPy toolbox with each other to create brand new workflows altogether.

An early feature of MetPy was implementation of a skew T–logp diagram that has long been

used in the field to display the vertical profile of the atmosphere from radiosonde balloon

observations and model simulations thereof (Fig. 1). In addition to being able to plot observed

or gridded profiles, MetPy’s calculation suite includes the ability to calculate many sounding

parameters, a capability which exceeds those of GEMPAK. MetPy also features the ability to

plot a hodograph of wind components, which frequently is used alongside such plots.

A limiting factor in moving away from GEMPAK to Python for many years was the inability

to plot surface and upper-air observational data using a station model. MetPy has the ability to

produce station plots and includes a domain-specific font to plot current weather symbols—a

Fig. 1. Vertical profile of the atmosphere, valid 1200 UTC 22 May 2011 from Topeka (TOP), present-

ed on a skew T–logp diagram. Shown are observed temperature (red line), dewpoint temperature

(green line), calculated parcel profile trace (black line), 0°C isotherm (cyan line, dashed), and wind

barbs (right axis; kt; 1 kt ≈ 0.51 m s−1), with shaded areas for CIN (blue shaded) and CAPE (red

shaded). Calculated indices are inset at the bottom left, and a hodograph is presented in the top

right, colored by altitude.

Unauthenticated | Downloaded 01/20/23 09:41 PM UTC

A M E R I C A N M E T E O R O L O G I C A L S O C I E T Y O C TO B E R 2 0 2 2 E2278

must for any surface map. With the modular implementation of the different plotting ele-

ments, it is easy to layer different elements together to create more complex figures that help

reveal atmospheric phenomena. For example, a set of surface observations can be overlaid on

visible satellite imagery with contours of analyzed equivalent potential temperature (Fig. 2).

MetPy’s unit-aware calculation suite covers a wide range of the most commonly used me-

teorological calculations. The large majority of calculations that are a part of GEMPAK’s scalar

functions have been implemented in MetPy. Many of the calculations work on data ranging

from single values, to one-dimensional arrays, to multidimensional arrays—especially for the

dynamic and kinematic functions. Currently, the implementation of a number of key sounding

calculations, such as convective available potential energy (CAPE), can only be used with

one-dimensional data due to their iterative nature, which precludes fast calculations on a

gridded dataset until they are optimized using compiled routines.

MetPy also has support for interpolation of data, both for producing arbitrary cross sections

(Fig. 3) from three-dimensional datasets and for creating regular grids of data from irregularly

spaced observations, like those seen in surface and upper air observations. In the case of

gridding irregular observations, this includes wrapping interpolation functions from the

SciPy library, as well as support for natural neighbor interpolation and the Cressman- and

Barnes-style interpolation traditionally used in meteorology.

While the netCDF data model and data stored in netCDF format are core to the design of

MetPy and its interoperability with other tools, meteorological and atmospheric data are

often stored in domain-specific formats. This is especially true when it comes to historical

archives, which are crucial for many education and research applications. To facilitate the

use of these data in Python, MetPy has support for many important domain-specific formats

for data, including NEXRAD level 2, NEXRAD level 3, GINI, METAR, and GEMPAK. Reading

data in these formats produces a pandas DataFrame or an xarray Dataset as appropriate;

Fig. 2. Map of the continental United States with background GOES-16 channel 02 imagery valid 1926 UTC 27 Jun 2022,

overlayed with contours of equivalent potential temperature calculated from Real-Time Mesoscale Analysis (RTMA)

output and station models of surface observations from a collection of surface observation METARs.

Unauthenticated | Downloaded 01/20/23 09:41 PM UTC

A M E R I C A N M E T E O R O L O G I C A L S O C I E T Y O C TO B E R 2 0 2 2 E2279

an exception is MetPy’s NEXRAD readers, which return custom data structures. Other file

formats, such as GRIB and HDF5, can be read by existing libraries in the Python ecosystem

(see “Software design philosophy” section).

One key element of MetPy is a simplified interface for creating useful data visualizations

without the need for deep knowledge of the Python stack. This interface is known within the

package as the declarative syntax and allows the user to create a plot by specifying a small

number of plot and data attributes, which MetPy will interpret into a plot with a “sensible”

default presentation. The sensible defaults were chosen to create a low barrier to being able

to produce a quality visible representation of a set of data for the CONUS. Producing a similar

analysis using a traditional procedural syntax may require nearly twice as many lines of code

(Fig. 4) to produce an identical plot (Fig. 5). However, the declarative interface is optimized

for common use cases and relies heavily on proper metadata attached to the data, a trade-off

for some users and workflows.

As of Metpy version 1.1, the declarative syntax has the capability to produce map-based

plots using observations from either surface or upper-air data in the form of station models

or wind barbs. Additionally, scalar gridded output (e.g., GFS, NAM, GOES-16/17) can be con-

toured, color filled, or image plotted, and vector gridded data can be plotted as wind barbs

(Fig. 5). The declarative syntax can also plot shapefile geometries; this allows for easy plot-

ting of data sources like Storm Prediction Center Convective Outlooks (Fig. 6) and National

Hurricane Center storm forecasts.

By offering these user-friendly Python tools for atmospheric scientists, like the declarative

syntax, MetPy is uniquely equipped to support educators in the field. Since Python has been

increasingly adopted by individuals across all sectors of the atmospheric science community,

educators need to prepare graduates for success in any of these sectors through integration

Fig. 3. Vertical cross section of relative humidity (shaded; dimensionless), potential temperature (contours; K), and wind

components (barbs; kt) tangential and normal to the plane of the cross section. Latitude, longitude coordinates along the

cross-section path are provided along the x axis; vertical pressure levels are provided along the y axis. The top-left corner

inset is a map of the trace of the cross section and contours of 500-hPa geopotential height. Data from North American

Regional Reanalysis (NARR) valid 1800 UTC 4 Apr 1987.

Unauthenticated | Downloaded 01/20/23 09:41 PM UTC

A M E R I C A N M E T E O R O L O G I C A L S O C I E T Y O C TO B E R 2 0 2 2 E2280

of Python in coursework. Historically, there were substantial barriers to the adoption of sci-

entific Python due to the complex package management and the sheer number of packages

needed to accomplish many tasks. With tools like the declarative syntax, MetPy and its suite

of functionality lowers the barrier to entry for using Python to analyze and visualize a wide

variety of weather data and model output. This means that it can be used very early in an

educational journey (e.g., in a freshman undergraduate course), and then be built upon in

subsequent educational and research-based experiences by delving deeper into the scien-

tific Python stack. The use of MetPy and Python within the education community creates

a smoother transition to computing in research, operations, and other private sector work,

where these tools are extensively used.

Fig. 4. Example Python code to produce Fig. 5. (left) Manual creation of figure and map through

Matplotlib and Cartopy. (right) Simplified code using MetPy’s declarative plotting syntax.

Unauthenticated | Downloaded 01/20/23 09:41 PM UTC

A M E R I C A N M E T E O R O L O G I C A L S O C I E T Y O C TO B E R 2 0 2 2 E2281

Community

MetPy is built first and foremost to serve the scientific needs of the meteorological and atmo-

spheric science communities. As such, we place an emphasis on interacting with our com-

munity to improve the software, build trust, and help people learn. MetPy’s code is hosted

on the popular GitHub code collaboration platform. As mentioned previously, MetPy is a

permissively licensed open source project, so users are free to browse the code to understand

how various portions of the library work and see how calculations are implemented. With the

support of Unidata, workshops are held regularly to engage with the community and teach

users about MetPy and the broader Python scientific ecosystem.

Through the use of GitHub, MetPy users have a variety of channels for interacting with

developers and other community members. Users are encouraged to ask questions using

GitHub discussions and to report any problems, suggestions for improvement, and feature

requests using GitHub’s issue tracker. We supplement these channels with Stack Overflow

(a public question and answer site) and Gitter (synchronous web-based chat). We believe this set

of channels is critical so that users are able to get the help and guidance they need for using

MetPy. The focus on public channels encourages participation in this process by community

members, and allows users to see answers to questions that have already been asked.

Fig. 5. Geopotential heights (contoured; m), wind speed (filled contours; kt), and wind barbs (kt) from Global Forecast

System output valid at 1200 UTC 31 Oct 2010. Example analysis produced using MetPy’s declarative plotting syntax

demonstrated in Fig. 4.

Unauthenticated | Downloaded 01/20/23 09:41 PM UTC

A M E R I C A N M E T E O R O L O G I C A L S O C I E T Y O C TO B E R 2 0 2 2 E2282

As an open source, community-driven project, MetPy actively encourages and solicits con-

tributions from the community. This is one of the chief benefits of being part of the scientific

Python ecosystem: users of the library generally possess the baseline programming knowledge

needed to modify the library. Contributions to MetPy make use of GitHub’s “pull request” feature,

whereby any user can request project maintainers “pull in” a suggested set of changes. During

this process developers review the submission, provide feedback, and request changes, and

ensure that automated tests and style checks pass. This process is iterated until the contribu-

tor and maintainers are satisfied with the changes, at which point the contribution is merged

into the project source code repository. This open contribution process empowers users to add

desired features to MetPy and fix any issues that they have discovered in the code.

The contribution process outlined above applies to all contributions and modifications to

the project, even those from the core development team. This is done to help encourage par-

ticipation as well as producing a historical record of discussions and feedback surrounding

changes. MetPy has a public development road map hosted in the documentation, and we

have regular virtual developer meetings that are open to the community.

At this point, MetPy represents the collective code contributions of 60 different authors, as

well as numerous other users who have contributed to the improvement of the library through

their bug reports, feature requests, and support questions asked through a variety of venues.

On GitHub alone, 277 users have interacted with the project since 2015. In terms of more

general usage, MetPy was downloaded over 208,000 times in 2021 from the conda-forge and

Python Package Index repositories; during this time MetPy’s documentation averaged just

under 35,000 page views per month.

Fig. 6. NOAA/NWS/Storm Prediction Center (SPC) 1200 UTC 17 Mar 2021 Day 1 Convective Outlook recreated using

MetPy’s declarative plotting interface. Data from SPC GeoJSON archive.

Unauthenticated | Downloaded 01/20/23 09:41 PM UTC

A M E R I C A N M E T E O R O L O G I C A L S O C I E T Y O C TO B E R 2 0 2 2 E2283

The MetPy development effort receives significant support from the Unidata Program.

The Unidata Program Center (UPC) is a community data and software facility sponsored

primarily by the National Science Foundation’s Division of Atmospheric and Geospace

Sciences (AGS), with a mission to help transform the conduct of research and education in

the atmospheric and related sciences by providing well integrated data services and tools

that address the entire scientific data life cycle. Several of the primary MetPy developers

are now or have previously been based at the UPC; other developers are now or have been

involved with Unidata’s community governance mechanisms. In addition to providing direct

support for UPC software engineers’ MetPy work, Unidata supports the MetPy community’s

open development model and community contribution process by providing infrastructure

(the MetPy repository takes advantage of Unidata’s organizational GitHub account) and

training resources.

Future plans

The needs and feedback of the community have set the course for MetPy’s continued devel-

opment. One of the foremost user requests has been performant calculation of parcel-related

calculations like CAPE on gridded datasets, which is inefficient in current versions of MetPy.

To move past the present inefficiencies in these iteration-based calculations, we will be

addressing bottlenecks in the current implementations through the use of Python tools like

Numba and Cython for creating optimized, compiled routines.

Another performance-related area for improvement in MetPy involves integration with the

Dask Python library. Dask enables larger-than-memory and distributed-memory calcula-

tions across large datasets (Dask Development Team 2022). Native support for data provided

in Dask arrays will allow MetPy users to much more readily analyze large datasets, such

as ensemble and climate model output. This support will necessarily entail comprehensive

testing of the calculation library across the wide array of supported data types. Supporting

Dask arrays will allow MetPy users to optimize their calculations on large datasets as they see

fit. We plan to implement support by testing against this data type, but deliberately making

sure that Dask is not a required dependency. Other plans for the future include continuing

to add supported data formats (e.g., BUFR, McIDAS area files) and adding to the collection of

calculations as requests from the community come in. We also plan to continue to investigate

ways of integrating with other new related Python projects, such as PyART for radar data and

xgcm for climate models.

Learn more

To learn more about MetPy, visit the web documentation at https://unidata.github.io/MetPy/.

The GitHub repository with issue tracker, pull requests, and discussions can be found at

https://github.com/Unidata/MetPy.

Acknowledgments. MetPy represents the collective code and documentation contributions of numer-

ous individuals and has been greatly improved by the feedback from its broader user community.

MetPy development has been supported by the National Science Foundation through Awards

OAC-1740315, OCE-1740633, and OAC-2103682, as well as through its support of the Unidata program

(AGS-1344155 and AGS-1901712).

Data availability statement. All MetPy software is publicly available from the official GitHub

repository at https://github.com/Unidata/MetPy. Copies of the Python code used to generate figures from

publicly available data can be found at https://github.com/Unidata/metpy-bams-2022.

Unauthenticated | Downloaded 01/20/23 09:41 PM UTC

A M E R I C A N M E T E O R O L O G I C A L S O C I E T Y O C TO B E R 2 0 2 2 E2284

References

Blumberg, W. G., K. T. Halbert, T. A. Supinie, P. T. Marsh, R. L. Thompson, and

J. A. Hart, 2017: SHARPpy: An open-source sounding analysis toolkit for

the atmospheric sciences. Bull. Amer. Meteor. Soc., 98, 1625–1636, https://

doi.org/10.1175/BAMS-D-15-00309.1.

Dask Development Team, 2022: Dask: Library for dynamic task scheduling, version

2022.2.0. Dask, https://dask.org.

George Mason University, 2018: The Grid Analysis and Display System, version 2.2.1.

George Mason University COLA, http://cola.gmu.edu/grads/gadoc/gadoc.php.

Grecco, H. E., and Coauthors, 2021: Pint, version 0.18. Pint, https://pint.readthedocs.io.

Harris, C. R., and Coauthors, 2020: Array programming with NumPy. Nature, 585,

357–362, https://doi.org/10.1038/s41586-020-2649-2.

Hoyer, S., and J. Hamman, 2017: xarray: N-D labeled arrays and datasets in

Python. J. Open Res. Software, 5, 10, https://doi.org/10.5334/jors.148.

Hunter, J. H., 2007: Matplotlib: A 2D graphics environment. Comput. Sci. Eng., 9,

90–95, https://doi.org/10.1109/MCSE.2007.55.

Leemans, R., and Coauthors, 2009: Developing a common strategy for integrative

global environmental change research and outreach: The Earth System

Science Partnership (ESSP). Curr. Opin. Environ. Sustainability, 1, 4–13,

https://doi.org/10.1016/j.cosust.2009.07.013.

McDonald, J. M., and C. C. Weiss, 2021: Cold pool characteristics of tornadic quasi-

linear convective systems and other convective modes observed during VORTEX-

SE. Mon. Wea. Rev., 149, 821–840, https://doi.org/10.1175/MWR-D-20-0226.1.

McKinney, W., 2010: Data structures for statistical computing in PYTHON.

Proc. Ninth Python in Science Conf., Austin, TX, SciPy, 56–61, https://

doi.org/10.25080/Majora-92bf1922-00a.

Met Office, 2021: Cartopy version 0.20.2. SciTools, https://scitools.org.uk/cartopy/.

NCAR, 2019: The NCAR Command Language, version 6.6.2. UCAR/NCAR/CISL/

TDD, https://doi.org/10.5065/D6WD3XH5.

Open Source Initiative, 2022: Licenses & standards. Accessed February 2022,

https://opensource.org/licenses.

Pandas Development Team, 2022: pandas version 1.4.1. PyData, https://pandas.

pydata.org.

Raspaud, M., and Coauthors, 2018: PyTroll: An open-source, community-driven

Python framework to process Earth observation satellite data. Bull. Amer.

Meteor. Soc., 99, 1329–1336, https://doi.org/10.1175/BAMS-D-17-0277.1.

Reid, W. V., and Coauthors, 2010: Earth system science for global sustainabil-

ity: Grand challenges. Nature, 330, 916–917, https://doi.org/10.1126/

science.119626.

Schueth, A., C. Weiss, and J. M. L. Dahl, 2021: Comparing observations and simu-

lations of the streamwise vorticity current and the forward flank convergence

boundary in a supercell storm. Mon. Wea. Rev., 149, 1651–1671, https://

doi.org/10.1175/MWR-D-20-0251.1.

Sphinx Team, 2022: Sphinx documentation. Accessed February 2022, www.sphinx-

doc.org.

Stoelinga, M. T., 2018: Users’ guide to RIP version 4.7: A program for visualizing

mesoscale model output. UCAR, accessed February 2022, www2.mmm.ucar.

edu/wrf/users/docs/ripug.htm.

TIOBE, 2021: TIOBE Index. Accessed December 2021, www.tiobe.com/tiobe-index/.

Unidata, 2019: General Meteorology Package (GEMPAK), version 7.5.1. Unidata,

https://doi.org/10.5065/D6H70CW6.

——, 2021: NetCDF, version 4.8.1. Unidata, https://doi.org/10.5065/

D6H70CW6.

Virtanen, P., and Coauthors, 2020: SciPy 1.0: Fundamental algorithms for scientific

computing in Python. Nat. Methods, 17, 261–272, https://doi.org/10.1038/

s41592-019-0686-2.

Wade, A. R., and M. D. Parker, 2021: Dynamics of simulated high-shear

low-CAPE supercells. J. Atmos. Sci., 78, 1389–1410, https://doi.org/10.1175/

JAS-D-20-0117.1.

Zarr Developers, 2021: zarr-python version 2.10.3. Zenodo, https://doi.org/10.5281/

zenodo.5712786.

Unauthenticated | Downloaded 01/20/23 09:41 PM UTC

